research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Cadmium phosphates Cd2(PO4)OH and Cd5(PO4)2(OH)4 crystallizing in mineral structures

crossmark logo

aTU Wien, Institute for Chemical Technologies and Analytics, Division of Structural Chemistry, Getreidemarkt 9/E164-05-01, 1060 Vienna, Austria
*Correspondence e-mail: matthias.weil@tuwien.ac.at

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 8 January 2024; accepted 22 January 2024; online 26 January 2024)

Single crystals of two basic cadmium phosphates, dicadmium orthophosphate hydroxide, Cd2(PO4)OH, and penta­cadmium bis­(orthophosphate) tetra­kis­(hydroxide), Cd5(PO4)2(OH)4, were obtained under hydro­thermal conditions. Cd2(PO4)OH adopts the triplite [(Mn,Fe)2(PO4)F] structure type. Its asymmetric unit comprises two Cd, one P and five O sites, all situated at the general Wyckoff position 8 f of space group I2/a; two of the O atoms are positionally disordered over two sites, and the H atom could not be localized. Disregarding the disorder, distorted [CdO6] polyhedra form a tri-periodic network by edge-sharing with neighbouring [CdO6] units and by vertex-sharing with [PO4] units. The site associated with the OH group is coordinated by four Cd atoms in a distorted tetra­hedral manner forming 1[(OH)Cd4/2] chains parallel to [001]. The oxygen environment around the OH site suggests multiple acceptor atoms for possible O—H⋯O hydrogen-bonding inter­actions and is the putative reason for the disorder. Cd5(PO4)2(OH)4 adopts the arsenoclasite [Mn5(AsO4)2(OH)4] structure type. Its asymmetric unit comprises five Cd, two P, and twelve O sites all located at the general Wyckoff position 4 a of space group P212121; the H atoms could not be localized. The crystal structure of Cd5(PO4)2(OH)4 can be subdivided into two main sub-units. One consists of three edge-sharing [CdO6] octa­hedra, and the other of two edge- and vertex-sharing [CdO6] octa­hedra. Each sub-unit forms corrugated ribbons extending parallel to [100]. The two types of ribbons are linked into the tri-periodic arrangement through vertex-sharing and through common [PO4] tetra­hedra. Qu­anti­tative structure comparisons are made with isotypic M5(XO4)2(OH)4 crystal structures (M = Cd, Mn, Co; X = P, As, V).

1. Chemical context

In the quest for new oxidotellurates(IV) modified by incorporation of tetra­hedral phosphate anions (Eder & Weil, 2020[Eder, F. & Weil, M. (2020). Acta Cryst. E76, 625-628.]; Ok & Halasyamani, 2006[Ok, K. M. & Halasyamani, P. S. (2006). J. Solid State Chem. 179, 1345-1350.]; Yao et al., 2021[Yao, W.-D., Yan, M., Li, X.-H., Liu, W. & Tang, R.-L. (2021). Eur. J. Inorg. Chem. pp. 4566-4571.]; Zhao et al., 2021a[Zhao, M., Dong, W., Wu, Y., Mei, D., Wen, S. & Doert, T. (2021a). J. Alloys Compd. 865, 158785.],b[Zhao, M., Sun, Y., Wu, Y., Mei, D., Wen, S. & Doert, T. (2021b). J. Alloys Compd. 854, 157243.]; Zimmermann et al., 2011[Zimmermann, I., Kremer, R. K. & Johnsson, M. (2011). J. Solid State Chem. 184, 3080-3084.]), crystals of Cd2(PO4)OH were serendipitously obtained under hydro­thermal conditions when working in the system Cd/TeIV/PV/O/(H). During a targeted synthesis of Cd2(PO4)OH under Te-free conditions, another phosphate with composition Cd5(PO4)2(OH)4 had crystallized. We report here the synthesis conditions and crystal structure refinements of these two basic cadmium phosphates and their relationships with known mineral structures.

2. Structural commentary

So far, structural data for basic cadmium phosphates have only been reported for apatite-type Cd5(PO4)3(OH) (Hata et al., 1978[Hata, M., Okada, K., Iwai, S., Akao, M. & Aoki, H. (1978). Acta Cryst. B34, 3062-3064.]). The title compounds, which are described here for the first time, crystallize with known mineral structures. Cd2(PO4)(OH) adopts the triplite structure, which was first reported by Waldrop (1968[Waldrop, L. (1968). Naturwissenschaften, 55, 178.]). Triplite is a mineral with composition (Fe,Mn)2(PO4)F, and other natural and synthetic compounds with the composition M2(XO4)Y share this structure type, where M = Mn, Fe, Cd, Co, Mg; X = P, As; Y = F, (F,OH) (Đorđević & Kolitsch, 2013[Ðorđević, T. & Kolitsch, U. (2013). Miner. Petrol. 107, 243-251.]). Cd5(PO4)2(OH)4 crystallizes isotypically with the mineral arsenoclasite [Mn5(AsO4)2(OH)4], the crystal structure of which was determined by Moore & Molin-Case (1971[Moore, P. B. & Molin-Case, J. (1971). Am. Mineral. 56, 1539-1552.]). Other isostructural compounds are synthetic Cd5(VO4)2(OH)4 (Karanović & Đorđević, 2022[Karanović, L. & Đorđević, T. (2022). Minerals, 12, 1601.]), Co5(PO4)2(OH)4 and Mn5(PO4)2(OH)4 (Ruszala et al., 1977[Ruszala, F. A., Anderson, J. B. & Kostiner, E. (1977). Inorg. Chem. 16, 2417-2422.]), as well as the natural variant of Mn5(PO4)2(OH)4 – the mineral gatehouseite (Elliott & Pring, 2011[Elliott, P. & Pring, A. (2011). Miner. Mag. 75, 2823-2832.]).

Cd2(PO4)OH is the first reported M2(XO4)Y compound with exclusively OH ions at the Y site to crystallize in the triplite structure in space-group type I2/a. Such M2(XO4)OH compounds usually adopt the triploidite structure in space-group type P21/a, like the arsenate analogue Cd2(AsO4)(OH) (Đorđević & Kolitsch, 2013[Ðorđević, T. & Kolitsch, U. (2013). Miner. Petrol. 107, 243-251.]). Triploidite-like structures have twice the unit-cell volume of triplite-like structures and show no centering of the monoclinic unit-cell. However, for Cd2(PO4)OH, reflections hinting at a doubled unit-cell volume or violating the reflection conditions for an I-centered unit-cell were not found in the diffraction data.

Cd2(PO4)OH. The asymmetric unit of Cd2(PO4)OH comprises two Cd, one P and five O sites (O1 and O2 being positionally disordered over two sites each). All atomic sites are situated at the general Wyckoff position 8 f of space group I2/a. The resulting coordination polyhedra around Cd1, Cd2 and P are depicted in Fig. 1[link]. For the sake of simplicity, the crystal structure of Cd2(PO4)OH will be described in the following without the disorder of atoms O1 and O2. Considering Cd—O distances < 3.0 Å as relevant, both Cd sites are coordinated by six oxygen atoms forming significantly distorted [CdO4(OH)2] octa­hedra (Table 1[link], where only the bonds for O atoms with major occupancy are indicated). The mean Cd—O distances in the two polyhedra (Cd1—O = 2.31, Cd2—O = 2.28 Å) are in good agreement with the literature value of 2.302 (69) Å for six-coordinate Cd (Gagné & Hawthorne, 2020[Gagné, O. C. & Hawthorne, F. C. (2020). IUCrJ, 7, 581-629.]). Each [CdO4(OH)2] octa­hedron shares four of its edges with neighbouring [CdO4(OH)2] octa­hedra, two with each Cd (Cd1 and Cd2). Additionally, each [CdO4(OH)2] unit shares four of its O atoms with [PO4] tetra­hedra, leading to a tri-periodic structure (Fig. 2[link]).

Table 1
Selected bond lengths (Å) for Cd2(PO4)OH

Cd1—O3i 2.224 (7) Cd2—O1Biv 2.242 (12)
Cd1—OH 2.256 (6) Cd2—O4 2.251 (7)
Cd1—O4ii 2.275 (6) Cd2—O2Biii 2.38 (5)
Cd1—O2Biii 2.28 (5) Cd2—O1Bvi 2.556 (14)
Cd1—O3iv 2.350 (6) P1—O2Bvii 1.51 (5)
Cd1—OHi 2.484 (7) P1—O3 1.519 (7)
Cd2—OHv 2.101 (6) P1—O1B 1.528 (11)
Cd2—OH 2.174 (7) P1—O4 1.542 (7)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x, y-1, z]; (v) [-x+{\script{1\over 2}}, y, -z+1]; (vi) [-x, -y+1, -z+1]; (vii) [x-1, y, z].
[Figure 1]
Figure 1
Coordination polyhedra in the crystal structure of Cd2(PO4)OH showing the disordered atoms O1 and O2. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes refer to Table 1[link].
[Figure 2]
Figure 2
The idealized crystal structure of Cd2(PO4)OH without disorder of O1 and O2 in a projection along [0[\overline{1}]0]. The O atom of the OH group is given as a yellow sphere, the other O atoms as white spheres, the Cd atoms as green spheres; the [PO4] unit is displayed as a red polyhedron.

Of the five oxygen sites, four (O1–O4) are bound to two Cd and one P atom each. The site associated with the OH group is bound to four Cd sites. This assignment is supported by bond-valence calculations (Brown, 2002[Brown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.]), using the parameters of Brese & O'Keeffe (1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]). The bond-valence sum (BVS) of the OH site amounts to 1.67 valence units (1.92–2.08 valence units for the other O sites). The OH site is the one occupied by the F anion in the isotypic triplite-type structures. The [(OH)Cd4] polyhedron has a distorted tetra­hedral shape with bond lengths in the range 2.101 (6)–2.484 (7) Å. The [(OH)Cd4] tetra­hedra are linked to each other by sharing two edges with neighbouring tetra­hedra forming 1[(OH)Cd4/2] chains extending parallel to [001] (Fig. 2[link]).

The environment of the OH site suggests multiple acceptor atoms for possible O—H⋯O hydrogen-bonding inter­actions and is the putative reason why the hydrogen atom could not be localized and also for the disorder of O1 and O2. Taking into account hydrogen-bonding inter­actions with O⋯O distances < 3.0 Å as significant, there are six O atoms in the vicinity of each OH site (Fig. 3[link]). The shortest contact amounts to 2.635 (12) Å towards a symmetry-related OH site, the longest to 2.94 (8) Å to O2A. In the isotypic crystal structure of Cd2(PO4)F (Rea & Kostiner, 1974[Rea, J. R. & Kostiner, E. (1974). Acta Cryst. B30, 2901-2903.]), the F site (corresponding to the OH site in the title structure) is not split and has four contacts < 3.0 Å to two F sites [2.756 (6) and 2.800 (7) Å] and to two O sites [2.828 (5) and 2.832 (5) Å].

[Figure 3]
Figure 3
Cd2(PO4)OH. Environment of the OH site suitable for hydrogen-bonding inter­actions [d(OH⋯O) < 3.0 Å]; distances (Å) are indicated. Symmetry codes: (a) −x + [{1\over 2}], y, −z + 1; (b) −x + 1, y − [{1\over 2}], −z + [{1\over 2}]; (c) −x + [{1\over 2}], y − 1, −z + 1; (d) −x + [{1\over 2}], −y + [{1\over 2}], −z + [{1\over 2}].

Owing to the disorder present in Cd2(PO4)OH, a qu­anti­tative comparison with the ordered isotypic M2(XO4)Y crystal structures adopting the triplite-structure type was not undertaken.

Cd5(PO4)2(OH)4. The asymmetric unit of Cd5(PO4)2(OH)4 comprises five Cd, two P and twelve O sites, all located on the general Wyckoff position 4 a of space group P212121; the H-atom sites could not be localized. All five Cd sites are surrounded by six O atoms, resulting in a distorted octa­hedral environment for each metal atom. The Cd—O bond lengths are in a broad range between 2.184 (6) and 2.599 (6) Å (Table 2[link]). The mean bond lengths are 2.341 Å (Cd1), 2.283 Å (Cd2), 2.222 Å (Cd3), 2.331 Å (Cd4) and 2.336 Å (Cd5), again in good agreement with the literature value specified above. The BVS values of the Cd atoms amount to 1.91, 2.16, 1.98, 2.00 and 1.90 valence units and thus show good agreement with the expected value of 2.

Table 2
Comparison of bond lengths (Å) in the isotypic M5(XO4)2(OH)4 structures (M = Cd, Mn, Co; X = P, As, V) after standardization, and parameters of structural comparison with Cd5(PO4)2(OH)4 as the reference structure

  Cd5(PO4)2(OH)4 Mn5(AsO4)2(OH)4a Mn5(PO4)2(OH)4b Co5(PO4)2(OH)4c Cd5(VO4)2(OH)4d
M1—O8 2.245 (7) 2.19 2.156 2.063 2.295 (4)
M1—O4i 2.267 (6) 2.25 2.193 2.132 2.317 (4)
M1—O8i 2.269 (6) 2.17 2.157 2.050 2.271 (4)
M1—O3 2.312 (6) 2.20 2.214 2.207 2.287 (3)
M1—O6ii 2.412 (7) 2.31 2.299 2.162 2.378 (4)
M1—O10i 2.540 (6) 2.35 2.407 2.250 2.408 (3)
M2—O8i 2.236 (6) 2.19 2.153 2.106 2.244 (4)
M2—O4 2.246 (6) 2.13 2.131 2.047 2.2469 (4)
M2—O5 2.258 (6) 2.19 2.166 2.107 2.265 (4)
M2—O2iii 2.306 (6) 2.18 2.181 2.061 2.293 (4)
M2—O6iv 2.319 (6) 2.19 2.229 2.171 2.321 (3)
M2—O10 2.335 (6) 2.25 2.244 2.152 2.329 (3)
M3—O5 2.202 (6) 2.07 2.076 1.998 2.193 (3)
M3—O11 2.226 (6) 2.06 2.076 1.983 2.212 (3)
M3—O2 2.300 (6) 2.26 2.225 2.232 2.302 (4)
M3—O7iv 2.327 (6) 2.13 2.179 2.085 2.268 (4)
M3—O1 2.351 (6) 2.31 2.293 2.194 2.325 (3)
M3—O3iv 2.599 (6) 2.69 2.583 2.410 2.849 (4)
M4—O5 2.184 (6) 2.15 2.107 2.029 2.241 (4)
M4—O2v 2.196 (6) 2.14 2.116 2.031 2.252 (3)
M4—O7vi 2.305 (6) 2.18 2.173 2.078 2.282 (3)
M4—O12 2.315 (6) 2.22 2.210 2.170 2.302 (3)
M4—O10 2.434 (6) 2.29 2.328 2.194 2.365 (4)
M4—O6vi 2.555 (6) 2.36 2.453 2.340 2.413 (4)
M5—O4v 2.240 (7) 2.17 2.165 2.110 2.245 (4)
M5—O9vii 2.247 (6) 2.09 2.098 2.029 2.256 (4)
M5—O3vi 2.334 (6) 2.32 2.297 2.260 2.299 (4)
M5—O1viii 2.364 (6) 2.19 2.233 2.092 2.287 (3)
M5—O9 2.405 (6) 2.19 2.259 2.114 2.381 (4)
M5—O12 2.432 (6) 2.43 2.384 2.281 2.642 (4)
X1—O9 1.524 (6) 1.72 1.547 1.537 1.698 (3)
X1—O6 1.543 (7) 1.72 1.554 1.547 1.741 (4)
X1—O12 1.544 (6) 1.65 1.528 1.545 1.695 (4)
X1—O1 1.553 (6) 1.68 1.539 1.552 1.749 (3)
X2—O11v 1.523 (6) 1.65 1.527 1.519 1.688 (3)
X2—O7 1.538 (7) 1.67 1.540 1.546 1.721 (3)
X2—O10 1.543 (7) 1.67 1.544 1.545 1.731 (4)
X2—O3 1.562 (6) 1.68 1.542 1.555 1.733 (4)
           
S   0.0118 0.0199 0.0394 0.0106
dmax   0.3033 0.1232 0.2613 0.2351
dav   0.1378 0.0598 0.1123 0.1264
Δ   0.044 0.013 0.026 0.100
quotient X:M of ionic radii 0.178 0.404 0.205 0.228 0.374
Notes: (a) Lattice parameter after standardization: a = 5.75 (1), b = 9.31 (2), c = 18.29 (2) Å, V = 979.1 Å3. (b) Lattice parameters after standardization: a = 5.6923 (6), b = 9.110 (1), c = 18.032 (4) Å, V = 935.1 Å3. (c) Lattice parameters after standardization: a = 5.5154 (4), b = 8.903 (2), c = 17.397 (2) Å, V = 854.3 Å3. (d) Lattice parameters after standardization: a = 6.0133 (12), b = 9.5411 (19) Å, c = 19.011 (4) Å, V = 1090.7 (4) Å3. Symmetry codes: (i) x − [{1\over 2}], −y + [{1\over 2}], −z + 1; (ii) −x + [{1\over 2}], −y, z + [{1\over 2}]; (iii) −x, y − [{1\over 2}], −z + [{1\over 2}]; (iv) −x, y + [{1\over 2}], −z + [{1\over 2}]; (v) −x + 1, y − [{1\over 2}], −z + [{1\over 2}]; (vi) −x + 1, y + [{1\over 2}], −z + [{1\over 2}]; (vii) x + [{1\over 2}], −y + [{1\over 2}], −z; (viii) x + 1, y, z.

Of the twelve O sites present in the structure of Cd5(PO4)2(OH)4, four are occupied by the O atom of a hydroxide anion, as revealed by BVS calculations. O2, O4, O5, and O8 have considerably lower BVS values of 1.14, 1.17, 1.30 and 1.18 valence units, respectively, than the remaining O atoms [1.78 (O1), 1.96 (O3), 1.97 (O6), 1.90 (O7), 1.94 (O9), 1.95 (O10), 1.71 (O11) and 1.79 (O12) valence units]. Moreover, these four oxygen sites are the only ones that are not part of a phosphate group. Each of the hydroxide O atoms is connected to three Cd atoms in the form of a flat trigonal pyramid. According to the oxygen environments around the hydroxide O atoms, the closest possible acceptor groups for O—H⋯O hydrogen-bonding inter­actions are located at 2.997 (8) Å for O2⋯O1(−x, y + [{1\over 2}], −z + [{1\over 2}]), 2.986 (9) Å for O4⋯O9(−x + [{1\over 2}], −y + 1, z + [{1\over 2}]), 2.890 (9) Å for O5⋯O12(−x + 1, y + [{1\over 2}], −z + [{1\over 2}]), and 2.827 (9) Å for O8⋯O11(−x + [{1\over 2}], −y + 1, z + [{1\over 2}]), indicating rather weak hydrogen bonds in each case.

The [CdO6] polyhedra {[Cd1O3(OH)3], [Cd2O2(OH)4], [Cd3O4(OH)2], [Cd4O4(OH)2] and [Cd5O5(OH)]} define the structure by forming two main sub-units. Through edge-sharing, the octa­hedra around Cd1, Cd2 and Cd4 form corrugated double ribbons extending parallel to [100] as the first unit. The second unit is defined by the octa­hedra around Cd3 and Cd5. By sharing corners and edges, another corrugated ribbon is formed and also propagates parallel to [100]. The two types of ribbons are linked into a tri-periodic arrangement by sharing corners, as well as by sharing the two PO4 tetra­hedra (Fig. 4[link]). The latter show deviations from an ideal tetra­hedral arrangement, as revealed by slightly different bond lengths (Table 2[link]) and by angular distortions, with O—P—O angles ranging from 106.2 (3) to 112.2 (3)° for P1 and 104.6 (4) to 114.0 (4)° for P2.

[Figure 4]
Figure 4
The crystal structure of Cd5(PO4)2(OH)4 in a projection along [100] in polyhedral representation. The [CdO6] octa­hedra defining the first sub-unit are given in green, the [CdO6] octa­hedra defining the second sub-unit are given in blue; [PO4] tetra­hedra are red. O atoms of OH groups are yellow, other O atoms are white. Displacement ellipsoids are displayed at the 74% probability level.

Cd5(PO4)2(OH)4 and the four isotypic M5(XO4)2(OH)4 crystal structures (M = Cd, Mn, Co; X = P, As, V) were quanti­tatively compared using the compstru software (de la Flor et al., 2016[Flor, G. de la, Orobengoa, D., Tasci, E., Perez-Mato, J. M. & Aroyo, M. I. (2016). J. Appl. Cryst. 49, 653-664.]) available at the Bilbao Crystallographic server (Aroyo et al., 2006[Aroyo, M. I., Perez-Mato, J. M., Capillas, C., Kroumova, E., Ivantchev, S., Madariaga, G., Kirov, A. & Wondratschek, H. (2006). Z. Kristallogr. 221, 15-27.]). For this purpose and for direct comparison of bond lengths (Table 2[link]), the hydrogen atoms (if part of the model) were removed, and all crystal structures were standardized with STRUCTURE-TIDY (Gelato & Parthé, 1987[Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.]). With Cd5(PO4)2(OH)4 as the reference structure, numerical values of parameter of comparison (degree of lattice distortion S, the arithmetic mean of the distance between paired atoms dav, the maximum difference between the atomic positions of the matching atoms dmax, and the measure of similarity Δ) are collated in Table 2[link]. As expected for isotypic structures, the low values for Δ indicate high similarities of Cd5(PO4)2(OH)4 with the four M5(XO4)2(OH)4 crystal structures. The differences in bond lengths of the individual structural units ([MO6]; [XO4]) are due to the different sizes of MII and XV, viz. 0.745 Å for Co (high spin), 0.83 Å for Mn (high spin), 0.95 Å for Cd, and 0.17 Å for P, 0.335 Å for As, 0.355 Å for V; all values were taken from Shannon (1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]). As a simple measure, the quotient X:M can be used for correlation. The closer the quotient is to that of P:Cd = 0.178, the higher is the similarity.

3. Synthesis and crystallization

Crystals of Cd2(PO4)OH and Cd5(PO4)2(OH)4 were both obtained from reactions under hydro­thermal conditions. The starting materials were 0.1927 g (1.129 mmol) CdCO3, 0.1784 g (1.118 mmol) TeO2 and 0.1289 g (1.118 mmol) of 85%wt H3PO4 for the Cd2(PO4)OH batch, and 0.1874 g (0.607 mmol) Cd(NO3)2·4H2O, 0.0296 g (0.257 mmol) 85%wt H3PO4, and 0.2197 g (3.916 mmol) KOH for the Cd5(PO4)2(OH)4 batch. The reactants were weighed into small Teflon containers with a volume of ca 3 ml and mixed with deionized water so that the inner volume was filled to about two thirds with liquid. Then, the Teflon containers were placed into a steel autoclave and heated to 483 K for 7 d. Afterwards the autoclave was cooled down to room temperature within about 4 h. The formed solids were filtered off, washed with mother liquor, water and ethanol, and dried in air.

For the Cd2(PO4)OH batch, the reaction product was a mixture of a white and bright-yellow solid. An X-ray powder diffraction measurement revealed α-TeO2, which can be associated with the yellow solid, as a side product besides Cd2(PO4)OH. Small colourless block-shaped crystals of Cd2(PO4)OH could be isolated for single crystal X-ray diffraction.

For the Cd5(PO4)2(OH)4 batch, the reaction product was a white powder. Apart from Cd(OH)2 and Cd5(PO4)2(OH)4 no other phases could be identified in the X-ray powder diffraction pattern. Colourless block-shaped crystals of Cd5(PO4)2(OH)4 could be isolated for single crystal X-ray diffraction.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

  Cd2(PO4)OH Cd5(PO4)2(OH)4
Crystal data
Mr 336.78 819.97
Crystal system, space group Monoclinic, I2/a Orthorhombic, P212121
Temperature (K) 296 296
a, b, c (Å) 12.4307 (13), 6.6910 (6), 10.7087 (10) 5.8901 (4), 9.3455 (6), 18.7423 (13)
α, β, γ (°) 90, 107.506 (3), 90 90, 90, 90
V3) 849.43 (14) 1031.69 (12)
Z 8 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 10.30 10.51
Crystal size (mm) 0.10 × 0.08 × 0.05 0.11 × 0.07 × 0.04
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.600, 0.746 0.517, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 7833, 1477, 1026 10057, 4493, 3588
Rint 0.065 0.051
(sin θ/λ)max−1) 0.747 0.806
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.100, 1.03 0.039, 0.059, 0.97
No. of reflections 1477 4493
No. of parameters 80 172
H-atom treatment H-atom parameters not defined H-atom parameters not defined
Δρmax, Δρmin (e Å−3) 2.91, −3.55 1.53, −1.76
Absolute structure Flack x determined using 1284 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.03 (4)
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ATOMS (Dowty, 2006[Dowty, E. (2006). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

For structure refinement of triplite-type Cd2(PO4)OH, labelling and fractional coordinates of atoms were adapted from the crystal structure of triplite (Waldrop, 1969[Waldrop, L. (1969). Z. Kristallogr. 130, 1-14.]). For direct comparison with other triplite-like structures (Waldrop, 1969[Waldrop, L. (1969). Z. Kristallogr. 130, 1-14.]; Đorđević & Kolitsch, 2013[Ðorđević, T. & Kolitsch, U. (2013). Miner. Petrol. 107, 243-251.]), the unconventional setting I2/a of space-group type No. 15 was chosen. The conventional setting in C2/c transforms with −a − c, −b, c to the chosen unconventional setting. Oxygen atoms O1 and O2 were found to be positionally disordered over two sites. The pairs O1A/O1B and O2A/O2B were refined with common displacement parameters each. The site occupation factors were refined for the pair O1A/O2A and O1A/O2A to a ratio of 0.349 (18):0.651 (18). Remaining positive and negative resid­ual electron density close to the Cd1 position suggests possible positional disorder of this atom as well. However, using split positions for Cd1 led to a physically non-meaningful model and was not considered for the final refinement. H atoms could not be located for Cd2(PO4)OH.

For better comparison with the isotypic crystal structures of M5(XO4)2(OH)4 compounds (M = Cd, Mn, Co; X = P, As), structure data of Cd5(PO4)2(OH)4 were standardized with STRUCTURE-TIDY (Gelato & Parthé, 1987[Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.]). H atoms could not be located reliably for Cd5(PO4)2(OH)4.

Supporting information


Computing details top

Dicadmium orthophosphate hydroxide (CdPO4OH) top
Crystal data top
Cd2(PO4)OHF(000) = 1216
Mr = 336.78Dx = 5.267 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
a = 12.4307 (13) ÅCell parameters from 1272 reflections
b = 6.6910 (6) Åθ = 3.4–25.8°
c = 10.7087 (10) ŵ = 10.30 mm1
β = 107.506 (3)°T = 296 K
V = 849.43 (14) Å3Block, colourless
Z = 80.10 × 0.08 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
1026 reflections with I > 2σ(I)
ω– and φ–scanRint = 0.065
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 32.1°, θmin = 3.4°
Tmin = 0.600, Tmax = 0.746h = 1818
7833 measured reflectionsk = 99
1477 independent reflectionsl = 1515
Refinement top
Refinement on F280 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.0267P)2 + 36.2119P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.100(Δ/σ)max < 0.001
S = 1.03Δρmax = 2.91 e Å3
1477 reflectionsΔρmin = 3.55 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.20094 (5)0.00573 (10)0.19098 (6)0.01905 (15)
Cd20.10811 (8)0.15931 (10)0.44546 (7)0.0293 (2)
P10.07732 (19)0.6694 (3)0.3759 (2)0.0151 (4)
O1A0.123 (2)0.856 (3)0.469 (2)0.028 (3)0.349 (18)
O1B0.0590 (13)0.8402 (17)0.4621 (11)0.028 (3)0.651 (18)
O2A0.970 (8)0.592 (15)0.297 (10)0.040 (7)0.349 (18)
O2B0.958 (4)0.640 (7)0.287 (5)0.040 (7)0.651 (18)
O30.1538 (6)0.7093 (10)0.2916 (7)0.0299 (16)
O40.1231 (6)0.4933 (10)0.4698 (6)0.0261 (14)
OH0.2574 (6)0.1685 (10)0.3799 (6)0.0265 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0173 (3)0.0217 (3)0.0184 (3)0.0027 (3)0.0058 (2)0.0029 (3)
Cd20.0639 (6)0.0122 (3)0.0167 (3)0.0014 (3)0.0197 (3)0.0001 (3)
P10.0196 (11)0.0113 (8)0.0157 (9)0.0003 (8)0.0072 (8)0.0014 (8)
O1A0.043 (8)0.017 (4)0.025 (4)0.009 (6)0.012 (6)0.004 (3)
O1B0.043 (8)0.017 (4)0.025 (4)0.009 (6)0.012 (6)0.004 (3)
O2A0.011 (10)0.08 (2)0.029 (9)0.002 (11)0.000 (8)0.033 (12)
O2B0.011 (10)0.08 (2)0.029 (9)0.002 (11)0.000 (8)0.033 (12)
O30.019 (4)0.030 (4)0.046 (4)0.002 (3)0.019 (3)0.014 (3)
O40.041 (4)0.018 (3)0.020 (3)0.007 (3)0.011 (3)0.005 (3)
OH0.040 (4)0.023 (3)0.014 (3)0.009 (3)0.003 (3)0.003 (3)
Geometric parameters (Å, º) top
Cd1—O3i2.224 (7)Cd2—O42.251 (7)
Cd1—OH2.256 (6)Cd2—O2Bii2.38 (5)
Cd1—O2Aii2.26 (10)Cd2—O2Aii2.52 (9)
Cd1—O4iii2.275 (6)Cd2—O1Bvi2.556 (14)
Cd1—O2Bii2.28 (5)Cd2—Cd2v3.3659 (18)
Cd1—O3iv2.350 (6)P1—O2Avii1.44 (11)
Cd1—OHi2.484 (7)P1—O2Bvii1.51 (5)
Cd1—Cd2iii3.4339 (9)P1—O31.519 (7)
Cd1—Cd23.4453 (10)P1—O1B1.528 (11)
Cd2—O1Aiv2.05 (2)P1—O41.542 (7)
Cd2—OHv2.101 (6)P1—O1A1.59 (2)
Cd2—OH2.174 (7)O1A—O1B0.78 (2)
Cd2—O1Biv2.242 (12)
O3i—Cd1—OH102.4 (3)O1Biv—Cd2—Cd2v104.7 (4)
O3i—Cd1—O2Aii158 (3)O4—Cd2—Cd2v85.30 (18)
OH—Cd1—O2Aii81.1 (17)O2Bii—Cd2—Cd2v111.2 (12)
O3i—Cd1—O4iii100.9 (3)O2Aii—Cd2—Cd2v113 (2)
OH—Cd1—O4iii146.6 (2)O1Bvi—Cd2—Cd2v139.0 (3)
O2Aii—Cd1—O4iii86 (3)O1Aiv—Cd2—Cd1viii125.3 (6)
O3i—Cd1—O2Bii163.9 (15)OHv—Cd2—Cd1viii45.93 (19)
OH—Cd1—O2Bii74.4 (8)OH—Cd2—Cd1viii96.04 (17)
O2Aii—Cd1—O2Bii9 (2)O1Biv—Cd2—Cd1viii128.2 (3)
O4iii—Cd1—O2Bii89.0 (13)O4—Cd2—Cd1viii40.91 (16)
O3i—Cd1—O3iv76.9 (2)O2Bii—Cd2—Cd1viii140.2 (11)
OH—Cd1—O3iv93.5 (3)O2Aii—Cd2—Cd1viii148 (2)
O2Aii—Cd1—O3iv81 (3)O1Bvi—Cd2—Cd1viii80.1 (3)
O4iii—Cd1—O3iv114.9 (3)Cd2v—Cd2—Cd1viii70.04 (2)
O2Bii—Cd1—O3iv87.5 (14)O1Aiv—Cd2—Cd175.0 (7)
O3i—Cd1—OHi110.1 (2)OHv—Cd2—Cd1110.3 (2)
OH—Cd1—OHi76.5 (2)OH—Cd2—Cd139.81 (17)
O2Aii—Cd1—OHi92 (3)O1Biv—Cd2—Cd185.5 (3)
O4iii—Cd1—OHi73.2 (2)O4—Cd2—Cd1111.95 (16)
O2Bii—Cd1—OHi84.8 (13)O2Bii—Cd2—Cd141.3 (12)
O3iv—Cd1—OHi168.8 (2)O2Aii—Cd2—Cd141 (2)
O3i—Cd1—Cd2iii123.70 (17)O1Bvi—Cd2—Cd1144.2 (3)
OH—Cd1—Cd2iii106.25 (17)Cd2v—Cd2—Cd173.08 (3)
O2Aii—Cd1—Cd2iii75 (3)Cd1viii—Cd2—Cd1134.96 (3)
O4iii—Cd1—Cd2iii40.40 (16)O2Avii—P1—O2Bvii14 (4)
O2Bii—Cd1—Cd2iii71.9 (16)O2Avii—P1—O3110 (4)
O3iv—Cd1—Cd2iii145.72 (17)O2Bvii—P1—O3108 (2)
OHi—Cd1—Cd2iii37.43 (15)O2Avii—P1—O1B110 (5)
O3i—Cd1—Cd2125.92 (19)O2Bvii—P1—O1B101 (2)
OH—Cd1—Cd238.11 (19)O3—P1—O1B117.5 (6)
O2Aii—Cd1—Cd247 (2)O2Avii—P1—O4102 (3)
O4iii—Cd1—Cd2132.32 (18)O2Bvii—P1—O4114.4 (14)
O2Bii—Cd1—Cd243.4 (12)O3—P1—O4110.3 (4)
O3iv—Cd1—Cd273.04 (18)O1B—P1—O4105.7 (5)
OHi—Cd1—Cd295.77 (14)O2Avii—P1—O1A138 (4)
Cd2iii—Cd1—Cd2105.90 (2)O2Bvii—P1—O1A126 (2)
O1Aiv—Cd2—OHv84.3 (7)O3—P1—O1A93.8 (10)
O1Aiv—Cd2—OH90.8 (8)O1B—P1—O1A29.0 (8)
OHv—Cd2—OH76.1 (3)O4—P1—O1A101.5 (9)
O1Aiv—Cd2—O1Biv20.4 (7)O1B—O1A—P171 (2)
OHv—Cd2—O1Biv96.9 (4)O1B—O1A—Cd2ix94 (2)
OH—Cd2—O1Biv109.4 (4)P1—O1A—Cd2ix134.3 (14)
O1Aiv—Cd2—O4165.7 (7)O1A—O1B—P180 (2)
OHv—Cd2—O481.5 (2)O1A—O1B—Cd2ix66 (2)
OH—Cd2—O487.7 (2)P1—O1B—Cd2ix124.8 (7)
O1Biv—Cd2—O4162.0 (4)O1A—O1B—Cd2vi152 (2)
O1Aiv—Cd2—O2Bii93.8 (13)P1—O1B—Cd2vi121.4 (8)
OHv—Cd2—O2Bii150.0 (12)Cd2ix—O1B—Cd2vi107.6 (4)
OH—Cd2—O2Bii74.0 (12)P1x—O2A—Cd1xi142 (7)
O1Biv—Cd2—O2Bii90.9 (11)P1x—O2A—Cd2xi123 (5)
O4—Cd2—O2Bii99.5 (12)Cd1xi—O2A—Cd2xi92 (3)
O1Aiv—Cd2—O2Aii87 (3)P1x—O2B—Cd1xi135 (2)
OHv—Cd2—O2Aii151 (2)P1x—O2B—Cd2xi128 (3)
OH—Cd2—O2Aii77 (2)Cd1xi—O2B—Cd2xi95.3 (19)
O1Biv—Cd2—O2Aii83 (2)P1—O3—Cd1i118.7 (4)
O4—Cd2—O2Aii107 (2)P1—O3—Cd1ix134.6 (4)
O2Bii—Cd2—O2Aii8 (3)Cd1i—O3—Cd1ix103.1 (2)
O1Aiv—Cd2—O1Bvi90.4 (8)P1—O4—Cd2133.0 (4)
OHv—Cd2—O1Bvi100.2 (3)P1—O4—Cd1viii127.5 (4)
OH—Cd2—O1Bvi175.9 (3)Cd2—O4—Cd1viii98.7 (2)
O1Biv—Cd2—O1Bvi72.4 (4)Cd2v—OH—Cd2103.8 (3)
O4—Cd2—O1Bvi90.2 (3)Cd2v—OH—Cd1137.1 (3)
O2Bii—Cd2—O1Bvi109.8 (12)Cd2—OH—Cd1102.1 (3)
O2Aii—Cd2—O1Bvi107 (2)Cd2v—OH—Cd1i96.6 (3)
O1Aiv—Cd2—Cd2v84.9 (8)Cd2—OH—Cd1i113.6 (3)
OHv—Cd2—Cd2v38.84 (19)Cd1—OH—Cd1i103.5 (2)
OH—Cd2—Cd2v37.31 (16)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x, y1, z; (v) x+1/2, y, z+1; (vi) x, y+1, z+1; (vii) x1, y, z; (viii) x, y+1/2, z+1/2; (ix) x, y+1, z; (x) x+1, y, z; (xi) x+1, y+1/2, z+1/2.
Pentacadmium bis(orthophosphate) tetrakis(hydroxide) (Cd5PO42OH2) top
Crystal data top
Cd5(PO4)2(OH)4Dx = 5.279 Mg m3
Mr = 819.97Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 2236 reflections
a = 5.8901 (4) Åθ = 3.9–33.6°
b = 9.3455 (6) ŵ = 10.51 mm1
c = 18.7423 (13) ÅT = 296 K
V = 1031.69 (12) Å3Block, colourless
Z = 40.11 × 0.07 × 0.04 mm
F(000) = 1480
Data collection top
Bruker APEXII CCD
diffractometer
3588 reflections with I > 2σ(I)
ω– and φ–scanRint = 0.051
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 35.0°, θmin = 2.2°
Tmin = 0.517, Tmax = 0.747h = 99
10057 measured reflectionsk = 1411
4493 independent reflectionsl = 2830
Refinement top
Refinement on F2H-atom parameters not defined
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0115P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.039(Δ/σ)max < 0.001
wR(F2) = 0.059Δρmax = 1.53 e Å3
S = 0.97Δρmin = 1.76 e Å3
4493 reflectionsAbsolute structure: Flack x determined using 1284 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
172 parametersAbsolute structure parameter: 0.03 (4)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.05007 (11)0.10420 (7)0.52815 (3)0.01113 (12)
Cd20.05248 (11)0.37573 (7)0.37637 (4)0.01083 (12)
Cd30.08667 (9)0.49327 (7)0.17892 (4)0.01161 (13)
Cd40.56114 (11)0.34489 (7)0.27458 (3)0.01154 (12)
Cd50.76352 (10)0.25492 (7)0.06812 (4)0.01085 (12)
P10.3047 (3)0.1745 (2)0.12271 (13)0.0081 (4)
P20.3795 (3)0.0690 (2)0.37363 (13)0.0084 (4)
O10.0817 (9)0.2510 (7)0.1450 (3)0.0120 (12)
O20.1169 (10)0.7316 (6)0.2081 (3)0.0111 (12)
O30.2013 (10)0.0034 (7)0.4260 (3)0.0130 (12)
O40.2237 (11)0.5202 (7)0.4556 (3)0.0126 (13)
O50.2489 (11)0.4695 (6)0.2841 (3)0.0117 (12)
O60.2772 (10)0.0109 (7)0.1297 (4)0.0126 (12)
O70.2995 (10)0.0217 (7)0.2992 (3)0.0146 (13)
O80.3482 (10)0.2500 (7)0.5450 (3)0.0130 (12)
O90.3680 (11)0.2095 (7)0.0458 (3)0.0128 (13)
O100.3790 (9)0.2340 (7)0.3772 (3)0.0113 (12)
O110.3843 (10)0.5159 (7)0.1066 (3)0.0134 (13)
O120.5088 (9)0.2213 (7)0.1688 (3)0.0115 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0100 (2)0.0129 (3)0.0104 (3)0.0005 (2)0.0002 (2)0.0010 (2)
Cd20.0097 (2)0.0114 (3)0.0114 (3)0.0002 (2)0.0002 (2)0.0006 (2)
Cd30.0107 (2)0.0103 (3)0.0139 (3)0.0001 (2)0.0008 (2)0.0001 (3)
Cd40.0108 (2)0.0135 (3)0.0103 (3)0.0018 (2)0.0004 (2)0.0008 (2)
Cd50.0124 (2)0.0096 (3)0.0105 (3)0.0012 (2)0.0008 (2)0.0005 (3)
P10.0085 (8)0.0067 (10)0.0090 (10)0.0001 (7)0.0006 (7)0.0002 (9)
P20.0078 (8)0.0085 (10)0.0089 (10)0.0015 (7)0.0008 (7)0.0013 (9)
O10.008 (2)0.012 (3)0.016 (3)0.002 (3)0.000 (2)0.004 (3)
O20.011 (2)0.007 (3)0.015 (3)0.003 (2)0.002 (2)0.003 (3)
O30.015 (3)0.007 (3)0.016 (3)0.003 (2)0.006 (2)0.001 (3)
O40.013 (3)0.012 (3)0.013 (3)0.000 (2)0.003 (2)0.002 (3)
O50.016 (3)0.006 (3)0.013 (3)0.001 (2)0.001 (2)0.006 (2)
O60.016 (3)0.007 (3)0.016 (3)0.003 (3)0.004 (2)0.000 (3)
O70.017 (3)0.020 (4)0.007 (3)0.004 (3)0.001 (2)0.005 (3)
O80.016 (3)0.012 (3)0.011 (3)0.001 (3)0.002 (2)0.001 (3)
O90.013 (3)0.017 (4)0.008 (3)0.001 (2)0.000 (2)0.000 (3)
O100.007 (2)0.010 (3)0.016 (3)0.004 (2)0.001 (2)0.004 (3)
O110.011 (2)0.015 (3)0.015 (3)0.003 (2)0.001 (2)0.001 (3)
O120.010 (3)0.011 (3)0.014 (3)0.000 (2)0.003 (2)0.004 (3)
Geometric parameters (Å, º) top
Cd1—O82.245 (7)Cd4—O2v2.196 (6)
Cd1—O4i2.267 (6)Cd4—O7vi2.305 (6)
Cd1—O8i2.269 (6)Cd4—O122.315 (6)
Cd1—O32.312 (6)Cd4—O102.434 (6)
Cd1—O6ii2.412 (7)Cd4—O6vi2.555 (6)
Cd1—O10i2.540 (6)Cd5—O4v2.240 (7)
Cd2—O8i2.236 (6)Cd5—O9vii2.247 (6)
Cd2—O42.246 (6)Cd5—O3vi2.334 (6)
Cd2—O52.258 (6)Cd5—O1viii2.364 (6)
Cd2—O2iii2.306 (6)Cd5—O92.405 (6)
Cd2—O6iv2.319 (6)Cd5—O122.432 (6)
Cd2—O102.335 (6)P1—O91.524 (6)
Cd3—O52.202 (6)P1—O61.543 (7)
Cd3—O112.226 (6)P1—O121.544 (6)
Cd3—O22.300 (6)P1—O11.553 (6)
Cd3—O7iv2.327 (6)P2—O11v1.523 (6)
Cd3—O12.351 (6)P2—O71.538 (7)
Cd3—O3iv2.599 (6)P2—O101.543 (7)
Cd4—O52.184 (6)P2—O31.562 (6)
O8—Cd1—O4i162.9 (2)O3vi—Cd5—O1viii85.2 (2)
O8—Cd1—O8i97.50 (11)O4v—Cd5—O979.9 (2)
O4i—Cd1—O8i86.8 (2)O9vii—Cd5—O997.25 (17)
O8—Cd1—O393.6 (2)O3vi—Cd5—O9105.6 (2)
O4i—Cd1—O3103.2 (2)O1viii—Cd5—O9150.6 (2)
O8i—Cd1—O386.9 (2)O4v—Cd5—O1292.8 (2)
O8—Cd1—O6ii80.2 (2)O9vii—Cd5—O12157.8 (2)
O4i—Cd1—O6ii91.3 (2)O3vi—Cd5—O1298.4 (2)
O8i—Cd1—O6ii165.0 (2)O1viii—Cd5—O1290.79 (19)
O3—Cd1—O6ii108.0 (2)O9—Cd5—O1260.93 (19)
O8—Cd1—O10i81.4 (2)O9—P1—O6108.6 (4)
O4i—Cd1—O10i82.8 (2)O9—P1—O12106.2 (3)
O8i—Cd1—O10i81.8 (2)O6—P1—O12108.3 (3)
O3—Cd1—O10i166.9 (2)O9—P1—O1111.3 (4)
O6ii—Cd1—O10i83.2 (2)O6—P1—O1110.2 (3)
O8i—Cd2—O497.0 (2)O12—P1—O1112.2 (3)
O8i—Cd2—O5169.9 (2)O11v—P2—O7114.0 (4)
O4—Cd2—O592.5 (2)O11v—P2—O10108.5 (3)
O8i—Cd2—O2iii85.0 (2)O7—P2—O10109.0 (4)
O4—Cd2—O2iii178.0 (2)O11v—P2—O3109.5 (4)
O5—Cd2—O2iii85.6 (2)O7—P2—O3104.6 (4)
O8i—Cd2—O6iv82.4 (2)O10—P2—O3111.3 (4)
O4—Cd2—O6iv94.7 (2)P1—O1—Cd3120.4 (3)
O5—Cd2—O6iv100.3 (2)P1—O1—Cd5ix120.9 (3)
O2iii—Cd2—O6iv85.5 (2)Cd3—O1—Cd5ix99.2 (2)
O8i—Cd2—O1098.1 (2)Cd4vi—O2—Cd3124.7 (3)
O4—Cd2—O1088.1 (2)Cd4vi—O2—Cd2iv101.1 (2)
O5—Cd2—O1078.7 (2)Cd3—O2—Cd2iv111.7 (2)
O2iii—Cd2—O1091.7 (2)P2—O3—Cd1128.3 (4)
O6iv—Cd2—O10177.1 (2)P2—O3—Cd5v111.1 (3)
O5—Cd3—O11102.3 (2)Cd1—O3—Cd5v113.6 (3)
O5—Cd3—O281.4 (2)P2—O3—Cd3iii88.7 (3)
O11—Cd3—O289.5 (2)Cd1—O3—Cd3iii113.0 (2)
O5—Cd3—O7iv106.1 (2)Cd5v—O3—Cd3iii93.3 (2)
O11—Cd3—O7iv150.1 (2)Cd5vi—O4—Cd2118.2 (3)
O2—Cd3—O7iv85.6 (2)Cd5vi—O4—Cd1x120.0 (3)
O5—Cd3—O198.6 (2)Cd2—O4—Cd1x99.3 (3)
O11—Cd3—O186.4 (2)Cd4—O5—Cd3110.2 (3)
O2—Cd3—O1175.8 (2)Cd4—O5—Cd2106.7 (2)
O7iv—Cd3—O198.4 (2)Cd3—O5—Cd2120.2 (3)
O5—Cd3—O3iv164.7 (2)P1—O6—Cd2iii128.6 (3)
O11—Cd3—O3iv92.9 (2)P1—O6—Cd1xi109.3 (3)
O2—Cd3—O3iv101.2 (2)Cd2iii—O6—Cd1xi94.1 (2)
O7iv—Cd3—O3iv59.42 (19)P1—O6—Cd4v128.5 (3)
O1—Cd3—O3iv79.8 (2)Cd2iii—O6—Cd4v90.9 (2)
O5—Cd4—O2v166.4 (2)Cd1xi—O6—Cd4v97.2 (2)
O5—Cd4—O7vi88.1 (2)P2—O7—Cd4v129.9 (4)
O2v—Cd4—O7vi97.3 (2)P2—O7—Cd3iii99.9 (3)
O5—Cd4—O12102.9 (2)Cd4v—O7—Cd3iii111.8 (3)
O2v—Cd4—O1290.1 (2)Cd2x—O8—Cd1101.2 (3)
O7vi—Cd4—O1283.8 (2)Cd2x—O8—Cd1x115.6 (3)
O5—Cd4—O1078.0 (2)Cd1—O8—Cd1x133.6 (3)
O2v—Cd4—O1093.3 (2)P1—O9—Cd5xii149.7 (4)
O7vi—Cd4—O10159.4 (2)P1—O9—Cd596.3 (3)
O12—Cd4—O10113.9 (2)Cd5xii—O9—Cd5113.8 (3)
O5—Cd4—O6vi86.1 (2)P2—O10—Cd2124.6 (3)
O2v—Cd4—O6vi82.4 (2)P2—O10—Cd4113.0 (3)
O7vi—Cd4—O6vi81.5 (2)Cd2—O10—Cd496.7 (2)
O12—Cd4—O6vi162.5 (2)P2—O10—Cd1x128.6 (3)
O10—Cd4—O6vi82.4 (2)Cd2—O10—Cd1x89.6 (2)
O4v—Cd5—O9vii87.0 (2)Cd4—O10—Cd1x97.1 (2)
O4v—Cd5—O3vi168.8 (2)P2vi—O11—Cd3127.1 (4)
O9vii—Cd5—O3vi82.7 (2)P1—O12—Cd4136.4 (3)
O4v—Cd5—O1viii94.6 (2)P1—O12—Cd594.7 (3)
O9vii—Cd5—O1viii111.4 (2)Cd4—O12—Cd5121.2 (2)
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1/2, y, z+1/2; (iii) x, y1/2, z+1/2; (iv) x, y+1/2, z+1/2; (v) x+1, y1/2, z+1/2; (vi) x+1, y+1/2, z+1/2; (vii) x+1/2, y+1/2, z; (viii) x+1, y, z; (ix) x1, y, z; (x) x+1/2, y+1/2, z+1; (xi) x+1/2, y, z1/2; (xii) x1/2, y+1/2, z.
Comparison of bond lengths (Å) in the isotypic M5(XO4)2(OH)4 structures (M = Cd, Mn, Co; X = P, As, V) after standardization, and parameters of structural comparison with Cd5(PO4)2(OH)4 as the reference structure. top
Cd5(PO4)2(OH)4Mn5(AsO4)2(OH)4aMn5(PO4)2(OH)4bCo5(PO4)2(OH)4cCd5(VO4)2(OH)4d
M1—O82.245 (7)2.192.1562.0632.295 (4)
M1—O4i2.267 (6)2.252.1932.1322.317 (4)
M1—O8i2.269 (6)2.172.1572.0502.271 (4)
M1—O32.312 (6)2.202.2142.2072.287 (3)
M1—O6ii2.412 (7)2.312.2992.1622.378 (4)
M1—O10i2.540 (6)2.352.4072.2502.408 (3)
M2—O8i2.236 (6)2.192.1532.1062.244 (4)
M2—O42.246 (6)2.132.1312.0472.2469 (4)
M2—O52.258 (6)2.192.1662.1072.265 (4)
M2—O2iii2.306 (6)2.182.1812.0612.293 (4)
M2—O6iv2.319 (6)2.192.2292.1712.321 (3)
M2—O102.335 (6)2.252.2442.1522.329 (3)
M3—O52.202 (6)2.072.0761.9982.193 (3)
M3—O112.226 (6)2.062.0761.9832.212 (3)
M3—O22.300 (6)2.262.2252.2322.302 (4)
M3—O7iv2.327 (6)2.132.1792.0852.268 (4)
M3—O12.351 (6)2.312.2932.1942.325 (3)
M3—O3iv2.599 (6)2.692.5832.4102.849 (4)
M4—O52.184 (6)2.152.1072.0292.241 (4)
M4—O2v2.196 (6)2.142.1162.0312.252 (3)
M4—O7vi2.305 (6)2.182.1732.0782.282 (3)
M4—O122.315 (6)2.222.2102.1702.302 (3)
M4—O102.434 (6)2.292.3282.1942.365 (4)
M4—O6vi2.555 (6)2.362.4532.3402.413 (4)
M5—O4v2.240 (7)2.172.1652.1102.245 (4)
M5—O9vii2.247 (6)2.092.0982.0292.256 (4)
M5—O3vi2.334 (6)2.322.2972.2602.299 (4)
M5—O1viii2.364 (6)2.192.2332.0922.287 (3)
M5—O92.405 (6)2.192.2592.1142.381 (4)
M5—O122.432 (6)2.432.3842.2812.642 (4)
X1—O91.524 (6)1.721.5471.5371.698 (3)
X1—O61.543 (7)1.721.5541.5471.741 (4)
X1—O121.544 (6)1.651.5281.5451.695 (4)
X1—O11.553 (6)1.681.5391.5521.749 (3)
X2—O11v1.523 (6)1.651.5271.5191.688 (3)
X2—O71.538 (7)1.671.5401.5461.721 (3)
X2—O101.543 (7)1.671.5441.5451.731 (4)
X2—O31.562 (6)1.681.5421.5551.733 (4)
S0.01180.01990.03940.0106
dmax0.30330.12320.26130.2351
dav0.13780.05980.11230.1264
Δ0.0440.0130.0260.100
quotient X:M of ionic radii0.1780.4040.2050.2280.374
Notes: (a) Lattice parameter after standardization: a = 5.75 (1), b = 9.31 (2), c = 18.29 (2) Å, V = 979.1 Å3. (b) Lattice parameters after standardization: a = 5.6923 (6), b = 9.110 (1), c = 18.032 (4) Å, V = 935.1 Å3. (c) Lattice parameters after standardization: a = 5.5154 (4), b = 8.903 (2), c = 17.397 (2) Å, V = 854.3 Å3. (d) Lattice parameters after standardization: a = 6.0133 (12), b = 9.5411 (19) Å, c = 19.011 (4) Å, V = 1090.7 (4) Å3. Symmetry codes: (i) x - 1/2, -y + 1/2, -z + 1; (ii) -x + 1/2, -y, z + 1/2; (iii) -x, y - 1/2, -z + 1/2; (iv) -x, y + 1/2, -z + 1/2; (v) -x + 1, y - 1/2, -z + 1/2; (vi) -x + 1, y + 1/2, -z + 1/2; (vii) x + 1/2, -y + 1/2, -z; (viii) x + 1, y, z.
 

Footnotes

Present address: Department of Quantum Matter Physics, Ecole de Physique, University of Geneva, 24, Quai Ernest-Ansermet, CH-1211 Geneva 4 Switzerland.

Acknowledgements

The X-ray centre of TU Wien is acknowledged for granting free access to the powder and single-crystal X-ray diffraction instruments. We thank TU Wien Bibliothek for financial support through its Open Access Funding Programme.

References

First citationAroyo, M. I., Perez-Mato, J. M., Capillas, C., Kroumova, E., Ivantchev, S., Madariaga, G., Kirov, A. & Wondratschek, H. (2006). Z. Kristallogr. 221, 15–27.  Web of Science CrossRef CAS Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.  Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationÐorđević, T. & Kolitsch, U. (2013). Miner. Petrol. 107, 243–251.  Google Scholar
First citationDowty, E. (2006). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationEder, F. & Weil, M. (2020). Acta Cryst. E76, 625–628.  CrossRef ICSD IUCr Journals Google Scholar
First citationElliott, P. & Pring, A. (2011). Miner. Mag. 75, 2823–2832.  CrossRef CAS Google Scholar
First citationFlor, G. de la, Orobengoa, D., Tasci, E., Perez-Mato, J. M. & Aroyo, M. I. (2016). J. Appl. Cryst. 49, 653–664.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGagné, O. C. & Hawthorne, F. C. (2020). IUCrJ, 7, 581–629.  Web of Science CrossRef PubMed IUCr Journals Google Scholar
First citationGelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139–143.  CrossRef Web of Science IUCr Journals Google Scholar
First citationHata, M., Okada, K., Iwai, S., Akao, M. & Aoki, H. (1978). Acta Cryst. B34, 3062–3064.  CrossRef ICSD CAS IUCr Journals Web of Science Google Scholar
First citationKaranović, L. & Đorđević, T. (2022). Minerals, 12, 1601.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMoore, P. B. & Molin-Case, J. (1971). Am. Mineral. 56, 1539–1552.  CAS Google Scholar
First citationOk, K. M. & Halasyamani, P. S. (2006). J. Solid State Chem. 179, 1345–1350.  CrossRef ICSD CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRea, J. R. & Kostiner, E. (1974). Acta Cryst. B30, 2901–2903.  CrossRef ICSD CAS IUCr Journals Web of Science Google Scholar
First citationRuszala, F. A., Anderson, J. B. & Kostiner, E. (1977). Inorg. Chem. 16, 2417–2422.  CrossRef ICSD CAS Web of Science Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWaldrop, L. (1968). Naturwissenschaften, 55, 178.  CrossRef ICSD Google Scholar
First citationWaldrop, L. (1969). Z. Kristallogr. 130, 1–14.  CrossRef ICSD CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYao, W.-D., Yan, M., Li, X.-H., Liu, W. & Tang, R.-L. (2021). Eur. J. Inorg. Chem. pp. 4566–4571.  CrossRef ICSD Google Scholar
First citationZhao, M., Dong, W., Wu, Y., Mei, D., Wen, S. & Doert, T. (2021a). J. Alloys Compd. 865, 158785.  CrossRef ICSD Google Scholar
First citationZhao, M., Sun, Y., Wu, Y., Mei, D., Wen, S. & Doert, T. (2021b). J. Alloys Compd. 854, 157243.  CrossRef ICSD Google Scholar
First citationZimmermann, I., Kremer, R. K. & Johnsson, M. (2011). J. Solid State Chem. 184, 3080–3084.  Web of Science CrossRef ICSD CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds