research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and characterization of a new lanthanide coordination polymer, [Pr2(pydc)(phth)2(H2O)3]·H2O

crossmark logo

aDepartment of Chemistry, School of Science, University of Phayao, Phayao, 56000, Thailand, and bDepartment of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
*Correspondence e-mail: bunlawee.yo@up.ac.th

Edited by J. M. Delgado, Universidad de Los Andes, Venezuela (Received 6 November 2023; accepted 24 January 2024; online 31 January 2024)

A new lanthanide coordination polymer, poly[[tri­aqua­bis­(μ4-phthalato)(μ3-pyridine-2,5-di­carboxyl­ato)dipraseodymium] monohydrate], {[Pr2(C7H3NO4)2(C8H4O4)(H2O)3]·H2O}n or {[Pr2(phth)2(pydc)(H2O)3]·H2O}n, (pydc2− = pyridine-2,5-di­carboxyl­ate and phth2− = phthalate) was synthesized and characterized, revealing the structure to be an assembly of di-periodic {Pr2(pydc)(phth)2(H2O)3}n layers. Each layer is built up by edge-sharing {Pr2N2O14} and {Pr2O16} dimers, which are connected through a new coordin­ation mode of pydc2− and phth2−. These layers are stabilized by inter­nal hydrogen bonds and ππ inter­actions. In addition, a three-dimensional supra­molecular framework is built by inter­layer hydrogen-bonding inter­actions involving the non-coordinated water mol­ecule. Thermogravimetric analysis shows that the title compound is thermally stable up to 400°C.

1. Chemical context

Lanthanide coordination polymers (LnCPs) have attracted widespread inter­est because of their unique properties and wide range of potential applications, such as in luminescent temperature sensing (Rocha et al., 2016[Rocha, J., Brites, C. D. S. & Carlos, L. D. (2016). Chem. Eur. J. 22, 14782-14795.]), catalysis (Sinchow et al., 2022[Sinchow, M., Konno, T. & Rujiwatra, A. (2022). Inorg. Chem. 61, 10383-10392.]), gas detection (Thammakan et al., 2023[Thammakan, S., Sinchow, M., Chiangraeng, N., Yoshinari, N., Konno, T., Ngamjarurojana, A., Nimmanpipug, P. & Rujiwatra, A. (2023). Cryst. Growth Des. 23, 6840-6850.]) and drug delivery (Wei et al., 2020[Wei, D., Xin, Y., Rong, Y., Li, Y., Zhang, C., Chen, Q., Qin, S., Wang, W. & Hao, Y. (2020). J. Inorg. Organomet. Polym. 30, 1121-1131.]). However, the high coordination numbers of the trivalent lanthanides (LnIII) and the versatility in their coordination geometries complicates the control of inter­molecular inter­actions and the prediction of coordination polymer frameworks. In addition, the synthesis of these frameworks is also influenced considerably by differences in synthetic procedures and conditions such as solvents, pH, reaction temperature and time, among other factors (Sinchow et al., 2019[Sinchow, M., Chuasaard, T., Yotnoi, B. & Rujiwatra, A. (2019). J. Solid State Chem. 278, 120902.]). Organic ligands are utilized as a template for the structural design, to direct the framework architecture. Among the organic ligands available, polycarb­oxy­lic acids are notably the most used because they are hard base ligands and can facilitate diverse coordination modes. In this work, pyridine-2,5-di­carb­oxy­lic acid (H2pydc) and phthalic acid (H2phth) were chosen to be the structure-directing ligands. Relevant structures include, for example, [Pr3(phen)2(phth)4(NO3)]·H2O (phen = 1,10-phenanthroline) (refcode: LAXWOX; Thirumurugan & Natarajan, 2005[Thirumurugan, A. & Natarajan, S. (2005). J. Mater. Chem. 15, 4588-4594.]), [Eu(phth)(OAc)(H2O)] (OAc = acetate) (refcode: TAZDAD; Jittipiboonwat et al., 2022[Jittipiboonwat, P., Chuasaard, T. & Rujiwatra, A. (2022). Acta Cryst. E78, 536-539.]), [Pr(pydc)(pip)1/2(H2O] (pip = 2,5-piperazinedi­carboxyl­ate) (refcode: WUWBIB; Ay et al., 2016[Ay, B., Yildiz, E. & Kani, I. (2016). J. Solid State Chem. 233, 44-51.]) and [Pr(pydc)(NA)H2O]n (NA = nicotinic acid) (refcode: MEJNEY; Hu et al., 2022[Hu, R.-H., Liu, S.-Z., Xu, Y.-Y., Yi, X.-G., Chen, W.-T. & Lin, W.-S. (2022). J. Mol. Struct. 1265, 133396.]).

[Scheme 1]

2. Structural commentary

The asymmetric unit of [Pr2(pydc)(phth)2(H2O)3]·H2O is composed of two PrIII metal centers, one mol­ecule of pydc2−, two mol­ecules of phth2−, three coordinated water mol­ecules and a non-ligated water mol­ecule (Fig. 1[link]). The Pr1 ion is ninefold coordinated to one N atom from pydc2− and eight O atoms from four phth2−, two pydc2− and one water mol­ecule to form a {Pr(1)NO8} motif that can be described as a distorted tricapped trigonal prism. The Pr2 ion is also ninefold coordin­ated, being surrounded by nine O atoms from three phth2−, one pydc2− and two water mol­ecules in a distorted tricapped trigonal–prismatic {Pr(2)O9} motif. The Pr—O bond lengths are in the range 2.413 (3)–2.691 (3) Å and the Pr—N bond is 2.696 (3) Å (Table 1[link]), in accordance with a previous report for PrIII frameworks of pydc2− [2.390 (2)–2.717 (3) Å; Sinchow et al., 2019[Sinchow, M., Chuasaard, T., Yotnoi, B. & Rujiwatra, A. (2019). J. Solid State Chem. 278, 120902.]] and phth2− [2.456 (4)–2.696 (4) Å; Thirumurugan & Natarajan, 2005[Thirumurugan, A. & Natarajan, S. (2005). J. Mater. Chem. 15, 4588-4594.]]. The {Pr(1)NO8} motif is linked to the adjacent Pr1, forming edge-sharing {Pr(1)2N2O14} dimers, and two neighboring {Pr(1)2N2O14} dimers are fused through the μ4-η2:η1:η1: η1 carboxyl group of phth2− to form an infinite chain in the b-axis direction. In a similar fashion, two {Pr(2)O9} motifs are linked to produce {Pr(2)2O16} dimers. These dimers are then connected by the carboxyl groups of phth2− in a μ3-η2:η1:η1:η1 fashion to form a mono-periodic chain also extending in the b-axis direction. These chains are connected through a novel coordination mode for pydc2- involving a μ1-η1:η1 carboxyl group at one side and a μ2-η1:η1 carboxyl group together with the pyridyl N atom coordinated on the other side to form a {[Pr2(pydc)(phth)2(H2O)3]}n layer extending in the (101) plane (Fig. 2[link]a).

Table 1
Selected bond lengths (Å)

Pr1—O7i 2.536 (3) Pr2—O12iv 2.514 (2)
Pr1—O2ii 2.580 (2) Pr2—O15W 2.413 (3)
Pr1—O5iii 2.473 (2) Pr2—O9v 2.691 (3)
Pr1—O8i 2.689 (2) Pr2—O9 2.469 (2)
Pr1—O8iv 2.473 (3) Pr2—O4 2.526 (2)
Pr1—O6 2.446 (3) Pr2—O10v 2.510 (3)
Pr1—O1 2.439 (2) Pr2—O3 2.575 (3)
Pr1—N1 2.696 (3) Pr2—O14W 2.460 (2)
Pr1—O13W 2.571 (4) Pr2—O11iv 2.529 (3)
Symmetry codes: (i) [-x+1, -y+2, -z+1]; (ii) [x, y+1, z]; (iii) [-x+1, -y+1, -z+1]; (iv) [x, y-1, z]; (v) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
Extended asymmetric unit of [Pr2(pydc)(phth)2(H2O)3]·H2O drawn using 50% probability for ellipsoids (hydrogen atoms are omitted for clarity). Symmetry codes: (i) −x + 1, −y + 2, −z + 1; (ii) x, y + 1, z; (iii) −x + 1, −y + 1, −z + 1; (iv) x, y − 1, z; (v) −x + [{3\over 2}], −y + [{3\over 2}], −z + [{1\over 2}].
[Figure 2]
Figure 2
View of (a) the {Pr(1)2N2O14} and {Pr(2)2O16} dimers in the (101) plane and (b) the hydrogen bonding and ππ inter­actions in the dimers.

3. Supra­molecular features

The di-periodic supra­molecular framework of the {[Pr2(pydc)(phth)2(H2O)3]}n layers is further connected by intra­layer hydrogen bonding, i.e. O13W—H13B⋯O2, O14W—H14A⋯O12, O14W—H14B⋯O4, O14W—H14B⋯O10, O15W—H15B⋯O4 and C11—H11⋯O14W inter­actions and ππ inter­actions (Fig. 2[link]b and Table 2[link]). The ππ inter­action between two aromatic rings (pydc2− and phth2-) is classified as a parallel stacked geometry (Banerjee et al., 2019[Banerjee, A., Saha, A. & Saha, B. K. (2019). Cryst. Growth Des. 19, 2245-2252.]), with an offset of 1.250 Å, inter­planar angle of 5.96° and centroid-to-centroid distance of 3.892 (2) Å. In addition, the inter­layer hydrogen-bonding inter­actions involve the coordin­ated water (O13W) and the hydrogen-bonded water (O16W). These inter­actions are O13W—H13A⋯O11, O13W—H13A⋯O16W, O15W—H15A⋯O16W, O16W—H16A⋯O7, O16W—H16B⋯O1 and O16W—H16B⋯O7 inter­actions (Fig. 3[link] and Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O13W—H13A⋯O11vi 0.85 2.57 3.003 (5) 113
O13W—H13A⋯O16Wvi 0.85 2.26 2.881 (5) 130
O13W—H13B⋯O2ii 0.86 2.52 2.820 (4) 102
O14W—H14A⋯O12vii 0.85 1.95 2.766 (4) 160
O14W—H14B⋯O4ii 0.85 2.04 2.887 (4) 174
O14W—H14B⋯O10vii 0.85 2.58 2.912 (4) 104
O15W—H15A⋯O16W 0.85 1.75 2.595 (4) 170
O15W—H15B⋯O4ii 0.85 1.92 2.725 (3) 158
O16W—H16B⋯O7viii 0.85 2.31 2.709 (4) 109
O16W—H16B⋯O1ix 0.85 2.13 2.938 (5) 158
C11—H11⋯O14W 0.93 2.51 3.375 (5) 156
Symmetry codes: (ii) [x, y+1, z]; (vi) [-x+{\script{3\over 2}}, y-1, -z+1]; (vii) [-x+{\script{3\over 2}}, -y+{\script{5\over 2}}, -z+{\script{1\over 2}}]; (viii) [x+{\script{1\over 2}}, -y+2, z]; (ix) [-x+{\script{3\over 2}}, y+1, -z+1].
[Figure 3]
Figure 3
Three-dimensional supra­molecular framework of [Pr2(pydc)(phth)2(H2O)3]·H2O.

4. Thermogravimetric analysis

The thermogravimetric curve of the title compound shows four steps of weight loss in the temperature range 30°C to 1000°C (Fig. 4[link]). The first step occurs at 100–185°C with a 6.0% weight loss attributed to the removal of one hydrogen-bonded water and two coordinated water mol­ecules (calc. 6.4%). The second step observed at 300–350°C is due to the loss of the other coordinated water mol­ecule (exp. 2.5%, calc. 2.1%). This step is possibly due to the removal of O14W, which is held by both strong and weak hydrogen-bonding inter­actions. The next step of weight loss occurs in the temperature range 400–580°C and represents a higher weight loss of 37.3%. This step can be attributed to the pyrolysis of the organic ligands (two phth2− ligands, calc. 38.7%). The last step of weight loss, from 580 to 1000°C, could be due to the elimination of the bridging pydc2− ligand to form praseodymium oxide residues (exp. 14.7%, calc. 19.5%).

[Figure 4]
Figure 4
Thermogravimetric analysis of [Pr2(pydc)(pth)2(H2O)3]·H2O.

5. Database survey

A search for the title compound in the Cambridge Structural Database (CSD version 5.44, April 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using CONQUEST software (version 2023.2.0; Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]) did not match with any reported structures. Regarding organic ligands, there were 123 structures of lanthanide coordination polymers that included pydc2−. Among these structures, inter­estingly, there were none in which pydc2− adopts the same coordination mode as in the title compound (Sinchow et al., 2019[Sinchow, M., Chuasaard, T., Yotnoi, B. & Rujiwatra, A. (2019). J. Solid State Chem. 278, 120902.]). This new mode of coordination acts as a μ3-bridge to link three PrIII ions and facilitates the formation of a di-periodic coordination framework. Regarding phth2−, there were 118 structures deposited in the CSD, none of which contains pydc2− in the structure. However, there is a structure including both pydc2− and phth2− ligands that incorporates a first-row transition metal: [Gd2(H2O)2Ni(H2O)2(phth)2(pydc)2]3·8H2O (refcode: XOZYER; Mahata et al., 2009[Mahata, P., Ramya, K. V. & Natarajan, S. (2009). Inorg. Chem. 48, 4942-4951.]).

6. Synthesis and crystallization

All chemicals were used as received without further purification: Pr6O11 (TJTM, 99.9%), pyridine-2,5-di­carb­oxy­lic acid (H2pydc; Sigma-Aldrich, 98%), 1,2-benzene­dicarb­oxy­lic acid (H2phth; Sigma-Aldrich, 98%) and NaOH (QReC, 99%). The Pr(NO3)3·6H2O precursor was prepared by crystallization from solution of the lanthanide oxide in nitric acid (RCI Labscan, 65%).

To synthesize [Pr2(pydc)(phth)2(H2O)3]·H2O, a solution of H2pydc (0.125 mmol, 20.8 mg) and H2phth (0.25 mmol, 41.5 mg) was prepared in 8 mL of deionized water, then 1.35 mL of 0.5 M NaOH were added and the pH adjusted to 5. Pr(NO3)·6H2O (0.25 mmol, 146.6 mg) was dissolved in 2 mL of deionized water and mixed with the ligand solution. The reaction mixture was then transferred into a 23 mL Teflon-lined hydro­thermal reactor and held at 423 K for 72 h. Green block-shaped crystals were collected and dried at room temperature. The crystals were characterized using FT–IR spectroscopy (Nicolet iS5 FTIR Spectrometer; iD5 ATR mode; cm−1): 3243(br), 1615(w), 1575(m), 1543(m), 1517(m), 1481(m), 1450(w), 1391(m), 1354(m), 1283(w), 1143(w), 1088(w), 1028(w), 870(w), 840(m), 762(m), 670(m), 648(w). The FT–IR spectrum shows a broad band at 3243 cm−1 attributed to the ν(O—H) stretching from the water mol­ecules. The characteristic peak at 1615 cm−1 corresponds to the C=O stretching vibrational mode of the carboxyl­ate group. The peak at 1283 cm−1 is due to the C—N stretching of the pydc2− ligand.

Thermogravimetric analyses (TGA) were carried out using a Mettler Toledo TGA/DSC 3+, with a heating rate of 20°C min−1, ramping from 30 to 1100°C under a nitro­gen gas flow.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All hydrogen atoms of aromatic rings and water mol­ecules were positioned geometrically and refined using a riding model with Uiso(H) = 1.2–1.5Ueq(C,O).

Table 3
Experimental details

Crystal data
Chemical formula [Pr2(C7H3NO4)2(C8H4O4)(H2O)3]·H2O
Mr 847.21
Crystal system, space group Monoclinic, I2/a
Temperature (K) 293
a, b, c (Å) 27.4898 (4), 5.9436 (1), 32.0473 (5)
β (°) 93.854 (1)
V3) 5224.31 (14)
Z 8
Radiation type Mo Kα
μ (mm−1) 3.77
Crystal size (mm) 0.3 × 0.2 × 0.08
 
Data collection
Diffractometer SuperNova, Single source at offset/far, HyPix3000
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.448, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 26747, 5561, 5004
Rint 0.062
(sin θ/λ)max−1) 0.648
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.081, 1.05
No. of reflections 5561
No. of parameters 387
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.03, −1.08
Computer programs: CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Poly[[triaquabis(µ4-phthalato)(µ3-pyridine-2,5-dicarboxylato)dipraseodymium] monohydrate] top
Crystal data top
[Pr2(C7H3NO4)2(C8H4O4)(H2O)3]·H2OF(000) = 3280
Mr = 847.21Dx = 2.154 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
a = 27.4898 (4) ÅCell parameters from 20454 reflections
b = 5.9436 (1) Åθ = 2.0–27.3°
c = 32.0473 (5) ŵ = 3.77 mm1
β = 93.854 (1)°T = 293 K
V = 5224.31 (14) Å3Block, clear light green
Z = 80.3 × 0.2 × 0.08 mm
Data collection top
SuperNova, Single source at offset/far, HyPix3000
diffractometer
5561 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source5004 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.062
Detector resolution: 10.0000 pixels mm-1θmax = 27.4°, θmin = 1.9°
ω scansh = 3234
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2019)
k = 77
Tmin = 0.448, Tmax = 1.000l = 4040
26747 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0445P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.003
5561 reflectionsΔρmax = 1.03 e Å3
387 parametersΔρmin = 1.08 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The crystal structure was solved using the dual-space algorithm with the SHELXT program (Sheldrick, 2015a) and refined on F2 by the full-matrix least-squares technique using the SHELXL program (Sheldrick, 2015b) via the Olex2 interface (Dolomanov et al., 2009).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pr10.57085 (2)0.43694 (3)0.52003 (2)0.01775 (8)
Pr20.75715 (2)0.65833 (3)0.31515 (2)0.01807 (8)
O70.45283 (10)1.3428 (4)0.41664 (9)0.0278 (6)
O20.63896 (9)0.2639 (4)0.52143 (8)0.0258 (6)
O120.80011 (9)1.3574 (4)0.27660 (8)0.0233 (6)
O50.48823 (9)0.7809 (4)0.44133 (8)0.0245 (6)
O80.50558 (9)1.2895 (4)0.47057 (8)0.0225 (6)
O15W0.79900 (10)0.9333 (4)0.35981 (10)0.0348 (7)
H15A0.8289060.9318110.3684520.052*
H15B0.7888651.0622250.3667590.052*
O90.79607 (10)0.8562 (4)0.25842 (8)0.0247 (6)
O40.74925 (10)0.3284 (4)0.36394 (9)0.0288 (7)
O100.82266 (10)1.0318 (4)0.20438 (9)0.0285 (6)
O60.56535 (10)0.6744 (4)0.45754 (9)0.0270 (6)
O30.71029 (11)0.6308 (4)0.38190 (9)0.0332 (7)
O14W0.70712 (9)1.0001 (4)0.30575 (9)0.0272 (6)
H14A0.7115171.0583760.2820440.041*
H14B0.7172971.0993060.3233940.041*
O110.84297 (10)1.5114 (5)0.32951 (9)0.0328 (7)
O10.59351 (10)0.0418 (4)0.52815 (9)0.0314 (7)
N10.63969 (11)0.2702 (5)0.47251 (10)0.0237 (7)
O16W0.89141 (13)0.9700 (6)0.38119 (11)0.0511 (9)
H16A0.8982600.8438870.3705600.077*
H16B0.8989300.9543620.4071900.077*
O13W0.63638 (14)0.3845 (6)0.58034 (11)0.0575 (10)
H13A0.6232880.3313150.6016850.086*
H13B0.6474460.5129640.5883870.086*
C150.49303 (14)1.2686 (5)0.43171 (12)0.0201 (8)
C220.88149 (13)1.2236 (6)0.29160 (12)0.0224 (8)
C170.87562 (14)1.0344 (6)0.26623 (12)0.0226 (8)
C230.83927 (13)1.3731 (6)0.29984 (12)0.0214 (8)
C60.66161 (14)0.3836 (6)0.44322 (12)0.0236 (8)
H60.6503210.5272140.4362580.028*
C160.82826 (14)0.9752 (6)0.24196 (12)0.0209 (8)
C20.65666 (13)0.0621 (5)0.48235 (12)0.0200 (8)
C80.53344 (13)0.7948 (5)0.43889 (12)0.0192 (8)
C50.70056 (13)0.2984 (6)0.42248 (12)0.0229 (8)
C10.62796 (14)0.0633 (5)0.51323 (12)0.0196 (8)
C140.52822 (13)1.1759 (5)0.40244 (12)0.0194 (8)
C70.72085 (14)0.4317 (6)0.38760 (12)0.0236 (9)
C180.91496 (15)0.8966 (7)0.26096 (15)0.0364 (11)
H180.9110100.7696560.2441190.044*
C210.92728 (15)1.2708 (7)0.31040 (14)0.0347 (10)
H210.9316301.3976190.3272260.042*
C40.71830 (15)0.0895 (6)0.43396 (13)0.0299 (10)
H40.7449670.0295750.4214500.036*
C110.59980 (15)1.0454 (7)0.35039 (14)0.0355 (11)
H110.6236951.0015660.3328560.043*
C30.69586 (14)0.0308 (6)0.46450 (12)0.0266 (9)
H30.7072940.1724270.4726970.032*
C100.58662 (14)0.9040 (6)0.38164 (13)0.0271 (9)
H100.6020640.7655560.3854360.033*
C90.55037 (13)0.9663 (6)0.40764 (12)0.0213 (8)
C130.54177 (15)1.3151 (6)0.37105 (13)0.0300 (10)
H130.5265451.4539840.3672520.036*
C120.57745 (16)1.2535 (7)0.34501 (14)0.0377 (11)
H120.5864131.3504580.3240880.045*
C190.96019 (16)0.9438 (8)0.28028 (16)0.0454 (13)
H190.9863460.8479100.2768560.054*
C200.96632 (17)1.1326 (8)0.30449 (17)0.0485 (13)
H200.9969171.1674480.3169520.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pr10.01815 (13)0.01481 (12)0.02073 (14)0.00126 (7)0.00452 (9)0.00299 (8)
Pr20.01974 (13)0.01567 (12)0.01921 (14)0.00040 (7)0.00422 (9)0.00159 (8)
O70.0247 (15)0.0284 (14)0.0302 (17)0.0052 (12)0.0009 (13)0.0047 (12)
O20.0305 (15)0.0164 (12)0.0310 (16)0.0006 (11)0.0054 (13)0.0040 (11)
O120.0186 (14)0.0230 (13)0.0278 (16)0.0040 (11)0.0032 (12)0.0000 (11)
O50.0222 (14)0.0220 (13)0.0300 (16)0.0022 (11)0.0078 (12)0.0052 (12)
O80.0312 (15)0.0179 (12)0.0184 (15)0.0023 (11)0.0024 (12)0.0003 (11)
O15W0.0267 (16)0.0304 (15)0.046 (2)0.0023 (12)0.0064 (15)0.0147 (14)
O90.0262 (15)0.0207 (12)0.0280 (16)0.0066 (11)0.0077 (12)0.0032 (11)
O40.0362 (17)0.0229 (13)0.0292 (17)0.0071 (12)0.0155 (14)0.0060 (11)
O100.0278 (15)0.0332 (15)0.0245 (16)0.0063 (12)0.0020 (12)0.0058 (12)
O60.0262 (15)0.0261 (14)0.0288 (16)0.0055 (11)0.0032 (13)0.0105 (12)
O30.052 (2)0.0198 (13)0.0305 (17)0.0036 (13)0.0216 (15)0.0004 (12)
O14W0.0332 (16)0.0228 (13)0.0256 (16)0.0057 (12)0.0024 (13)0.0019 (11)
O110.0314 (16)0.0359 (15)0.0299 (17)0.0070 (13)0.0053 (13)0.0145 (13)
O10.0379 (17)0.0202 (13)0.0386 (18)0.0036 (12)0.0206 (14)0.0074 (12)
N10.0259 (17)0.0156 (14)0.0306 (19)0.0024 (13)0.0097 (15)0.0037 (14)
O16W0.046 (2)0.059 (2)0.046 (2)0.0062 (18)0.0142 (18)0.0038 (17)
O13W0.072 (3)0.054 (2)0.044 (2)0.0244 (19)0.0162 (19)0.0018 (17)
C150.023 (2)0.0133 (16)0.024 (2)0.0063 (15)0.0044 (17)0.0010 (15)
C220.021 (2)0.0225 (18)0.023 (2)0.0021 (16)0.0008 (16)0.0015 (16)
C170.023 (2)0.0228 (18)0.022 (2)0.0010 (16)0.0028 (16)0.0041 (16)
C230.020 (2)0.0191 (17)0.025 (2)0.0008 (15)0.0029 (17)0.0022 (16)
C60.030 (2)0.0174 (16)0.024 (2)0.0029 (16)0.0075 (18)0.0038 (16)
C160.021 (2)0.0173 (17)0.025 (2)0.0039 (15)0.0078 (17)0.0030 (16)
C20.020 (2)0.0177 (17)0.022 (2)0.0009 (14)0.0037 (16)0.0003 (15)
C80.022 (2)0.0146 (16)0.021 (2)0.0011 (15)0.0046 (16)0.0022 (15)
C50.024 (2)0.0221 (18)0.023 (2)0.0001 (16)0.0077 (17)0.0028 (16)
C10.023 (2)0.0170 (17)0.019 (2)0.0009 (15)0.0020 (16)0.0020 (14)
C140.0198 (19)0.0174 (17)0.021 (2)0.0037 (14)0.0003 (16)0.0019 (14)
C70.028 (2)0.0210 (19)0.023 (2)0.0004 (16)0.0091 (18)0.0012 (16)
C180.027 (2)0.035 (2)0.047 (3)0.0083 (19)0.004 (2)0.007 (2)
C210.026 (2)0.034 (2)0.044 (3)0.0017 (19)0.001 (2)0.009 (2)
C40.029 (2)0.0241 (19)0.039 (3)0.0037 (17)0.014 (2)0.0032 (18)
C110.029 (2)0.046 (3)0.033 (3)0.0025 (19)0.015 (2)0.003 (2)
C30.032 (2)0.0202 (18)0.029 (2)0.0065 (16)0.0095 (18)0.0060 (16)
C100.028 (2)0.0261 (19)0.028 (2)0.0016 (17)0.0112 (18)0.0018 (17)
C90.0182 (19)0.0225 (18)0.024 (2)0.0012 (15)0.0035 (16)0.0002 (16)
C130.039 (3)0.0239 (19)0.027 (2)0.0015 (17)0.005 (2)0.0052 (17)
C120.043 (3)0.039 (2)0.033 (3)0.006 (2)0.018 (2)0.014 (2)
C190.026 (2)0.053 (3)0.056 (3)0.018 (2)0.000 (2)0.010 (3)
C200.018 (2)0.063 (3)0.063 (4)0.002 (2)0.008 (2)0.012 (3)
Geometric parameters (Å, º) top
Pr1—Pr1i4.0877 (4)N1—C21.352 (4)
Pr1—O7ii2.536 (3)O16W—H16A0.8495
Pr1—O2iii2.580 (2)O16W—H16B0.8500
Pr1—O5i2.473 (2)O13W—H13A0.8548
Pr1—O8ii2.689 (2)O13W—H13B0.8552
Pr1—O8iv2.473 (3)C15—C141.497 (5)
Pr1—O62.446 (3)C22—C171.391 (5)
Pr1—O12.439 (2)C22—C231.499 (5)
Pr1—N12.696 (3)C22—C211.387 (5)
Pr1—O13W2.571 (4)C17—C161.513 (5)
Pr1—C15ii2.984 (4)C17—C181.376 (5)
Pr2—O12iv2.514 (2)C6—H60.9300
Pr2—O15W2.413 (3)C6—C51.393 (5)
Pr2—O9v2.691 (3)C2—C11.504 (5)
Pr2—O92.469 (2)C2—C31.370 (5)
Pr2—O42.526 (2)C8—C91.523 (5)
Pr2—O10v2.510 (3)C5—C71.507 (5)
Pr2—O32.575 (3)C5—C41.375 (5)
Pr2—O14W2.460 (2)C14—C91.392 (5)
Pr2—O11iv2.529 (3)C14—C131.373 (5)
Pr2—C23iv2.891 (4)C18—H180.9300
Pr2—C16v2.986 (4)C18—C191.380 (6)
O7—C151.256 (5)C21—H210.9300
O2—C11.254 (4)C21—C201.374 (6)
O12—C231.271 (4)C4—H40.9300
O5—C81.253 (4)C4—C31.390 (5)
O8—C151.276 (4)C11—H110.9300
O15W—H15A0.8498C11—C101.375 (5)
O15W—H15B0.8499C11—C121.386 (5)
O9—C161.274 (4)C3—H30.9300
O4—C71.281 (4)C10—H100.9300
O10—C161.250 (4)C10—C91.391 (5)
O6—C81.252 (4)C13—H130.9300
O3—C71.229 (4)C13—C121.379 (5)
O14W—H14A0.8511C12—H120.9300
O14W—H14B0.8512C19—H190.9300
O11—C231.256 (4)C19—C201.368 (6)
O1—C11.255 (4)C20—H200.9300
N1—C61.332 (4)
O7ii—Pr1—Pr1i82.31 (6)C23iv—Pr2—C16v109.32 (10)
O7ii—Pr1—O2iii81.68 (8)C15—O7—Pr1ii98.1 (2)
O7ii—Pr1—O8ii49.76 (8)C1—O2—Pr1iv119.2 (2)
O7ii—Pr1—N1150.37 (10)C23—O12—Pr2iii93.8 (2)
O7ii—Pr1—O13W70.46 (10)C8—O5—Pr1i138.9 (2)
O7ii—Pr1—C15ii24.63 (10)Pr1iii—O8—Pr1ii104.62 (8)
O2iii—Pr1—Pr1i123.65 (6)C15—O8—Pr1iii142.8 (2)
O2iii—Pr1—O8ii98.79 (7)C15—O8—Pr1ii90.4 (2)
O2iii—Pr1—N174.17 (8)Pr2—O15W—H15A126.8
O2iii—Pr1—C15ii92.20 (8)Pr2—O15W—H15B127.9
O5i—Pr1—Pr1i67.00 (6)H15A—O15W—H15B104.5
O5i—Pr1—O7ii69.95 (8)Pr2—O9—Pr2v113.13 (9)
O5i—Pr1—O2iii148.44 (9)C16—O9—Pr2156.4 (3)
O5i—Pr1—O8ii73.52 (7)C16—O9—Pr2v90.4 (2)
O5i—Pr1—N1126.85 (8)C7—O4—Pr294.3 (2)
O5i—Pr1—O13W90.61 (11)C16—O10—Pr2v99.7 (2)
O5i—Pr1—C15ii67.57 (8)C8—O6—Pr1136.3 (2)
O8iv—Pr1—Pr1i39.54 (6)C7—O3—Pr293.4 (2)
O8ii—Pr1—Pr1i35.83 (6)Pr2—O14W—H14A109.5
O8iv—Pr1—O7ii118.78 (9)Pr2—O14W—H14B109.6
O8iv—Pr1—O2iii138.56 (8)H14A—O14W—H14B104.5
O8iv—Pr1—O5i70.29 (9)C23—O11—Pr2iii93.5 (2)
O8iv—Pr1—O8ii75.37 (8)C1—O1—Pr1129.2 (2)
O8ii—Pr1—N1150.31 (9)C6—N1—Pr1125.4 (2)
O8iv—Pr1—N190.82 (9)C6—N1—C2117.5 (3)
O8iv—Pr1—O13W151.68 (10)C2—N1—Pr1116.7 (2)
O8iv—Pr1—C15ii96.50 (10)H16A—O16W—H16B104.5
O8ii—Pr1—C15ii25.31 (9)Pr1—O13W—H13A109.6
O6—Pr1—Pr1i68.41 (6)Pr1—O13W—H13B109.6
O6—Pr1—O7ii110.62 (9)H13A—O13W—H13B104.4
O6—Pr1—O2iii67.76 (9)O7—C15—Pr1ii57.32 (19)
O6—Pr1—O5i134.86 (9)O7—C15—O8121.0 (3)
O6—Pr1—O8iv71.19 (9)O7—C15—C14118.5 (3)
O6—Pr1—O8ii74.76 (8)O8—C15—Pr1ii64.34 (18)
O6—Pr1—N175.93 (9)O8—C15—C14120.2 (3)
O6—Pr1—O13W133.39 (12)C14—C15—Pr1ii165.5 (2)
O6—Pr1—C15ii94.57 (9)C17—C22—C23121.4 (3)
O1—Pr1—Pr1i116.18 (7)C21—C22—C17118.9 (3)
O1—Pr1—O7ii119.27 (9)C21—C22—C23119.6 (3)
O1—Pr1—O2iii118.80 (9)C22—C17—C16123.4 (3)
O1—Pr1—O5i67.30 (8)C18—C17—C22119.5 (4)
O1—Pr1—O8ii140.00 (8)C18—C17—C16117.1 (3)
O1—Pr1—O8iv84.05 (9)O12—C23—Pr2iii60.15 (18)
O1—Pr1—O6130.10 (9)O12—C23—C22119.2 (3)
O1—Pr1—N161.47 (8)O11—C23—Pr2iii60.80 (19)
O1—Pr1—O13W69.03 (11)O11—C23—O12121.0 (3)
O1—Pr1—C15ii131.64 (9)O11—C23—C22119.8 (4)
N1—Pr1—Pr1i125.47 (7)C22—C23—Pr2iii179.4 (3)
N1—Pr1—C15ii165.50 (9)N1—C6—H6118.3
O13W—Pr1—Pr1i149.66 (8)N1—C6—C5123.4 (3)
O13W—Pr1—O2iii66.39 (11)C5—C6—H6118.3
O13W—Pr1—O8ii120.15 (9)O9—C16—Pr2v64.3 (2)
O13W—Pr1—N184.09 (11)O9—C16—C17120.9 (3)
O13W—Pr1—C15ii95.07 (11)O10—C16—Pr2v56.0 (2)
C15ii—Pr1—Pr1i58.24 (8)O10—C16—O9120.3 (4)
O12iv—Pr2—O9v78.00 (8)O10—C16—C17118.6 (3)
O12iv—Pr2—O479.32 (8)C17—C16—Pr2v172.4 (2)
O12iv—Pr2—O3129.85 (8)N1—C2—C1114.8 (3)
O12iv—Pr2—O11iv51.70 (9)N1—C2—C3122.7 (3)
O12iv—Pr2—C23iv26.01 (9)C3—C2—C1122.5 (3)
O12iv—Pr2—C16v83.43 (9)O5—C8—C9115.7 (3)
O15W—Pr2—O12iv123.55 (9)O6—C8—O5126.7 (3)
O15W—Pr2—O9v138.66 (9)O6—C8—C9117.5 (3)
O15W—Pr2—O984.33 (10)C6—C5—C7119.8 (3)
O15W—Pr2—O4102.48 (10)C4—C5—C6118.1 (3)
O15W—Pr2—O10v145.79 (9)C4—C5—C7122.1 (3)
O15W—Pr2—O378.21 (10)O2—C1—O1124.8 (3)
O15W—Pr2—O14W75.74 (9)O2—C1—C2118.6 (3)
O15W—Pr2—O11iv73.99 (9)O1—C1—C2116.5 (3)
O15W—Pr2—C23iv98.70 (10)C9—C14—C15123.4 (3)
O15W—Pr2—C16v150.18 (9)C13—C14—C15117.1 (3)
O9—Pr2—O12iv74.68 (8)C13—C14—C9119.3 (3)
O9—Pr2—O9v66.86 (9)O4—C7—C5117.2 (3)
O9—Pr2—O4152.26 (8)O3—C7—O4121.4 (3)
O9—Pr2—O10v116.47 (9)O3—C7—C5121.4 (3)
O9—Pr2—O3155.19 (8)C17—C18—H18119.5
O9—Pr2—O11iv81.57 (9)C17—C18—C19121.1 (4)
O9v—Pr2—C23iv102.54 (10)C19—C18—H18119.5
O9—Pr2—C23iv76.84 (9)C22—C21—H21119.6
O9—Pr2—C16v92.12 (10)C20—C21—C22120.9 (4)
O9v—Pr2—C16v25.27 (8)C20—C21—H21119.6
O4—Pr2—O9v116.93 (9)C5—C4—H4120.4
O4—Pr2—O350.80 (8)C5—C4—C3119.2 (3)
O4—Pr2—O11iv74.77 (9)C3—C4—H4120.4
O4—Pr2—C23iv75.56 (9)C10—C11—H11120.0
O4—Pr2—C16v94.37 (10)C10—C11—C12120.0 (4)
O10v—Pr2—O12iv89.35 (8)C12—C11—H11120.0
O10v—Pr2—O9v49.64 (8)C2—C3—C4119.0 (3)
O10v—Pr2—O472.22 (9)C2—C3—H3120.5
O10v—Pr2—O372.59 (9)C4—C3—H3120.5
O10v—Pr2—O11iv132.78 (8)C11—C10—H10119.7
O10v—Pr2—C23iv111.90 (10)C11—C10—C9120.5 (4)
O10v—Pr2—C16v24.37 (8)C9—C10—H10119.7
O3—Pr2—O9v116.93 (9)C14—C9—C8121.8 (3)
O3—Pr2—C23iv122.92 (10)C10—C9—C8118.6 (3)
O3—Pr2—C16v94.34 (10)C10—C9—C14119.5 (3)
O14W—Pr2—O12iv143.58 (9)C14—C13—H13119.2
O14W—Pr2—O9v69.69 (8)C14—C13—C12121.5 (4)
O14W—Pr2—O977.46 (8)C12—C13—H13119.2
O14W—Pr2—O4130.24 (8)C11—C12—H12120.4
O14W—Pr2—O10v82.48 (9)C13—C12—C11119.3 (3)
O14W—Pr2—O381.23 (9)C13—C12—H12120.4
O14W—Pr2—O11iv144.54 (9)C18—C19—H19120.2
O14W—Pr2—C23iv154.13 (9)C20—C19—C18119.6 (4)
O14W—Pr2—C16v74.59 (9)C20—C19—H19120.2
O11iv—Pr2—O9v126.43 (8)C21—C20—H20120.0
O11iv—Pr2—O3109.85 (9)C19—C20—C21120.0 (4)
O11iv—Pr2—C23iv25.69 (10)C19—C20—H20120.0
O11iv—Pr2—C16v134.86 (9)
Pr1ii—O7—C15—O810.0 (3)N1—C2—C1—O13.9 (5)
Pr1ii—O7—C15—C14163.8 (2)N1—C2—C3—C42.2 (6)
Pr1iv—O2—C1—O146.5 (5)C15—C14—C9—C811.8 (6)
Pr1iv—O2—C1—C2131.6 (3)C15—C14—C9—C10172.9 (4)
Pr1i—O5—C8—O63.6 (6)C15—C14—C13—C12173.7 (4)
Pr1i—O5—C8—C9179.2 (2)C22—C17—C16—O988.4 (4)
Pr1iii—O8—C15—Pr1ii115.2 (3)C22—C17—C16—O1096.6 (4)
Pr1iii—O8—C15—O7124.5 (4)C22—C17—C18—C190.3 (6)
Pr1ii—O8—C15—O79.3 (3)C22—C21—C20—C190.9 (8)
Pr1ii—O8—C15—C14164.4 (3)C17—C22—C23—O1215.5 (5)
Pr1iii—O8—C15—C1449.2 (5)C17—C22—C23—O11164.4 (4)
Pr1—O6—C8—O521.5 (6)C17—C22—C21—C200.5 (6)
Pr1—O6—C8—C9162.9 (2)C17—C18—C19—C201.1 (7)
Pr1—O1—C1—O2174.8 (3)C23—C22—C17—C165.7 (6)
Pr1—O1—C1—C27.1 (5)C23—C22—C17—C18177.2 (4)
Pr1—N1—C6—C5173.0 (3)C23—C22—C21—C20177.9 (4)
Pr1—N1—C2—C111.0 (4)C6—N1—C2—C1175.6 (3)
Pr1—N1—C2—C3171.3 (3)C6—N1—C2—C32.1 (6)
Pr1ii—C15—C14—C9161.5 (9)C6—C5—C7—O4165.8 (4)
Pr1ii—C15—C14—C1313.1 (13)C6—C5—C7—O313.7 (6)
Pr2iii—O12—C23—O110.1 (4)C6—C5—C4—C32.2 (6)
Pr2iii—O12—C23—C22179.8 (3)C16—C17—C18—C19176.9 (4)
Pr2—O9—C16—Pr2v176.4 (6)C2—N1—C6—C50.2 (6)
Pr2v—O9—C16—O101.1 (3)C5—C4—C3—C20.0 (6)
Pr2—O9—C16—O10175.3 (4)C1—C2—C3—C4175.3 (4)
Pr2—O9—C16—C179.8 (8)C14—C13—C12—C110.7 (7)
Pr2v—O9—C16—C17173.8 (3)C7—C5—C4—C3175.8 (4)
Pr2—O4—C7—O34.0 (4)C18—C17—C16—O994.5 (4)
Pr2—O4—C7—C5175.5 (3)C18—C17—C16—O1080.5 (5)
Pr2v—O10—C16—O91.2 (4)C18—C19—C20—C211.8 (8)
Pr2v—O10—C16—C17173.8 (3)C21—C22—C17—C16175.8 (4)
Pr2—O3—C7—O43.9 (4)C21—C22—C17—C181.2 (6)
Pr2—O3—C7—C5175.5 (3)C21—C22—C23—O12166.1 (4)
Pr2iii—O11—C23—O120.1 (4)C21—C22—C23—O1114.0 (6)
Pr2iii—O11—C23—C22179.8 (3)C4—C5—C7—O412.2 (6)
O7—C15—C14—C9129.3 (4)C4—C5—C7—O3168.4 (4)
O7—C15—C14—C1356.1 (5)C11—C10—C9—C8173.9 (4)
O5—C8—C9—C1439.7 (5)C11—C10—C9—C141.5 (6)
O5—C8—C9—C10135.6 (4)C3—C2—C1—O23.4 (6)
O8—C15—C14—C956.9 (5)C3—C2—C1—O1178.4 (4)
O8—C15—C14—C13117.7 (4)C10—C11—C12—C130.6 (7)
O6—C8—C9—C14144.3 (4)C9—C14—C13—C121.2 (6)
O6—C8—C9—C1040.4 (5)C13—C14—C9—C8173.7 (4)
N1—C6—C5—C7175.6 (4)C13—C14—C9—C101.6 (6)
N1—C6—C5—C42.4 (6)C12—C11—C10—C91.0 (7)
N1—C2—C1—O2174.4 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x, y+1, z; (iv) x, y1, z; (v) x+3/2, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13W—H13A···O11vi0.852.573.003 (5)113
O13W—H13A···O16Wvi0.852.262.881 (5)130
O13W—H13B···O2iii0.862.522.820 (4)102
O14W—H14A···O12vii0.851.952.766 (4)160
O14W—H14B···O4iii0.852.042.887 (4)174
O14W—H14B···O10vii0.852.582.912 (4)104
O15W—H15A···O16W0.851.752.595 (4)170
O15W—H15B···O4iii0.851.922.725 (3)158
O16W—H16B···O7viii0.852.312.709 (4)109
O16W—H16B···O1ix0.852.132.938 (5)158
C11—H11···O14W0.932.513.375 (5)156
Symmetry codes: (iii) x, y+1, z; (vi) x+3/2, y1, z+1; (vii) x+3/2, y+5/2, z+1/2; (viii) x+1/2, y+2, z; (ix) x+3/2, y+1, z+1.
 

Funding information

This work was supported financially by the Fundamental Fund (FF65-RIM055) of the University of Phayao, Thailand, and by the School of Science, University of Phayao (funding No. PBTSC66046).

References

First citationAy, B., Yildiz, E. & Kani, I. (2016). J. Solid State Chem. 233, 44–51.  CrossRef CAS Google Scholar
First citationBanerjee, A., Saha, A. & Saha, B. K. (2019). Cryst. Growth Des. 19, 2245–2252.  Web of Science CrossRef CAS Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHu, R.-H., Liu, S.-Z., Xu, Y.-Y., Yi, X.-G., Chen, W.-T. & Lin, W.-S. (2022). J. Mol. Struct. 1265, 133396.  CrossRef Google Scholar
First citationJittipiboonwat, P., Chuasaard, T. & Rujiwatra, A. (2022). Acta Cryst. E78, 536–539.  CrossRef IUCr Journals Google Scholar
First citationMahata, P., Ramya, K. V. & Natarajan, S. (2009). Inorg. Chem. 48, 4942–4951.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRocha, J., Brites, C. D. S. & Carlos, L. D. (2016). Chem. Eur. J. 22, 14782–14795.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSinchow, M., Chuasaard, T., Yotnoi, B. & Rujiwatra, A. (2019). J. Solid State Chem. 278, 120902.  CrossRef Google Scholar
First citationSinchow, M., Konno, T. & Rujiwatra, A. (2022). Inorg. Chem. 61, 10383–10392.  CrossRef CAS PubMed Google Scholar
First citationThammakan, S., Sinchow, M., Chiangraeng, N., Yoshinari, N., Konno, T., Ngamjarurojana, A., Nimmanpipug, P. & Rujiwatra, A. (2023). Cryst. Growth Des. 23, 6840–6850.  CrossRef CAS Google Scholar
First citationThirumurugan, A. & Natarajan, S. (2005). J. Mater. Chem. 15, 4588–4594.  Web of Science CSD CrossRef CAS Google Scholar
First citationWei, D., Xin, Y., Rong, Y., Li, Y., Zhang, C., Chen, Q., Qin, S., Wang, W. & Hao, Y. (2020). J. Inorg. Organomet. Polym. 30, 1121–1131.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds