research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis, crystal voids, inter­action energy calculations and energy frameworks and DFT calculations of ethyl 2-cyano-3-(3-hy­dr­oxy-5-methyl-1H-pyrazol-4-yl)-3-phen­yl­propano­ate

crossmark logo

aLaboratory of Organic and Physical Chemistry, Applied Bioorganic Chemistry Team, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco, bLaboratory of Plant Chemistry, Organic and Bioorganic Synthesis, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta BP 1014 RP, Morocco, cUniversity of Lille, CNRS, UAR 3290, MSAP, Miniaturization for Synthesis, Analysis and Proteomics, F-59000 Lille, France, dDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Türkiye, and eDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: younesse.aitelmachkouri@edu.uiz.ac.ma

Edited by N. Alvarez Failache, Universidad de la Repüblica, Uruguay (Received 30 November 2023; accepted 19 January 2024; online 31 January 2024)

This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.

The title compound, C16H17N3O3, is racemic as it crystallizes in a centrosymmetric space group (P[\overline{1}]), although the trans disposition of substituents about the central C—C bond is established. The five- and six-membered rings are oriented at a dihedral angle of 75.88 (8)°. In the crystal, N—H⋯N hydrogen bonds form chains of mol­ecules extending along the c-axis direction that are connected by inversion-related pairs of O—H⋯N into ribbons. The ribbons are linked by C—H⋯π(ring) inter­actions, forming layers parallel to the ab plane. A Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H⋯H (45.9%), H⋯N/N⋯H (23.3%), H⋯C/C⋯H (16.2%) and H⋯O/O⋯H (12.3%) inter­actions. Hydrogen bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. The volume of the crystal voids and the percentage of free space were calculated to be 100.94 Å3 and 13.20%, showing that there is no large cavity in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicates that the stabilization is dominated by the electrostatic energy contributions in the title compound. Moreover, the DFT-optimized structure at the B3LYP/6–311 G(d,p) level is compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.

1. Chemical context

As part of our ongoing investigation into the use of pyrazoles to develop new heterocyclic systems (Moukha-Chafiq et al., 2006[Moukha-Chafiq, O., Taha, M. L., Lazrek, H. B., Vasseur, J. J. & Clercq, E. D. (2006). Nucleosides Nucleotides Nucleic Acids, 25, 849-860.]; Elmachkouri et al., 2022[Elmachkouri, Y. A., Irrou, E., Dalbouha, S., Ouachtak, H., Mague, J. T., Hökelek, T., El Ghayati, L., Sebbar, N. K. & Taha, M. L. (2022). Acta Cryst. E78, 1265-1270.]; Moukha-Chafiq et al., 2007a[Moukha-chafiq, O., Taha, M. L. & Mouna, A. (2007a). Nucleosides Nucleotides Nucleic Acids, 26, 1107-1110.]; Irrou et al., 2022[Irrou, E., Elmachkouri, Y. A., Oubella, A., Ouchtak, H., Dalbouha, S., Mague, J. T., Hökelek, T., El Ghayati, L., Sebbar, N. K. & Taha, M. L. (2022). Acta Cryst. E78, 953-960.]), particularly those likely to exhibit intriguing biological activities, we note that compounds sharing structural similarities with pyrazole have demonstrated potential in various biological domains, exhibiting analgesic (Gursoy et al., 2000[Gürsoy, A., Demirayak, S., Capan, G., Erol, K. & Vural, K. (2000). Eur. J. Med. Chem. 35, 359-364.]), anti­fungal and anti­bacterial (Prasath et al., 2015[Prasath, R., Bhavana, P., Sarveswari, S., Ng, S. W. & Tiekink, E. R. T. (2015). J. Mol. Struct. 1081, 201-210.]; Akbas et al., 2005[Akbas, E., Berber, I., Sener, A. & Hasanov, B. (2005). Farmaco, 60, 23-26.]), anti­viral (Moukha-Chafiq et al., 2007b[Moukha-Chafiq, O., Taha, M. L., Mouna, A., Lazrek, H. B., Vasseur, J. J. & De Clercq, E. (2007b). Nucleosides Nucleotides Nucleic Acids, 26, 335-345.]) and anti­cancer (Bensaber et al., 2014[Bensaber, S. M., Allafe, H. A., Ermeli, N. B., Mohamed, S. B., Zetrini, A. A., Alsabri, S. G., Erhuma, M., Hermann, A., Jaeda, M. I. & Gbaj, A. M. (2014). Med. Chem. Res. 23, 5120-5134.]) activities. Consequently, the development of innovative synthetic pathways aims to obtain new mol­ecules with structures that are better adapted to cellular receptors. In this respect, we recently reported the synthesis of some pyran­opyrazoles (Ait Elmachkouri et al., 2023a[Ait Elmachkouri, Y., Irrou, E., Thiruvalluvar, A. A., Anouar, E. H., Varadharajan, V., Ouachtak, H., Mague, J. T., Sebbar, N. K., Essassi, E. M. & Labd Taha, M. (2023a). J. Biomol. Struct. Dyn. https://doi.org/10.1080/10406638.2023.2219804.]) and pyrazolo­pyran­opyrimidines (Ait Elmachkouri et al., 2023b[Ait Elmachkouri, Y., Sert, Y., Irrou, E., Anouar, E. H., Ouachtak, H., Mague, J. T., Sebbar, N. K., Essassi, E. M. & Labd Taha, M. (2023b). Polycyclic Aromat. Compd, https://doi.org/10.1080/07391102.2023.2268187.]). In our ongoing research, we focus our inter­est on pyrazole derivatives and present there the synthesis of ethyl 2-cyano-3-(3-hy­droxy-5-methyl-1H-pyrazol-4-yl)-3-phenyl­propano­ate, (I)[link]. For this synthesis, we adopted a three-component approach, using 3-methyl-1H-pyrazol-5-ol, ethyl 2-cyano­acetate and benzaldehyde in ethanol in the presence of piperidine as base. Additionally, we conducted a Hirshfeld surface analysis and performed calculations on inter­molecular inter­action energies and energy frameworks. We compared the mol­ecular structure optimized using density functional theory (DFT) at the B3LYP/6-311G(d,p) level, with the experimentally determined mol­ecular structure in its solid state.

[Scheme 1]

2. Structural commentary

As the title compound (I)[link], (Fig. 1[link]) crystallizes in a centrosymmetric space group (P[\overline{1}]), the sample is racemic although the trans disposition of substituents about the C4—C10 bond is established. The dihedral angle between the mean planes of the five- and six-membered rings is 75.88 (8)°, while the sum of the angles about N1 is 360° within experimental error, implicating involvement of its lone pair in intra-ring π bonding. The rotational orientation of the five-membered ring may be partially determined by a C4—H4⋯O3 hydrogen bond (H4⋯O3 = 2.41 Å) although the C4—H4⋯O3 angle of 115° is quite small for such an inter­action.

[Figure 1]
Figure 1
Perspective view of the title mol­ecule with labelling scheme and 50% probability ellipsoids.

3. Supra­molecular features

In the crystal, N1—H1⋯N3 hydrogen bonds (Table 1[link]) form chains of mol­ecules extending along the c-axis direction that are connected by inversion-related pairs of O3—H3⋯N2 hydrogen bonds into ribbons (Fig. 2[link]). The ribbons are linked by C14—H14⋯Cg1 inter­actions (Table 1[link]), forming layers parallel to the ab plane (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the five-membered ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N2i 0.86 (1) 1.85 (1) 2.706 (2) 175 (3)
N1—H1⋯N3ii 0.91 (1) 2.13 (2) 2.948 (2) 149 (2)
C14—H14⋯Cg1iii 0.95 2.71 3.627 (3) 162
Symmetry codes: (i) [-x+1, -y+2, -z]; (ii) [x, y, z-1]; (iii) [x+1, y, z].
[Figure 2]
Figure 2
A portion of one ribbon viewed along the b-axis direction with N—H⋯N and O—H⋯N hydrogen bonds depicted, respectively, by blue and dark-pink dashed lines. Hydrogen atoms not involved in these inter­actions are omitted for clarity. [Symmetry codes: (i) x, y, z + 1; (ii) −x + 1, −y + 2, −z + 1.]
[Figure 3]
Figure 3
Packing viewed along the b-axis direction with N—H⋯N and O—H⋯N hydrogen bonds depicted, respectively, by blue and dark-pink dashed lines while the C—H⋯π(ring) inter­actions are depicted by green dashed lines. Hydrogen atoms not involved in these inter­actions are omitted for clarity. [Symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) x − 1, y − 1, z).

4. Hirshfeld surface analysis

In order to visualize the inter­molecular inter­actions in the crystal of the title compound (I)[link], a Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out using Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). In the HS plotted over dnorm (Fig. 4[link]), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distant contact) than the van der Waals radii, respectively (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625-636.]). The bright-red spots indicate their roles as the respective donors and/or acceptors; they also appear as blue and red regions corres­ponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]; Jayatilaka et al., 2005[Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/]) shown in Fig. 5[link]. The blue regions indicate positive electrostatic potential (hydrogen-bond donors), while the red regions indicate negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize ππ stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no ππ inter­actions. Fig. 6[link] clearly suggests that there are no ππ inter­actions in (I)[link].

[Figure 4]
Figure 4
View of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm.
[Figure 5]
Figure 5
View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions, respectively, around the atoms corresponding to positive and negative potentials.
[Figure 6]
Figure 6
Hirshfeld surface of the title compound plotted over shape-index.

The overall two-dimensional fingerprint plot, Fig. 7[link]a, and those delineated into H⋯H, H⋯N/N⋯H, H⋯C/C⋯H, H⋯O/O⋯H, C⋯O/O⋯C and N⋯O/O⋯N inter­actions (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Fig. 7[link]bg respectively, together with their relative contributions to the Hirshfeld surface. The most abundant inter­action is H⋯H, contributing 45.9% to the overall crystal packing, which is reflected in Fig. 7[link]b as widely scattered points of high density due to the large hydrogen content of the mol­ecule with the tip at de = di = 1.15 Å. The symmetrical pair of spikes in the fingerprint plot delineated into H⋯N/N⋯H contacts (Fig. 7[link]c), with a 23.3% contribution to the HS, has the tips at de + di = 1.72 Å. In the presence of C—H⋯π inter­actions, the H⋯C/C⋯H contacts, contributing 16.2% to the overall crystal packing, Fig. 7[link]d, have the tips at de + di = 2.64 Å. The symmetrical pair of spikes in the fingerprint plot delineated into H⋯O/O⋯H contacts (Fig. 7[link]e, 12.3% contribution to the HS) has the tips at de + di = 2.48 Å. Finally, the C⋯O/O⋯C (Fig. 7[link]f) and N⋯O/O⋯N (Fig. 7[link]g) contacts with 1.1% and 1.0% contributions, respectively, to the HS have a very low distribution of points.

[Figure 7]
Figure 7
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯N/N⋯H, (d) H⋯C/C⋯H, (e) H⋯O/O ⋯ H, (f) C⋯O/O⋯C and (g) N⋯O/O⋯N inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

The nearest neighbour coordination environment of a mol­ecule can be determined from the colour patches on the HS based on how close to other mol­ecules they are. The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯N/N⋯H, H⋯C/C⋯H and H⋯O/O⋯H inter­actions in Fig. 8[link]ad, respectively. The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯N/N⋯H, H ⋯ C/C⋯H and H⋯O/O⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

[Figure 8]
Figure 8
The Hirshfeld surface representations with the function fragment patch plotted onto the surface for (a) H⋯H, (b) H⋯N/N⋯H, (c) H ⋯ C/C⋯H and (d) H⋯O/O⋯H inter­actions.

5. Crystal voids

The strength of the crystal packing is important for determining the response to an applied mechanical force. If the crystal packing results in significant voids, then the mol­ecules are not tightly packed and a small amount of applied external mechanical force may easily break the crystal. A void analysis was performed to check the mechanical stability of the crystal by adding up the electron densities of the spherically symmetric atoms contained in the asymmetric unit (Turner et al., 2011[Turner, M. J., McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2011). CrystEngComm, 13, 1804-1813.]). The void surface is defined as an isosurface of the procrystal electron density and is calculated for the whole unit cell where the void surface meets the boundary of the unit cell and capping faces are generated to create an enclosed volume. The volume of the crystal voids (Fig. 9[link]a,b) and the percentage of free space in the unit cell are calculated as 100.94 Å3 and 13.20%, respectively. Thus, the crystal packing appears compact and the mechanical stability should be substantial.

[Figure 9]
Figure 9
Graphical views of voids in the crystal packing of (I)[link] (a) along the a-axis direction and (b) along the b-axis direction.

6. Inter­action energy calculations and energy frameworks

The inter­molecular inter­action energies are calculated using the CE–B3LYP/6–31G(d,p) energy model available in Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]), where a cluster of mol­ecules is generated by applying crystallographic symmetry operations with respect to a selected central mol­ecule within the radius of 3.8 Å by default (Turner et al., 2014[Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249-4255.]). The total inter­molecular energy (Etot) is the sum of electrostatic (Eele),polarization (Epol), dispersion (Edis) and exchange-repulsion (Erep) energies (Turner et al., 2015[Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735-3738.]) with scale factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie et al., 2017[Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575-587.]). Hydrogen-bonding inter­action energies (in kJ mol−1) were calculated to be −141.9 (Eele), −31.4 (Epol), −19.8 (Edis), 174.8 (Erep) and −82.6 (Etot) for O3—H3⋯N2 and −23.3 (Eele), −3.5 (Epol), −50.6 (Edis), 26.4 (Erep) and −55.0 (Etot) for N1—H1⋯N3.

Energy frameworks combine the calculation of inter­molecular inter­action energies with a graphical representation of their magnitude (Turner et al., 2015[Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735-3738.]). Energies between mol­ecular pairs are represented as cylinders joining the centroids of pairs of mol­ecules with the cylinder radius proportional to the relative strength of the corresponding inter­action energy. Energy frameworks were constructed for Eele (red cylinders), Edis (green cylinders) and Etot (blue cylinders) (Fig. 10[link]a,b,c). The evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization is dominated by the electrostatic energy contribution in the crystal structure of (I)[link].

[Figure 10]
Figure 10
The energy frameworks for a cluster of mol­ecules of the title compound viewed down the a-axis direction showing (a) electrostatic energy, (b) dispersion energy and (c) total energy diagrams. The cylindrical radius is proportional to the relative strength of the corresponding energies and they were adjusted to the same scale factor of 80 with cut-off value of 5 kJ mol−1 within 2 × 2 × 2 unit cells.

7. Database survey

A search of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]; updated to November 2023) located no other structures similar to (I)[link] until the search fragment was simplified to (II) (Fig. 11[link]). With this, five hits were obtained with (III) (RUWZUH; Zonouz et al., 2020[Zonouz, A. M., Beiranvand, M., Mohammad-Rezaei, R. & Naderi, S. (2020). Lett. Org. Chem. 17, 548-554.]) being the closest match. The others are (IV) (R = Cl, IDOGUG; Elinson et al., 2018a[Elinson, N. E., Vereshchagin, A. N., Anisina, Yu. E., Fakhrutdinov, A. N., Goloveshkin, A. S. & Egorov, M. P. (2018a). J. Fluor. Chem. 213, 31-36.], R = H, FINWAD; Elinson et al., 2018b[Elinson, N. E., Vereshchagin, A. N., Anisina, Yu. E., Goloveshkin, A. S., Ushakov, I. E. & Egorov, M. P. (2018b). Mendeleev Commun. 28, 372-374.]), (V) (GEXSUA; Moghadam, 2018[Moghadam, M. (2018). CSD Communication (refcode GEXSUA). CCDC, Cambridge, England.]) and (VI) (TIWGUD; Pathak et al., 2013[Pathak, S., Debnath, K., Hossain, S. T., Mukherjee, S. K. & Pramanik, A. (2013). Tetrahedron Lett. 54, 3137-3143.]) (Fig. 11[link]).

[Figure 11]
Figure 11
The closest matches to the title compound (I)[link] according to the results obtained from the database survey.

8. DFT calculations

The theoretical optimization of the mol­ecular structure in the gas-phase was carried out using density functional theory (DFT) with the standard B3LYP functional and 6-311G(d,p) basis-set calculations (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]) as implemented in GAUSSIAN 09 (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, US.]). The resulting optimized parameters (bond lengths and angles) agreed satisfactorily with the experimental structural data (Table 2[link]). The largest differences between the calculated and experimental values are observed for the O1—C2 (0.06 Å) and O2—C3 (0.03 Å) bond lengths and the C3—O1—C2 and N2—C6—O3 bond angle (1.07°). These disparities can be linked to the fact that these calculations relate to the isolated mol­ecule, whereas the experimental results correspond to inter­acting mol­ecules in the crystal where intra- and inter­molecular inter­actions with neighbouring mol­ecules are present. The highest-occupied mol­ecular orbital (HOMO), acting as an electron donor, and the lowest-unoccupied mol­ecular orbital (LUMO), acting as an electron acceptor, are very important parameters for quantum chemistry. When the energy gap is small, the mol­ecule is highly polarizable and has high chemical reactivity (Elmachkouri et al., 2023a[Ait Elmachkouri, Y., Sert, Y., Irrou, E., Anouar, E. H., Ouachtak, H., Mague, J. T., Sebbar, N. K., Essassi, E. M. & Labd Taha, M. (2023b). Polycyclic Aromat. Compd, https://doi.org/10.1080/07391102.2023.2268187.]). The numerical reactivity descriptors (ionization potential, electron affinity, chemical hardness, chemical softness, electronegativity, chemical potential, electrophilicity index and total energy), which are mainly based on the HOMO–LUMO energies, are summarized in Table 3[link]. The optimized frontier mol­ecular orbitals (HOMO and LUMO) are shown in Fig. 12[link]. The LUMO is mainly centered on the 2-cyano group and spans the entire ethyl propano­ate chain while the HOMO is primarily centered on the 3-phenyl substituent and spans the 3-(3-hy­droxy-5-methyl-1H-pyrazol-4-yl) portion. The energy band gap [(E = ELUMO - EHOMO) of the mol­ecule is about 5.77 eV, and the frontier mol­ecular orbital energies, EHOMO and ELUMO, are −6.59 eV and −0.82eV, respectively.

Table 2
Comparison of selected X-ray and DFT geometric data (Å, °)

Bonds/angles X-ray B3LYP/6–311G(d,p)
O1—C3 1.335 (2) 1.345
O1—C2 1.460 (3) 1.521
O2—C3 1.204 (2) 1.235
O3—C6 1.340 (2) 1.337
N1—C8 1.348 (3) 1.331
N1—N2 1.368 (2) 1.377
N1—H1 0.914 (10) 0.87
N2—C6 1.335 (2) 1.322
N3—C5 1.141 (3) 1.128
C3—O1—C2 116.67 (17) 115.6
C8—N1—N2 112.35 (16) 113.1
C6—N2—N1 103.86 (16) 104.6
O2—C3—O1 125.51 (19) 124.5
N2—C6—O3 122.03 (18) 123.1

Table 3
Calculated energies

Mol­ecular energy (a.u.) (eV) Compound (I)
ELUMO (eV) −0.82
EHOMO (eV) −6.59
Gap ΔE (eV) 5.77
Ionization potential I 6.59
Electron affinity A 0.82
Chemical hardness η 2.88
Chemical softness σ 0.17
Electronegativity χ 3.70
Chemical potential μ −3.71
Electrophilicity index ω 2.38
Total energy TE (eV) −27476.33
[Figure 12]
Figure 12
The energy band gap of the title compound.

9. Synthesis and crystallization

To a solution of pyrazolone (4 mmol), benzaldehyde (4 mmol) and ethyl 2-cyano­acetate (4 mmol, 0.42 ml) in absolute ethanol (12 ml), were added two drops of piperidine and the reaction mixture was refluxed with magnetic stirring for 2 h. The progress of the reaction was monitored by TLC using an ethyl acetate/hexane mixture as eluant. Finally, the resulting precipitate was filtered and the isolated solid was purified by recrystallization from ethanol to afford colourless crystals in 96% yield. The melting point was 454 K.

10. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. Hydrogen atoms attached to carbon were included as riding contributions in idealized positions with isotropic displacement parameters tied to those of the attached atoms while those attached to nitro­gen and to oxygen were located in a difference map and refined with DFIX 0.91 0.01 and DFIX 0.85 0.01 instructions, respectively.

Table 4
Experimental details

Crystal data
Chemical formula C16H17N3O3
Mr 299.32
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 9.1397 (2), 9.4879 (2), 10.0063 (2)
α, β, γ (°) 79.554 (1), 63.787 (1), 83.054 (1)
V3) 764.75 (3)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.75
Crystal size (mm) 0.16 × 0.09 × 0.03
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 3 CPAD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.88, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 36885, 2998, 2207
Rint 0.112
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.127, 1.04
No. of reflections 2998
No. of parameters 207
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.19, −0.23
Computer programs: APEX4 and SAINT (Bruker, 2021[Bruker (2021). APEX4 and SAINT. Bruker AXS, Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008).

Supporting information


Computing details top

Ethyl 2-cyano-3-(3-hydroxy-5-methyl-1H-pyrazol-4-yl)-3-phenylpropanoate top
Crystal data top
C16H17N3O3Z = 2
Mr = 299.32F(000) = 316
Triclinic, P1Dx = 1.300 Mg m3
a = 9.1397 (2) ÅCu Kα radiation, λ = 1.54178 Å
b = 9.4879 (2) ÅCell parameters from 8141 reflections
c = 10.0063 (2) Åθ = 4.7–72.2°
α = 79.554 (1)°µ = 0.75 mm1
β = 63.787 (1)°T = 150 K
γ = 83.054 (1)°Prism, clear colourless
V = 764.75 (3) Å30.16 × 0.09 × 0.03 mm
Data collection top
Bruker D8 VENTURE PHOTON 3 CPAD
diffractometer
2998 independent reflections
Radiation source: INCOATEC IµS micro–focus source2207 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.112
Detector resolution: 7.3910 pixels mm-1θmax = 72.4°, θmin = 4.7°
φ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1111
Tmin = 0.88, Tmax = 0.98l = 1212
36885 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: mixed
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0565P)2 + 0.3004P]
where P = (Fo2 + 2Fc2)/3
2998 reflections(Δ/σ)max < 0.001
207 parametersΔρmax = 0.19 e Å3
2 restraintsΔρmin = 0.23 e Å3
Special details top

Experimental. The diffraction data were obtained from sets of frames, each of width 0.5° in ω or φ, collected with scan parameters determined by the "strategy" routine in APEX4. The scan time was sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 1.00 Å) and were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. Those attached to nitrogen and to oxygen were placed in locations derived from a difference map and refined with DFIX 0.91 0.01 and DFIX 0.85 0.01 instructions, respectively.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.31072 (17)0.88849 (16)0.53196 (17)0.0374 (4)
O20.34195 (18)0.66225 (16)0.47923 (18)0.0396 (4)
O30.5608 (2)0.97967 (16)0.16765 (17)0.0380 (4)
H30.510 (3)1.038 (2)0.124 (3)0.057*
N10.6348 (2)0.70329 (19)0.03454 (19)0.0340 (4)
H10.641 (3)0.670 (3)0.1172 (19)0.051*
N20.5886 (2)0.84391 (19)0.01623 (19)0.0327 (4)
N30.6355 (2)0.7145 (2)0.6688 (2)0.0441 (5)
C10.0507 (3)0.8091 (3)0.7386 (3)0.0574 (7)
H1A0.0678050.8246700.7746570.086*
H1B0.0853420.8447190.8056610.086*
H1C0.0797720.7062920.7376770.086*
C20.1346 (3)0.8881 (3)0.5822 (3)0.0453 (6)
H2A0.1122750.8423760.5120740.054*
H2B0.0894100.9882760.5797370.054*
C30.3974 (2)0.7698 (2)0.4823 (2)0.0306 (4)
C40.5793 (2)0.7876 (2)0.4307 (2)0.0278 (4)
H40.6042610.8904740.3890340.033*
C50.6124 (2)0.7486 (2)0.5641 (2)0.0333 (5)
C60.5994 (2)0.8562 (2)0.1099 (2)0.0301 (4)
C70.6532 (2)0.7267 (2)0.1720 (2)0.0278 (4)
C80.6750 (2)0.6317 (2)0.0746 (2)0.0316 (4)
C90.7316 (3)0.4776 (2)0.0780 (3)0.0443 (6)
H9A0.6808210.4283990.0322570.066*
H9B0.7005040.4329220.1825800.066*
H9C0.8505730.4701040.0215220.066*
C100.6881 (2)0.6924 (2)0.3084 (2)0.0277 (4)
H100.6609230.5903880.3524630.033*
C110.8671 (2)0.7065 (2)0.2704 (2)0.0276 (4)
C120.9482 (2)0.5996 (2)0.3305 (2)0.0335 (5)
H120.8929430.5162950.3914470.040*
C131.1095 (3)0.6133 (3)0.3023 (2)0.0391 (5)
H131.1637650.5394420.3439210.047*
C141.1906 (3)0.7340 (3)0.2139 (3)0.0410 (5)
H141.3002350.7441390.1957750.049*
C151.1118 (3)0.8403 (3)0.1519 (3)0.0399 (5)
H151.1680560.9228940.0900370.048*
C160.9514 (3)0.8269 (2)0.1793 (2)0.0356 (5)
H160.8984460.9001960.1357820.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0302 (8)0.0378 (8)0.0425 (9)0.0015 (6)0.0144 (6)0.0070 (7)
O20.0342 (8)0.0396 (9)0.0476 (9)0.0058 (6)0.0179 (7)0.0090 (7)
O30.0555 (10)0.0341 (8)0.0356 (8)0.0037 (7)0.0318 (7)0.0034 (6)
N10.0400 (10)0.0407 (10)0.0253 (8)0.0016 (7)0.0176 (7)0.0055 (7)
N20.0360 (9)0.0390 (10)0.0265 (8)0.0032 (7)0.0173 (7)0.0013 (7)
N30.0489 (12)0.0569 (13)0.0323 (10)0.0084 (9)0.0241 (9)0.0097 (9)
C10.0411 (14)0.0526 (16)0.0616 (17)0.0039 (11)0.0058 (12)0.0099 (13)
C20.0330 (12)0.0523 (14)0.0522 (14)0.0081 (10)0.0198 (10)0.0138 (11)
C30.0314 (10)0.0362 (11)0.0256 (10)0.0001 (8)0.0145 (8)0.0027 (8)
C40.0304 (10)0.0312 (10)0.0241 (9)0.0026 (8)0.0148 (8)0.0003 (8)
C50.0320 (11)0.0404 (12)0.0294 (10)0.0002 (8)0.0150 (9)0.0061 (9)
C60.0312 (10)0.0385 (11)0.0245 (9)0.0039 (8)0.0154 (8)0.0035 (8)
C70.0264 (9)0.0358 (11)0.0218 (9)0.0037 (7)0.0117 (7)0.0004 (8)
C80.0333 (10)0.0367 (11)0.0257 (9)0.0043 (8)0.0143 (8)0.0011 (8)
C90.0606 (15)0.0409 (13)0.0370 (12)0.0051 (11)0.0265 (11)0.0095 (10)
C100.0319 (10)0.0275 (10)0.0264 (9)0.0037 (7)0.0161 (8)0.0004 (8)
C110.0291 (10)0.0324 (10)0.0232 (9)0.0018 (8)0.0127 (8)0.0041 (8)
C120.0349 (11)0.0376 (12)0.0291 (10)0.0014 (9)0.0160 (9)0.0017 (9)
C130.0340 (11)0.0511 (14)0.0359 (11)0.0050 (9)0.0204 (9)0.0054 (10)
C140.0293 (11)0.0595 (15)0.0378 (12)0.0053 (10)0.0152 (9)0.0119 (10)
C150.0380 (12)0.0437 (13)0.0374 (12)0.0119 (10)0.0146 (9)0.0021 (10)
C160.0359 (11)0.0360 (12)0.0346 (11)0.0048 (9)0.0167 (9)0.0019 (9)
Geometric parameters (Å, º) top
O1—C31.335 (2)C6—C71.409 (3)
O1—C21.460 (3)C7—C81.380 (3)
O2—C31.204 (2)C7—C101.506 (3)
O3—C61.340 (2)C8—C91.490 (3)
O3—H30.857 (10)C9—H9A0.9800
N1—C81.348 (3)C9—H9B0.9800
N1—N21.370 (2)C9—H9C0.9800
N1—H10.914 (10)C10—C111.524 (3)
N2—C61.335 (2)C10—H101.0000
N3—C51.141 (3)C11—C121.389 (3)
C1—C21.501 (4)C11—C161.394 (3)
C1—H1A0.9800C12—C131.391 (3)
C1—H1B0.9800C12—H120.9500
C1—H1C0.9800C13—C141.379 (3)
C2—H2A0.9900C13—H130.9500
C2—H2B0.9900C14—C151.383 (3)
C3—C41.529 (3)C14—H140.9500
C4—C51.470 (3)C15—C161.385 (3)
C4—C101.552 (3)C15—H150.9500
C4—H41.0000C16—H160.9500
C3—O1—C2116.68 (17)N1—C8—C7107.38 (18)
C6—O3—H3109.6 (19)N1—C8—C9122.35 (18)
C8—N1—N2112.28 (16)C7—C8—C9130.27 (18)
C8—N1—H1127.6 (17)C8—C9—H9A109.5
N2—N1—H1120.0 (17)C8—C9—H9B109.5
C6—N2—N1103.85 (16)H9A—C9—H9B109.5
C2—C1—H1A109.5C8—C9—H9C109.5
C2—C1—H1B109.5H9A—C9—H9C109.5
H1A—C1—H1B109.5H9B—C9—H9C109.5
C2—C1—H1C109.5C7—C10—C11112.75 (16)
H1A—C1—H1C109.5C7—C10—C4111.51 (16)
H1B—C1—H1C109.5C11—C10—C4109.52 (15)
O1—C2—C1111.9 (2)C7—C10—H10107.6
O1—C2—H2A109.2C11—C10—H10107.6
C1—C2—H2A109.2C4—C10—H10107.6
O1—C2—H2B109.2C12—C11—C16118.64 (18)
C1—C2—H2B109.2C12—C11—C10119.87 (17)
H2A—C2—H2B107.9C16—C11—C10121.46 (18)
O2—C3—O1125.49 (19)C11—C12—C13120.77 (19)
O2—C3—C4123.93 (19)C11—C12—H12119.6
O1—C3—C4110.57 (17)C13—C12—H12119.6
C5—C4—C3107.30 (16)C14—C13—C12120.0 (2)
C5—C4—C10110.20 (16)C14—C13—H13120.0
C3—C4—C10112.11 (15)C12—C13—H13120.0
C5—C4—H4109.1C13—C14—C15119.8 (2)
C3—C4—H4109.1C13—C14—H14120.1
C10—C4—H4109.1C15—C14—H14120.1
N3—C5—C4177.9 (2)C14—C15—C16120.4 (2)
N2—C6—O3122.06 (18)C14—C15—H15119.8
N2—C6—C7112.33 (18)C16—C15—H15119.8
O3—C6—C7125.61 (17)C15—C16—C11120.4 (2)
C8—C7—C6104.16 (17)C15—C16—H16119.8
C8—C7—C10125.22 (18)C11—C16—H16119.8
C6—C7—C10130.58 (18)
C8—N1—N2—C60.9 (2)C8—C7—C10—C1183.8 (2)
C3—O1—C2—C179.9 (2)C6—C7—C10—C1193.6 (2)
C2—O1—C3—O21.9 (3)C8—C7—C10—C4152.51 (19)
C2—O1—C3—C4178.73 (17)C6—C7—C10—C430.1 (3)
O2—C3—C4—C593.5 (2)C5—C4—C10—C7178.19 (16)
O1—C3—C4—C585.9 (2)C3—C4—C10—C758.8 (2)
O2—C3—C4—C1027.6 (3)C5—C4—C10—C1156.3 (2)
O1—C3—C4—C10152.99 (16)C3—C4—C10—C11175.76 (15)
N1—N2—C6—O3178.86 (18)C7—C10—C11—C12133.87 (19)
N1—N2—C6—C70.7 (2)C4—C10—C11—C12101.4 (2)
N2—C6—C7—C80.2 (2)C7—C10—C11—C1647.9 (3)
O3—C6—C7—C8179.32 (19)C4—C10—C11—C1676.9 (2)
N2—C6—C7—C10177.66 (19)C16—C11—C12—C131.0 (3)
O3—C6—C7—C102.8 (3)C10—C11—C12—C13177.28 (18)
N2—N1—C8—C70.9 (2)C11—C12—C13—C140.0 (3)
N2—N1—C8—C9179.08 (19)C12—C13—C14—C150.9 (3)
C6—C7—C8—N10.4 (2)C13—C14—C15—C160.7 (3)
C10—C7—C8—N1178.39 (17)C14—C15—C16—C110.3 (3)
C6—C7—C8—C9179.5 (2)C12—C11—C16—C151.2 (3)
C10—C7—C8—C91.5 (3)C10—C11—C16—C15177.08 (19)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the five-membered ring.
D—H···AD—HH···AD···AD—H···A
O3—H3···N2i0.86 (1)1.85 (1)2.706 (2)175 (3)
N1—H1···N3ii0.91 (1)2.13 (2)2.948 (2)149 (2)
C14—H14···Cg1iii0.952.713.627 (3)162
Symmetry codes: (i) x+1, y+2, z; (ii) x, y, z1; (iii) x+1, y, z.
Comparison of selected X-ray and DFT geometric data (Å, °) top
Bonds/anglesX-rayB3LYP/6-311G(d,p)
O1—C31.335 (2)1.345
O1—C21.460 (3)1.521
O2—C31.204 (2)1.235
O3—C61.340 (2)1.337
N1—C81.348 (3)1.331
N1—N21.368 (2)1.377
N1—H10.914 (10)0.87
N2—C61.335 (2)1.322
N3—C51.141 (3)1.128
C3—O1—C2116.67 (17)115.6
C8—N1—N2112.35 (16)113.1
C6—N2—N1103.86 (16)104.6
O2—C3—O1125.51 (19)124.5
N2—C6—O3122.03 (18)123.1
Calculated energies top
Molecular energy (a.u.) (eV)Compound (I)
ELUMO (eV)-0.82
EHOMO (eV)-6.59
Gap ΔE (eV)5.77
Ionization potential I6.59
Electron affinity A0.82
Chemical hardness η2.88
Chemical softness σ0.17
Electronegativity χ3.70
Chemical potential µ-3.71
Electrophilicity index ω2.38
Total energy TE (eV)-27476.33
 

Funding information

The support of NSF-MRI grant No.1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged. TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

References

First citationAit Elmachkouri, Y., Irrou, E., Thiruvalluvar, A. A., Anouar, E. H., Varadharajan, V., Ouachtak, H., Mague, J. T., Sebbar, N. K., Essassi, E. M. & Labd Taha, M. (2023a). J. Biomol. Struct. Dyn. https://doi.org/10.1080/10406638.2023.2219804.  Google Scholar
First citationAit Elmachkouri, Y., Sert, Y., Irrou, E., Anouar, E. H., Ouachtak, H., Mague, J. T., Sebbar, N. K., Essassi, E. M. & Labd Taha, M. (2023b). Polycyclic Aromat. Compd, https://doi.org/10.1080/07391102.2023.2268187.  Google Scholar
First citationAkbas, E., Berber, I., Sener, A. & Hasanov, B. (2005). Farmaco, 60, 23–26.  CrossRef PubMed CAS Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBensaber, S. M., Allafe, H. A., Ermeli, N. B., Mohamed, S. B., Zetrini, A. A., Alsabri, S. G., Erhuma, M., Hermann, A., Jaeda, M. I. & Gbaj, A. M. (2014). Med. Chem. Res. 23, 5120–5134.  CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2021). APEX4 and SAINT. Bruker AXS, Madison, Wisconsin, USA.  Google Scholar
First citationElinson, N. E., Vereshchagin, A. N., Anisina, Yu. E., Fakhrutdinov, A. N., Goloveshkin, A. S. & Egorov, M. P. (2018a). J. Fluor. Chem. 213, 31–36.  CrossRef CAS Google Scholar
First citationElinson, N. E., Vereshchagin, A. N., Anisina, Yu. E., Goloveshkin, A. S., Ushakov, I. E. & Egorov, M. P. (2018b). Mendeleev Commun. 28, 372–374.  CrossRef CAS Google Scholar
First citationElmachkouri, Y. A., Irrou, E., Dalbouha, S., Ouachtak, H., Mague, J. T., Hökelek, T., El Ghayati, L., Sebbar, N. K. & Taha, M. L. (2022). Acta Cryst. E78, 1265–1270.  CrossRef IUCr Journals Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, US.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGürsoy, A., Demirayak, S., Capan, G., Erol, K. & Vural, K. (2000). Eur. J. Med. Chem. 35, 359–364.  Web of Science PubMed Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationIrrou, E., Elmachkouri, Y. A., Oubella, A., Ouchtak, H., Dalbouha, S., Mague, J. T., Hökelek, T., El Ghayati, L., Sebbar, N. K. & Taha, M. L. (2022). Acta Cryst. E78, 953–960.  CrossRef IUCr Journals Google Scholar
First citationJayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMoghadam, M. (2018). CSD Communication (refcode GEXSUA). CCDC, Cambridge, England.  Google Scholar
First citationMoukha-Chafiq, O., Taha, M. L., Lazrek, H. B., Vasseur, J. J. & Clercq, E. D. (2006). Nucleosides Nucleotides Nucleic Acids, 25, 849–860.  Web of Science PubMed CAS Google Scholar
First citationMoukha-chafiq, O., Taha, M. L. & Mouna, A. (2007a). Nucleosides Nucleotides Nucleic Acids, 26, 1107–1110.  PubMed CAS Google Scholar
First citationMoukha-Chafiq, O., Taha, M. L., Mouna, A., Lazrek, H. B., Vasseur, J. J. & De Clercq, E. (2007b). Nucleosides Nucleotides Nucleic Acids, 26, 335–345.  PubMed CAS Google Scholar
First citationPathak, S., Debnath, K., Hossain, S. T., Mukherjee, S. K. & Pramanik, A. (2013). Tetrahedron Lett. 54, 3137–3143.  CrossRef CAS Google Scholar
First citationPrasath, R., Bhavana, P., Sarveswari, S., Ng, S. W. & Tiekink, E. R. T. (2015). J. Mol. Struct. 1081, 201–210.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationTurner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTurner, M. J., McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2011). CrystEngComm, 13, 1804–1813.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationTurner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738.  Web of Science CrossRef CAS Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZonouz, A. M., Beiranvand, M., Mohammad-Rezaei, R. & Naderi, S. (2020). Lett. Org. Chem. 17, 548–554.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds