research communications
2(pydc)(phth)2(H2O)3]·H2O
and characterization of a new lanthanide coordination polymer, [PraDepartment of Chemistry, School of Science, University of Phayao, Phayao, 56000, Thailand, and bDepartment of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
*Correspondence e-mail: bunlawee.yo@up.ac.th
A new lanthanide coordination polymer, poly[[triaquabis(μ4-phthalato)(μ3-pyridine-2,5-dicarboxylato)dipraseodymium] monohydrate], {[Pr2(C7H3NO4)2(C8H4O4)(H2O)3]·H2O}n or {[Pr2(phth)2(pydc)(H2O)3]·H2O}n, (pydc2− = pyridine-2,5-dicarboxylate and phth2− = phthalate) was synthesized and characterized, revealing the structure to be an assembly of di-periodic {Pr2(pydc)(phth)2(H2O)3}n layers. Each layer is built up by edge-sharing {Pr2N2O14} and {Pr2O16} dimers, which are connected through a new coordination mode of pydc2− and phth2−. These layers are stabilized by internal hydrogen bonds and π–π interactions. In addition, a three-dimensional supramolecular framework is built by interlayer hydrogen-bonding interactions involving the non-coordinated water molecule. Thermogravimetric analysis shows that the title compound is thermally stable up to 400°C.
Keywords: crystal structure; coordination polymer; lanthanide; pyridine-2,5-dicarboxylate; phthalate..
CCDC reference: 2327873
1. Chemical context
Lanthanide coordination polymers (LnCPs) have attracted widespread interest because of their unique properties and wide range of potential applications, such as in luminescent temperature sensing (Rocha et al., 2016), catalysis (Sinchow et al., 2022), gas detection (Thammakan et al., 2023) and drug delivery (Wei et al., 2020). However, the high coordination numbers of the trivalent lanthanides (LnIII) and the versatility in their coordination geometries complicates the control of intermolecular interactions and the prediction of coordination polymer frameworks. In addition, the synthesis of these frameworks is also influenced considerably by differences in synthetic procedures and conditions such as solvents, pH, reaction temperature and time, among other factors (Sinchow et al., 2019). Organic ligands are utilized as a template for the structural design, to direct the framework architecture. Among the organic ligands available, polycarboxylic acids are notably the most used because they are hard base ligands and can facilitate diverse coordination modes. In this work, pyridine-2,5-dicarboxylic acid (H2pydc) and phthalic acid (H2phth) were chosen to be the structure-directing ligands. Relevant structures include, for example, [Pr3(phen)2(phth)4(NO3)]·H2O (phen = 1,10-phenanthroline) (refcode: LAXWOX; Thirumurugan & Natarajan, 2005), [Eu(phth)(OAc)(H2O)] (OAc = acetate) (refcode: TAZDAD; Jittipiboonwat et al., 2022), [Pr(pydc)(pip)1/2(H2O] (pip = 2,5-piperazinedicarboxylate) (refcode: WUWBIB; Ay et al., 2016) and [Pr(pydc)(NA)H2O]n (NA = nicotinic acid) (refcode: MEJNEY; Hu et al., 2022).
2. Structural commentary
The 2(pydc)(phth)2(H2O)3]·H2O is composed of two PrIII metal centers, one molecule of pydc2−, two molecules of phth2−, three coordinated water molecules and a non-ligated water molecule (Fig. 1). The Pr1 ion is ninefold coordinated to one N atom from pydc2− and eight O atoms from four phth2−, two pydc2− and one water molecule to form a {Pr(1)NO8} motif that can be described as a distorted tricapped trigonal prism. The Pr2 ion is also ninefold coordinated, being surrounded by nine O atoms from three phth2−, one pydc2− and two water molecules in a distorted tricapped trigonal–prismatic {Pr(2)O9} motif. The Pr—O bond lengths are in the range 2.413 (3)–2.691 (3) Å and the Pr—N bond is 2.696 (3) Å (Table 1), in accordance with a previous report for PrIII frameworks of pydc2− [2.390 (2)–2.717 (3) Å; Sinchow et al., 2019] and phth2− [2.456 (4)–2.696 (4) Å; Thirumurugan & Natarajan, 2005]. The {Pr(1)NO8} motif is linked to the adjacent Pr1, forming edge-sharing {Pr(1)2N2O14} dimers, and two neighboring {Pr(1)2N2O14} dimers are fused through the μ4-η2:η1:η1: η1 carboxyl group of phth2− to form an infinite chain in the b-axis direction. In a similar fashion, two {Pr(2)O9} motifs are linked to produce {Pr(2)2O16} dimers. These dimers are then connected by the carboxyl groups of phth2− in a μ3-η2:η1:η1:η1 fashion to form a mono-periodic chain also extending in the b-axis direction. These chains are connected through a novel coordination mode for pydc2- involving a μ1-η1:η1 carboxyl group at one side and a μ2-η1:η1 carboxyl group together with the pyridyl N atom coordinated on the other side to form a {[Pr2(pydc)(phth)2(H2O)3]}n layer extending in the (101) plane (Fig. 2a).
of [Pr3. Supramolecular features
The di-periodic supramolecular framework of the {[Pr2(pydc)(phth)2(H2O)3]}n layers is further connected by intralayer hydrogen bonding, i.e. O13W—H13B⋯O2, O14W—H14A⋯O12, O14W—H14B⋯O4, O14W—H14B⋯O10, O15W—H15B⋯O4 and C11—H11⋯O14W interactions and π–π interactions (Fig. 2b and Table 2). The π–π interaction between two aromatic rings (pydc2− and phth2-) is classified as a parallel stacked geometry (Banerjee et al., 2019), with an offset of 1.250 Å, interplanar angle of 5.96° and centroid-to-centroid distance of 3.892 (2) Å. In addition, the interlayer hydrogen-bonding interactions involve the coordinated water (O13W) and the hydrogen-bonded water (O16W). These interactions are O13W—H13A⋯O11, O13W—H13A⋯O16W, O15W—H15A⋯O16W, O16W—H16A⋯O7, O16W—H16B⋯O1 and O16W—H16B⋯O7 interactions (Fig. 3 and Table 2).
|
4. Thermogravimetric analysis
The thermogravimetric curve of the title compound shows four steps of weight loss in the temperature range 30°C to 1000°C (Fig. 4). The first step occurs at 100–185°C with a 6.0% weight loss attributed to the removal of one hydrogen-bonded water and two coordinated water molecules (calc. 6.4%). The second step observed at 300–350°C is due to the loss of the other coordinated water molecule (exp. 2.5%, calc. 2.1%). This step is possibly due to the removal of O14W, which is held by both strong and weak hydrogen-bonding interactions. The next step of weight loss occurs in the temperature range 400–580°C and represents a higher weight loss of 37.3%. This step can be attributed to the of the organic ligands (two phth2− ligands, calc. 38.7%). The last step of weight loss, from 580 to 1000°C, could be due to the elimination of the bridging pydc2− ligand to form praseodymium oxide residues (exp. 14.7%, calc. 19.5%).
5. Database survey
A search for the title compound in the Cambridge Structural Database (CSD version 5.44, April 2023; Groom et al., 2016) using CONQUEST software (version 2023.2.0; Bruno et al., 2002) did not match with any reported structures. Regarding organic ligands, there were 123 structures of lanthanide coordination polymers that included pydc2−. Among these structures, interestingly, there were none in which pydc2− adopts the same coordination mode as in the title compound (Sinchow et al., 2019). This new mode of coordination acts as a μ3-bridge to link three PrIII ions and facilitates the formation of a di-periodic coordination framework. Regarding phth2−, there were 118 structures deposited in the CSD, none of which contains pydc2− in the structure. However, there is a structure including both pydc2− and phth2− ligands that incorporates a first-row transition metal: [Gd2(H2O)2Ni(H2O)2(phth)2(pydc)2]3·8H2O (refcode: XOZYER; Mahata et al., 2009).
6. Synthesis and crystallization
All chemicals were used as received without further purification: Pr6O11 (TJTM, 99.9%), pyridine-2,5-dicarboxylic acid (H2pydc; Sigma-Aldrich, 98%), 1,2-benzenedicarboxylic acid (H2phth; Sigma-Aldrich, 98%) and NaOH (QReC, 99%). The Pr(NO3)3·6H2O precursor was prepared by crystallization from solution of the lanthanide oxide in nitric acid (RCI Labscan, 65%).
To synthesize [Pr2(pydc)(phth)2(H2O)3]·H2O, a solution of H2pydc (0.125 mmol, 20.8 mg) and H2phth (0.25 mmol, 41.5 mg) was prepared in 8 mL of deionized water, then 1.35 mL of 0.5 M NaOH were added and the pH adjusted to 5. Pr(NO3)·6H2O (0.25 mmol, 146.6 mg) was dissolved in 2 mL of deionized water and mixed with the ligand solution. The reaction mixture was then transferred into a 23 mL Teflon-lined hydrothermal reactor and held at 423 K for 72 h. Green block-shaped crystals were collected and dried at room temperature. The crystals were characterized using FT–IR spectroscopy (Nicolet iS5 FTIR Spectrometer; iD5 ATR mode; cm−1): 3243(br), 1615(w), 1575(m), 1543(m), 1517(m), 1481(m), 1450(w), 1391(m), 1354(m), 1283(w), 1143(w), 1088(w), 1028(w), 870(w), 840(m), 762(m), 670(m), 648(w). The FT–IR spectrum shows a broad band at 3243 cm−1 attributed to the ν(O—H) stretching from the water molecules. The characteristic peak at 1615 cm−1 corresponds to the C=O stretching vibrational mode of the carboxylate group. The peak at 1283 cm−1 is due to the C—N stretching of the pydc2− ligand.
Thermogravimetric analyses (TGA) were carried out using a Mettler Toledo TGA/DSC 3+, with a heating rate of 20°C min−1, ramping from 30 to 1100°C under a nitrogen gas flow.
7. Refinement
Crystal data, data collection and structure . All hydrogen atoms of aromatic rings and water molecules were positioned geometrically and refined using a riding model with Uiso(H) = 1.2–1.5Ueq(C,O).
details are summarized in Table 3
|
Supporting information
CCDC reference: 2327873
https://doi.org/10.1107/S2056989024000872/jw2002sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024000872/jw2002Isup3.hkl
[Pr2(C7H3NO4)2(C8H4O4)(H2O)3]·H2O | F(000) = 3280 |
Mr = 847.21 | Dx = 2.154 Mg m−3 |
Monoclinic, I2/a | Mo Kα radiation, λ = 0.71073 Å |
a = 27.4898 (4) Å | Cell parameters from 20454 reflections |
b = 5.9436 (1) Å | θ = 2.0–27.3° |
c = 32.0473 (5) Å | µ = 3.77 mm−1 |
β = 93.854 (1)° | T = 293 K |
V = 5224.31 (14) Å3 | Block, clear light green |
Z = 8 | 0.3 × 0.2 × 0.08 mm |
SuperNova, Single source at offset/far, HyPix3000 diffractometer | 5561 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source | 5004 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.062 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 27.4°, θmin = 1.9° |
ω scans | h = −32→34 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2019) | k = −7→7 |
Tmin = 0.448, Tmax = 1.000 | l = −40→40 |
26747 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.031 | H-atom parameters constrained |
wR(F2) = 0.081 | w = 1/[σ2(Fo2) + (0.0445P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.003 |
5561 reflections | Δρmax = 1.03 e Å−3 |
387 parameters | Δρmin = −1.08 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The crystal structure was solved using the dual-space algorithm with the SHELXT program (Sheldrick, 2015a) and refined on F2 by the full-matrix least-squares technique using the SHELXL program (Sheldrick, 2015b) via the Olex2 interface (Dolomanov et al., 2009). |
x | y | z | Uiso*/Ueq | ||
Pr1 | 0.57085 (2) | 0.43694 (3) | 0.52003 (2) | 0.01775 (8) | |
Pr2 | 0.75715 (2) | 0.65833 (3) | 0.31515 (2) | 0.01807 (8) | |
O7 | 0.45283 (10) | 1.3428 (4) | 0.41664 (9) | 0.0278 (6) | |
O2 | 0.63896 (9) | −0.2639 (4) | 0.52143 (8) | 0.0258 (6) | |
O12 | 0.80011 (9) | 1.3574 (4) | 0.27660 (8) | 0.0233 (6) | |
O5 | 0.48823 (9) | 0.7809 (4) | 0.44133 (8) | 0.0245 (6) | |
O8 | 0.50558 (9) | 1.2895 (4) | 0.47057 (8) | 0.0225 (6) | |
O15W | 0.79900 (10) | 0.9333 (4) | 0.35981 (10) | 0.0348 (7) | |
H15A | 0.828906 | 0.931811 | 0.368452 | 0.052* | |
H15B | 0.788865 | 1.062225 | 0.366759 | 0.052* | |
O9 | 0.79607 (10) | 0.8562 (4) | 0.25842 (8) | 0.0247 (6) | |
O4 | 0.74925 (10) | 0.3284 (4) | 0.36394 (9) | 0.0288 (7) | |
O10 | 0.82266 (10) | 1.0318 (4) | 0.20438 (9) | 0.0285 (6) | |
O6 | 0.56535 (10) | 0.6744 (4) | 0.45754 (9) | 0.0270 (6) | |
O3 | 0.71029 (11) | 0.6308 (4) | 0.38190 (9) | 0.0332 (7) | |
O14W | 0.70712 (9) | 1.0001 (4) | 0.30575 (9) | 0.0272 (6) | |
H14A | 0.711517 | 1.058376 | 0.282044 | 0.041* | |
H14B | 0.717297 | 1.099306 | 0.323394 | 0.041* | |
O11 | 0.84297 (10) | 1.5114 (5) | 0.32951 (9) | 0.0328 (7) | |
O1 | 0.59351 (10) | 0.0418 (4) | 0.52815 (9) | 0.0314 (7) | |
N1 | 0.63969 (11) | 0.2702 (5) | 0.47251 (10) | 0.0237 (7) | |
O16W | 0.89141 (13) | 0.9700 (6) | 0.38119 (11) | 0.0511 (9) | |
H16A | 0.898260 | 0.843887 | 0.370560 | 0.077* | |
H16B | 0.898930 | 0.954362 | 0.407190 | 0.077* | |
O13W | 0.63638 (14) | 0.3845 (6) | 0.58034 (11) | 0.0575 (10) | |
H13A | 0.623288 | 0.331315 | 0.601685 | 0.086* | |
H13B | 0.647446 | 0.512964 | 0.588387 | 0.086* | |
C15 | 0.49303 (14) | 1.2686 (5) | 0.43171 (12) | 0.0201 (8) | |
C22 | 0.88149 (13) | 1.2236 (6) | 0.29160 (12) | 0.0224 (8) | |
C17 | 0.87562 (14) | 1.0344 (6) | 0.26623 (12) | 0.0226 (8) | |
C23 | 0.83927 (13) | 1.3731 (6) | 0.29984 (12) | 0.0214 (8) | |
C6 | 0.66161 (14) | 0.3836 (6) | 0.44322 (12) | 0.0236 (8) | |
H6 | 0.650321 | 0.527214 | 0.436258 | 0.028* | |
C16 | 0.82826 (14) | 0.9752 (6) | 0.24196 (12) | 0.0209 (8) | |
C2 | 0.65666 (13) | 0.0621 (5) | 0.48235 (12) | 0.0200 (8) | |
C8 | 0.53344 (13) | 0.7948 (5) | 0.43889 (12) | 0.0192 (8) | |
C5 | 0.70056 (13) | 0.2984 (6) | 0.42248 (12) | 0.0229 (8) | |
C1 | 0.62796 (14) | −0.0633 (5) | 0.51323 (12) | 0.0196 (8) | |
C14 | 0.52822 (13) | 1.1759 (5) | 0.40244 (12) | 0.0194 (8) | |
C7 | 0.72085 (14) | 0.4317 (6) | 0.38760 (12) | 0.0236 (9) | |
C18 | 0.91496 (15) | 0.8966 (7) | 0.26096 (15) | 0.0364 (11) | |
H18 | 0.911010 | 0.769656 | 0.244119 | 0.044* | |
C21 | 0.92728 (15) | 1.2708 (7) | 0.31040 (14) | 0.0347 (10) | |
H21 | 0.931630 | 1.397619 | 0.327226 | 0.042* | |
C4 | 0.71830 (15) | 0.0895 (6) | 0.43396 (13) | 0.0299 (10) | |
H4 | 0.744967 | 0.029575 | 0.421450 | 0.036* | |
C11 | 0.59980 (15) | 1.0454 (7) | 0.35039 (14) | 0.0355 (11) | |
H11 | 0.623695 | 1.001566 | 0.332856 | 0.043* | |
C3 | 0.69586 (14) | −0.0308 (6) | 0.46450 (12) | 0.0266 (9) | |
H3 | 0.707294 | −0.172427 | 0.472697 | 0.032* | |
C10 | 0.58662 (14) | 0.9040 (6) | 0.38164 (13) | 0.0271 (9) | |
H10 | 0.602064 | 0.765556 | 0.385436 | 0.033* | |
C9 | 0.55037 (13) | 0.9663 (6) | 0.40764 (12) | 0.0213 (8) | |
C13 | 0.54177 (15) | 1.3151 (6) | 0.37105 (13) | 0.0300 (10) | |
H13 | 0.526545 | 1.453984 | 0.367252 | 0.036* | |
C12 | 0.57745 (16) | 1.2535 (7) | 0.34501 (14) | 0.0377 (11) | |
H12 | 0.586413 | 1.350458 | 0.324088 | 0.045* | |
C19 | 0.96019 (16) | 0.9438 (8) | 0.28028 (16) | 0.0454 (13) | |
H19 | 0.986346 | 0.847910 | 0.276856 | 0.054* | |
C20 | 0.96632 (17) | 1.1326 (8) | 0.30449 (17) | 0.0485 (13) | |
H20 | 0.996917 | 1.167448 | 0.316952 | 0.058* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pr1 | 0.01815 (13) | 0.01481 (12) | 0.02073 (14) | 0.00126 (7) | 0.00452 (9) | 0.00299 (8) |
Pr2 | 0.01974 (13) | 0.01567 (12) | 0.01921 (14) | 0.00040 (7) | 0.00422 (9) | 0.00159 (8) |
O7 | 0.0247 (15) | 0.0284 (14) | 0.0302 (17) | 0.0052 (12) | 0.0009 (13) | −0.0047 (12) |
O2 | 0.0305 (15) | 0.0164 (12) | 0.0310 (16) | 0.0006 (11) | 0.0054 (13) | 0.0040 (11) |
O12 | 0.0186 (14) | 0.0230 (13) | 0.0278 (16) | 0.0040 (11) | −0.0032 (12) | 0.0000 (11) |
O5 | 0.0222 (14) | 0.0220 (13) | 0.0300 (16) | −0.0022 (11) | 0.0078 (12) | 0.0052 (12) |
O8 | 0.0312 (15) | 0.0179 (12) | 0.0184 (15) | −0.0023 (11) | 0.0024 (12) | −0.0003 (11) |
O15W | 0.0267 (16) | 0.0304 (15) | 0.046 (2) | 0.0023 (12) | −0.0064 (15) | −0.0147 (14) |
O9 | 0.0262 (15) | 0.0207 (12) | 0.0280 (16) | −0.0066 (11) | 0.0077 (12) | 0.0032 (11) |
O4 | 0.0362 (17) | 0.0229 (13) | 0.0292 (17) | 0.0071 (12) | 0.0155 (14) | 0.0060 (11) |
O10 | 0.0278 (15) | 0.0332 (15) | 0.0245 (16) | −0.0063 (12) | 0.0020 (12) | 0.0058 (12) |
O6 | 0.0262 (15) | 0.0261 (14) | 0.0288 (16) | 0.0055 (11) | 0.0032 (13) | 0.0105 (12) |
O3 | 0.052 (2) | 0.0198 (13) | 0.0305 (17) | 0.0036 (13) | 0.0216 (15) | 0.0004 (12) |
O14W | 0.0332 (16) | 0.0228 (13) | 0.0256 (16) | 0.0057 (12) | 0.0024 (13) | 0.0019 (11) |
O11 | 0.0314 (16) | 0.0359 (15) | 0.0299 (17) | 0.0070 (13) | −0.0053 (13) | −0.0145 (13) |
O1 | 0.0379 (17) | 0.0202 (13) | 0.0386 (18) | 0.0036 (12) | 0.0206 (14) | 0.0074 (12) |
N1 | 0.0259 (17) | 0.0156 (14) | 0.0306 (19) | 0.0024 (13) | 0.0097 (15) | 0.0037 (14) |
O16W | 0.046 (2) | 0.059 (2) | 0.046 (2) | 0.0062 (18) | −0.0142 (18) | 0.0038 (17) |
O13W | 0.072 (3) | 0.054 (2) | 0.044 (2) | 0.0244 (19) | −0.0162 (19) | 0.0018 (17) |
C15 | 0.023 (2) | 0.0133 (16) | 0.024 (2) | −0.0063 (15) | 0.0044 (17) | 0.0010 (15) |
C22 | 0.021 (2) | 0.0225 (18) | 0.023 (2) | 0.0021 (16) | 0.0008 (16) | 0.0015 (16) |
C17 | 0.023 (2) | 0.0228 (18) | 0.022 (2) | 0.0010 (16) | 0.0028 (16) | 0.0041 (16) |
C23 | 0.020 (2) | 0.0191 (17) | 0.025 (2) | 0.0008 (15) | 0.0029 (17) | 0.0022 (16) |
C6 | 0.030 (2) | 0.0174 (16) | 0.024 (2) | 0.0029 (16) | 0.0075 (18) | 0.0038 (16) |
C16 | 0.021 (2) | 0.0173 (17) | 0.025 (2) | 0.0039 (15) | 0.0078 (17) | 0.0030 (16) |
C2 | 0.020 (2) | 0.0177 (17) | 0.022 (2) | 0.0009 (14) | 0.0037 (16) | −0.0003 (15) |
C8 | 0.022 (2) | 0.0146 (16) | 0.021 (2) | 0.0011 (15) | 0.0046 (16) | −0.0022 (15) |
C5 | 0.024 (2) | 0.0221 (18) | 0.023 (2) | 0.0001 (16) | 0.0077 (17) | 0.0028 (16) |
C1 | 0.023 (2) | 0.0170 (17) | 0.019 (2) | −0.0009 (15) | 0.0020 (16) | 0.0020 (14) |
C14 | 0.0198 (19) | 0.0174 (17) | 0.021 (2) | −0.0037 (14) | 0.0003 (16) | 0.0019 (14) |
C7 | 0.028 (2) | 0.0210 (19) | 0.023 (2) | −0.0004 (16) | 0.0091 (18) | 0.0012 (16) |
C18 | 0.027 (2) | 0.035 (2) | 0.047 (3) | 0.0083 (19) | 0.004 (2) | −0.007 (2) |
C21 | 0.026 (2) | 0.034 (2) | 0.044 (3) | 0.0017 (19) | −0.001 (2) | −0.009 (2) |
C4 | 0.029 (2) | 0.0241 (19) | 0.039 (3) | 0.0037 (17) | 0.014 (2) | 0.0032 (18) |
C11 | 0.029 (2) | 0.046 (3) | 0.033 (3) | −0.0025 (19) | 0.015 (2) | 0.003 (2) |
C3 | 0.032 (2) | 0.0202 (18) | 0.029 (2) | 0.0065 (16) | 0.0095 (18) | 0.0060 (16) |
C10 | 0.028 (2) | 0.0261 (19) | 0.028 (2) | 0.0016 (17) | 0.0112 (18) | 0.0018 (17) |
C9 | 0.0182 (19) | 0.0225 (18) | 0.024 (2) | −0.0012 (15) | 0.0035 (16) | 0.0002 (16) |
C13 | 0.039 (3) | 0.0239 (19) | 0.027 (2) | 0.0015 (17) | 0.005 (2) | 0.0052 (17) |
C12 | 0.043 (3) | 0.039 (2) | 0.033 (3) | −0.006 (2) | 0.018 (2) | 0.014 (2) |
C19 | 0.026 (2) | 0.053 (3) | 0.056 (3) | 0.018 (2) | 0.000 (2) | −0.010 (3) |
C20 | 0.018 (2) | 0.063 (3) | 0.063 (4) | 0.002 (2) | −0.008 (2) | −0.012 (3) |
Pr1—Pr1i | 4.0877 (4) | N1—C2 | 1.352 (4) |
Pr1—O7ii | 2.536 (3) | O16W—H16A | 0.8495 |
Pr1—O2iii | 2.580 (2) | O16W—H16B | 0.8500 |
Pr1—O5i | 2.473 (2) | O13W—H13A | 0.8548 |
Pr1—O8ii | 2.689 (2) | O13W—H13B | 0.8552 |
Pr1—O8iv | 2.473 (3) | C15—C14 | 1.497 (5) |
Pr1—O6 | 2.446 (3) | C22—C17 | 1.391 (5) |
Pr1—O1 | 2.439 (2) | C22—C23 | 1.499 (5) |
Pr1—N1 | 2.696 (3) | C22—C21 | 1.387 (5) |
Pr1—O13W | 2.571 (4) | C17—C16 | 1.513 (5) |
Pr1—C15ii | 2.984 (4) | C17—C18 | 1.376 (5) |
Pr2—O12iv | 2.514 (2) | C6—H6 | 0.9300 |
Pr2—O15W | 2.413 (3) | C6—C5 | 1.393 (5) |
Pr2—O9v | 2.691 (3) | C2—C1 | 1.504 (5) |
Pr2—O9 | 2.469 (2) | C2—C3 | 1.370 (5) |
Pr2—O4 | 2.526 (2) | C8—C9 | 1.523 (5) |
Pr2—O10v | 2.510 (3) | C5—C7 | 1.507 (5) |
Pr2—O3 | 2.575 (3) | C5—C4 | 1.375 (5) |
Pr2—O14W | 2.460 (2) | C14—C9 | 1.392 (5) |
Pr2—O11iv | 2.529 (3) | C14—C13 | 1.373 (5) |
Pr2—C23iv | 2.891 (4) | C18—H18 | 0.9300 |
Pr2—C16v | 2.986 (4) | C18—C19 | 1.380 (6) |
O7—C15 | 1.256 (5) | C21—H21 | 0.9300 |
O2—C1 | 1.254 (4) | C21—C20 | 1.374 (6) |
O12—C23 | 1.271 (4) | C4—H4 | 0.9300 |
O5—C8 | 1.253 (4) | C4—C3 | 1.390 (5) |
O8—C15 | 1.276 (4) | C11—H11 | 0.9300 |
O15W—H15A | 0.8498 | C11—C10 | 1.375 (5) |
O15W—H15B | 0.8499 | C11—C12 | 1.386 (5) |
O9—C16 | 1.274 (4) | C3—H3 | 0.9300 |
O4—C7 | 1.281 (4) | C10—H10 | 0.9300 |
O10—C16 | 1.250 (4) | C10—C9 | 1.391 (5) |
O6—C8 | 1.252 (4) | C13—H13 | 0.9300 |
O3—C7 | 1.229 (4) | C13—C12 | 1.379 (5) |
O14W—H14A | 0.8511 | C12—H12 | 0.9300 |
O14W—H14B | 0.8512 | C19—H19 | 0.9300 |
O11—C23 | 1.256 (4) | C19—C20 | 1.368 (6) |
O1—C1 | 1.255 (4) | C20—H20 | 0.9300 |
N1—C6 | 1.332 (4) | ||
O7ii—Pr1—Pr1i | 82.31 (6) | C23iv—Pr2—C16v | 109.32 (10) |
O7ii—Pr1—O2iii | 81.68 (8) | C15—O7—Pr1ii | 98.1 (2) |
O7ii—Pr1—O8ii | 49.76 (8) | C1—O2—Pr1iv | 119.2 (2) |
O7ii—Pr1—N1 | 150.37 (10) | C23—O12—Pr2iii | 93.8 (2) |
O7ii—Pr1—O13W | 70.46 (10) | C8—O5—Pr1i | 138.9 (2) |
O7ii—Pr1—C15ii | 24.63 (10) | Pr1iii—O8—Pr1ii | 104.62 (8) |
O2iii—Pr1—Pr1i | 123.65 (6) | C15—O8—Pr1iii | 142.8 (2) |
O2iii—Pr1—O8ii | 98.79 (7) | C15—O8—Pr1ii | 90.4 (2) |
O2iii—Pr1—N1 | 74.17 (8) | Pr2—O15W—H15A | 126.8 |
O2iii—Pr1—C15ii | 92.20 (8) | Pr2—O15W—H15B | 127.9 |
O5i—Pr1—Pr1i | 67.00 (6) | H15A—O15W—H15B | 104.5 |
O5i—Pr1—O7ii | 69.95 (8) | Pr2—O9—Pr2v | 113.13 (9) |
O5i—Pr1—O2iii | 148.44 (9) | C16—O9—Pr2 | 156.4 (3) |
O5i—Pr1—O8ii | 73.52 (7) | C16—O9—Pr2v | 90.4 (2) |
O5i—Pr1—N1 | 126.85 (8) | C7—O4—Pr2 | 94.3 (2) |
O5i—Pr1—O13W | 90.61 (11) | C16—O10—Pr2v | 99.7 (2) |
O5i—Pr1—C15ii | 67.57 (8) | C8—O6—Pr1 | 136.3 (2) |
O8iv—Pr1—Pr1i | 39.54 (6) | C7—O3—Pr2 | 93.4 (2) |
O8ii—Pr1—Pr1i | 35.83 (6) | Pr2—O14W—H14A | 109.5 |
O8iv—Pr1—O7ii | 118.78 (9) | Pr2—O14W—H14B | 109.6 |
O8iv—Pr1—O2iii | 138.56 (8) | H14A—O14W—H14B | 104.5 |
O8iv—Pr1—O5i | 70.29 (9) | C23—O11—Pr2iii | 93.5 (2) |
O8iv—Pr1—O8ii | 75.37 (8) | C1—O1—Pr1 | 129.2 (2) |
O8ii—Pr1—N1 | 150.31 (9) | C6—N1—Pr1 | 125.4 (2) |
O8iv—Pr1—N1 | 90.82 (9) | C6—N1—C2 | 117.5 (3) |
O8iv—Pr1—O13W | 151.68 (10) | C2—N1—Pr1 | 116.7 (2) |
O8iv—Pr1—C15ii | 96.50 (10) | H16A—O16W—H16B | 104.5 |
O8ii—Pr1—C15ii | 25.31 (9) | Pr1—O13W—H13A | 109.6 |
O6—Pr1—Pr1i | 68.41 (6) | Pr1—O13W—H13B | 109.6 |
O6—Pr1—O7ii | 110.62 (9) | H13A—O13W—H13B | 104.4 |
O6—Pr1—O2iii | 67.76 (9) | O7—C15—Pr1ii | 57.32 (19) |
O6—Pr1—O5i | 134.86 (9) | O7—C15—O8 | 121.0 (3) |
O6—Pr1—O8iv | 71.19 (9) | O7—C15—C14 | 118.5 (3) |
O6—Pr1—O8ii | 74.76 (8) | O8—C15—Pr1ii | 64.34 (18) |
O6—Pr1—N1 | 75.93 (9) | O8—C15—C14 | 120.2 (3) |
O6—Pr1—O13W | 133.39 (12) | C14—C15—Pr1ii | 165.5 (2) |
O6—Pr1—C15ii | 94.57 (9) | C17—C22—C23 | 121.4 (3) |
O1—Pr1—Pr1i | 116.18 (7) | C21—C22—C17 | 118.9 (3) |
O1—Pr1—O7ii | 119.27 (9) | C21—C22—C23 | 119.6 (3) |
O1—Pr1—O2iii | 118.80 (9) | C22—C17—C16 | 123.4 (3) |
O1—Pr1—O5i | 67.30 (8) | C18—C17—C22 | 119.5 (4) |
O1—Pr1—O8ii | 140.00 (8) | C18—C17—C16 | 117.1 (3) |
O1—Pr1—O8iv | 84.05 (9) | O12—C23—Pr2iii | 60.15 (18) |
O1—Pr1—O6 | 130.10 (9) | O12—C23—C22 | 119.2 (3) |
O1—Pr1—N1 | 61.47 (8) | O11—C23—Pr2iii | 60.80 (19) |
O1—Pr1—O13W | 69.03 (11) | O11—C23—O12 | 121.0 (3) |
O1—Pr1—C15ii | 131.64 (9) | O11—C23—C22 | 119.8 (4) |
N1—Pr1—Pr1i | 125.47 (7) | C22—C23—Pr2iii | 179.4 (3) |
N1—Pr1—C15ii | 165.50 (9) | N1—C6—H6 | 118.3 |
O13W—Pr1—Pr1i | 149.66 (8) | N1—C6—C5 | 123.4 (3) |
O13W—Pr1—O2iii | 66.39 (11) | C5—C6—H6 | 118.3 |
O13W—Pr1—O8ii | 120.15 (9) | O9—C16—Pr2v | 64.3 (2) |
O13W—Pr1—N1 | 84.09 (11) | O9—C16—C17 | 120.9 (3) |
O13W—Pr1—C15ii | 95.07 (11) | O10—C16—Pr2v | 56.0 (2) |
C15ii—Pr1—Pr1i | 58.24 (8) | O10—C16—O9 | 120.3 (4) |
O12iv—Pr2—O9v | 78.00 (8) | O10—C16—C17 | 118.6 (3) |
O12iv—Pr2—O4 | 79.32 (8) | C17—C16—Pr2v | 172.4 (2) |
O12iv—Pr2—O3 | 129.85 (8) | N1—C2—C1 | 114.8 (3) |
O12iv—Pr2—O11iv | 51.70 (9) | N1—C2—C3 | 122.7 (3) |
O12iv—Pr2—C23iv | 26.01 (9) | C3—C2—C1 | 122.5 (3) |
O12iv—Pr2—C16v | 83.43 (9) | O5—C8—C9 | 115.7 (3) |
O15W—Pr2—O12iv | 123.55 (9) | O6—C8—O5 | 126.7 (3) |
O15W—Pr2—O9v | 138.66 (9) | O6—C8—C9 | 117.5 (3) |
O15W—Pr2—O9 | 84.33 (10) | C6—C5—C7 | 119.8 (3) |
O15W—Pr2—O4 | 102.48 (10) | C4—C5—C6 | 118.1 (3) |
O15W—Pr2—O10v | 145.79 (9) | C4—C5—C7 | 122.1 (3) |
O15W—Pr2—O3 | 78.21 (10) | O2—C1—O1 | 124.8 (3) |
O15W—Pr2—O14W | 75.74 (9) | O2—C1—C2 | 118.6 (3) |
O15W—Pr2—O11iv | 73.99 (9) | O1—C1—C2 | 116.5 (3) |
O15W—Pr2—C23iv | 98.70 (10) | C9—C14—C15 | 123.4 (3) |
O15W—Pr2—C16v | 150.18 (9) | C13—C14—C15 | 117.1 (3) |
O9—Pr2—O12iv | 74.68 (8) | C13—C14—C9 | 119.3 (3) |
O9—Pr2—O9v | 66.86 (9) | O4—C7—C5 | 117.2 (3) |
O9—Pr2—O4 | 152.26 (8) | O3—C7—O4 | 121.4 (3) |
O9—Pr2—O10v | 116.47 (9) | O3—C7—C5 | 121.4 (3) |
O9—Pr2—O3 | 155.19 (8) | C17—C18—H18 | 119.5 |
O9—Pr2—O11iv | 81.57 (9) | C17—C18—C19 | 121.1 (4) |
O9v—Pr2—C23iv | 102.54 (10) | C19—C18—H18 | 119.5 |
O9—Pr2—C23iv | 76.84 (9) | C22—C21—H21 | 119.6 |
O9—Pr2—C16v | 92.12 (10) | C20—C21—C22 | 120.9 (4) |
O9v—Pr2—C16v | 25.27 (8) | C20—C21—H21 | 119.6 |
O4—Pr2—O9v | 116.93 (9) | C5—C4—H4 | 120.4 |
O4—Pr2—O3 | 50.80 (8) | C5—C4—C3 | 119.2 (3) |
O4—Pr2—O11iv | 74.77 (9) | C3—C4—H4 | 120.4 |
O4—Pr2—C23iv | 75.56 (9) | C10—C11—H11 | 120.0 |
O4—Pr2—C16v | 94.37 (10) | C10—C11—C12 | 120.0 (4) |
O10v—Pr2—O12iv | 89.35 (8) | C12—C11—H11 | 120.0 |
O10v—Pr2—O9v | 49.64 (8) | C2—C3—C4 | 119.0 (3) |
O10v—Pr2—O4 | 72.22 (9) | C2—C3—H3 | 120.5 |
O10v—Pr2—O3 | 72.59 (9) | C4—C3—H3 | 120.5 |
O10v—Pr2—O11iv | 132.78 (8) | C11—C10—H10 | 119.7 |
O10v—Pr2—C23iv | 111.90 (10) | C11—C10—C9 | 120.5 (4) |
O10v—Pr2—C16v | 24.37 (8) | C9—C10—H10 | 119.7 |
O3—Pr2—O9v | 116.93 (9) | C14—C9—C8 | 121.8 (3) |
O3—Pr2—C23iv | 122.92 (10) | C10—C9—C8 | 118.6 (3) |
O3—Pr2—C16v | 94.34 (10) | C10—C9—C14 | 119.5 (3) |
O14W—Pr2—O12iv | 143.58 (9) | C14—C13—H13 | 119.2 |
O14W—Pr2—O9v | 69.69 (8) | C14—C13—C12 | 121.5 (4) |
O14W—Pr2—O9 | 77.46 (8) | C12—C13—H13 | 119.2 |
O14W—Pr2—O4 | 130.24 (8) | C11—C12—H12 | 120.4 |
O14W—Pr2—O10v | 82.48 (9) | C13—C12—C11 | 119.3 (3) |
O14W—Pr2—O3 | 81.23 (9) | C13—C12—H12 | 120.4 |
O14W—Pr2—O11iv | 144.54 (9) | C18—C19—H19 | 120.2 |
O14W—Pr2—C23iv | 154.13 (9) | C20—C19—C18 | 119.6 (4) |
O14W—Pr2—C16v | 74.59 (9) | C20—C19—H19 | 120.2 |
O11iv—Pr2—O9v | 126.43 (8) | C21—C20—H20 | 120.0 |
O11iv—Pr2—O3 | 109.85 (9) | C19—C20—C21 | 120.0 (4) |
O11iv—Pr2—C23iv | 25.69 (10) | C19—C20—H20 | 120.0 |
O11iv—Pr2—C16v | 134.86 (9) | ||
Pr1ii—O7—C15—O8 | 10.0 (3) | N1—C2—C1—O1 | −3.9 (5) |
Pr1ii—O7—C15—C14 | −163.8 (2) | N1—C2—C3—C4 | −2.2 (6) |
Pr1iv—O2—C1—O1 | 46.5 (5) | C15—C14—C9—C8 | 11.8 (6) |
Pr1iv—O2—C1—C2 | −131.6 (3) | C15—C14—C9—C10 | −172.9 (4) |
Pr1i—O5—C8—O6 | 3.6 (6) | C15—C14—C13—C12 | 173.7 (4) |
Pr1i—O5—C8—C9 | 179.2 (2) | C22—C17—C16—O9 | −88.4 (4) |
Pr1iii—O8—C15—Pr1ii | −115.2 (3) | C22—C17—C16—O10 | 96.6 (4) |
Pr1iii—O8—C15—O7 | −124.5 (4) | C22—C17—C18—C19 | −0.3 (6) |
Pr1ii—O8—C15—O7 | −9.3 (3) | C22—C21—C20—C19 | −0.9 (8) |
Pr1ii—O8—C15—C14 | 164.4 (3) | C17—C22—C23—O12 | −15.5 (5) |
Pr1iii—O8—C15—C14 | 49.2 (5) | C17—C22—C23—O11 | 164.4 (4) |
Pr1—O6—C8—O5 | −21.5 (6) | C17—C22—C21—C20 | −0.5 (6) |
Pr1—O6—C8—C9 | 162.9 (2) | C17—C18—C19—C20 | −1.1 (7) |
Pr1—O1—C1—O2 | 174.8 (3) | C23—C22—C17—C16 | 5.7 (6) |
Pr1—O1—C1—C2 | −7.1 (5) | C23—C22—C17—C18 | −177.2 (4) |
Pr1—N1—C6—C5 | 173.0 (3) | C23—C22—C21—C20 | 177.9 (4) |
Pr1—N1—C2—C1 | 11.0 (4) | C6—N1—C2—C1 | −175.6 (3) |
Pr1—N1—C2—C3 | −171.3 (3) | C6—N1—C2—C3 | 2.1 (6) |
Pr1ii—C15—C14—C9 | 161.5 (9) | C6—C5—C7—O4 | −165.8 (4) |
Pr1ii—C15—C14—C13 | −13.1 (13) | C6—C5—C7—O3 | 13.7 (6) |
Pr2iii—O12—C23—O11 | −0.1 (4) | C6—C5—C4—C3 | 2.2 (6) |
Pr2iii—O12—C23—C22 | 179.8 (3) | C16—C17—C18—C19 | 176.9 (4) |
Pr2—O9—C16—Pr2v | −176.4 (6) | C2—N1—C6—C5 | 0.2 (6) |
Pr2v—O9—C16—O10 | 1.1 (3) | C5—C4—C3—C2 | 0.0 (6) |
Pr2—O9—C16—O10 | −175.3 (4) | C1—C2—C3—C4 | 175.3 (4) |
Pr2—O9—C16—C17 | 9.8 (8) | C14—C13—C12—C11 | 0.7 (7) |
Pr2v—O9—C16—C17 | −173.8 (3) | C7—C5—C4—C3 | −175.8 (4) |
Pr2—O4—C7—O3 | −4.0 (4) | C18—C17—C16—O9 | 94.5 (4) |
Pr2—O4—C7—C5 | 175.5 (3) | C18—C17—C16—O10 | −80.5 (5) |
Pr2v—O10—C16—O9 | −1.2 (4) | C18—C19—C20—C21 | 1.8 (8) |
Pr2v—O10—C16—C17 | 173.8 (3) | C21—C22—C17—C16 | −175.8 (4) |
Pr2—O3—C7—O4 | 3.9 (4) | C21—C22—C17—C18 | 1.2 (6) |
Pr2—O3—C7—C5 | −175.5 (3) | C21—C22—C23—O12 | 166.1 (4) |
Pr2iii—O11—C23—O12 | 0.1 (4) | C21—C22—C23—O11 | −14.0 (6) |
Pr2iii—O11—C23—C22 | −179.8 (3) | C4—C5—C7—O4 | 12.2 (6) |
O7—C15—C14—C9 | −129.3 (4) | C4—C5—C7—O3 | −168.4 (4) |
O7—C15—C14—C13 | 56.1 (5) | C11—C10—C9—C8 | 173.9 (4) |
O5—C8—C9—C14 | 39.7 (5) | C11—C10—C9—C14 | −1.5 (6) |
O5—C8—C9—C10 | −135.6 (4) | C3—C2—C1—O2 | −3.4 (6) |
O8—C15—C14—C9 | 56.9 (5) | C3—C2—C1—O1 | 178.4 (4) |
O8—C15—C14—C13 | −117.7 (4) | C10—C11—C12—C13 | −0.6 (7) |
O6—C8—C9—C14 | −144.3 (4) | C9—C14—C13—C12 | −1.2 (6) |
O6—C8—C9—C10 | 40.4 (5) | C13—C14—C9—C8 | −173.7 (4) |
N1—C6—C5—C7 | 175.6 (4) | C13—C14—C9—C10 | 1.6 (6) |
N1—C6—C5—C4 | −2.4 (6) | C12—C11—C10—C9 | 1.0 (7) |
N1—C2—C1—O2 | 174.4 (3) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+2, −z+1; (iii) x, y+1, z; (iv) x, y−1, z; (v) −x+3/2, −y+3/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O13W—H13A···O11vi | 0.85 | 2.57 | 3.003 (5) | 113 |
O13W—H13A···O16Wvi | 0.85 | 2.26 | 2.881 (5) | 130 |
O13W—H13B···O2iii | 0.86 | 2.52 | 2.820 (4) | 102 |
O14W—H14A···O12vii | 0.85 | 1.95 | 2.766 (4) | 160 |
O14W—H14B···O4iii | 0.85 | 2.04 | 2.887 (4) | 174 |
O14W—H14B···O10vii | 0.85 | 2.58 | 2.912 (4) | 104 |
O15W—H15A···O16W | 0.85 | 1.75 | 2.595 (4) | 170 |
O15W—H15B···O4iii | 0.85 | 1.92 | 2.725 (3) | 158 |
O16W—H16B···O7viii | 0.85 | 2.31 | 2.709 (4) | 109 |
O16W—H16B···O1ix | 0.85 | 2.13 | 2.938 (5) | 158 |
C11—H11···O14W | 0.93 | 2.51 | 3.375 (5) | 156 |
Symmetry codes: (iii) x, y+1, z; (vi) −x+3/2, y−1, −z+1; (vii) −x+3/2, −y+5/2, −z+1/2; (viii) x+1/2, −y+2, z; (ix) −x+3/2, y+1, −z+1. |
Funding information
This work was supported financially by the Fundamental Fund (FF65-RIM055) of the University of Phayao, Thailand, and by the School of Science, University of Phayao (funding No. PBTSC66046).
References
Ay, B., Yildiz, E. & Kani, I. (2016). J. Solid State Chem. 233, 44–51. CrossRef CAS Google Scholar
Banerjee, A., Saha, A. & Saha, B. K. (2019). Cryst. Growth Des. 19, 2245–2252. Web of Science CrossRef CAS Google Scholar
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hu, R.-H., Liu, S.-Z., Xu, Y.-Y., Yi, X.-G., Chen, W.-T. & Lin, W.-S. (2022). J. Mol. Struct. 1265, 133396. CrossRef Google Scholar
Jittipiboonwat, P., Chuasaard, T. & Rujiwatra, A. (2022). Acta Cryst. E78, 536–539. CrossRef IUCr Journals Google Scholar
Mahata, P., Ramya, K. V. & Natarajan, S. (2009). Inorg. Chem. 48, 4942–4951. Web of Science CSD CrossRef PubMed CAS Google Scholar
Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Rocha, J., Brites, C. D. S. & Carlos, L. D. (2016). Chem. Eur. J. 22, 14782–14795. CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sinchow, M., Chuasaard, T., Yotnoi, B. & Rujiwatra, A. (2019). J. Solid State Chem. 278, 120902. CrossRef Google Scholar
Sinchow, M., Konno, T. & Rujiwatra, A. (2022). Inorg. Chem. 61, 10383–10392. CrossRef CAS PubMed Google Scholar
Thammakan, S., Sinchow, M., Chiangraeng, N., Yoshinari, N., Konno, T., Ngamjarurojana, A., Nimmanpipug, P. & Rujiwatra, A. (2023). Cryst. Growth Des. 23, 6840–6850. CrossRef CAS Google Scholar
Thirumurugan, A. & Natarajan, S. (2005). J. Mater. Chem. 15, 4588–4594. Web of Science CSD CrossRef CAS Google Scholar
Wei, D., Xin, Y., Rong, Y., Li, Y., Zhang, C., Chen, Q., Qin, S., Wang, W. & Hao, Y. (2020). J. Inorg. Organomet. Polym. 30, 1121–1131. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.