research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 4-(2-chloro­eth­yl)-5-methyl-1,2-di­hydro­pyrazol-3-one

crossmark logo

aDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148, Baku, Azerbaijan, bPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow 117198, Russian Federation, cN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, eDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal, and f"Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

Edited by X. Hao, Institute of Chemistry, Chinese Academy of Sciences (Received 15 January 2024; accepted 23 January 2024; online 31 January 2024)

In the crystal of the title compound, C6H9ClN2O, mol­ecular pairs form dimers with an R22(8) motif through N—H⋯O hydrogen bonds. These dimers are connect into ribbons parallel to the (100) plane with R44(10) motifs by N—H⋯O hydrogen bonds along the c-axis direction. In addition, ππ [centroid-to-centroid distance = 3.4635 (9) Å] and C—Cl⋯π inter­actions between the ribbons form layers parallel to the (100) plane. The three-dimensional consolidation of the crystal structure is also ensured by Cl⋯H and Cl⋯Cl inter­actions between these layers. According to a Hirshfeld surface study, H⋯H (43.3%), Cl⋯H/H⋯Cl (22.1%) and O⋯H/H⋯O (18.7%) inter­actions are the most significant contributors to the crystal packing.

1. Chemical context

Nitro­gen-based heterocyclic compounds are an important branch of organic chemistry. These systems have received increasing attention over the past two decades. Synthetic chemistry is growing extensively with recently developed heterocyclic systems for various research and commercial purposes (Maharramov et al., 2021[Maharramov, A. M., Shikhaliyev, N. G., Zeynalli, N. R., Niyazova, A. A., Garazade, Kh. A. & Shikhaliyeva, I. M. (2021). UNEC J. Eng. Appl. Sci. 1, 5-11.], 2022[Maharramov, A. M., Suleymanova, G. T., Qajar, A. M., Niyazova, A. A., Ahmadova, N. E., Shikhaliyeva, I. M., Garazade, Kh. A., Nenajdenko, V. G. & Shikaliyev, N. G. (2022). UNEC J. Eng. Appl. Sci. 2, 64-73.]; Erenler et al., 2022[Erenler, R., Dag, B. & Ozbek, B. B. (2022). UNEC J. Eng. Appl. Sci. 2, 26-32.]; Akkurt et al., 2023[Akkurt, M., Maharramov, A. M., Shikhaliyev, N. G., Qajar, A. M., Atakishiyeva, G., Shikhaliyeva, I. M., Niyazova, A. A. & Bhattarai, A. (2023). UNEC J. Eng. Appl. Sci. 3, 33-39.]). These systems have found wide applications in diverse branches of chemistry, including the chemistry of coordination compounds (Gurbanov et al., 2021[Gurbanov, A. V., Mertsalov, D. F., Zubkov, F. I., Nadirova, M. A., Nikitina, E. V., Truong, H. H., Grigoriev, M. S., Zaytsev, V. P., Mahmudov, K. T. & Pombeiro, A. J. L. (2021). Crystals, 11, 112.]; Mahmoudi et al., 2021[Mahmoudi, G., Zangrando, E., Miroslaw, B., Gurbanov, A. V., Babashkina, M. G., Frontera, A. & Safin, D. A. (2021). Inorg. Chim. Acta, 519, 120279.]), drug development (Donmez & Turkyılmaz, 2022[Donmez, M. & Turkyılmaz, M. (2022). UNEC J. Eng. Appl. Sci, 2, 43-48.]; Askerova, 2022[Askerova, U. F. (2022). UNEC J. Eng. Appl. Sci, 2, 58-64.]) and material science (Velásquez et al., 2019[Velásquez, J. D., Mahmoudi, G., Zangrando, E., Gurbanov, A. V., Zubkov, F. I., Zorlu, Y., Masoudiasl, A. & Echeverría, J. (2019). CrystEngComm, 21, 6018-6025.]; Afkhami et al., 2019[Afkhami, F. A., Mahmoudi, G., Khandar, A. A., Franconetti, A., Zangrando, E., Qureshi, N., Lipkowski, J., Gurbanov, A. V. & Frontera, A. (2019). Eur. J. Inorg. Chem. pp. 262-270.]). The pyrazole motif is the most widespread five-membered heteroaromatic ring system in nitro­gen heterocycles. It is an essential structural motif present in many natural bioactive mol­ecules such as L-α-amino-β-(pyrazolyl-N)-propanoic acid, withasomnine, pyrazofurin, pyrazofurin B, formycin, formycin B, oxoformycin B, nostocine A, fluviols (A, B, C, D and E), pyrazole-3(5)-carb­oxy­lic acid, 4-Methyl pyrazole-3(5)-carb­oxy­lic acid, 3-n-nonyl­pyrazole (Khalilov et al., 2022[Khalilov, A. N., Khrustalev, V. N., Tereshina, T. A., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2022). Acta Cryst. E78, 525-529.]; Kumar et al., 2013[Kumar, V., Kaur, K., Gupta, G. K. & Sharma, A. K. (2013). Eur. J. Med. Chem. 69, 735-753.]; Sobhi & Faisal, 2023[Sobhi, R. M. & Faisal, R. M. (2023). UNEC J. Eng. Appl. Sci. 3, 21-32.]). The pyrazole ring incorporating derivatives with various biological activities (Singh et al., 2023[Singh, S., Tehlan, S. & Kumar Verma, P. (2023). Mini Rev. Med. Chem. 23, 2142-2165.]), such as anti­convulsant, anti­diabetic, anti-inflammatory, anti­oxidant, anti­cancer, anti­tubercular, anti­ulcer activities and other properties has been reviewed recently (Fig. 1[link]).

[Figure 1]
Figure 1
The biological activities of compounds incorporating the pyrazole motif.

On the other hand, the incorporation of various pharmacophore groups in a pyrazole scaffold has led to the development of best-selling drugs such as ibrutinib, ruxolitinib, axitinib, niraparib and baricitinib (Atalay et al., 2022[Atalay, V. E., Atish, I. S., Shahin, K. F., Kashikchi, E. S. & Karahan, M. (2022). UNEC J. Eng. Appl. Sci. 2, 33-40.]; Alam, 2023[Alam, M. A. (2023). Future Med. Chem. 15, 2011-2023.]). Thus, in the framework of our studies in heterocyclic chemistry (Naghiyev et al., 2020[Naghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020). Acta Cryst. E76, 720-723.], 2021[Naghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 516-521.], 2022[Naghiyev, F. N., Khrustalev, V. N., Novikov, A. P., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, I. G. (2022). Acta Cryst. E78, 554-558.]), we herein report the crystal structure and Hirshfeld surface analysis of the title compound, 4-(2-chloro­eth­yl)-5-methyl-1,2-di­hydro­pyrazol-3-one, for which the proposed reaction mechanism is shown in Fig. 2[link].

[Scheme 1]
[Figure 2]
Figure 2
The proposed reaction mechanism for the formation of the title compound.

2. Structural commentary

In the title compound (Fig. 3[link]), the pyrazoline ring (N1/N2/C3–C5) has an essentially planar conformation [maximum deviation = 0.006 (1) Å for N1]. The C3—C4—C7—C8 and C4—C7—C8—Cl1 torsion angles are 105.67 (19) and 172.38 (11)°, respectively. The geometric parameters of the title compound are normal and comparable to those of related compounds given in the Database survey section.

[Figure 3]
Figure 3
The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, mol­ecular pairs form dimers with an R22(8) motif (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) through N—H⋯O hydrogen bonds (Table 1[link] and Fig. 4[link]). These dimers are also connected into ribbons parallel to the (100) plane by forming N—H⋯O hydrogen bonds with R44(10) motifs along the c-axis direction (Figs. 5[link] and 6[link]). In addition, ππ [Cg1⋯Cg1i = 3.4635 (9) Å, slippage = 0.511 Å; symmetry code: (i) − x, 1 − y, 1 − z; Cg1 is a centroid of the pyrazole ring (N1/N2/C3–C5)] and C—Cl⋯π [C8—Cl1⋯Cg1ii: C8—Cl1 = 1.8040 (18) Å, Cl1⋯Cg1ii = 3.8386 (8) Å, C8—Cl1⋯Cg1ii = 84.57 (6)°; symmetry code: (ii) x, [{3\over 2}] − y, [{1\over 2}] + z] inter­actions between the ribbons form layers parallel to the (100) plane. The three-dimensional consolidation of the crystal structure is also ensured by the Cl⋯H and Cl⋯Cl inter­actions [(C8)Cl1⋯H6Biii = 3.12 (3) Å, C8—Cl1⋯H6Biii = 135.3 (6)° and (C8)Cl1⋯Cl1iv = 3.5071 (7) Å, C8—Cl1⋯Cl1iv = 161.79 (7)°; symmetry codes: (iii) 1 − x, [{1\over 2}] + y, [{3\over 2}] − z; (iv) 1 − x, 1 − y, 2 − z] between these layers (Table 2[link]; Fig. 7[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.88 (3) 1.81 (3) 2.6861 (18) 174 (2)
N2—H2⋯O1ii 0.92 (3) 1.75 (3) 2.6772 (17) 177 (2)
Symmetry codes: (i) [-x, -y+2, -z+1]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Cl1⋯H6B 3.12 1 − x, [{1\over 2}] + y, [{3\over 2}] − z
Cl1⋯Cl1 3.51 1 − x, 1 − y, 2 − z
H1⋯O1 1.80 x, 2 − y, 1 − z
H6C⋯O1 2.89 x, 1 − y, 1 − z
O1⋯H2 1.76 x, [{3\over 2}] − y, [{1\over 2}] + z
H6A⋯H7B 2.60 x, [{1\over 2}] − y, −[{1\over 2}] + z
[Figure 4]
Figure 4
View of the N—H⋯O hydrogen bonds of the title compound down the a-axis.
[Figure 5]
Figure 5
View of the N—H⋯O hydrogen bonds of the title compound down the b-axis.
[Figure 6]
Figure 6
View of the N—H⋯O hydrogen bonds of the title compound down the c-axis.
[Figure 7]
Figure 7
View of the π-π- and C—Cl⋯π inter­actions of the title compound down the b-axis.

To qu­antify the inter­molecular inter­actions in the crystal, two-dimensional fingerprint plots and Hirshfeld surfaces were produced using Crystal Explorer 17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). Fig. 8[link] shows the mapping of the Hirshfeld surfaces over dnorm in the range −0.7296 (red) to +1.3271 (blue) a.u. The inter­actions given in Tables 1[link] and 2[link] play a key role in the mol­ecular packing of the title compound. H⋯H is the most significant inter­atomic contact because it contributes the most to the crystal packing (43.3%, Fig. 9[link]b). Other significant contributions are made by Cl⋯H/H⋯Cl (22.1%, Fig. 9[link]c) and O⋯H/H⋯O (18.7%, Fig. 9[link]d) inter­actions. The following inter­actions make minor contributions: Cl⋯C/C⋯Cl (2.4%), C⋯H/H⋯C (2.6%), N⋯H/H⋯N (4.3%), N⋯C/C⋯N (3.4%), Cl⋯N/N⋯Cl (0.7%), and C⋯C (0.7%).

[Figure 8]
Figure 8
(a) Front and (b) back sides of the three-dimensional Hirshfeld surface of the title compound mapped over dnorm, with a fixed colour scale of −0.7296 to +1.3271 a.u.
[Figure 9]
Figure 9
The two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) Cl⋯H/H⋯Cl and (d) O⋯H/H⋯O inter­actions. [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.43, last update November 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the central five-membered ring 2,3-di­hydro-1H-pyrazole yielded six compounds related to the title compound, viz. 3-methyl-5-(3-methyl­phen­oxy)-1-phenyl-1H-pyrazole-4-carb­aldehyde (CSD refcode TERZAV; Archana, et al., 2022[Archana, S. D., Nagma Banu, H. A., Kalluraya, B., Yathirajan, H. S., Balerao, R. & Butcher, R. J. (2022). IUCrData, 7, x220924.]), N-{3-cyano-1-[2,6-di­chloro-4-(tri­fluoro­meth­yl)phen­yl]-4-(ethyl­sulf­an­yl)-1H-pyrazol-5-yl}-2,2,2-tri­fluoro­acetamide (FERPOL; Priyanka et al., 2022[Priyanka, P., Jayanna, B. K., Sunil Kumar, Y. C., Shreenivas, M. T., Srinivasa, G. R., Divakara, T. R., Yathirajan, H. S. & Parkin, S. (2022). Acta Cryst. E78, 1084-1088.]), 4-[3-(4-hy­droxy­phen­yl)-4,5-di­hydro-1H-pyrazol-5-yl]-2-meth­oxy­phenol monohydrate (KOXGAI; Duong Khanh et al., 2019[Duong Khanh, L., Hanh Trinh Thi, M., Quynh Bui Thi, T., Vu Quoc, T., Nguyen Thien, V. & Van Meervelt, L. (2019). Acta Cryst. E75, 1590-1594.]), 5-chloro-N1-(5-phenyl-1H-pyrazol-3-yl)benzene-1,2-di­amine (CAXZUZ; Yartsev et al., 2017[Yartsev, Y., Palchikov, V., Gaponov, A. & Shishkina, S. (2017). Acta Cryst. E73, 876-879.]), 5-(butyl­amino)-3-methyl-1-(pyridin-2-yl)-1H-pyrazole-4-carbaldehyde (EYEHEX; Macías et al., 2016[Macías, M. A., Orrego-Hernández, J. & Portilla, J. (2016). Acta Cryst. E72, 1672-1674.]) and 5-amino-1-(2-chloro­phen­yl)-1H-pyrazole-4-carbo­nitrile (AFIJOP; Lin et al., 2007[Lin, Q.-L., Zhong, P. & Hu, M.-L. (2007). Acta Cryst. E63, o3813.]).

The mol­ecular packing of TERZAV features aromatic ππ stacking and weak C—H⋯π inter­actions. In the crystal of FERPOL, strong N—H⋯O hydrogen bonds link the mol­ecules into chains that extend parallel to the a-axis. In the crystal of KOXGAI, the mol­ecules are connected into chains running in the b-axis direction by O—H⋯N hydrogen bonding. Parallel chains inter­act through N—H⋯O hydrogen bonds and ππ stacking of the tris­ubstituted phenyl rings. In the crystal of CAXZUZ, the A and B mol­ecules are linked by two pairs of N—H⋯N hydrogen bonds, forming AB dimers. These are further linked by a fifth N—H⋯N hydrogen bond, forming tetra­mer-like units that stack along the a-axis direction, forming columns, which are in turn linked by C—H⋯π inter­actions, forming layers parallel to the ac plane. The supra­molecular structure of EYEHEX assembly has a three-dimensional arrangement controlled mainly by weak C—H⋯O and C—H⋯π inter­actions. The crystal structure of AFIJOP is consolidated by two N—H⋯N hydrogen bonds.

5. Synthesis and crystallization

Aceto­acetic ether (7.7 mmol), di­chloro­ethane (7.7 mmol) and hydrazine hydrate (15.4 mmol) were dissolved in 40 ml of ethanol and the reaction mixture was refluxed for 4 h. Then the reaction mixture was cooled to room temperature with the formation of white crystals. The crystals were separated by filtration and recrystallized from an ethanol–water mixture (m.p. 499–500 K, yield 78%).

1H NMR (300 MHz, DMSO-d6, ppm.): 2.06 (s, 3H, CH3); 2.64 (t, 2H, CH2, H-HJ2 = 7.2); 3.49 (s, 2H, 2NH); 3.58 (t, 2H, ClCH2, H-HJ2 = 7.2). 13C NMR (75 MHz, DMSO-d6, ppm.): 10.28 (CH3), 26.02 (CH2), 44.91 (CH2Cl), 97.63 (Ctert.=), 160.12 (HN—Ctert.=), 162.34 (N—C=O).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The C-bound H atoms were placed in calculated positions (0.95–0.99 Å) and refined as riding with Uiso(H) = 1.2 or 1.5Ueq(C). The N-bound H atoms were located in a difference map and freely refined.

Table 3
Experimental details

Crystal data
Chemical formula C6H9ClN2O
Mr 160.60
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 9.8420 (2), 6.9145 (2), 11.1807 (2)
β (°) 93.618 (2)
V3) 759.36 (3)
Z 4
Radiation type Cu Kα
μ (mm−1) 3.92
Crystal size (mm) 0.20 × 0.12 × 0.06
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.513, 0.750
No. of measured, independent and observed [I > 2σ(I)] reflections 6642, 1532, 1467
Rint 0.027
(sin θ/λ)max−1) 0.633
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.097, 1.05
No. of reflections 1532
No. of parameters 127
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.28, −0.41
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

4-(2-Chloroethyl)-5-methyl-1,2-dihydropyrazol-3-one top
Crystal data top
C6H9ClN2OF(000) = 336
Mr = 160.60Dx = 1.405 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 9.8420 (2) ÅCell parameters from 4592 reflections
b = 6.9145 (2) Åθ = 4.5–77.6°
c = 11.1807 (2) ŵ = 3.92 mm1
β = 93.618 (2)°T = 100 K
V = 759.36 (3) Å3Prism, colourless
Z = 40.20 × 0.12 × 0.06 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
1467 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tubeRint = 0.027
ω scansθmax = 77.5°, θmin = 4.5°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
h = 1212
Tmin = 0.513, Tmax = 0.750k = 87
6642 measured reflectionsl = 148
1532 independent reflections
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: difference Fourier map
wR(F2) = 0.097All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0501P)2 + 0.606P]
where P = (Fo2 + 2Fc2)/3
1532 reflections(Δ/σ)max = 0.001
127 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.41 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.45324 (5)0.61848 (7)0.86496 (4)0.03447 (18)
O10.06705 (13)0.89161 (17)0.64445 (10)0.0231 (3)
N10.05777 (14)0.7905 (2)0.44644 (12)0.0197 (3)
H10.013 (3)0.890 (4)0.413 (2)0.040 (7)*
N20.11129 (14)0.6437 (2)0.38217 (12)0.0195 (3)
H20.096 (2)0.636 (3)0.300 (2)0.038 (6)*
C30.18687 (16)0.5302 (2)0.45765 (14)0.0189 (3)
C40.18362 (16)0.6035 (2)0.57245 (14)0.0181 (3)
C50.10154 (16)0.7717 (2)0.56311 (13)0.0188 (3)
C60.2560 (2)0.3553 (3)0.41307 (16)0.0254 (4)
H6A0.282 (3)0.372 (4)0.331 (3)0.058 (8)*
H6B0.338 (3)0.328 (5)0.458 (3)0.065 (9)*
H6C0.205 (3)0.250 (5)0.414 (3)0.066 (9)*
C70.25721 (17)0.5342 (2)0.68559 (14)0.0205 (3)
H7A0.194 (2)0.527 (3)0.7508 (18)0.021 (5)*
H7B0.295 (2)0.406 (3)0.676 (2)0.029 (5)*
C80.37260 (18)0.6724 (3)0.71941 (16)0.0254 (4)
H8A0.340 (2)0.807 (4)0.724 (2)0.031 (6)*
H8B0.443 (2)0.665 (4)0.664 (2)0.037 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0401 (3)0.0366 (3)0.0249 (3)0.00431 (18)0.01242 (19)0.00157 (17)
O10.0374 (7)0.0209 (6)0.0110 (5)0.0082 (5)0.0007 (5)0.0010 (4)
N10.0297 (7)0.0180 (7)0.0114 (6)0.0045 (5)0.0008 (5)0.0006 (5)
N20.0278 (7)0.0194 (7)0.0115 (7)0.0026 (5)0.0013 (5)0.0028 (5)
C30.0237 (7)0.0179 (7)0.0153 (7)0.0011 (6)0.0027 (6)0.0008 (6)
C40.0238 (7)0.0177 (7)0.0128 (7)0.0008 (6)0.0024 (6)0.0017 (6)
C50.0273 (8)0.0183 (7)0.0110 (7)0.0002 (6)0.0023 (6)0.0003 (6)
C60.0333 (9)0.0233 (8)0.0198 (9)0.0057 (7)0.0033 (7)0.0036 (7)
C70.0280 (8)0.0192 (8)0.0144 (8)0.0036 (6)0.0015 (6)0.0016 (6)
C80.0264 (8)0.0315 (9)0.0180 (8)0.0006 (7)0.0019 (6)0.0029 (7)
Geometric parameters (Å, º) top
Cl1—C81.8040 (18)C4—C71.496 (2)
O1—C51.2920 (19)C6—H6A0.97 (3)
N1—C51.354 (2)C6—H6B0.95 (3)
N1—N21.3685 (19)C6—H6C0.88 (3)
N1—H10.88 (3)C7—C81.514 (2)
N2—C31.342 (2)C7—H7A0.99 (2)
N2—H20.92 (3)C7—H7B0.97 (2)
C3—C41.382 (2)C8—H8A0.99 (2)
C3—C61.489 (2)C8—H8B0.95 (2)
C4—C51.416 (2)
C5—N1—N2108.95 (13)H6A—C6—H6B105 (2)
C5—N1—H1126.8 (17)C3—C6—H6C113 (2)
N2—N1—H1123.6 (17)H6A—C6—H6C107 (3)
C3—N2—N1108.66 (13)H6B—C6—H6C107 (3)
C3—N2—H2129.9 (15)C4—C7—C8108.91 (14)
N1—N2—H2121.4 (15)C4—C7—H7A110.2 (12)
N2—C3—C4108.96 (14)C8—C7—H7A110.3 (12)
N2—C3—C6120.74 (15)C4—C7—H7B111.5 (13)
C4—C3—C6130.29 (15)C8—C7—H7B108.6 (13)
C3—C4—C5106.22 (14)H7A—C7—H7B107.3 (18)
C3—C4—C7128.97 (15)C7—C8—Cl1112.04 (12)
C5—C4—C7124.69 (14)C7—C8—H8A111.5 (13)
O1—C5—N1122.31 (15)Cl1—C8—H8A105.7 (13)
O1—C5—C4130.49 (14)C7—C8—H8B111.5 (15)
N1—C5—C4107.19 (13)Cl1—C8—H8B106.1 (15)
C3—C6—H6A111.6 (17)H8A—C8—H8B109.7 (19)
C3—C6—H6B111.9 (19)
C5—N1—N2—C30.98 (18)N2—N1—C5—C41.24 (18)
N1—N2—C3—C40.30 (18)C3—C4—C5—O1179.99 (17)
N1—N2—C3—C6178.79 (15)C7—C4—C5—O13.7 (3)
N2—C3—C4—C50.45 (18)C3—C4—C5—N11.04 (18)
C6—C3—C4—C5179.43 (17)C7—C4—C5—N1177.36 (15)
N2—C3—C4—C7176.56 (16)C3—C4—C7—C8105.67 (19)
C6—C3—C4—C74.5 (3)C5—C4—C7—C869.8 (2)
N2—N1—C5—O1179.70 (15)C4—C7—C8—Cl1172.38 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.88 (3)1.81 (3)2.6861 (18)174 (2)
N2—H2···O1ii0.92 (3)1.75 (3)2.6772 (17)177 (2)
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+3/2, z1/2.
Summary of short interatomic contacts (Å) in the title compound top
Cl1···H6B3.121 - x, 1/2 + y, 3/2 - z
Cl1···Cl13.511 - x, 1 - y, 2 - z
H1···O11.80-x, 2 - y, 1 - z
H6C···O12.89-x, 1 - y, 1 - z
O1···H21.76x, 1/2 - y, - 1/2 + z
H6A···H7B2.60x, 1/2 - y, - 1/2 + z
 

Acknowledgements

Authors contributions are as follows. Conceptualization, IGM, ANK and EAD; methodology, AB and MA; investigation, VNK and FNN; writing (original draft), MA, AB and ANK; writing (review and editing of the manuscript), MA and ANK; visualization, MA, IGM and FNN; funding acquisition, VNK, AB and FNN; resources, AB, VNK and MA; supervision, MA and ANK.

Funding information

This paper was supported by Baku State University and the RUDN University Strategic Academic Leadership Program.

References

First citationAfkhami, F. A., Mahmoudi, G., Khandar, A. A., Franconetti, A., Zangrando, E., Qureshi, N., Lipkowski, J., Gurbanov, A. V. & Frontera, A. (2019). Eur. J. Inorg. Chem. pp. 262–270.  Web of Science CSD CrossRef Google Scholar
First citationAkkurt, M., Maharramov, A. M., Shikhaliyev, N. G., Qajar, A. M., Atakishiyeva, G., Shikhaliyeva, I. M., Niyazova, A. A. & Bhattarai, A. (2023). UNEC J. Eng. Appl. Sci. 3, 33–39.  CrossRef Google Scholar
First citationAlam, M. A. (2023). Future Med. Chem. 15, 2011–2023.  CrossRef CAS PubMed Google Scholar
First citationArchana, S. D., Nagma Banu, H. A., Kalluraya, B., Yathirajan, H. S., Balerao, R. & Butcher, R. J. (2022). IUCrData, 7, x220924.  Google Scholar
First citationAskerova, U. F. (2022). UNEC J. Eng. Appl. Sci, 2, 58–64.  Google Scholar
First citationAtalay, V. E., Atish, I. S., Shahin, K. F., Kashikchi, E. S. & Karahan, M. (2022). UNEC J. Eng. Appl. Sci. 2, 33–40.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationDonmez, M. & Turkyılmaz, M. (2022). UNEC J. Eng. Appl. Sci, 2, 43–48.  Google Scholar
First citationDuong Khanh, L., Hanh Trinh Thi, M., Quynh Bui Thi, T., Vu Quoc, T., Nguyen Thien, V. & Van Meervelt, L. (2019). Acta Cryst. E75, 1590–1594.  CrossRef IUCr Journals Google Scholar
First citationErenler, R., Dag, B. & Ozbek, B. B. (2022). UNEC J. Eng. Appl. Sci. 2, 26–32.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Mertsalov, D. F., Zubkov, F. I., Nadirova, M. A., Nikitina, E. V., Truong, H. H., Grigoriev, M. S., Zaytsev, V. P., Mahmudov, K. T. & Pombeiro, A. J. L. (2021). Crystals, 11, 112.  Web of Science CSD CrossRef Google Scholar
First citationKhalilov, A. N., Khrustalev, V. N., Tereshina, T. A., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2022). Acta Cryst. E78, 525–529.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKumar, V., Kaur, K., Gupta, G. K. & Sharma, A. K. (2013). Eur. J. Med. Chem. 69, 735–753.  CrossRef CAS PubMed Google Scholar
First citationLin, Q.-L., Zhong, P. & Hu, M.-L. (2007). Acta Cryst. E63, o3813.  CrossRef IUCr Journals Google Scholar
First citationMacías, M. A., Orrego-Hernández, J. & Portilla, J. (2016). Acta Cryst. E72, 1672–1674.  CrossRef IUCr Journals Google Scholar
First citationMaharramov, A. M., Shikhaliyev, N. G., Zeynalli, N. R., Niyazova, A. A., Garazade, Kh. A. & Shikhaliyeva, I. M. (2021). UNEC J. Eng. Appl. Sci. 1, 5–11.  Google Scholar
First citationMaharramov, A. M., Suleymanova, G. T., Qajar, A. M., Niyazova, A. A., Ahmadova, N. E., Shikhaliyeva, I. M., Garazade, Kh. A., Nenajdenko, V. G. & Shikaliyev, N. G. (2022). UNEC J. Eng. Appl. Sci. 2, 64–73.  Google Scholar
First citationMahmoudi, G., Zangrando, E., Miroslaw, B., Gurbanov, A. V., Babashkina, M. G., Frontera, A. & Safin, D. A. (2021). Inorg. Chim. Acta, 519, 120279.  Web of Science CSD CrossRef Google Scholar
First citationNaghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020). Acta Cryst. E76, 720–723.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Khrustalev, V. N., Novikov, A. P., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, I. G. (2022). Acta Cryst. E78, 554–558.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 516–521.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPriyanka, P., Jayanna, B. K., Sunil Kumar, Y. C., Shreenivas, M. T., Srinivasa, G. R., Divakara, T. R., Yathirajan, H. S. & Parkin, S. (2022). Acta Cryst. E78, 1084–1088.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, S., Tehlan, S. & Kumar Verma, P. (2023). Mini Rev. Med. Chem. 23, 2142–2165.  CrossRef CAS PubMed Google Scholar
First citationSobhi, R. M. & Faisal, R. M. (2023). UNEC J. Eng. Appl. Sci. 3, 21–32.  Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVelásquez, J. D., Mahmoudi, G., Zangrando, E., Gurbanov, A. V., Zubkov, F. I., Zorlu, Y., Masoudiasl, A. & Echeverría, J. (2019). CrystEngComm, 21, 6018–6025.  Google Scholar
First citationYartsev, Y., Palchikov, V., Gaponov, A. & Shishkina, S. (2017). Acta Cryst. E73, 876–879.  CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds