research communications
and Hirshfeld surface analysis of 4-(2-chloroethyl)-5-methyl-1,2-dihydropyrazol-3-one
aDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148, Baku, Azerbaijan, bPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow 117198, Russian Federation, cN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, eDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal, and f"Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np
In the crystal of the title compound, C6H9ClN2O, molecular pairs form dimers with an R22(8) motif through N—H⋯O hydrogen bonds. These dimers are connect into ribbons parallel to the (100) plane with R44(10) motifs by N—H⋯O hydrogen bonds along the c-axis direction. In addition, π–π [centroid-to-centroid distance = 3.4635 (9) Å] and C—Cl⋯π interactions between the ribbons form layers parallel to the (100) plane. The three-dimensional consolidation of the is also ensured by Cl⋯H and Cl⋯Cl interactions between these layers. According to a Hirshfeld surface study, H⋯H (43.3%), Cl⋯H/H⋯Cl (22.1%) and O⋯H/H⋯O (18.7%) interactions are the most significant contributors to the crystal packing.
Keywords: crystal structure; hydrogen bonds; dimers; pyrazole ring; Hirshfeld surface analysis.
CCDC reference: 2327646
1. Chemical context
Nitrogen-based et al., 2021, 2022; Erenler et al., 2022; Akkurt et al., 2023). These systems have found wide applications in diverse branches of chemistry, including the chemistry of coordination compounds (Gurbanov et al., 2021; Mahmoudi et al., 2021), drug development (Donmez & Turkyılmaz, 2022; Askerova, 2022) and material science (Velásquez et al., 2019; Afkhami et al., 2019). The pyrazole motif is the most widespread five-membered heteroaromatic ring system in nitrogen heterocycles. It is an essential structural motif present in many natural bioactive molecules such as L-α-amino-β-(pyrazolyl-N)-propanoic acid, withasomnine, pyrazofurin, pyrazofurin B, formycin, formycin B, oxoformycin B, nostocine A, fluviols (A, B, C, D and E), pyrazole-3(5)-carboxylic acid, 4-Methyl pyrazole-3(5)-carboxylic acid, 3-n-nonylpyrazole (Khalilov et al., 2022; Kumar et al., 2013; Sobhi & Faisal, 2023). The pyrazole ring incorporating derivatives with various biological activities (Singh et al., 2023), such as anticonvulsant, antidiabetic, anti-inflammatory, antioxidant, anticancer, antitubercular, antiulcer activities and other properties has been reviewed recently (Fig. 1).
are an important branch of organic chemistry. These systems have received increasing attention over the past two decades. Synthetic chemistry is growing extensively with recently developed heterocyclic systems for various research and commercial purposes (MaharramovOn the other hand, the incorporation of various pharmacophore groups in a pyrazole scaffold has led to the development of best-selling drugs such as ibrutinib, ruxolitinib, axitinib, niraparib and baricitinib (Atalay et al., 2022; Alam, 2023). Thus, in the framework of our studies in heterocyclic chemistry (Naghiyev et al., 2020, 2021, 2022), we herein report the and Hirshfeld surface analysis of the title compound, 4-(2-chloroethyl)-5-methyl-1,2-dihydropyrazol-3-one, for which the proposed is shown in Fig. 2.
2. Structural commentary
In the title compound (Fig. 3), the pyrazoline ring (N1/N2/C3–C5) has an essentially planar conformation [maximum deviation = 0.006 (1) Å for N1]. The C3—C4—C7—C8 and C4—C7—C8—Cl1 torsion angles are 105.67 (19) and 172.38 (11)°, respectively. The geometric parameters of the title compound are normal and comparable to those of related compounds given in the Database survey section.
3. Supramolecular features and Hirshfeld surface analysis
In the crystal, molecular pairs form dimers with an R22(8) motif (Bernstein et al., 1995) through N—H⋯O hydrogen bonds (Table 1 and Fig. 4). These dimers are also connected into ribbons parallel to the (100) plane by forming N—H⋯O hydrogen bonds with R44(10) motifs along the c-axis direction (Figs. 5 and 6). In addition, π–π [Cg1⋯Cg1i = 3.4635 (9) Å, slippage = 0.511 Å; symmetry code: (i) − x, 1 − y, 1 − z; Cg1 is a centroid of the pyrazole ring (N1/N2/C3–C5)] and C—Cl⋯π [C8—Cl1⋯Cg1ii: C8—Cl1 = 1.8040 (18) Å, Cl1⋯Cg1ii = 3.8386 (8) Å, C8—Cl1⋯Cg1ii = 84.57 (6)°; symmetry code: (ii) x, − y, + z] interactions between the ribbons form layers parallel to the (100) plane. The three-dimensional consolidation of the is also ensured by the Cl⋯H and Cl⋯Cl interactions [(C8)Cl1⋯H6Biii = 3.12 (3) Å, C8—Cl1⋯H6Biii = 135.3 (6)° and (C8)Cl1⋯Cl1iv = 3.5071 (7) Å, C8—Cl1⋯Cl1iv = 161.79 (7)°; symmetry codes: (iii) 1 − x, + y, − z; (iv) 1 − x, 1 − y, 2 − z] between these layers (Table 2; Fig. 7).
|
|
To quantify the intermolecular interactions in the crystal, two-dimensional fingerprint plots and Hirshfeld surfaces were produced using Crystal Explorer 17.5 (Spackman et al., 2021). Fig. 8 shows the mapping of the Hirshfeld surfaces over dnorm in the range −0.7296 (red) to +1.3271 (blue) a.u. The interactions given in Tables 1 and 2 play a key role in the molecular packing of the title compound. H⋯H is the most significant interatomic contact because it contributes the most to the crystal packing (43.3%, Fig. 9b). Other significant contributions are made by Cl⋯H/H⋯Cl (22.1%, Fig. 9c) and O⋯H/H⋯O (18.7%, Fig. 9d) interactions. The following interactions make minor contributions: Cl⋯C/C⋯Cl (2.4%), C⋯H/H⋯C (2.6%), N⋯H/H⋯N (4.3%), N⋯C/C⋯N (3.4%), Cl⋯N/N⋯Cl (0.7%), and C⋯C (0.7%).
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.43, last update November 2022; Groom et al., 2016) for the central five-membered ring 2,3-dihydro-1H-pyrazole yielded six compounds related to the title compound, viz. 3-methyl-5-(3-methylphenoxy)-1-phenyl-1H-pyrazole-4-carbaldehyde (CSD refcode TERZAV; Archana, et al., 2022), N-{3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-(ethylsulfanyl)-1H-pyrazol-5-yl}-2,2,2-trifluoroacetamide (FERPOL; Priyanka et al., 2022), 4-[3-(4-hydroxyphenyl)-4,5-dihydro-1H-pyrazol-5-yl]-2-methoxyphenol monohydrate (KOXGAI; Duong Khanh et al., 2019), 5-chloro-N1-(5-phenyl-1H-pyrazol-3-yl)benzene-1,2-diamine (CAXZUZ; Yartsev et al., 2017), 5-(butylamino)-3-methyl-1-(pyridin-2-yl)-1H-pyrazole-4-carbaldehyde (EYEHEX; Macías et al., 2016) and 5-amino-1-(2-chlorophenyl)-1H-pyrazole-4-carbonitrile (AFIJOP; Lin et al., 2007).
The molecular packing of TERZAV features aromatic π–π stacking and weak C—H⋯π interactions. In the crystal of FERPOL, strong N—H⋯O hydrogen bonds link the molecules into chains that extend parallel to the a-axis. In the crystal of KOXGAI, the molecules are connected into chains running in the b-axis direction by O—H⋯N hydrogen bonding. Parallel chains interact through N—H⋯O hydrogen bonds and π–π stacking of the trisubstituted phenyl rings. In the crystal of CAXZUZ, the A and B molecules are linked by two pairs of N—H⋯N hydrogen bonds, forming A–B dimers. These are further linked by a fifth N—H⋯N hydrogen bond, forming tetramer-like units that stack along the a-axis direction, forming columns, which are in turn linked by C—H⋯π interactions, forming layers parallel to the ac plane. The supramolecular structure of EYEHEX assembly has a three-dimensional arrangement controlled mainly by weak C—H⋯O and C—H⋯π interactions. The of AFIJOP is consolidated by two N—H⋯N hydrogen bonds.
5. Synthesis and crystallization
Acetoacetic ether (7.7 mmol), dichloroethane (7.7 mmol) and hydrazine hydrate (15.4 mmol) were dissolved in 40 ml of ethanol and the reaction mixture was refluxed for 4 h. Then the reaction mixture was cooled to room temperature with the formation of white crystals. The crystals were separated by filtration and recrystallized from an ethanol–water mixture (m.p. 499–500 K, yield 78%).
1H NMR (300 MHz, DMSO-d6, ppm.): 2.06 (s, 3H, CH3); 2.64 (t, 2H, CH2, H-HJ2 = 7.2); 3.49 (s, 2H, 2NH); 3.58 (t, 2H, ClCH2, H-HJ2 = 7.2). 13C NMR (75 MHz, DMSO-d6, ppm.): 10.28 (CH3), 26.02 (CH2), 44.91 (CH2Cl), 97.63 (Ctert.=), 160.12 (HN—Ctert.=), 162.34 (N—C=O).
6. Refinement
Crystal data, data collection and structure . The C-bound H atoms were placed in calculated positions (0.95–0.99 Å) and refined as riding with Uiso(H) = 1.2 or 1.5Ueq(C). The N-bound H atoms were located in a difference map and freely refined.
details are summarized in Table 3Supporting information
CCDC reference: 2327646
https://doi.org/10.1107/S2056989024000835/nx2004sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024000835/nx2004Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989024000835/nx2004Isup3.cml
C6H9ClN2O | F(000) = 336 |
Mr = 160.60 | Dx = 1.405 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
a = 9.8420 (2) Å | Cell parameters from 4592 reflections |
b = 6.9145 (2) Å | θ = 4.5–77.6° |
c = 11.1807 (2) Å | µ = 3.92 mm−1 |
β = 93.618 (2)° | T = 100 K |
V = 759.36 (3) Å3 | Prism, colourless |
Z = 4 | 0.20 × 0.12 × 0.06 mm |
XtaLAB Synergy, Dualflex, HyPix diffractometer | 1467 reflections with I > 2σ(I) |
Radiation source: micro-focus sealed X-ray tube | Rint = 0.027 |
ω scans | θmax = 77.5°, θmin = 4.5° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022) | h = −12→12 |
Tmin = 0.513, Tmax = 0.750 | k = −8→7 |
6642 measured reflections | l = −14→8 |
1532 independent reflections |
Refinement on F2 | Primary atom site location: difference Fourier map |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.097 | All H-atom parameters refined |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0501P)2 + 0.606P] where P = (Fo2 + 2Fc2)/3 |
1532 reflections | (Δ/σ)max = 0.001 |
127 parameters | Δρmax = 0.28 e Å−3 |
0 restraints | Δρmin = −0.41 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.45324 (5) | 0.61848 (7) | 0.86496 (4) | 0.03447 (18) | |
O1 | 0.06705 (13) | 0.89161 (17) | 0.64445 (10) | 0.0231 (3) | |
N1 | 0.05777 (14) | 0.7905 (2) | 0.44644 (12) | 0.0197 (3) | |
H1 | 0.013 (3) | 0.890 (4) | 0.413 (2) | 0.040 (7)* | |
N2 | 0.11129 (14) | 0.6437 (2) | 0.38217 (12) | 0.0195 (3) | |
H2 | 0.096 (2) | 0.636 (3) | 0.300 (2) | 0.038 (6)* | |
C3 | 0.18687 (16) | 0.5302 (2) | 0.45765 (14) | 0.0189 (3) | |
C4 | 0.18362 (16) | 0.6035 (2) | 0.57245 (14) | 0.0181 (3) | |
C5 | 0.10154 (16) | 0.7717 (2) | 0.56311 (13) | 0.0188 (3) | |
C6 | 0.2560 (2) | 0.3553 (3) | 0.41307 (16) | 0.0254 (4) | |
H6A | 0.282 (3) | 0.372 (4) | 0.331 (3) | 0.058 (8)* | |
H6B | 0.338 (3) | 0.328 (5) | 0.458 (3) | 0.065 (9)* | |
H6C | 0.205 (3) | 0.250 (5) | 0.414 (3) | 0.066 (9)* | |
C7 | 0.25721 (17) | 0.5342 (2) | 0.68559 (14) | 0.0205 (3) | |
H7A | 0.194 (2) | 0.527 (3) | 0.7508 (18) | 0.021 (5)* | |
H7B | 0.295 (2) | 0.406 (3) | 0.676 (2) | 0.029 (5)* | |
C8 | 0.37260 (18) | 0.6724 (3) | 0.71941 (16) | 0.0254 (4) | |
H8A | 0.340 (2) | 0.807 (4) | 0.724 (2) | 0.031 (6)* | |
H8B | 0.443 (2) | 0.665 (4) | 0.664 (2) | 0.037 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0401 (3) | 0.0366 (3) | 0.0249 (3) | 0.00431 (18) | −0.01242 (19) | −0.00157 (17) |
O1 | 0.0374 (7) | 0.0209 (6) | 0.0110 (5) | 0.0082 (5) | 0.0007 (5) | −0.0010 (4) |
N1 | 0.0297 (7) | 0.0180 (7) | 0.0114 (6) | 0.0045 (5) | 0.0008 (5) | −0.0006 (5) |
N2 | 0.0278 (7) | 0.0194 (7) | 0.0115 (7) | 0.0026 (5) | 0.0013 (5) | −0.0028 (5) |
C3 | 0.0237 (7) | 0.0179 (7) | 0.0153 (7) | −0.0011 (6) | 0.0027 (6) | 0.0008 (6) |
C4 | 0.0238 (7) | 0.0177 (7) | 0.0128 (7) | 0.0008 (6) | 0.0024 (6) | 0.0017 (6) |
C5 | 0.0273 (8) | 0.0183 (7) | 0.0110 (7) | −0.0002 (6) | 0.0023 (6) | 0.0003 (6) |
C6 | 0.0333 (9) | 0.0233 (8) | 0.0198 (9) | 0.0057 (7) | 0.0033 (7) | −0.0036 (7) |
C7 | 0.0280 (8) | 0.0192 (8) | 0.0144 (8) | 0.0036 (6) | 0.0015 (6) | 0.0016 (6) |
C8 | 0.0264 (8) | 0.0315 (9) | 0.0180 (8) | 0.0006 (7) | −0.0019 (6) | 0.0029 (7) |
Cl1—C8 | 1.8040 (18) | C4—C7 | 1.496 (2) |
O1—C5 | 1.2920 (19) | C6—H6A | 0.97 (3) |
N1—C5 | 1.354 (2) | C6—H6B | 0.95 (3) |
N1—N2 | 1.3685 (19) | C6—H6C | 0.88 (3) |
N1—H1 | 0.88 (3) | C7—C8 | 1.514 (2) |
N2—C3 | 1.342 (2) | C7—H7A | 0.99 (2) |
N2—H2 | 0.92 (3) | C7—H7B | 0.97 (2) |
C3—C4 | 1.382 (2) | C8—H8A | 0.99 (2) |
C3—C6 | 1.489 (2) | C8—H8B | 0.95 (2) |
C4—C5 | 1.416 (2) | ||
C5—N1—N2 | 108.95 (13) | H6A—C6—H6B | 105 (2) |
C5—N1—H1 | 126.8 (17) | C3—C6—H6C | 113 (2) |
N2—N1—H1 | 123.6 (17) | H6A—C6—H6C | 107 (3) |
C3—N2—N1 | 108.66 (13) | H6B—C6—H6C | 107 (3) |
C3—N2—H2 | 129.9 (15) | C4—C7—C8 | 108.91 (14) |
N1—N2—H2 | 121.4 (15) | C4—C7—H7A | 110.2 (12) |
N2—C3—C4 | 108.96 (14) | C8—C7—H7A | 110.3 (12) |
N2—C3—C6 | 120.74 (15) | C4—C7—H7B | 111.5 (13) |
C4—C3—C6 | 130.29 (15) | C8—C7—H7B | 108.6 (13) |
C3—C4—C5 | 106.22 (14) | H7A—C7—H7B | 107.3 (18) |
C3—C4—C7 | 128.97 (15) | C7—C8—Cl1 | 112.04 (12) |
C5—C4—C7 | 124.69 (14) | C7—C8—H8A | 111.5 (13) |
O1—C5—N1 | 122.31 (15) | Cl1—C8—H8A | 105.7 (13) |
O1—C5—C4 | 130.49 (14) | C7—C8—H8B | 111.5 (15) |
N1—C5—C4 | 107.19 (13) | Cl1—C8—H8B | 106.1 (15) |
C3—C6—H6A | 111.6 (17) | H8A—C8—H8B | 109.7 (19) |
C3—C6—H6B | 111.9 (19) | ||
C5—N1—N2—C3 | 0.98 (18) | N2—N1—C5—C4 | −1.24 (18) |
N1—N2—C3—C4 | −0.30 (18) | C3—C4—C5—O1 | 179.99 (17) |
N1—N2—C3—C6 | 178.79 (15) | C7—C4—C5—O1 | −3.7 (3) |
N2—C3—C4—C5 | −0.45 (18) | C3—C4—C5—N1 | 1.04 (18) |
C6—C3—C4—C5 | −179.43 (17) | C7—C4—C5—N1 | 177.36 (15) |
N2—C3—C4—C7 | −176.56 (16) | C3—C4—C7—C8 | 105.67 (19) |
C6—C3—C4—C7 | 4.5 (3) | C5—C4—C7—C8 | −69.8 (2) |
N2—N1—C5—O1 | 179.70 (15) | C4—C7—C8—Cl1 | 172.38 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.88 (3) | 1.81 (3) | 2.6861 (18) | 174 (2) |
N2—H2···O1ii | 0.92 (3) | 1.75 (3) | 2.6772 (17) | 177 (2) |
Symmetry codes: (i) −x, −y+2, −z+1; (ii) x, −y+3/2, z−1/2. |
Cl1···H6B | 3.12 | 1 - x, 1/2 + y, 3/2 - z |
Cl1···Cl1 | 3.51 | 1 - x, 1 - y, 2 - z |
H1···O1 | 1.80 | -x, 2 - y, 1 - z |
H6C···O1 | 2.89 | -x, 1 - y, 1 - z |
O1···H2 | 1.76 | x, 1/2 - y, - 1/2 + z |
H6A···H7B | 2.60 | x, 1/2 - y, - 1/2 + z |
Acknowledgements
Authors contributions are as follows. Conceptualization, IGM, ANK and EAD; methodology, AB and MA; investigation, VNK and FNN; writing (original draft), MA, AB and ANK; writing (review and editing of the manuscript), MA and ANK; visualization, MA, IGM and FNN; funding acquisition, VNK, AB and FNN; resources, AB, VNK and MA; supervision, MA and ANK.
Funding information
This paper was supported by Baku State University and the RUDN University Strategic Academic Leadership Program.
References
Afkhami, F. A., Mahmoudi, G., Khandar, A. A., Franconetti, A., Zangrando, E., Qureshi, N., Lipkowski, J., Gurbanov, A. V. & Frontera, A. (2019). Eur. J. Inorg. Chem. pp. 262–270. Web of Science CSD CrossRef Google Scholar
Akkurt, M., Maharramov, A. M., Shikhaliyev, N. G., Qajar, A. M., Atakishiyeva, G., Shikhaliyeva, I. M., Niyazova, A. A. & Bhattarai, A. (2023). UNEC J. Eng. Appl. Sci. 3, 33–39. CrossRef Google Scholar
Alam, M. A. (2023). Future Med. Chem. 15, 2011–2023. CrossRef CAS PubMed Google Scholar
Archana, S. D., Nagma Banu, H. A., Kalluraya, B., Yathirajan, H. S., Balerao, R. & Butcher, R. J. (2022). IUCrData, 7, x220924. Google Scholar
Askerova, U. F. (2022). UNEC J. Eng. Appl. Sci, 2, 58–64. Google Scholar
Atalay, V. E., Atish, I. S., Shahin, K. F., Kashikchi, E. S. & Karahan, M. (2022). UNEC J. Eng. Appl. Sci. 2, 33–40. Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Donmez, M. & Turkyılmaz, M. (2022). UNEC J. Eng. Appl. Sci, 2, 43–48. Google Scholar
Duong Khanh, L., Hanh Trinh Thi, M., Quynh Bui Thi, T., Vu Quoc, T., Nguyen Thien, V. & Van Meervelt, L. (2019). Acta Cryst. E75, 1590–1594. CrossRef IUCr Journals Google Scholar
Erenler, R., Dag, B. & Ozbek, B. B. (2022). UNEC J. Eng. Appl. Sci. 2, 26–32. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Mertsalov, D. F., Zubkov, F. I., Nadirova, M. A., Nikitina, E. V., Truong, H. H., Grigoriev, M. S., Zaytsev, V. P., Mahmudov, K. T. & Pombeiro, A. J. L. (2021). Crystals, 11, 112. Web of Science CSD CrossRef Google Scholar
Khalilov, A. N., Khrustalev, V. N., Tereshina, T. A., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2022). Acta Cryst. E78, 525–529. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kumar, V., Kaur, K., Gupta, G. K. & Sharma, A. K. (2013). Eur. J. Med. Chem. 69, 735–753. CrossRef CAS PubMed Google Scholar
Lin, Q.-L., Zhong, P. & Hu, M.-L. (2007). Acta Cryst. E63, o3813. CrossRef IUCr Journals Google Scholar
Macías, M. A., Orrego-Hernández, J. & Portilla, J. (2016). Acta Cryst. E72, 1672–1674. CrossRef IUCr Journals Google Scholar
Maharramov, A. M., Shikhaliyev, N. G., Zeynalli, N. R., Niyazova, A. A., Garazade, Kh. A. & Shikhaliyeva, I. M. (2021). UNEC J. Eng. Appl. Sci. 1, 5–11. Google Scholar
Maharramov, A. M., Suleymanova, G. T., Qajar, A. M., Niyazova, A. A., Ahmadova, N. E., Shikhaliyeva, I. M., Garazade, Kh. A., Nenajdenko, V. G. & Shikaliyev, N. G. (2022). UNEC J. Eng. Appl. Sci. 2, 64–73. Google Scholar
Mahmoudi, G., Zangrando, E., Miroslaw, B., Gurbanov, A. V., Babashkina, M. G., Frontera, A. & Safin, D. A. (2021). Inorg. Chim. Acta, 519, 120279. Web of Science CSD CrossRef Google Scholar
Naghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020). Acta Cryst. E76, 720–723. Web of Science CSD CrossRef IUCr Journals Google Scholar
Naghiyev, F. N., Khrustalev, V. N., Novikov, A. P., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, I. G. (2022). Acta Cryst. E78, 554–558. Web of Science CSD CrossRef IUCr Journals Google Scholar
Naghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 516–521. Web of Science CSD CrossRef IUCr Journals Google Scholar
Priyanka, P., Jayanna, B. K., Sunil Kumar, Y. C., Shreenivas, M. T., Srinivasa, G. R., Divakara, T. R., Yathirajan, H. S. & Parkin, S. (2022). Acta Cryst. E78, 1084–1088. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Singh, S., Tehlan, S. & Kumar Verma, P. (2023). Mini Rev. Med. Chem. 23, 2142–2165. CrossRef CAS PubMed Google Scholar
Sobhi, R. M. & Faisal, R. M. (2023). UNEC J. Eng. Appl. Sci. 3, 21–32. Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Velásquez, J. D., Mahmoudi, G., Zangrando, E., Gurbanov, A. V., Zubkov, F. I., Zorlu, Y., Masoudiasl, A. & Echeverría, J. (2019). CrystEngComm, 21, 6018–6025. Google Scholar
Yartsev, Y., Palchikov, V., Gaponov, A. & Shishkina, S. (2017). Acta Cryst. E73, 876–879. CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.