research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a layered phosphate molybdate K2Gd(PO4)(MoO4)

crossmark logo

aTaras Shevchenko National University of Kyiv, Volodymyrska St. 64, Kyiv 01601, Ukraine, and bDepartment of General and Inorganic Chemistry, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", 37 Prospect Beresteiskyi, 03056 Kyiv, Ukraine
*Correspondence e-mail: kateryna_terebilenko@knu.ua

Edited by S.-L. Zheng, Harvard University, USA (Received 22 November 2023; accepted 27 December 2023; online 5 January 2024)

The title compound dipotassium gadolinium(III) phosphate(V) molybdate(VI), K2Gd(PO4)(MoO4), was synthesized from a high-temperature melt starting from GdF3 as a source of gadolinium. Its structure is isotypic with other MI2MIII(MVIO4)(PO4) compounds, where MI = Na, K or Cs, and MIII = rare-earth cation, MVI = Mo or W. The three-dimensional framework is built up from [Gd(PO4)(MoO4)] anionic sheets, which are organized by adhesion of [GdPO4] layers and [MoO4] tetra­hedra stacked above and below these layers. The inter­stitial space is occupied by K cations having eightfold oxygen coordination. The polyhedron of GdO8 was estimated to be a triangular dodeca­hedron by the continuous shape measurement method.

1. Chemical context

Layered phosphate(V) molybdates(VI) MI2MIII(MVIO4)(PO4) comprising an alkali metal and a rare-earth metal MIII such as Sm (Zhao et al., 2009[Zhao, D., Li, F., Cheng, W. & Zhang, H. (2009). Acta Cryst. E65, i78.]), Eu (Terebilenko et al., 2022[Terebilenko, K. V., Chornii, V. P., Zozulia, V. O., Gural'skiy, I. A., Shova, S. G., Nedilko, S. G. & Slobodyanik, M. S. (2022). RSC Adv. 12, 8901-8907.]), Y (Zhang et al., 2016[Zhang, X., Chen, M., Zhang, J., Qin, X. & Gong, M. (2016). Mater. Res. Bull. 73, 219-225.]) or Bi (Grigorjevaite et al., 2020[Grigorjevaite, J., Ezerskyte, E., Páterek, J., Saitzek, S., Zabiliūtė-Karaliūnė, A., Vitta, P., Enseling, D., Jüstel, T. & Katelnikovas, A. (2020). Mater. Adv. 1, 1427-1438.]) are considered to be promising luminescent materials (Guo et al., 2019[Guo, Z., Wu, Z. C., Milićević, B., Zhou, L., Khan, W. U., Hong, J., Shi, J. & Wu, M. (2019). Opt. Mater. 97, 109376.]). The initial structural models of this group of compounds, Na2Y(PO4)(MoO4), were monoclinic, space group C2/c, as described by Ben Amara & Dabbabi (1987[Ben Amara, M. & Dabbabi, M. (1987). Acta Cryst. C43, 616-618.]). Subsequent work determined that the material crystallizes in an ortho­rhom­bic system, space group Ibca (Marsh, 1987[Marsh, R. E. (1987). Acta Cryst. C43, 2470.]). The discovery of K2Bi(PO4)(MoO4) by Zatovsky et al. (2006[Zatovsky, I. V., Terebilenko, K. V., Slobodyanik, N. S., Baumer, V. N. & Shishkin, O. V. (2006). J. Solid State Chem. 179, 3550-3555.]) opened a new group of luminescent materials that are isostructural to Na2Y(PO4)(MoO4) and have high color purity and quantum yield (Grigorjevaite & Katelnikovas, 2016[Grigorjevaite, J. & Katelnikovas, A. (2016). Appl. Mater. Interfaces, 8, 31772-31782. ]).

In the case of Rb2Bi(PO4)(MoO4):Eu3+ powders, the quantum efficiency has been shown to reach ca 100% for the Rb2Bi0.5Eu0.5(PO4)(MoO4) phosphor (Grigorjevaite & Katelnikovas, 2016[Grigorjevaite, J. & Katelnikovas, A. (2016). Appl. Mater. Interfaces, 8, 31772-31782. ]). High color purity and emission spectra peculiarities make these compounds attractive for red-component design in near-UV LED-driven solid-state light sources (Zozulia et al., 2023[Zozulia, V. O., Terebilenko, K. V., Nedilko, S. G., Chornii, V. P. & Slobodyanik, M. S. (2023). Theor. Exp. Chem. 59, 107-111.]). One of the main disadvantages of these luminescence hosts is the relatively high activator content needed (from 50 to 75%) to reach a high quantum efficiency (Grigorjevaite & Katelnikovas, 2016[Grigorjevaite, J. & Katelnikovas, A. (2016). Appl. Mater. Interfaces, 8, 31772-31782. ]). Different strategies have been applied to improve the luminescence performance and lower the luminescent dopant content, including rare-earth co-doping (Naidu et al., 2012[Naidu, S. A., Boudin, S., Varadaraju, U. V. & Raveau, B. (2012). J. Electrochem. Soc. 159, J122-J126.]) and anion modifications (Guo et al., 2019[Guo, Z., Wu, Z. C., Milićević, B., Zhou, L., Khan, W. U., Hong, J., Shi, J. & Wu, M. (2019). Opt. Mater. 97, 109376.]). To tune the luminescence properties of these phosphors, the quest for new representatives of this group of compounds can shed light on the development of new phosphors based on them.

2. Structural commentary

The three-dimensional framework of the title compound is organized by linking together slightly distorted GdO8 dodeca­hedra with non-condensed phosphate and molybdate tetra­hedra (Fig. 1[link]). These moieties are arranged into layers perpendicular to the [010] direction with each phosphate layer being followed by two molybdate layers. In this packing, the gadolinium and potassium cations are eightfold coordinated by oxygen (Fig. 2[link]) and ordered into zigzag chains (Fig. 3[link]).

[Figure 1]
Figure 1
Representation of the unit-cell content of K2Gd(PO4)(MoO4).
[Figure 2]
Figure 2
Representation of the coordination environment of gadolinium atoms in K2Gd(PO4)(MoO4). Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 2 − x, [{1\over 2}] − y, z; (ii) [{3\over 2}] − x, [{1\over 2}] − y, [{1\over 2}] − z; (iii) [{1\over 2}] + x, y, [{1\over 2}] − z; (iv) [{3\over 2}] − x, y, 1 − z; (v) [{1\over 2}] + x, [{1\over 2}] − x, 1 − z; (vii) 1 + x, y, z; (viii) [{3\over 2}] − x, y,1 − z; (ix) 1 − x, [{1\over 2}] − y, z.]
[Figure 3]
Figure 3
Zigzag chains build up from (a) GdO8 and (b) KO8 polyhedra

Each Gd cation is surrounded by two molybdate tetra­hedra and four phosphate tetra­hedra; two of the phosphate groups are coordinated in a bidentate manner (Fig. 2[link]). The Gd—O bond lengths lie in the range 2.314 (3)–2.453 (3) Å. Among the Gd—O bond lengths, those corresponding to the bidentately coordinated phosphate groups are the longest [2.427 (2) and 2.453 (2) Å]. The chains built up from GdO8 polyhedra are inter­linked by phosphate moieties into [GdPO4] layers propagating in the ac plane. The nearest Gd⋯Gd distance within a zigzag chain is 3.9332 (2) Å. [Gd(PO4)(MoO4)] nets are formed by adhesion of [GdPO4] layers and MoO4 tetra­hedra above and below these layers (Fig. 1[link]).

Both the phosphate and molybdate tetra­hedra have an almost regular geometry with typical bond lengths. The central atoms of the GdO8, MoO4 and PO4 polyhedra are located on a twofold axis. The potassium cation resides inside the inter­layer space having eightfold coordination, as has been found for other potassium-based representatives of this family (Zatovsky et al., 2006[Zatovsky, I. V., Terebilenko, K. V., Slobodyanik, N. S., Baumer, V. N. & Shishkin, O. V. (2006). J. Solid State Chem. 179, 3550-3555.]). Importantly, there is a difference in the nearest oxygen coordination of sodium- and potassium-based frameworks. In case of Na2Y(PO4)(WO4), the NaO6 sodium environment is described as an effective 3 + 3 coordination indicating a relatively large void between two successive [Y(PO4)(WO4)] layers (Daub et al., 2012[Daub, M., Lehner, A. J. & Höppe, H. A. (2012). Dalton Trans. 41, 12121-12128.]).

3. Coordination environment calculations

The distortions of the coordination environment of gadolin­ium, potassium, phospho­rus and molybdenum have been calculated by the continuous shape measurement method with the Shape 2.1 program (Llunell et al., 2013[Llunell, M., Casanova, D., Cirera, J., Alemany, P. & Alvarez, S. (2013). SHAPE 2.1. University of Barcelona, Spain.]). The shape measurements in this work are taken from normalized coord­ination polyhedra (Alvarez, 2021[Alvarez, S. (2021). Eur. J. Inorg. Chem. pp. 3632-3647.]). There are two types of polyhedra within the structure studied: two are tetra­hedral, namely, MoO4 and PO4 and two are eightfold coordinated, KO8 and GdO8. The shape measurements of a set of atoms with respect to a reference shape (e.g., the tetra­hedron, abbreviated T-4 by IUPAC) calibrates the overall distance of the atoms to the vertices of the tetra­hedral shape in the same position. Thus, a zero-shape measurement for a set of atoms indicates that the polyhedron has exactly the reference shape, expressed as S(T-4) = 0.00 for an ideal tetra­hedron. Increasing values of the shape measurement will be found for more distorted polyhedra, in other words, these values are essentially spatial distance minima of the central atom from a minimization polyhedral fitting procedure. For the title compound, the MoO4 tetra­hedron has minor distortions, as indicated by the value of S of 0.053. In contrast, the PO4 tetra­hedron reveals more severe deviations, having C2 site symmetry with a calculated value of S = 0.238.

In case of GdO8, the lowest value of S of 2.725 was obtained for a triangular dodeca­hedron (TDD-8) (Casanova et al. 2005[Casanova, D., Llunell, M., Alemany, P. & Alvarez, S. (2005). Eur. J. Inorg. Chem. 11(5), 1479-1494.]) and KO8 is best described as as biaugmented trigonal prism, as indicated by the value of S of 3.999. Thus, the GdO8 polyhedron in K2Bi(PO4)(MoO4) is found to be a triangular dodeca­hedron (TDD-8), as has also been observed for K2Eu(PO4)(WO4) (Terebilenko et al., 2022[Terebilenko, K. V., Chornii, V. P., Zozulia, V. O., Gural'skiy, I. A., Shova, S. G., Nedilko, S. G. & Slobodyanik, M. S. (2022). RSC Adv. 12, 8901-8907.]).

4. Synthesis and crystallization

Single crystals of the title compound were grown from molten salts 7K2Mo2O7–3K4P2O7 containing 5% mol of GdF3. A mixture of K2Mo2O7 and K4P2O7 was heated in a platinum crucible up to 1273 K. After melting, 5% mol of GdF3 was added to the initial molten salts under stirring. The mixture was then held at this temperature for 2 h and cooled down to room temperature at a rate of 50 K h−1. The solidified melt was leached out with warm water to dissolve the superfluous flux. The final product consisted of colourless plates. The yield was 64% by Gd.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula K2Gd(PO4)(MoO4)
Mr 490.36
Crystal system, space group Orthorhombic, Ibca
Temperature (K) 200
a, b, c (Å) 6.9527 (2), 19.7112 (6), 12.2466 (3)
V3) 1678.35 (8)
Z 8
Radiation type Mo Kα
μ (mm−1) 10.52
Crystal size (mm) 0.10 × 0.08 × 0.02
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.422, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6547, 1079, 999
Rint 0.026
(sin θ/λ)max−1) 0.707
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.045, 1.13
No. of reflections 1079
No. of parameters 61
Δρmax, Δρmin (e Å−3) 1.53, −0.64
Computer programs: CrysAlis PRO (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Dipotassium gadolinium(III) phosphate(V) molybdate(VI) top
Crystal data top
K2Gd(PO4)(MoO4)Dx = 3.881 Mg m3
Mr = 490.36Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, IbcaCell parameters from 4624 reflections
a = 6.9527 (2) Åθ = 3.3–30.0°
b = 19.7112 (6) ŵ = 10.52 mm1
c = 12.2466 (3) ÅT = 200 K
V = 1678.35 (8) Å3Plate, clear light colourless
Z = 80.10 × 0.08 × 0.02 mm
F(000) = 1784
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
1079 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source999 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.026
Detector resolution: 10 pixels mm-1θmax = 30.2°, θmin = 3.3°
ω scansh = 88
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2020)
k = 2626
Tmin = 0.422, Tmax = 1.000l = 1616
6547 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: dual
R[F2 > 2σ(F2)] = 0.017Secondary atom site location: difference Fourier map
wR(F2) = 0.045 w = 1/[σ2(Fo2) + (0.0204P)2 + 6.0211P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
1079 reflectionsΔρmax = 1.53 e Å3
61 parametersΔρmin = 0.64 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Gd11.0000000.2500000.42488 (2)0.00554 (8)
Mo10.7500000.41682 (2)0.5000000.00954 (10)
K10.71711 (11)0.09429 (4)0.32974 (5)0.01672 (16)
P10.5000000.2500000.32047 (8)0.0060 (2)
O10.6709 (3)0.24105 (10)0.40045 (17)0.0095 (4)
O20.4787 (3)0.18814 (11)0.24608 (17)0.0094 (4)
O30.9564 (3)0.36581 (11)0.47067 (18)0.0139 (4)
O40.8056 (4)0.46677 (12)0.61376 (19)0.0204 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Gd10.00341 (13)0.00828 (12)0.00493 (11)0.00007 (6)0.0000.000
Mo10.0102 (2)0.00749 (16)0.01089 (17)0.0000.00090 (13)0.000
K10.0158 (4)0.0130 (3)0.0213 (3)0.0014 (3)0.0007 (3)0.0027 (2)
P10.0038 (6)0.0093 (5)0.0047 (5)0.0000 (3)0.0000.000
O10.0037 (11)0.0172 (10)0.0076 (9)0.0001 (8)0.0006 (8)0.0003 (8)
O20.0101 (11)0.0110 (10)0.0070 (9)0.0009 (8)0.0016 (7)0.0012 (8)
O30.0129 (11)0.0111 (10)0.0178 (11)0.0004 (9)0.0034 (9)0.0019 (9)
O40.0209 (13)0.0177 (11)0.0226 (12)0.0014 (10)0.0022 (10)0.0108 (10)
Geometric parameters (Å, º) top
Gd1—O12.314 (2)K1—O13.037 (2)
Gd1—O1i2.314 (2)K1—O22.687 (2)
Gd1—O1ii2.453 (2)K1—O2iv2.755 (2)
Gd1—O1iii2.453 (2)K1—O3i2.958 (2)
Gd1—O2iv2.427 (2)K1—O3vi3.143 (2)
Gd1—O2v2.427 (2)K1—O4vii2.970 (3)
Gd1—O32.370 (2)K1—O4viii2.679 (2)
Gd1—O3i2.370 (2)K1—O4vi3.180 (3)
Mo1—O3ii1.788 (2)P1—O11.550 (2)
Mo1—O31.788 (2)P1—O1ix1.550 (2)
Mo1—O41.749 (2)P1—O2ix1.529 (2)
Mo1—O4ii1.749 (2)P1—O21.529 (2)
O1—Gd1—O1iii126.66 (6)O4ii—Mo1—O4111.50 (16)
O1i—Gd1—O1iii68.18 (8)O1—K1—O3vi58.59 (6)
O1—Gd1—O1i165.14 (10)O1—K1—O4vi101.73 (6)
O1iii—Gd1—O1ii58.64 (10)O2—K1—O2iv79.43 (6)
O1i—Gd1—O1ii126.66 (6)O2iv—K1—O3i60.76 (6)
O1—Gd1—O1ii68.18 (8)O2iv—K1—O3vi118.34 (6)
O1i—Gd1—O2v77.86 (7)O2—K1—O3vi76.61 (6)
O1—Gd1—O2iv77.86 (7)O2—K1—O3i120.86 (7)
O1i—Gd1—O2iv89.27 (7)O2—K1—O4vi77.78 (6)
O1—Gd1—O2v89.27 (7)O2iv—K1—O4vi157.11 (7)
O1—Gd1—O388.71 (8)O2iv—K1—O4vii80.51 (7)
O1i—Gd1—O394.81 (8)O2—K1—O4vii93.86 (7)
O1i—Gd1—O3i88.71 (8)O3i—K1—O170.21 (6)
O1—Gd1—O3i94.81 (8)O3i—K1—O3vi85.55 (7)
O2v—Gd1—O1ii144.86 (7)O3vi—K1—O4vi53.60 (6)
O2v—Gd1—O1iii133.34 (7)O3i—K1—O4vii117.92 (7)
O2iv—Gd1—O1iii144.86 (7)O3i—K1—O4vi131.61 (7)
O2iv—Gd1—O1ii133.34 (7)O4vii—K1—O1131.43 (6)
O2iv—Gd1—O2v60.80 (10)O4viii—K1—O1147.62 (7)
O3i—Gd1—O1ii77.67 (7)O4viii—K1—O2iv124.43 (7)
O3—Gd1—O1iii77.67 (7)O4viii—K1—O2152.41 (7)
O3i—Gd1—O1iii78.52 (7)O4viii—K1—O3vi99.58 (7)
O3—Gd1—O1ii78.52 (7)O4viii—K1—O3i85.55 (7)
O3—Gd1—O2v74.22 (7)O4vii—K1—O3vi155.97 (7)
O3i—Gd1—O2iv74.22 (7)O4vii—K1—O4vi103.12 (7)
O3i—Gd1—O2v132.85 (7)O4viii—K1—O4vii78.60 (7)
O3—Gd1—O2iv132.85 (7)O4viii—K1—O4vi78.20 (5)
O3i—Gd1—O3152.63 (11)O1ix—P1—O1101.63 (17)
O3—Mo1—O3ii111.59 (14)O2—P1—O1111.11 (11)
O4—Mo1—O3107.39 (11)O2ix—P1—O1ix111.11 (11)
O4—Mo1—O3ii109.51 (11)O2—P1—O1ix113.12 (11)
O4ii—Mo1—O3109.50 (11)O2ix—P1—O1113.12 (11)
O4ii—Mo1—O3ii107.39 (11)O2ix—P1—O2106.87 (17)
O1ix—P1—O1—Gd1156.6 (3)O2ix—P1—O2—K1133.88 (11)
O1ix—P1—O1—Gd1ii0.001 (1)O2ix—P1—O2—K1x106.9 (2)
O1ix—P1—O1—K1112.05 (8)O2ix—P1—O2—P1ix0 (100)
O1ix—P1—O1—P1ix0 (100)O3ii—Mo1—O3—Gd115.95 (10)
O1—P1—O2—Gd1v123.85 (10)O3ii—Mo1—O3—K1iii114.91 (9)
O1ix—P1—O2—Gd1v122.59 (11)O3ii—Mo1—O3—K1i152.13 (15)
O1ix—P1—O2—K1x15.7 (2)O3ii—Mo1—O4—K1xi32.18 (14)
O1—P1—O2—K1x129.30 (18)O3—Mo1—O4—K1xii143.40 (15)
O1ix—P1—O2—K1103.53 (11)O3ii—Mo1—O4—K1xii95.27 (17)
O1—P1—O2—K110.03 (14)O3—Mo1—O4—K1xi89.15 (12)
O1—P1—O2—P1ix0 (78)O3ii—Mo1—O4—K1iii116.29 (10)
O1ix—P1—O2—P1ix0 (100)O3—Mo1—O4—K1iii5.05 (11)
O2—P1—O1—Gd1ii120.61 (11)O4ii—Mo1—O3—Gd1102.81 (16)
O2ix—P1—O1—Gd137.5 (3)O4—Mo1—O3—Gd1135.96 (16)
O2ix—P1—O1—Gd1ii119.18 (11)O4—Mo1—O3—K1i87.85 (14)
O2—P1—O1—Gd182.7 (2)O4ii—Mo1—O3—K1iii126.33 (10)
O2ix—P1—O1—K1128.76 (10)O4ii—Mo1—O3—K1i33.37 (16)
O2—P1—O1—K18.56 (12)O4—Mo1—O3—K1iii5.11 (11)
O2—P1—O1—P1ix0 (100)O4ii—Mo1—O4—K1xi150.89 (14)
O2ix—P1—O1—P1ix0 (23)O4ii—Mo1—O4—K1iii125.01 (10)
O2ix—P1—O2—Gd1v0.000 (1)O4ii—Mo1—O4—K1xii23.44 (10)
Symmetry codes: (i) x+2, y+1/2, z; (ii) x+3/2, y, z+1; (iii) x+1/2, y+1/2, z+1; (iv) x+1/2, y, z+1/2; (v) x+3/2, y+1/2, z+1/2; (vi) x1/2, y+1/2, z+1; (vii) x, y+1/2, z1/2; (viii) x, y1/2, z+1; (ix) x+1, y+1/2, z; (x) x1/2, y, z+1/2; (xi) x, y+1/2, z+1/2; (xii) x, y+1/2, z+1.
 

Acknowledgements

The authors are grateful to Sergiu G. Shova from the "Petru Poni" Institute of Macromolecular Chemistry for the diffraction data collection.

Funding information

Funding for this research was provided by: National Research Foundation of Ukraine (grant No. 2022.01/0168).

References

First citationAlvarez, S. (2021). Eur. J. Inorg. Chem. pp. 3632–3647.  Web of Science CrossRef Google Scholar
First citationBen Amara, M. & Dabbabi, M. (1987). Acta Cryst. C43, 616–618.  CrossRef ICSD CAS IUCr Journals Google Scholar
First citationCasanova, D., Llunell, M., Alemany, P. & Alvarez, S. (2005). Eur. J. Inorg. Chem. 11(5), 1479–1494.  Google Scholar
First citationDaub, M., Lehner, A. J. & Höppe, H. A. (2012). Dalton Trans. 41, 12121–12128.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGrigorjevaite, J., Ezerskyte, E., Páterek, J., Saitzek, S., Zabiliūtė-Karaliūnė, A., Vitta, P., Enseling, D., Jüstel, T. & Katelnikovas, A. (2020). Mater. Adv. 1, 1427–1438.  Web of Science CrossRef CAS Google Scholar
First citationGrigorjevaite, J. & Katelnikovas, A. (2016). Appl. Mater. Interfaces, 8, 31772–31782.   Web of Science CrossRef CAS Google Scholar
First citationGuo, Z., Wu, Z. C., Milićević, B., Zhou, L., Khan, W. U., Hong, J., Shi, J. & Wu, M. (2019). Opt. Mater. 97, 109376.  Web of Science CrossRef Google Scholar
First citationLlunell, M., Casanova, D., Cirera, J., Alemany, P. & Alvarez, S. (2013). SHAPE 2.1. University of Barcelona, Spain.  Google Scholar
First citationMarsh, R. E. (1987). Acta Cryst. C43, 2470.  CrossRef ICSD IUCr Journals Google Scholar
First citationNaidu, S. A., Boudin, S., Varadaraju, U. V. & Raveau, B. (2012). J. Electrochem. Soc. 159, J122–J126.  Web of Science CrossRef CAS Google Scholar
First citationRigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTerebilenko, K. V., Chornii, V. P., Zozulia, V. O., Gural'skiy, I. A., Shova, S. G., Nedilko, S. G. & Slobodyanik, M. S. (2022). RSC Adv. 12, 8901–8907.  Web of Science CrossRef ICSD CAS PubMed Google Scholar
First citationZatovsky, I. V., Terebilenko, K. V., Slobodyanik, N. S., Baumer, V. N. & Shishkin, O. V. (2006). J. Solid State Chem. 179, 3550–3555.  Web of Science CrossRef ICSD CAS Google Scholar
First citationZhang, X., Chen, M., Zhang, J., Qin, X. & Gong, M. (2016). Mater. Res. Bull. 73, 219–225.  Web of Science CrossRef CAS Google Scholar
First citationZhao, D., Li, F., Cheng, W. & Zhang, H. (2009). Acta Cryst. E65, i78.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationZozulia, V. O., Terebilenko, K. V., Nedilko, S. G., Chornii, V. P. & Slobodyanik, M. S. (2023). Theor. Exp. Chem. 59, 107–111.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds