research communications
E)-1-phenyl-3-(1H-pyrrol-2-yl)propen-1-one
and Hirshfeld surface analysis of (2aDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, AZ1148, Baku, Azerbaijan, b`Composite Materials' Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, AZ1063, Baku, Azerbaijan, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, and dDepartment of Chemistry, M.M.A.M.C. (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np
The title compound, C13H11NO, adopts an E configuration about the C=C double bond. The pyrrole ring is inclined to the phenyl ring at an angle of 44.94 (8)°. In the crystal, molecules are linked by N—H⋯O hydrogen bonds, forming ribbons parallel to (020) in zigzag C(7) chains along the a axis. These ribbons are connected via C—H⋯π interactions, forming a three-dimensional network. No significant π–π interactions are observed.
CCDC reference: 2321201
1. Chemical context
The chemistry of carbo- and heterocyclic aromatic compounds is the most important branch of organic chemistry (Khalilov et al., 2022; Akkurt et al., 2023). Synthetic organic chemistry is growing tremendously, with recently developed aromatic systems that are designed for various research and commercial purposes (Maharramov et al., 2021, 2022; Erenler et al., 2022). Nowadays, five- and six-membered heterocyclic systems find broad applications in different branches of chemistry, as well as coordination chemistry (Gurbanov et al., 2021; Mahmoudi et al., 2021), drug design and development (Donmez & Turkyılmaz, 2022; Askerova, 2022), and materials science (Velásquez et al., 2019; Afkhami et al., 2019). The pyrrole motif is the most widespread five-membered heteroaromatic ring system in nitrogen heterocycles (Mahmoudi et al., 2017). It is an essential structural motif present in many natural tetrapyrrole scaffolds of heme and related cofactors (chlorophyll a, heme b, vitamin B12 and factor 430), and other bioactive molecules, like porphobilinogen, nargenicin, prodigiosin, etc. (Walsh et al., 2006; Sobhi & Faisal, 2023). incorporating N-heterocyclic, especially pyrrole, scaffolds with various biological and pharmacological activities, such as antioxidant, antibacterial, antifungal, antileishmanial, anticancer, antitubercular, antimalarial and other properties, have been reviewed recently (Mezgebe et al., 2023). In addition, the incorporation of diverse pharmacophore groups in a pyrrole scaffold has led to the development of more desired compounds, such as elopiprazole, lorpiprazole, isamoltane, obatoclax, etc. (Bhardwaj et al., 2015; Atalay et al., 2022). Thus, in the framework of our studies in heterocyclic chemistry (Naghiyev et al., 2020, 2021, 2022), we report herein the and Hirshfeld surface analysis of the title compound, (2E)-1-phenyl-3-(1H-pyrrol-2-yl)propen-1-one.
2. Structural commentary
The title compound (Fig. 1) shows an E configuration about the C=C double bond. The pyrrole ring (atoms N1/C10–C13) is inclined to the phenyl ring (C1–C6) by 44.94 (8)°, the torsion angles being C5—C6—C7—C8 = −156.04 (13)°, C5—C6—C7—O1 = 22.6 (2)°, C6—C7—C8—C9 = −163.76 (13)°, C7—C8—C9—C10 = −172.34 (13)°, O1—C7—C8—C9 = 17.6 (2)° and C8—C9—C10—C11 = 173.37 (14)°. The geometrical parameters of the the title compound are in agreement with those reported for similar compounds; see the Database survey section.
3. Supramolecular features and Hirshfeld surface analysis
In the crystal, molecules are linked by N—H⋯O hydrogen bonds, forming ribbons parallel to (020) in zigzag C(7) chains along the a axis (Bernstein et al., 1995; Table 1 and Fig. 2). These ribbons are connected via C—H⋯π interactions, forming a three-dimensional network (Table 1 and Fig. 3). No significant π–π interactions are observed.
The Hirshfeld surfaces of the title molecule and the two-dimensional fingerprints were computed with CrystalExplorer17.5 (Spackman et al., 2021). The dnorm mappings for the title compound were performed in the range from −0.4746 (red) to +1.2616 (blue) a.u. On the dnorm surfaces, bright-red spots indicate the locations of the N—H⋯O interactions [Table 1 and Figs. 4(a) and 4(b)].
The fingerprint plots (Fig. 5) reveal that while H⋯H interactions [Fig. 5(b); 48.4%] make the largest contributions to the surface contacts (Table 1), C⋯H/H⋯C [Fig. 5(c); 31.7%] and O⋯H/H⋯O [Fig. 5(d); 11.3%] contacts are also important. Other less notable interactions are C⋯C (3.7%), N⋯H/H⋯N (3.1%) and O⋯C/C⋯O (1.8%).
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.43, last update November 2022; Groom et al., 2016) for the `(2E)-1-phenyl-3-(1H-pyrrol-2-yl)prop-2-en-1-one' skeleton of the title compound yielded two hits, namely, 1-(3-chlorophenyl)-3-(3-furyl)prop-2-en-1-one (CSD refcode NUQFOW; Zingales et al., 2015) and (E)-3-(2-furyl)-1-phenylprop-2-en-1-one (NOTCUW01; Vázquez-Vuelvas et al., 2015). When the positions of the pyrrole and phenyl rings are switched, additional hits are found, namely, 1-(2,4-dimethylfuran-3-yl)-3-phenylprop-2-en-1-one (MISXUL; Khalilov et al., 2023), 1-(3-furyl)-3-[3-(trifluoromethyl)phenyl]prop-2-en-1-one (KUDNAA; Bákowicz et al., 2015) and (2E)-3-(4-chlorophenyl)-1-(1H-pyrrol-2-yl)prop-2-en-1-one (XIYYOU; Bukhari et al., 2008).
In the crystal of NUQFOW, molecules stack along the a axis; however, there are no significant intermolecular interactions present. In the crystal of NOTCUW01, molecules are connected by weak C—H⋯O hydrogen bonds and C—H⋯π interactions, forming ribbons extending along the c axis. In the crystal of MISXUL, pairs of molecules are linked by C—H⋯O hydrogen bonds, forming dimers with R22(14) ring motifs. The molecules are connected via C—H⋯π interactions, forming a three-dimensional network. No π–π interactions are observed. In KUDNAA, molecules are linked by intermolecular C—H⋯O interactions, forming zigzag chains with C(5) motifs along the b axis. In addition, molecules are connected by face-to-face π–π stacking interactions [centroid–centroid distances = 3.926 (3) and 3.925 (2) Å] between the opposing benzene and furan rings of the molecules along the c axis. In XIYYOU, intermolecular N—H⋯O hydrogen bonds link the molecules into centrosymmetric R22(10) dimers. There are C—H⋯π interactions between the benzene and pyrrole rings and a benzene C—H group. A weak π–π interaction between the pyrrole rings [centroid–centroid distance = 3.8515 (11) Å] further stabilizes the structure. There is also a π-interaction between the pyrrole ring and the carbonyl group, with an O⋯π distance of 3.4825 (18) Å.
5. Synthesis and crystallization
The title compound was synthesized according to a recently reported procedure (Li et al., 2022), and colourless crystals were obtained upon recrystallization from an ethanol/water (3:1 v/v) solution.
6. Refinement
Crystal data, data collection and structure . The C-bound H atoms were placed in calculated positions (0.93 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(C). The N-bound H atom was located in a difference map and refined with Uiso(H) = 1.2Ueq(N). Three reflections (001, 010 and 020) were omitted in the final cycles of refinement.
details are summarized in Table 2
|
Supporting information
CCDC reference: 2321201
https://doi.org/10.1107/S2056989024000495/tx2080sup1.cif
contains datablock global. DOI:Supporting information file. DOI: https://doi.org/10.1107/S2056989024000495/tx2080globalsup2.cml
C13H11NO | Z = 2 |
Mr = 197.23 | F(000) = 208 |
Triclinic, P1 | Dx = 1.298 Mg m−3 |
a = 5.7855 (16) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 7.3347 (19) Å | Cell parameters from 5813 reflections |
c = 12.424 (3) Å | θ = 2.9–27.4° |
α = 106.519 (8)° | µ = 0.08 mm−1 |
β = 91.912 (9)° | T = 293 K |
γ = 92.326 (9)° | Block, colorless |
V = 504.5 (2) Å3 | 0.12 × 0.11 × 0.10 mm |
Bruker APEXII CCD diffractometer | 1908 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.042 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 28.6°, θmin = 2.9° |
Tmin = 0.688, Tmax = 0.746 | h = −7→7 |
18072 measured reflections | k = −9→9 |
2535 independent reflections | l = −16→16 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.049 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.108 | w = 1/[σ2(Fo2) + (0.0348P)2 + 0.1277P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
2535 reflections | Δρmax = 0.18 e Å−3 |
139 parameters | Δρmin = −0.15 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.2761 (2) | 0.1954 (2) | 0.68844 (12) | 0.0384 (3) | |
H1 | 0.152580 | 0.148144 | 0.636826 | 0.046* | |
C2 | 0.2561 (3) | 0.1996 (2) | 0.79934 (13) | 0.0454 (4) | |
H2 | 0.120202 | 0.152611 | 0.822105 | 0.055* | |
C3 | 0.4365 (3) | 0.2729 (2) | 0.87637 (13) | 0.0482 (4) | |
H3 | 0.421898 | 0.276227 | 0.951211 | 0.058* | |
C4 | 0.6386 (3) | 0.3416 (2) | 0.84307 (13) | 0.0455 (4) | |
H4 | 0.759276 | 0.393419 | 0.895615 | 0.055* | |
C5 | 0.6619 (2) | 0.3335 (2) | 0.73212 (12) | 0.0378 (3) | |
H5 | 0.800320 | 0.376468 | 0.709453 | 0.045* | |
C6 | 0.4805 (2) | 0.26175 (18) | 0.65370 (11) | 0.0324 (3) | |
C7 | 0.5128 (2) | 0.25283 (19) | 0.53401 (11) | 0.0354 (3) | |
C8 | 0.3085 (2) | 0.2513 (2) | 0.46122 (12) | 0.0383 (3) | |
H8 | 0.168759 | 0.287979 | 0.493566 | 0.046* | |
C9 | 0.3176 (2) | 0.19850 (19) | 0.34947 (11) | 0.0357 (3) | |
H9 | 0.455504 | 0.148284 | 0.321134 | 0.043* | |
C10 | 0.1436 (2) | 0.20911 (19) | 0.26803 (11) | 0.0335 (3) | |
C11 | 0.1590 (3) | 0.1715 (2) | 0.15357 (12) | 0.0407 (4) | |
H11 | 0.283975 | 0.120383 | 0.112231 | 0.049* | |
C12 | −0.0454 (3) | 0.2235 (2) | 0.11041 (13) | 0.0457 (4) | |
H12 | −0.081206 | 0.214416 | 0.035462 | 0.055* | |
C13 | −0.1829 (3) | 0.2901 (2) | 0.19837 (13) | 0.0436 (4) | |
H13 | −0.330437 | 0.334068 | 0.193755 | 0.052* | |
N1 | −0.0693 (2) | 0.28171 (17) | 0.29363 (10) | 0.0386 (3) | |
H1N | −0.130 (3) | 0.302 (2) | 0.3590 (14) | 0.046* | |
O1 | 0.70997 (17) | 0.25046 (16) | 0.49928 (8) | 0.0496 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0329 (7) | 0.0410 (8) | 0.0402 (8) | −0.0001 (6) | 0.0026 (6) | 0.0099 (6) |
C2 | 0.0437 (9) | 0.0482 (9) | 0.0484 (9) | 0.0010 (7) | 0.0145 (7) | 0.0190 (7) |
C3 | 0.0613 (10) | 0.0526 (9) | 0.0349 (8) | 0.0068 (8) | 0.0081 (7) | 0.0181 (7) |
C4 | 0.0467 (9) | 0.0493 (9) | 0.0391 (9) | 0.0005 (7) | −0.0068 (7) | 0.0115 (7) |
C5 | 0.0338 (7) | 0.0404 (8) | 0.0402 (8) | 0.0016 (6) | 0.0029 (6) | 0.0128 (6) |
C6 | 0.0320 (7) | 0.0324 (7) | 0.0331 (7) | 0.0059 (5) | 0.0044 (6) | 0.0089 (5) |
C7 | 0.0335 (7) | 0.0379 (7) | 0.0349 (7) | 0.0053 (6) | 0.0059 (6) | 0.0096 (6) |
C8 | 0.0315 (7) | 0.0474 (8) | 0.0371 (8) | 0.0078 (6) | 0.0052 (6) | 0.0127 (6) |
C9 | 0.0328 (7) | 0.0373 (7) | 0.0380 (8) | 0.0013 (6) | 0.0052 (6) | 0.0120 (6) |
C10 | 0.0320 (7) | 0.0354 (7) | 0.0334 (7) | −0.0009 (5) | 0.0025 (6) | 0.0109 (6) |
C11 | 0.0412 (8) | 0.0464 (8) | 0.0344 (8) | −0.0019 (6) | 0.0062 (6) | 0.0115 (6) |
C12 | 0.0521 (10) | 0.0540 (9) | 0.0333 (8) | −0.0052 (7) | −0.0036 (7) | 0.0179 (7) |
C13 | 0.0364 (8) | 0.0502 (9) | 0.0479 (9) | 0.0019 (7) | −0.0054 (7) | 0.0207 (7) |
N1 | 0.0360 (7) | 0.0472 (7) | 0.0338 (7) | 0.0031 (5) | 0.0048 (5) | 0.0129 (5) |
O1 | 0.0330 (6) | 0.0771 (8) | 0.0403 (6) | 0.0057 (5) | 0.0088 (5) | 0.0181 (5) |
C1—C2 | 1.378 (2) | C8—C9 | 1.3346 (19) |
C1—C6 | 1.3886 (19) | C8—H8 | 0.9300 |
C1—H1 | 0.9300 | C9—C10 | 1.4237 (19) |
C2—C3 | 1.375 (2) | C9—H9 | 0.9300 |
C2—H2 | 0.9300 | C10—N1 | 1.3728 (18) |
C3—C4 | 1.377 (2) | C10—C11 | 1.3761 (19) |
C3—H3 | 0.9300 | C11—C12 | 1.394 (2) |
C4—C5 | 1.374 (2) | C11—H11 | 0.9300 |
C4—H4 | 0.9300 | C12—C13 | 1.361 (2) |
C5—C6 | 1.3867 (19) | C12—H12 | 0.9300 |
C5—H5 | 0.9300 | C13—N1 | 1.3526 (18) |
C6—C7 | 1.4882 (19) | C13—H13 | 0.9300 |
C7—O1 | 1.2318 (16) | N1—H1N | 0.871 (16) |
C7—C8 | 1.462 (2) | ||
C2—C1—C6 | 120.07 (14) | C9—C8—C7 | 121.56 (13) |
C2—C1—H1 | 120.0 | C9—C8—H8 | 119.2 |
C6—C1—H1 | 120.0 | C7—C8—H8 | 119.2 |
C3—C2—C1 | 120.16 (14) | C8—C9—C10 | 128.38 (13) |
C3—C2—H2 | 119.9 | C8—C9—H9 | 115.8 |
C1—C2—H2 | 119.9 | C10—C9—H9 | 115.8 |
C2—C3—C4 | 120.20 (14) | N1—C10—C11 | 106.72 (12) |
C2—C3—H3 | 119.9 | N1—C10—C9 | 124.28 (12) |
C4—C3—H3 | 119.9 | C11—C10—C9 | 128.65 (13) |
C5—C4—C3 | 119.93 (14) | C10—C11—C12 | 108.08 (13) |
C5—C4—H4 | 120.0 | C10—C11—H11 | 126.0 |
C3—C4—H4 | 120.0 | C12—C11—H11 | 126.0 |
C4—C5—C6 | 120.48 (13) | C13—C12—C11 | 107.23 (13) |
C4—C5—H5 | 119.8 | C13—C12—H12 | 126.4 |
C6—C5—H5 | 119.8 | C11—C12—H12 | 126.4 |
C5—C6—C1 | 119.12 (13) | N1—C13—C12 | 108.61 (14) |
C5—C6—C7 | 119.03 (12) | N1—C13—H13 | 125.7 |
C1—C6—C7 | 121.83 (12) | C12—C13—H13 | 125.7 |
O1—C7—C8 | 121.73 (13) | C13—N1—C10 | 109.35 (12) |
O1—C7—C6 | 119.52 (13) | C13—N1—H1N | 125.1 (10) |
C8—C7—C6 | 118.74 (12) | C10—N1—H1N | 124.9 (10) |
C6—C1—C2—C3 | 1.3 (2) | O1—C7—C8—C9 | 17.6 (2) |
C1—C2—C3—C4 | −0.4 (2) | C6—C7—C8—C9 | −163.76 (13) |
C2—C3—C4—C5 | −1.2 (2) | C7—C8—C9—C10 | −172.34 (13) |
C3—C4—C5—C6 | 1.9 (2) | C8—C9—C10—N1 | 1.1 (2) |
C4—C5—C6—C1 | −1.0 (2) | C8—C9—C10—C11 | 173.37 (14) |
C4—C5—C6—C7 | −179.23 (12) | N1—C10—C11—C12 | 0.50 (16) |
C2—C1—C6—C5 | −0.7 (2) | C9—C10—C11—C12 | −172.82 (13) |
C2—C1—C6—C7 | 177.54 (13) | C10—C11—C12—C13 | −0.54 (17) |
C5—C6—C7—O1 | 22.6 (2) | C11—C12—C13—N1 | 0.37 (17) |
C1—C6—C7—O1 | −155.56 (14) | C12—C13—N1—C10 | −0.06 (16) |
C5—C6—C7—C8 | −156.04 (13) | C11—C10—N1—C13 | −0.27 (15) |
C1—C6—C7—C8 | 25.76 (19) | C9—C10—N1—C13 | 173.41 (13) |
Cg1 and Cg2 are the centroids of the (C1–C6) phenyl and (N1/C10–C13) 1H-pyrrole rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1i | 0.872 (17) | 2.119 (17) | 2.9561 (18) | 160.7 (14) |
C2—H2···Cg1ii | 0.93 | 2.82 | 3.450 (2) | 126 |
C5—H5···Cg1iii | 0.93 | 2.91 | 3.5233 (19) | 124 |
C9—H9···Cg2iv | 0.93 | 3.00 | 3.6207 (18) | 126 |
C13—H13···Cg2v | 0.93 | 2.95 | 3.593 (2) | 127 |
Symmetry codes: (i) x−1, y, z; (ii) −x, −y, −z+1; (iii) −x+1, −y+1, −z+1; (iv) −x+1, −y, −z+1; (v) −x, −y+1, −z+1. |
Acknowledgements
The contributions of the authors are as follows: conceptualization, IGM, ANK and AMM; methodology, IB and MA; investigation, ASA and FNN; writing (original draft), MA, AB and ANK; writing (review and editing of the manuscript), MA and ANK; visualization, MA, IGM and FNN; funding acquisition, ASA, AB and FNN; resources, AB, ASA and MA; supervision, MA and ANK.
References
Afkhami, F. A., Mahmoudi, G., Khandar, A. A., Franconetti, A., Zangrando, E., Qureshi, N., Lipkowski, J., Gurbanov, A. V. & Frontera, A. (2019). Eur. J. Inorg. Chem. 2019, 262–270. Web of Science CSD CrossRef CAS Google Scholar
Akkurt, M., Maharramov, A. M., Shikhaliyev, N. G., Qajar, A. M., Atakishiyeva, G., Shikhaliyeva, I. M., Niyazova, A. A. & Bhattarai, A. (2023). UNEC J. Eng. Appl. Sci. 3, 33–39. CrossRef Google Scholar
Askerova, U. F. (2022). UNEC J. Eng. Appl. Sci. 2, 58–64. Google Scholar
Atalay, V. E., Atish, I. S., Shahin, K. F., Kashikchi, E. S. & Karahan, M. (2022). UNEC J. Eng. Appl. Sci. 2, 33–40. Google Scholar
Bąkowicz, J., Galica, T. & Turowska-Tyrk, I. (2015). Z. Kristallogr. Cryst. Mater. 230, 131–137. Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bhardwaj, V., Gumber, D., Abbot, V., Dhiman, S. & Sharma, P. (2015). RSC Adv. 5, 15233–15266. Web of Science CrossRef CAS Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bukhari, M. H., Siddiqui, H. L., Tahir, M. N., Chaudhary, M. A. & Iqbal, A. (2008). Acta Cryst. E64, o867–o868. Web of Science CSD CrossRef IUCr Journals Google Scholar
Donmez, M. & Turkyılmaz, M. (2022). UNEC J. Eng. Appl. Sci. 2, 43–48. Google Scholar
Erenler, R., Dag, B. & Ozbek, B. B. (2022). UNEC J. Eng. Appl. Sci. 2, 26–32. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Mertsalov, D. F., Zubkov, F. I., Nadirova, M. A., Nikitina, E. V., Truong, H. H., Grigoriev, M. S., Zaytsev, V. P., Mahmudov, K. T. & Pombeiro, A. J. L. (2021). Crystals, 11, 112. Web of Science CSD CrossRef Google Scholar
Khalilov, A. N., Khrustalev, V. N., Samigullina, A. I., Akkurt, M., Rzayev, R. M., Bhattarai, A. & Mamedov, İ. G. (2023). Acta Cryst. E79, 736–740. CSD CrossRef IUCr Journals Google Scholar
Khalilov, A. N., Khrustalev, V. N., Tereshina, T. A., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2022). Acta Cryst. E78, 525–529. Web of Science CSD CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Li, J., Zheng, H., Lu, H., Li, J., Yao, L., Wang, Y., Zhou, X., Nie, J., Zhu, X. & Fu, Z. (2022). Eur. Polym. J. 176, 111393. CrossRef Google Scholar
Maharramov, A. M., Shikhaliyev, N. G., Zeynalli, N. R., Niyazova, A. A., Garazade, Kh. A. & Shikhaliyeva, I. M. (2021). UNEC J. Eng. Appl. Sci. 1, 5–11. Google Scholar
Maharramov, A. M., Suleymanova, G. T., Qajar, A. M., Niyazova, A. A., Ahmadova, N. E., Shikhaliyeva, I. M., Garazade, Kh. A., Nenajdenko, V. G. & Shikaliyev, N. G. (2022). UNEC J. Eng. Appl. Sci. 2, 64–73. Google Scholar
Mahmoudi, G., Zangrando, E., Bauzá, A., Maniukiewicz, W., Carballo, R., Gurbanov, A. V. & Frontera, A. (2017). CrystEngComm, 19, 3322–3330. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Zangrando, E., Miroslaw, B., Gurbanov, A. V., Babashkina, M. G., Frontera, A. & Safin, D. A. (2021). Inorg. Chim. Acta, 519, 120279. Web of Science CSD CrossRef Google Scholar
Mezgebe, K., Melaku, Y. & Mulugeta, E. (2023). ACS Omega, 8, 19194–19211. CrossRef CAS PubMed Google Scholar
Naghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020). Acta Cryst. E76, 720–723. Web of Science CSD CrossRef IUCr Journals Google Scholar
Naghiyev, F. N., Khrustalev, V. N., Novikov, A. P., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, I. G. (2022). Acta Cryst. E78, 554–558. Web of Science CSD CrossRef IUCr Journals Google Scholar
Naghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 516–521. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sobhi, R. M. & Faisal, R. M. (2023). UNEC J. Eng. Appl. Sci. 3, 21–32. Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Vázquez-Vuelvas, O. F., Enríquez-Figueroa, R. A., García-Ortega, H., Flores-Alamo, M. & Pineda-Contreras, A. (2015). Acta Cryst. E71, 161–164. CSD CrossRef IUCr Journals Google Scholar
Velásquez, J. D., Mahmoudi, G., Zangrando, E., Gurbanov, A. V., Zubkov, F. I., Zorlu, Y., Masoudiasl, A. & Echeverría, J. (2019). CrystEngComm, 21, 6018–6025. Google Scholar
Walsh, C. T., Garneau-Tsodikova, S. & Howard-Jones, A. R. (2006). Nat. Prod. Rep. 23, 517–531. Web of Science CrossRef PubMed CAS Google Scholar
Zingales, S. K., Wallace, M. Z. & Padgett, C. W. (2015). Acta Cryst. E71, o707. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.