research communications
{[(E)-(1,3-Benzodioxol-5-yl)methylidene]amino}thiourea
aDipartimento di Scienze della Terra e Geoambientali., Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 701125 Bari, Italy, and bDepartamento de Quimica, Facultad de Ciencias, Universidad Nacional de Colombia, Carerra 30 No 45-03, Bogotá, Colombia
*Correspondence e-mail: ernesto.mesto@uniba.it
The synthesis and crystallographic analysis of the title compound, C9H9N3O2S, are reported. The compound crystallizes in the monoclinic P21/c, revealing characteristic bond lengths and angles typical of thiosemicarbazone groups. The supramolecular organization primarily arises from hydrogen bonding and π–π stacking interactions, leading to distinctive dimeric formations.
Keywords: crystal structure; thio-semicarbazone; three-dimensional network.
CCDC reference: 2190589
1. Chemical context
The group of thiosemicarbazone et al., 2011; Singh et al., 2016) due to the exhibited biological and pharmacological properties, such as antibacterial and antiviral activities (Hu et al., 2006). This study focuses on describing the synthesis and the analysis of the of the title molecule.
capable of coordinating with metal centers through nitrogen and sulfur atoms, has garnered significant recent attention (Cortés2. Structural commentary
The target compound (I) crystallizes in the monoclinic P21/c with one molecule in the (Z = 4). A view of the molecule is shown in Fig. 1. Selected bond lengths and angles for the product are listed in Table 1. All bond lengths exhibit typical values (Dias et al., 2017).
|
3. Supramolecular features
The supramolecular arrangements of I primarily result from classical and non-classical hydrogen bonds and π–π stacking interactions. These contacts were recognized by Mercury 2022 (Macrae et al., 2020; sum of van der Waals radii plus 0.1 Å). The hydrogen-bonding geometry is listed in Table 2, and the packing of molecules viewed down along the c axis is shown in Fig. 2. Together, the hydrogen-bonding interactions lead to the formation of a two-dimensional network parallel to (100). The molecules at (x, y, z) and (2 − x, −y, 1 − z) are components of dimers centered at (1, 0, ½), while the separation between the aryl ring centroids is 3.778 (2) Å, indicating π–π stacking interactions between the aromatic ring systems.
4. Database Survey
Six crystal structures, authored by different researchers and featuring the [(E)-1,3-benzodioxol-5-ylmethylideneamino]thiourea fragment (piperonal, thiosemicarbazone), have been documented in the Cambridge Structural Database (CSD, WebCSD search December 2023; Groom et al., 2016). The here under discussion can be considered the parent compound among those reported in the CSD. These other structures show substitutions in the imine hydrogen with methyl (de Oliveira et al., 2013, 2015a,b) or nitro group (Dias et al., 2017), and in the amidic hydrogen with methyl (de Oliveira et al., 2015b), ethyl (Dias et al. 2017; de Oliveira et al., 2015a), and phenyl (Dias et al. 2017) radicals. Some of these structures crystallize in the triclinic P, while others in the monoclinic P21/c. Finally, Beckford et al. (2011), provide detailed information on the of [(η6-p-cymene)Ru(pPhTSC)Cl]Cl, which crystallizes in the monoclinic P21/n. All of the structures reveal co-planar arrangements of the piperonal thiosemicarbazone portion along with π–π and hydrogen-bonding interactions.
5. Synthesis and crystallization
The synthesis of the Schiff base ligand (1,3-benzodioxol-5-ylformaldehyde) thiosemicarbazone was performed according to a previously published procedure (Casas et al., 2015). Piperonal (1.00 g, 6.66 mmol) and thiosemicarbazide (0.61 g, 6.66 mmol) were dissolved in ethanol and stirred under reflux for 2 h. Upon cooling, the solvent was removed and the remaining solid was recrystallized from ethanol/dichloromethane. Yellowish crystals suitable for X-ray diffraction were grown by slow evaporation after a couple of weeks, yield 78%; m.p. 409–411) . FT–IR (ATR, cm−1): 3323 ν(N—H), 1585 ν(C=N), 1090 ν(N—N), 931 ν(C=S).
6. details
Crystal data, data collection and structure . The H atoms were all located in difference maps, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98 Å, N—H = 0.86 Å, O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.
details are summarized in Table 3Supporting information
CCDC reference: 2190589
https://doi.org/10.1107/S2056989024000033/nx2003sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024000033/nx2003Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989024000033/nx2003Isup3.mol
C9H9N3O2S | F(000) = 464 |
Mr = 223.26 | Dx = 1.478 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3399 reflections |
a = 7.1189 (2) Å | θ = 3.2–27.6° |
b = 10.9687 (2) Å | µ = 0.31 mm−1 |
c = 13.0678 (3) Å | T = 293 K |
β = 100.426 (2)° | Tabular, colourless |
V = 1003.55 (4) Å3 | 0.58 × 0.34 × 0.17 mm |
Z = 4 |
Bruker APEXII diffractometer | 2447 reflections with I > 2.0σ(I) |
Graphite monochromator | Rint = 0.000 |
φ & ω scans | θmax = 33.2°, θmin = 3.2° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −10→10 |
Tmin = 0.88, Tmax = 0.95 | k = −16→16 |
19600 measured reflections | l = −20→20 |
3818 independent reflections |
Refinement on F2 | Primary atom site location: other |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.104 | Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.04P)2 + 0.31P] , where P = (max(Fo2,0) + 2Fc2)/3 |
S = 0.95 | (Δ/σ)max = 0.001 |
3810 reflections | Δρmax = 0.38 e Å−3 |
148 parameters | Δρmin = −0.32 e Å−3 |
10 restraints |
x | y | z | Uiso*/Ueq | ||
N1 | 0.4666 (2) | 0.28730 (12) | 0.27357 (10) | 0.0521 | |
S2 | 0.41135 (7) | 0.51407 (3) | 0.33300 (3) | 0.0508 | |
C3 | 0.4856 (2) | 0.36798 (11) | 0.35054 (10) | 0.0378 | |
O4 | 0.82417 (18) | −0.24246 (9) | 0.43350 (9) | 0.0596 | |
N5 | 0.62732 (16) | 0.20875 (9) | 0.45653 (9) | 0.0383 | |
C6 | 0.70095 (19) | 0.17336 (12) | 0.54832 (10) | 0.0392 | |
O7 | 0.96272 (18) | −0.30444 (10) | 0.59886 (10) | 0.0619 | |
C8 | 0.76809 (19) | 0.04823 (12) | 0.56576 (10) | 0.0370 | |
C9 | 0.75307 (19) | −0.03330 (11) | 0.48105 (10) | 0.0375 | |
C10 | 0.8517 (2) | 0.01062 (15) | 0.66540 (11) | 0.0497 | |
C11 | 0.9050 (2) | −0.18475 (13) | 0.60146 (12) | 0.0451 | |
C12 | 0.82203 (19) | −0.14781 (12) | 0.50257 (11) | 0.0389 | |
N13 | 0.56921 (18) | 0.32877 (10) | 0.44507 (9) | 0.0405 | |
C14 | 0.9020 (3) | −0.34471 (13) | 0.49501 (14) | 0.0556 | |
C15 | 0.9220 (3) | −0.10782 (16) | 0.68462 (12) | 0.0560 | |
H61 | 0.7130 | 0.2267 | 0.6055 | 0.0484* | |
H91 | 0.6977 | −0.0091 | 0.4133 | 0.0462* | |
H101 | 0.8592 | 0.0663 | 0.7228 | 0.0604* | |
H141 | 1.0143 | −0.3736 | 0.4670 | 0.0677* | |
H142 | 0.8011 | −0.4081 | 0.4918 | 0.0665* | |
H151 | 0.9779 | −0.1327 | 0.7520 | 0.0688* | |
H12 | 0.395 (3) | 0.3055 (15) | 0.2155 (12) | 0.0633 (19)* | |
H131 | 0.577 (2) | 0.3758 (12) | 0.4987 (10) | 0.0488 (18)* | |
H11 | 0.498 (3) | 0.2137 (13) | 0.2878 (12) | 0.0632 (19)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0787 (10) | 0.0371 (6) | 0.0379 (6) | 0.0057 (6) | 0.0032 (6) | −0.0042 (5) |
S2 | 0.0777 (3) | 0.03268 (16) | 0.04106 (19) | 0.00766 (16) | 0.00842 (17) | 0.00264 (13) |
C3 | 0.0442 (7) | 0.0321 (6) | 0.0381 (6) | −0.0018 (5) | 0.0103 (5) | −0.0016 (5) |
O4 | 0.0838 (9) | 0.0308 (5) | 0.0576 (7) | 0.0074 (5) | −0.0046 (6) | 0.0013 (4) |
N5 | 0.0428 (6) | 0.0299 (5) | 0.0426 (6) | 0.0028 (4) | 0.0086 (5) | −0.0001 (4) |
C6 | 0.0410 (7) | 0.0381 (6) | 0.0392 (7) | 0.0004 (5) | 0.0090 (5) | −0.0018 (5) |
O7 | 0.0703 (8) | 0.0422 (6) | 0.0685 (8) | 0.0094 (5) | −0.0002 (6) | 0.0207 (5) |
C8 | 0.0353 (6) | 0.0380 (6) | 0.0376 (6) | −0.0017 (5) | 0.0067 (5) | 0.0040 (5) |
C9 | 0.0385 (7) | 0.0346 (6) | 0.0374 (6) | −0.0010 (5) | 0.0009 (5) | 0.0055 (5) |
C10 | 0.0577 (9) | 0.0547 (8) | 0.0353 (7) | 0.0021 (7) | 0.0048 (6) | 0.0027 (6) |
C11 | 0.0417 (7) | 0.0405 (7) | 0.0517 (8) | 0.0005 (6) | 0.0045 (6) | 0.0161 (6) |
C12 | 0.0386 (7) | 0.0334 (6) | 0.0430 (7) | −0.0029 (5) | 0.0027 (5) | 0.0046 (5) |
N13 | 0.0534 (7) | 0.0310 (5) | 0.0362 (6) | 0.0055 (5) | 0.0060 (5) | −0.0031 (4) |
C14 | 0.0565 (9) | 0.0339 (7) | 0.0760 (11) | 0.0052 (6) | 0.0107 (8) | 0.0129 (7) |
C15 | 0.0631 (10) | 0.0617 (10) | 0.0390 (7) | 0.0037 (8) | −0.0016 (7) | 0.0164 (7) |
N1—C3 | 1.3281 (17) | C8—C9 | 1.4120 (18) |
N1—H12 | 0.858 (14) | C8—C10 | 1.3926 (19) |
N1—H11 | 0.849 (14) | C9—C12 | 1.3592 (17) |
S2—C3 | 1.6899 (13) | C9—H91 | 0.941 |
C3—N13 | 1.3414 (17) | C10—C15 | 1.399 (2) |
O4—C12 | 1.3776 (17) | C10—H101 | 0.961 |
O4—C14 | 1.4318 (17) | C11—C12 | 1.3809 (19) |
N5—C6 | 1.2793 (17) | C11—C15 | 1.364 (2) |
N5—N13 | 1.3800 (15) | N13—H131 | 0.864 (13) |
C6—C8 | 1.4576 (18) | C14—H141 | 0.990 |
C6—H61 | 0.941 | C14—H142 | 0.995 |
O7—C11 | 1.3779 (18) | C15—H151 | 0.939 |
O7—C14 | 1.418 (2) | ||
C3—N1—H12 | 118.5 (11) | C15—C10—H101 | 118.8 |
C3—N1—H11 | 118.8 (11) | O7—C11—C12 | 109.60 (14) |
H12—N1—H11 | 120.3 (15) | O7—C11—C15 | 128.71 (13) |
S2—C3—N1 | 122.87 (11) | C12—C11—C15 | 121.69 (13) |
S2—C3—N13 | 120.31 (10) | C11—C12—O4 | 109.78 (12) |
N1—C3—N13 | 116.82 (12) | C11—C12—C9 | 122.83 (13) |
C12—O4—C14 | 105.76 (11) | O4—C12—C9 | 127.39 (12) |
C6—N5—N13 | 117.07 (11) | N5—N13—C3 | 118.70 (11) |
N5—C6—C8 | 119.96 (12) | N5—N13—H131 | 120.5 (9) |
N5—C6—H61 | 121.3 | C3—N13—H131 | 120.5 (9) |
C8—C6—H61 | 118.7 | O4—C14—O7 | 108.25 (12) |
C11—O7—C14 | 106.25 (11) | O4—C14—H141 | 107.4 |
C6—C8—C9 | 119.84 (12) | O7—C14—H141 | 109.1 |
C6—C8—C10 | 119.85 (13) | O4—C14—H142 | 108.7 |
C9—C8—C10 | 120.28 (13) | O7—C14—H142 | 110.5 |
C8—C9—C12 | 116.73 (12) | H141—C14—H142 | 112.7 |
C8—C9—H91 | 121.3 | C10—C15—C11 | 117.03 (13) |
C12—C9—H91 | 122.0 | C10—C15—H151 | 121.0 |
C8—C10—C15 | 121.44 (14) | C11—C15—H151 | 121.9 |
C8—C10—H101 | 119.7 |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H11···N5 | 0.85 (2) | 2.23 (2) | 2.6034 (17) | 107 (1) |
N1—H11···S2i | 0.85 (2) | 2.84 (2) | 3.4805 (14) | 134 (1) |
N1—H12···O4ii | 0.86 (1) | 2.32 (2) | 3.112 (2) | 153 (2) |
N13—H131···S2iii | 0.86 (1) | 2.50 (1) | 3.3550 (12) | 172 (1) |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x+1, y+1/2, −z+1/2; (iii) −x+1, −y+1, −z+1. |
References
Beckford, F., Dourth, D., Shaloski, M. Jr, Didion, J., Thessing, J., Woods, J., Crowell, V., Gerasimchuk, N., Gonzalez-Sarrías, A. & Seeram, N. P. (2011). J. Inorg. Biochem. 105, 1019–1029. Web of Science CSD CrossRef CAS PubMed Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Casas, K., Oliveira, M., Silva, G., Viasus, C. & Burgos, A. (2015). Afr. J. Pharm. Pharmacol. 9, 1009–1019. CAS Google Scholar
Cortés, L., Okio, C. & Brandão, P. F. B. (2011). Phosphorus Sulfur Silicon, 186, 1356–1360. Google Scholar
Dias, L. C., de Lima, G. M., Pinheiro, C. B., Nascimento, M. A. C. & Bitzer, R. S. (2017). J. Mol. Struct. 1131, 79e86. Web of Science CSD CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hu, W., Zhou, W., Xia, C. & Wen, X. (2006). Bioorg. Med. Chem. Lett. 16, 2213–2218. Web of Science CrossRef PubMed CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Oliveira, A. B. de, Farias, R. L. de, Näther, C., Jess, I. & Bresolin, L. (2013). Acta Cryst. E69, o644. CSD CrossRef IUCr Journals Google Scholar
Oliveira, A. B. de, Lira de Farias, R., Näther, C. & Jess, I. (2015a). Acta Cryst. E71, o208–o209. CSD CrossRef IUCr Journals Google Scholar
Oliveira, A. B. de, Näther, C., Jess, I., Farias, R. L. de & Ribeiro, I. A. (2015b). Acta Cryst. E71, o35–o36. CSD CrossRef IUCr Journals Google Scholar
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790. Web of Science CrossRef CAS IUCr Journals Google Scholar
Singh, H. L., Singh, J. B. & Bhanuka, S. (2016). Res. Chem. Intermed. 42, 997–1015. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.