research communications
2Gd(PO4)(MoO4)
of a layered phosphate molybdate KaTaras Shevchenko National University of Kyiv, Volodymyrska St. 64, Kyiv 01601, Ukraine, and bDepartment of General and Inorganic Chemistry, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", 37 Prospect Beresteiskyi, 03056 Kyiv, Ukraine
*Correspondence e-mail: kateryna_terebilenko@knu.ua
The title compound dipotassium gadolinium(III) phosphate(V) molybdate(VI), K2Gd(PO4)(MoO4), was synthesized from a high-temperature melt starting from GdF3 as a source of gadolinium. Its structure is isotypic with other MI2MIII(MVIO4)(PO4) compounds, where MI = Na, K or Cs, and MIII = rare-earth cation, MVI = Mo or W. The three-dimensional framework is built up from [Gd(PO4)(MoO4)] anionic sheets, which are organized by adhesion of [GdPO4] layers and [MoO4] tetrahedra stacked above and below these layers. The interstitial space is occupied by K cations having eightfold oxygen coordination. The polyhedron of GdO8 was estimated to be a triangular dodecahedron by the continuous shape measurement method.
Keywords: crystal structure; molybdate; phosphate; gadolinium; triangular dodecahedron.
CCDC reference: 2322198
1. Chemical context
Layered phosphate(V) molybdates(VI) MI2MIII(MVIO4)(PO4) comprising an alkali metal and a rare-earth metal MIII such as Sm (Zhao et al., 2009), Eu (Terebilenko et al., 2022), Y (Zhang et al., 2016) or Bi (Grigorjevaite et al., 2020) are considered to be promising luminescent materials (Guo et al., 2019). The initial structural models of this group of compounds, Na2Y(PO4)(MoO4), were monoclinic, C2/c, as described by Ben Amara & Dabbabi (1987). Subsequent work determined that the material crystallizes in an orthorhombic system, Ibca (Marsh, 1987). The discovery of K2Bi(PO4)(MoO4) by Zatovsky et al. (2006) opened a new group of luminescent materials that are isostructural to Na2Y(PO4)(MoO4) and have high color purity and (Grigorjevaite & Katelnikovas, 2016).
In the case of Rb2Bi(PO4)(MoO4):Eu3+ powders, the has been shown to reach ca 100% for the Rb2Bi0.5Eu0.5(PO4)(MoO4) phosphor (Grigorjevaite & Katelnikovas, 2016). High color purity and emission spectra peculiarities make these compounds attractive for red-component design in near-UV LED-driven solid-state light sources (Zozulia et al., 2023). One of the main disadvantages of these luminescence hosts is the relatively high activator content needed (from 50 to 75%) to reach a high (Grigorjevaite & Katelnikovas, 2016). Different strategies have been applied to improve the luminescence performance and lower the luminescent dopant content, including rare-earth co-doping (Naidu et al., 2012) and anion modifications (Guo et al., 2019). To tune the luminescence properties of these phosphors, the quest for new representatives of this group of compounds can shed light on the development of new phosphors based on them.
2. Structural commentary
The three-dimensional framework of the title compound is organized by linking together slightly distorted GdO8 dodecahedra with non-condensed phosphate and molybdate tetrahedra (Fig. 1). These moieties are arranged into layers perpendicular to the [010] direction with each phosphate layer being followed by two molybdate layers. In this packing, the gadolinium and potassium cations are eightfold coordinated by oxygen (Fig. 2) and ordered into zigzag chains (Fig. 3).
Each Gd cation is surrounded by two molybdate tetrahedra and four phosphate tetrahedra; two of the phosphate groups are coordinated in a bidentate manner (Fig. 2). The Gd—O bond lengths lie in the range 2.314 (3)–2.453 (3) Å. Among the Gd—O bond lengths, those corresponding to the bidentately coordinated phosphate groups are the longest [2.427 (2) and 2.453 (2) Å]. The chains built up from GdO8 polyhedra are interlinked by phosphate moieties into [GdPO4] layers propagating in the ac plane. The nearest Gd⋯Gd distance within a zigzag chain is 3.9332 (2) Å. [Gd(PO4)(MoO4)] nets are formed by adhesion of [GdPO4] layers and MoO4 tetrahedra above and below these layers (Fig. 1).
Both the phosphate and molybdate tetrahedra have an almost regular geometry with typical bond lengths. The central atoms of the GdO8, MoO4 and PO4 polyhedra are located on a twofold axis. The potassium cation resides inside the interlayer space having eightfold coordination, as has been found for other potassium-based representatives of this family (Zatovsky et al., 2006). Importantly, there is a difference in the nearest oxygen coordination of sodium- and potassium-based frameworks. In case of Na2Y(PO4)(WO4), the NaO6 sodium environment is described as an effective 3 + 3 coordination indicating a relatively large void between two successive [Y(PO4)(WO4)] layers (Daub et al., 2012).
3. Coordination environment calculations
The distortions of the coordination environment of gadolinium, potassium, phosphorus and molybdenum have been calculated by the continuous shape measurement method with the Shape 2.1 program (Llunell et al., 2013). The shape measurements in this work are taken from normalized coordination polyhedra (Alvarez, 2021). There are two types of polyhedra within the structure studied: two are tetrahedral, namely, MoO4 and PO4 and two are eightfold coordinated, KO8 and GdO8. The shape measurements of a set of atoms with respect to a reference shape (e.g., the tetrahedron, abbreviated T-4 by IUPAC) calibrates the overall distance of the atoms to the vertices of the tetrahedral shape in the same position. Thus, a zero-shape measurement for a set of atoms indicates that the polyhedron has exactly the reference shape, expressed as S(T-4) = 0.00 for an ideal tetrahedron. Increasing values of the shape measurement will be found for more distorted polyhedra, in other words, these values are essentially spatial distance minima of the central atom from a minimization polyhedral fitting procedure. For the title compound, the MoO4 tetrahedron has minor distortions, as indicated by the value of S of 0.053. In contrast, the PO4 tetrahedron reveals more severe deviations, having C2 with a calculated value of S = 0.238.
In case of GdO8, the lowest value of S of 2.725 was obtained for a triangular dodecahedron (TDD-8) (Casanova et al. 2005) and KO8 is best described as as biaugmented trigonal prism, as indicated by the value of S of 3.999. Thus, the GdO8 polyhedron in K2Bi(PO4)(MoO4) is found to be a triangular dodecahedron (TDD-8), as has also been observed for K2Eu(PO4)(WO4) (Terebilenko et al., 2022).
4. Synthesis and crystallization
Single crystals of the title compound were grown from molten salts 7K2Mo2O7–3K4P2O7 containing 5% mol of GdF3. A mixture of K2Mo2O7 and K4P2O7 was heated in a platinum crucible up to 1273 K. After melting, 5% mol of GdF3 was added to the initial molten salts under stirring. The mixture was then held at this temperature for 2 h and cooled down to room temperature at a rate of 50 K h−1. The solidified melt was leached out with warm water to dissolve the superfluous The final product consisted of colourless plates. The yield was 64% by Gd.
5. Refinement
Crystal data, data collection and structure .
details are summarized in Table 1Supporting information
CCDC reference: 2322198
https://doi.org/10.1107/S2056989023011106/oi2002sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989023011106/oi2002Isup3.hkl
K2Gd(PO4)(MoO4) | Dx = 3.881 Mg m−3 |
Mr = 490.36 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Ibca | Cell parameters from 4624 reflections |
a = 6.9527 (2) Å | θ = 3.3–30.0° |
b = 19.7112 (6) Å | µ = 10.52 mm−1 |
c = 12.2466 (3) Å | T = 200 K |
V = 1678.35 (8) Å3 | Plate, clear light colourless |
Z = 8 | 0.10 × 0.08 × 0.02 mm |
F(000) = 1784 |
XtaLAB Synergy, Dualflex, HyPix diffractometer | 1079 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source | 999 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.026 |
Detector resolution: 10 pixels mm-1 | θmax = 30.2°, θmin = 3.3° |
ω scans | h = −8→8 |
Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2020) | k = −26→26 |
Tmin = 0.422, Tmax = 1.000 | l = −16→16 |
6547 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Primary atom site location: dual |
R[F2 > 2σ(F2)] = 0.017 | Secondary atom site location: difference Fourier map |
wR(F2) = 0.045 | w = 1/[σ2(Fo2) + (0.0204P)2 + 6.0211P] where P = (Fo2 + 2Fc2)/3 |
S = 1.13 | (Δ/σ)max < 0.001 |
1079 reflections | Δρmax = 1.53 e Å−3 |
61 parameters | Δρmin = −0.64 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Gd1 | 1.000000 | 0.250000 | 0.42488 (2) | 0.00554 (8) | |
Mo1 | 0.750000 | 0.41682 (2) | 0.500000 | 0.00954 (10) | |
K1 | 0.71711 (11) | 0.09429 (4) | 0.32974 (5) | 0.01672 (16) | |
P1 | 0.500000 | 0.250000 | 0.32047 (8) | 0.0060 (2) | |
O1 | 0.6709 (3) | 0.24105 (10) | 0.40045 (17) | 0.0095 (4) | |
O2 | 0.4787 (3) | 0.18814 (11) | 0.24608 (17) | 0.0094 (4) | |
O3 | 0.9564 (3) | 0.36581 (11) | 0.47067 (18) | 0.0139 (4) | |
O4 | 0.8056 (4) | 0.46677 (12) | 0.61376 (19) | 0.0204 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Gd1 | 0.00341 (13) | 0.00828 (12) | 0.00493 (11) | −0.00007 (6) | 0.000 | 0.000 |
Mo1 | 0.0102 (2) | 0.00749 (16) | 0.01089 (17) | 0.000 | 0.00090 (13) | 0.000 |
K1 | 0.0158 (4) | 0.0130 (3) | 0.0213 (3) | 0.0014 (3) | −0.0007 (3) | 0.0027 (2) |
P1 | 0.0038 (6) | 0.0093 (5) | 0.0047 (5) | 0.0000 (3) | 0.000 | 0.000 |
O1 | 0.0037 (11) | 0.0172 (10) | 0.0076 (9) | 0.0001 (8) | 0.0006 (8) | 0.0003 (8) |
O2 | 0.0101 (11) | 0.0110 (10) | 0.0070 (9) | −0.0009 (8) | −0.0016 (7) | −0.0012 (8) |
O3 | 0.0129 (11) | 0.0111 (10) | 0.0178 (11) | −0.0004 (9) | 0.0034 (9) | −0.0019 (9) |
O4 | 0.0209 (13) | 0.0177 (11) | 0.0226 (12) | 0.0014 (10) | −0.0022 (10) | −0.0108 (10) |
Gd1—O1 | 2.314 (2) | K1—O1 | 3.037 (2) |
Gd1—O1i | 2.314 (2) | K1—O2 | 2.687 (2) |
Gd1—O1ii | 2.453 (2) | K1—O2iv | 2.755 (2) |
Gd1—O1iii | 2.453 (2) | K1—O3i | 2.958 (2) |
Gd1—O2iv | 2.427 (2) | K1—O3vi | 3.143 (2) |
Gd1—O2v | 2.427 (2) | K1—O4vii | 2.970 (3) |
Gd1—O3 | 2.370 (2) | K1—O4viii | 2.679 (2) |
Gd1—O3i | 2.370 (2) | K1—O4vi | 3.180 (3) |
Mo1—O3ii | 1.788 (2) | P1—O1 | 1.550 (2) |
Mo1—O3 | 1.788 (2) | P1—O1ix | 1.550 (2) |
Mo1—O4 | 1.749 (2) | P1—O2ix | 1.529 (2) |
Mo1—O4ii | 1.749 (2) | P1—O2 | 1.529 (2) |
O1—Gd1—O1iii | 126.66 (6) | O4ii—Mo1—O4 | 111.50 (16) |
O1i—Gd1—O1iii | 68.18 (8) | O1—K1—O3vi | 58.59 (6) |
O1—Gd1—O1i | 165.14 (10) | O1—K1—O4vi | 101.73 (6) |
O1iii—Gd1—O1ii | 58.64 (10) | O2—K1—O2iv | 79.43 (6) |
O1i—Gd1—O1ii | 126.66 (6) | O2iv—K1—O3i | 60.76 (6) |
O1—Gd1—O1ii | 68.18 (8) | O2iv—K1—O3vi | 118.34 (6) |
O1i—Gd1—O2v | 77.86 (7) | O2—K1—O3vi | 76.61 (6) |
O1—Gd1—O2iv | 77.86 (7) | O2—K1—O3i | 120.86 (7) |
O1i—Gd1—O2iv | 89.27 (7) | O2—K1—O4vi | 77.78 (6) |
O1—Gd1—O2v | 89.27 (7) | O2iv—K1—O4vi | 157.11 (7) |
O1—Gd1—O3 | 88.71 (8) | O2iv—K1—O4vii | 80.51 (7) |
O1i—Gd1—O3 | 94.81 (8) | O2—K1—O4vii | 93.86 (7) |
O1i—Gd1—O3i | 88.71 (8) | O3i—K1—O1 | 70.21 (6) |
O1—Gd1—O3i | 94.81 (8) | O3i—K1—O3vi | 85.55 (7) |
O2v—Gd1—O1ii | 144.86 (7) | O3vi—K1—O4vi | 53.60 (6) |
O2v—Gd1—O1iii | 133.34 (7) | O3i—K1—O4vii | 117.92 (7) |
O2iv—Gd1—O1iii | 144.86 (7) | O3i—K1—O4vi | 131.61 (7) |
O2iv—Gd1—O1ii | 133.34 (7) | O4vii—K1—O1 | 131.43 (6) |
O2iv—Gd1—O2v | 60.80 (10) | O4viii—K1—O1 | 147.62 (7) |
O3i—Gd1—O1ii | 77.67 (7) | O4viii—K1—O2iv | 124.43 (7) |
O3—Gd1—O1iii | 77.67 (7) | O4viii—K1—O2 | 152.41 (7) |
O3i—Gd1—O1iii | 78.52 (7) | O4viii—K1—O3vi | 99.58 (7) |
O3—Gd1—O1ii | 78.52 (7) | O4viii—K1—O3i | 85.55 (7) |
O3—Gd1—O2v | 74.22 (7) | O4vii—K1—O3vi | 155.97 (7) |
O3i—Gd1—O2iv | 74.22 (7) | O4vii—K1—O4vi | 103.12 (7) |
O3i—Gd1—O2v | 132.85 (7) | O4viii—K1—O4vii | 78.60 (7) |
O3—Gd1—O2iv | 132.85 (7) | O4viii—K1—O4vi | 78.20 (5) |
O3i—Gd1—O3 | 152.63 (11) | O1ix—P1—O1 | 101.63 (17) |
O3—Mo1—O3ii | 111.59 (14) | O2—P1—O1 | 111.11 (11) |
O4—Mo1—O3 | 107.39 (11) | O2ix—P1—O1ix | 111.11 (11) |
O4—Mo1—O3ii | 109.51 (11) | O2—P1—O1ix | 113.12 (11) |
O4ii—Mo1—O3 | 109.50 (11) | O2ix—P1—O1 | 113.12 (11) |
O4ii—Mo1—O3ii | 107.39 (11) | O2ix—P1—O2 | 106.87 (17) |
O1ix—P1—O1—Gd1 | −156.6 (3) | O2ix—P1—O2—K1 | 133.88 (11) |
O1ix—P1—O1—Gd1ii | −0.001 (1) | O2ix—P1—O2—K1x | −106.9 (2) |
O1ix—P1—O1—K1 | 112.05 (8) | O2ix—P1—O2—P1ix | 0 (100) |
O1ix—P1—O1—P1ix | 0 (100) | O3ii—Mo1—O3—Gd1 | 15.95 (10) |
O1—P1—O2—Gd1v | −123.85 (10) | O3ii—Mo1—O3—K1iii | −114.91 (9) |
O1ix—P1—O2—Gd1v | 122.59 (11) | O3ii—Mo1—O3—K1i | 152.13 (15) |
O1ix—P1—O2—K1x | 15.7 (2) | O3ii—Mo1—O4—K1xi | 32.18 (14) |
O1—P1—O2—K1x | 129.30 (18) | O3—Mo1—O4—K1xii | 143.40 (15) |
O1ix—P1—O2—K1 | −103.53 (11) | O3ii—Mo1—O4—K1xii | −95.27 (17) |
O1—P1—O2—K1 | 10.03 (14) | O3—Mo1—O4—K1xi | −89.15 (12) |
O1—P1—O2—P1ix | 0 (78) | O3ii—Mo1—O4—K1iii | 116.29 (10) |
O1ix—P1—O2—P1ix | 0 (100) | O3—Mo1—O4—K1iii | −5.05 (11) |
O2—P1—O1—Gd1ii | −120.61 (11) | O4ii—Mo1—O3—Gd1 | −102.81 (16) |
O2ix—P1—O1—Gd1 | −37.5 (3) | O4—Mo1—O3—Gd1 | 135.96 (16) |
O2ix—P1—O1—Gd1ii | 119.18 (11) | O4—Mo1—O3—K1i | −87.85 (14) |
O2—P1—O1—Gd1 | 82.7 (2) | O4ii—Mo1—O3—K1iii | 126.33 (10) |
O2ix—P1—O1—K1 | −128.76 (10) | O4ii—Mo1—O3—K1i | 33.37 (16) |
O2—P1—O1—K1 | −8.56 (12) | O4—Mo1—O3—K1iii | 5.11 (11) |
O2—P1—O1—P1ix | 0 (100) | O4ii—Mo1—O4—K1xi | 150.89 (14) |
O2ix—P1—O1—P1ix | 0 (23) | O4ii—Mo1—O4—K1iii | −125.01 (10) |
O2ix—P1—O2—Gd1v | 0.000 (1) | O4ii—Mo1—O4—K1xii | 23.44 (10) |
Symmetry codes: (i) −x+2, −y+1/2, z; (ii) −x+3/2, y, −z+1; (iii) x+1/2, −y+1/2, −z+1; (iv) x+1/2, y, −z+1/2; (v) −x+3/2, −y+1/2, −z+1/2; (vi) x−1/2, −y+1/2, −z+1; (vii) x, −y+1/2, z−1/2; (viii) x, y−1/2, −z+1; (ix) −x+1, −y+1/2, z; (x) x−1/2, y, −z+1/2; (xi) x, −y+1/2, z+1/2; (xii) x, y+1/2, −z+1. |
Acknowledgements
The authors are grateful to Sergiu G. Shova from the "Petru Poni" Institute of Macromolecular Chemistry for the diffraction data collection.
Funding information
Funding for this research was provided by: National Research Foundation of Ukraine (grant No. 2022.01/0168).
References
Alvarez, S. (2021). Eur. J. Inorg. Chem. pp. 3632–3647. Web of Science CrossRef Google Scholar
Ben Amara, M. & Dabbabi, M. (1987). Acta Cryst. C43, 616–618. CrossRef ICSD CAS IUCr Journals Google Scholar
Casanova, D., Llunell, M., Alemany, P. & Alvarez, S. (2005). Eur. J. Inorg. Chem. 11(5), 1479–1494. Google Scholar
Daub, M., Lehner, A. J. & Höppe, H. A. (2012). Dalton Trans. 41, 12121–12128. Web of Science CrossRef CAS PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Grigorjevaite, J., Ezerskyte, E., Páterek, J., Saitzek, S., Zabiliūtė-Karaliūnė, A., Vitta, P., Enseling, D., Jüstel, T. & Katelnikovas, A. (2020). Mater. Adv. 1, 1427–1438. Web of Science CrossRef CAS Google Scholar
Grigorjevaite, J. & Katelnikovas, A. (2016). Appl. Mater. Interfaces, 8, 31772–31782. Web of Science CrossRef CAS Google Scholar
Guo, Z., Wu, Z. C., Milićević, B., Zhou, L., Khan, W. U., Hong, J., Shi, J. & Wu, M. (2019). Opt. Mater. 97, 109376. Web of Science CrossRef Google Scholar
Llunell, M., Casanova, D., Cirera, J., Alemany, P. & Alvarez, S. (2013). SHAPE 2.1. University of Barcelona, Spain. Google Scholar
Marsh, R. E. (1987). Acta Cryst. C43, 2470. CrossRef ICSD IUCr Journals Google Scholar
Naidu, S. A., Boudin, S., Varadaraju, U. V. & Raveau, B. (2012). J. Electrochem. Soc. 159, J122–J126. Web of Science CrossRef CAS Google Scholar
Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Terebilenko, K. V., Chornii, V. P., Zozulia, V. O., Gural'skiy, I. A., Shova, S. G., Nedilko, S. G. & Slobodyanik, M. S. (2022). RSC Adv. 12, 8901–8907. Web of Science CrossRef ICSD CAS PubMed Google Scholar
Zatovsky, I. V., Terebilenko, K. V., Slobodyanik, N. S., Baumer, V. N. & Shishkin, O. V. (2006). J. Solid State Chem. 179, 3550–3555. Web of Science CrossRef ICSD CAS Google Scholar
Zhang, X., Chen, M., Zhang, J., Qin, X. & Gong, M. (2016). Mater. Res. Bull. 73, 219–225. Web of Science CrossRef CAS Google Scholar
Zhao, D., Li, F., Cheng, W. & Zhang, H. (2009). Acta Cryst. E65, i78. Web of Science CrossRef ICSD IUCr Journals Google Scholar
Zozulia, V. O., Terebilenko, K. V., Nedilko, S. G., Chornii, V. P. & Slobodyanik, M. S. (2023). Theor. Exp. Chem. 59, 107–111. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.