research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{[(E)-(1,3-Benzodioxol-5-yl)methyl­­idene]amino}thio­urea

crossmark logo

aDipartimento di Scienze della Terra e Geoambientali., Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 701125 Bari, Italy, and bDepartamento de Quimica, Facultad de Ciencias, Universidad Nacional de Colombia, Carerra 30 No 45-03, Bogotá, Colombia
*Correspondence e-mail: ernesto.mesto@uniba.it

Edited by X. Hao, Institute of Chemistry, Chinese Academy of Sciences (Received 25 December 2023; accepted 2 January 2024; online 9 January 2024)

The synthesis and crystallographic analysis of the title compound, C9H9N3O2S, are reported. The compound crystallizes in the monoclinic space group P21/c, revealing characteristic bond lengths and angles typical of thio­semicarbazone groups. The supra­molecular organization primarily arises from hydrogen bonding and ππ stacking inter­actions, leading to distinctive dimeric formations.

1. Chemical context

The group of thio­semicarbazone Schiff bases, capable of coordinating with metal centers through nitro­gen and sulfur atoms, has garnered significant recent attention (Cortés et al., 2011[Cortés, L., Okio, C. & Brandão, P. F. B. (2011). Phosphorus Sulfur Silicon, 186, 1356-1360.]; Singh et al., 2016[Singh, H. L., Singh, J. B. & Bhanuka, S. (2016). Res. Chem. Intermed. 42, 997-1015.]) due to the exhibited biological and pharmacological properties, such as anti­bacterial and anti­viral activities (Hu et al., 2006[Hu, W., Zhou, W., Xia, C. & Wen, X. (2006). Bioorg. Med. Chem. Lett. 16, 2213-2218.]). This study focuses on describing the synthesis and the analysis of the crystal structure of the title mol­ecule.

[Scheme 1]

2. Structural commentary

The target compound (I) crystallizes in the monoclinic space group P21/c with one mol­ecule in the asymmetric unit (Z = 4). A view of the mol­ecule is shown in Fig. 1[link]. Selected bond lengths and angles for the product are listed in Table 1[link]. All bond lengths exhibit typical values (Dias et al., 2017[Dias, L. C., de Lima, G. M., Pinheiro, C. B., Nascimento, M. A. C. & Bitzer, R. S. (2017). J. Mol. Struct. 1131, 79e86.]).

Table 1
Selected geometric parameters (Å, °)

N1—C3 1.3281 (17) N5—C6 1.2793 (17)
S2—C3 1.6899 (13) N5—N13 1.3800 (15)
C3—N13 1.3414 (17)    
       
S2—C3—N1 122.87 (11) N1—C3—N13 116.82 (12)
S2—C3—N13 120.31 (10) C6—N5—N13 117.07 (11)
[Figure 1]
Figure 1
Labelling scheme and structure of I. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

The supra­molecular arrangements of I primarily result from classical and non-classical hydrogen bonds and ππ stacking inter­actions. These contacts were recognized by Mercury 2022 (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]; sum of van der Waals radii plus 0.1 Å). The hydrogen-bonding geometry is listed in Table 2[link], and the packing of mol­ecules viewed down along the c axis is shown in Fig. 2[link]. Together, the hydrogen-bonding inter­actions lead to the formation of a two-dimensional network parallel to (100). The mol­ecules at (x, y, z) and (2 − x, −y, 1 − z) are components of dimers centered at (1, 0, ½), while the separation between the aryl ring centroids is 3.778 (2) Å, indicating ππ stacking interactions between the aromatic ring systems.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11⋯N5 0.85 (2) 2.23 (2) 2.6034 (17) 107 (1)
N1—H11⋯S2i 0.85 (2) 2.84 (2) 3.4805 (14) 134 (1)
N1—H12⋯O4ii 0.86 (1) 2.32 (2) 3.112 (2) 153 (2)
N13—H131⋯S2iii 0.86 (1) 2.50 (1) 3.3550 (12) 172 (1)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, -y+1, -z+1].
[Figure 2]
Figure 2
The mol­ecular dimers of mol­ecule I (arbitrary view). Hydrogen bonds and ππ stacking inter­actions are indicated by dotted lines. [Symmetry codes: (i) 1 − x, −y, 1 − z; (ii) 2 − x, −y, 1 − z; (iii) 1 − x, [{1\over 2}] + y, [{1\over 2}] − z.]

4. Database Survey

Six crystal structures, authored by different researchers and featuring the [(E)-1,3-benzodioxol-5-yl­meth­ylidene­amino]­thio­urea fragment (piperonal, thio­semicarbazone), have been documented in the Cambridge Structural Database (CSD, WebCSD search December 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). The crystal structure here under discussion can be considered the parent compound among those reported in the CSD. These other structures show substitutions in the imine hydrogen with methyl (de Oliveira et al., 2013[Oliveira, A. B. de, Farias, R. L. de, Näther, C., Jess, I. & Bresolin, L. (2013). Acta Cryst. E69, o644.], 2015a[Oliveira, A. B. de, Lira de Farias, R., Näther, C. & Jess, I. (2015a). Acta Cryst. E71, o208-o209.],b[Oliveira, A. B. de, Näther, C., Jess, I., Farias, R. L. de & Ribeiro, I. A. (2015b). Acta Cryst. E71, o35-o36.]) or nitro group (Dias et al., 2017[Dias, L. C., de Lima, G. M., Pinheiro, C. B., Nascimento, M. A. C. & Bitzer, R. S. (2017). J. Mol. Struct. 1131, 79e86.]), and in the amidic hydrogen with methyl (de Oliveira et al., 2015b[Oliveira, A. B. de, Näther, C., Jess, I., Farias, R. L. de & Ribeiro, I. A. (2015b). Acta Cryst. E71, o35-o36.]), ethyl (Dias et al. 2017[Dias, L. C., de Lima, G. M., Pinheiro, C. B., Nascimento, M. A. C. & Bitzer, R. S. (2017). J. Mol. Struct. 1131, 79e86.]; de Oliveira et al., 2015a[Beckford, F., Dourth, D., Shaloski, M. Jr, Didion, J., Thessing, J., Woods, J., Crowell, V., Gerasimchuk, N., Gonzalez-Sarrías, A. & Seeram, N. P. (2011). J. Inorg. Biochem. 105, 1019-1029.]), and phenyl (Dias et al. 2017[Dias, L. C., de Lima, G. M., Pinheiro, C. B., Nascimento, M. A. C. & Bitzer, R. S. (2017). J. Mol. Struct. 1131, 79e86.]) radicals. Some of these structures crystallize in the triclinic space group P[\overline{1}], while others in the monoclinic space group P21/c. Finally, Beckford et al. (2011[Beckford, F., Dourth, D., Shaloski, M. Jr, Didion, J., Thessing, J., Woods, J., Crowell, V., Gerasimchuk, N., Gonzalez-Sarrías, A. & Seeram, N. P. (2011). J. Inorg. Biochem. 105, 1019-1029.]), provide detailed information on the crystal structure of [(η6-p-cymene)Ru(pPhTSC)Cl]Cl, which crystallizes in the monoclinic space group P21/n. All of the structures reveal co-planar arrangements of the piperonal thio­semicarbazone portion along with ππ and hydrogen-bonding inter­actions.

5. Synthesis and crystallization

The synthesis of the Schiff base ligand (1,3-benzodioxol-5-ylformaldehyde) thio­semicarbazone was performed according to a previously published procedure (Casas et al., 2015[Casas, K., Oliveira, M., Silva, G., Viasus, C. & Burgos, A. (2015). Afr. J. Pharm. Pharmacol. 9, 1009-1019.]). Piperonal (1.00 g, 6.66 mmol) and thio­semicarbazide (0.61 g, 6.66 mmol) were dissolved in ethanol and stirred under reflux for 2 h. Upon cooling, the solvent was removed and the remaining solid was recrystallized from ethanol/di­chloro­methane. Yellowish crystals suitable for X-ray diffraction were grown by slow evaporation after a couple of weeks, yield 78%; m.p. 409–411) . FT–IR (ATR, cm−1): 3323 ν(N—H), 1585 ν(C=N), 1090 ν(N—N), 931 ν(C=S).

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The H atoms were all located in difference maps, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98 Å, N—H = 0.86 Å, O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Table 3
Experimental details

Crystal data
Chemical formula C9H9N3O2S
Mr 223.26
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 7.1189 (2), 10.9687 (2), 13.0678 (3)
β (°) 100.426 (2)
V3) 1003.55 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.31
Crystal size (mm) 0.58 × 0.34 × 0.17
 
Data collection
Diffractometer Bruker APEXII
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.88, 0.95
No. of measured, independent and observed [I > 2.0σ(I)] reflections 19600, 3818, 2447
Rint 0.000
(sin θ/λ)max−1) 0.770
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.104, 0.95
No. of reflections 3810
No. of parameters 148
No. of restraints 10
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.38, −0.32
Computer programs: APEX2 and SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]), CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Supporting information


Computing details top

{[(E)-(1,3-Benzodioxol-5-yl)methylidene]amino}thiourea top
Crystal data top
C9H9N3O2SF(000) = 464
Mr = 223.26Dx = 1.478 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3399 reflections
a = 7.1189 (2) Åθ = 3.2–27.6°
b = 10.9687 (2) ŵ = 0.31 mm1
c = 13.0678 (3) ÅT = 293 K
β = 100.426 (2)°Tabular, colourless
V = 1003.55 (4) Å30.58 × 0.34 × 0.17 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
2447 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.000
φ & ω scansθmax = 33.2°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1010
Tmin = 0.88, Tmax = 0.95k = 1616
19600 measured reflectionsl = 2020
3818 independent reflections
Refinement top
Refinement on F2Primary atom site location: other
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.104 Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.04P)2 + 0.31P] ,
where P = (max(Fo2,0) + 2Fc2)/3
S = 0.95(Δ/σ)max = 0.001
3810 reflectionsΔρmax = 0.38 e Å3
148 parametersΔρmin = 0.32 e Å3
10 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4666 (2)0.28730 (12)0.27357 (10)0.0521
S20.41135 (7)0.51407 (3)0.33300 (3)0.0508
C30.4856 (2)0.36798 (11)0.35054 (10)0.0378
O40.82417 (18)0.24246 (9)0.43350 (9)0.0596
N50.62732 (16)0.20875 (9)0.45653 (9)0.0383
C60.70095 (19)0.17336 (12)0.54832 (10)0.0392
O70.96272 (18)0.30444 (10)0.59886 (10)0.0619
C80.76809 (19)0.04823 (12)0.56576 (10)0.0370
C90.75307 (19)0.03330 (11)0.48105 (10)0.0375
C100.8517 (2)0.01062 (15)0.66540 (11)0.0497
C110.9050 (2)0.18475 (13)0.60146 (12)0.0451
C120.82203 (19)0.14781 (12)0.50257 (11)0.0389
N130.56921 (18)0.32877 (10)0.44507 (9)0.0405
C140.9020 (3)0.34471 (13)0.49501 (14)0.0556
C150.9220 (3)0.10782 (16)0.68462 (12)0.0560
H610.71300.22670.60550.0484*
H910.69770.00910.41330.0462*
H1010.85920.06630.72280.0604*
H1411.01430.37360.46700.0677*
H1420.80110.40810.49180.0665*
H1510.97790.13270.75200.0688*
H120.395 (3)0.3055 (15)0.2155 (12)0.0633 (19)*
H1310.577 (2)0.3758 (12)0.4987 (10)0.0488 (18)*
H110.498 (3)0.2137 (13)0.2878 (12)0.0632 (19)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0787 (10)0.0371 (6)0.0379 (6)0.0057 (6)0.0032 (6)0.0042 (5)
S20.0777 (3)0.03268 (16)0.04106 (19)0.00766 (16)0.00842 (17)0.00264 (13)
C30.0442 (7)0.0321 (6)0.0381 (6)0.0018 (5)0.0103 (5)0.0016 (5)
O40.0838 (9)0.0308 (5)0.0576 (7)0.0074 (5)0.0046 (6)0.0013 (4)
N50.0428 (6)0.0299 (5)0.0426 (6)0.0028 (4)0.0086 (5)0.0001 (4)
C60.0410 (7)0.0381 (6)0.0392 (7)0.0004 (5)0.0090 (5)0.0018 (5)
O70.0703 (8)0.0422 (6)0.0685 (8)0.0094 (5)0.0002 (6)0.0207 (5)
C80.0353 (6)0.0380 (6)0.0376 (6)0.0017 (5)0.0067 (5)0.0040 (5)
C90.0385 (7)0.0346 (6)0.0374 (6)0.0010 (5)0.0009 (5)0.0055 (5)
C100.0577 (9)0.0547 (8)0.0353 (7)0.0021 (7)0.0048 (6)0.0027 (6)
C110.0417 (7)0.0405 (7)0.0517 (8)0.0005 (6)0.0045 (6)0.0161 (6)
C120.0386 (7)0.0334 (6)0.0430 (7)0.0029 (5)0.0027 (5)0.0046 (5)
N130.0534 (7)0.0310 (5)0.0362 (6)0.0055 (5)0.0060 (5)0.0031 (4)
C140.0565 (9)0.0339 (7)0.0760 (11)0.0052 (6)0.0107 (8)0.0129 (7)
C150.0631 (10)0.0617 (10)0.0390 (7)0.0037 (8)0.0016 (7)0.0164 (7)
Geometric parameters (Å, º) top
N1—C31.3281 (17)C8—C91.4120 (18)
N1—H120.858 (14)C8—C101.3926 (19)
N1—H110.849 (14)C9—C121.3592 (17)
S2—C31.6899 (13)C9—H910.941
C3—N131.3414 (17)C10—C151.399 (2)
O4—C121.3776 (17)C10—H1010.961
O4—C141.4318 (17)C11—C121.3809 (19)
N5—C61.2793 (17)C11—C151.364 (2)
N5—N131.3800 (15)N13—H1310.864 (13)
C6—C81.4576 (18)C14—H1410.990
C6—H610.941C14—H1420.995
O7—C111.3779 (18)C15—H1510.939
O7—C141.418 (2)
C3—N1—H12118.5 (11)C15—C10—H101118.8
C3—N1—H11118.8 (11)O7—C11—C12109.60 (14)
H12—N1—H11120.3 (15)O7—C11—C15128.71 (13)
S2—C3—N1122.87 (11)C12—C11—C15121.69 (13)
S2—C3—N13120.31 (10)C11—C12—O4109.78 (12)
N1—C3—N13116.82 (12)C11—C12—C9122.83 (13)
C12—O4—C14105.76 (11)O4—C12—C9127.39 (12)
C6—N5—N13117.07 (11)N5—N13—C3118.70 (11)
N5—C6—C8119.96 (12)N5—N13—H131120.5 (9)
N5—C6—H61121.3C3—N13—H131120.5 (9)
C8—C6—H61118.7O4—C14—O7108.25 (12)
C11—O7—C14106.25 (11)O4—C14—H141107.4
C6—C8—C9119.84 (12)O7—C14—H141109.1
C6—C8—C10119.85 (13)O4—C14—H142108.7
C9—C8—C10120.28 (13)O7—C14—H142110.5
C8—C9—C12116.73 (12)H141—C14—H142112.7
C8—C9—H91121.3C10—C15—C11117.03 (13)
C12—C9—H91122.0C10—C15—H151121.0
C8—C10—C15121.44 (14)C11—C15—H151121.9
C8—C10—H101119.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···N50.85 (2)2.23 (2)2.6034 (17)107 (1)
N1—H11···S2i0.85 (2)2.84 (2)3.4805 (14)134 (1)
N1—H12···O4ii0.86 (1)2.32 (2)3.112 (2)153 (2)
N13—H131···S2iii0.86 (1)2.50 (1)3.3550 (12)172 (1)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y+1, z+1.
 

References

First citationBeckford, F., Dourth, D., Shaloski, M. Jr, Didion, J., Thessing, J., Woods, J., Crowell, V., Gerasimchuk, N., Gonzalez-Sarrías, A. & Seeram, N. P. (2011). J. Inorg. Biochem. 105, 1019–1029.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasas, K., Oliveira, M., Silva, G., Viasus, C. & Burgos, A. (2015). Afr. J. Pharm. Pharmacol. 9, 1009–1019.  CAS Google Scholar
First citationCortés, L., Okio, C. & Brandão, P. F. B. (2011). Phosphorus Sulfur Silicon, 186, 1356–1360.  Google Scholar
First citationDias, L. C., de Lima, G. M., Pinheiro, C. B., Nascimento, M. A. C. & Bitzer, R. S. (2017). J. Mol. Struct. 1131, 79e86.  Web of Science CSD CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHu, W., Zhou, W., Xia, C. & Wen, X. (2006). Bioorg. Med. Chem. Lett. 16, 2213–2218.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOliveira, A. B. de, Farias, R. L. de, Näther, C., Jess, I. & Bresolin, L. (2013). Acta Cryst. E69, o644.  CSD CrossRef IUCr Journals Google Scholar
First citationOliveira, A. B. de, Lira de Farias, R., Näther, C. & Jess, I. (2015a). Acta Cryst. E71, o208–o209.  CSD CrossRef IUCr Journals Google Scholar
First citationOliveira, A. B. de, Näther, C., Jess, I., Farias, R. L. de & Ribeiro, I. A. (2015b). Acta Cryst. E71, o35–o36.  CSD CrossRef IUCr Journals Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, H. L., Singh, J. B. & Bhanuka, S. (2016). Res. Chem. Intermed. 42, 997–1015.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds