research communications
Cadmium phosphates Cd2(PO4)OH and Cd5(PO4)2(OH)4 crystallizing in mineral structures
aTU Wien, Institute for Chemical Technologies and Analytics, Division of Structural Chemistry, Getreidemarkt 9/E164-05-01, 1060 Vienna, Austria
*Correspondence e-mail: matthias.weil@tuwien.ac.at
Single crystals of two basic cadmium phosphates, dicadmium orthophosphate hydroxide, Cd2(PO4)OH, and pentacadmium bis(orthophosphate) tetrakis(hydroxide), Cd5(PO4)2(OH)4, were obtained under hydrothermal conditions. Cd2(PO4)OH adopts the triplite [(Mn,Fe)2(PO4)F] structure type. Its comprises two Cd, one P and five O sites, all situated at the general 8 f of I2/a; two of the O atoms are positionally disordered over two sites, and the H atom could not be localized. Disregarding the disorder, distorted [CdO6] polyhedra form a tri-periodic network by edge-sharing with neighbouring [CdO6] units and by vertex-sharing with [PO4] units. The site associated with the OH group is coordinated by four Cd atoms in a distorted tetrahedral manner forming 1∞[(OH)Cd4/2] chains parallel to [001]. The oxygen environment around the OH site suggests multiple acceptor atoms for possible O—H⋯O hydrogen-bonding interactions and is the putative reason for the disorder. Cd5(PO4)2(OH)4 adopts the arsenoclasite [Mn5(AsO4)2(OH)4] structure type. Its comprises five Cd, two P, and twelve O sites all located at the general 4 a of P212121; the H atoms could not be localized. The of Cd5(PO4)2(OH)4 can be subdivided into two main sub-units. One consists of three edge-sharing [CdO6] octahedra, and the other of two edge- and vertex-sharing [CdO6] octahedra. Each sub-unit forms corrugated ribbons extending parallel to [100]. The two types of ribbons are linked into the tri-periodic arrangement through vertex-sharing and through common [PO4] tetrahedra. Quantitative structure comparisons are made with isotypic M5(XO4)2(OH)4 crystal structures (M = Cd, Mn, Co; X = P, As, V).
1. Chemical context
In the quest for new oxidotellurates(IV) modified by incorporation of tetrahedral phosphate anions (Eder & Weil, 2020; Ok & Halasyamani, 2006; Yao et al., 2021; Zhao et al., 2021a,b; Zimmermann et al., 2011), crystals of Cd2(PO4)OH were serendipitously obtained under hydrothermal conditions when working in the system Cd/TeIV/PV/O/(H). During a targeted synthesis of Cd2(PO4)OH under Te-free conditions, another phosphate with composition Cd5(PO4)2(OH)4 had crystallized. We report here the synthesis conditions and refinements of these two basic cadmium phosphates and their relationships with known mineral structures.
2. Structural commentary
So far, structural data for basic cadmium phosphates have only been reported for apatite-type Cd5(PO4)3(OH) (Hata et al., 1978). The title compounds, which are described here for the first time, crystallize with known mineral structures. Cd2(PO4)(OH) adopts the triplite structure, which was first reported by Waldrop (1968). Triplite is a mineral with composition (Fe,Mn)2(PO4)F, and other natural and synthetic compounds with the composition M2(XO4)Y share this structure type, where M = Mn, Fe, Cd, Co, Mg; X = P, As; Y = F, (F,OH) (Đorđević & Kolitsch, 2013). Cd5(PO4)2(OH)4 crystallizes isotypically with the mineral arsenoclasite [Mn5(AsO4)2(OH)4], the of which was determined by Moore & Molin-Case (1971). Other isostructural compounds are synthetic Cd5(VO4)2(OH)4 (Karanović & Đorđević, 2022), Co5(PO4)2(OH)4 and Mn5(PO4)2(OH)4 (Ruszala et al., 1977), as well as the natural variant of Mn5(PO4)2(OH)4 – the mineral gatehouseite (Elliott & Pring, 2011).
Cd2(PO4)OH is the first reported M2(XO4)Y compound with exclusively OH− ions at the Y site to crystallize in the triplite structure in space-group type I2/a. Such M2(XO4)OH compounds usually adopt the triploidite structure in space-group type P21/a, like the arsenate analogue Cd2(AsO4)(OH) (Đorđević & Kolitsch, 2013). Triploidite-like structures have twice the unit-cell volume of triplite-like structures and show no centering of the monoclinic unit-cell. However, for Cd2(PO4)OH, reflections hinting at a doubled unit-cell volume or violating the for an I-centered unit-cell were not found in the diffraction data.
Cd2(PO4)OH. The of Cd2(PO4)OH comprises two Cd, one P and five O sites (O1 and O2 being positionally disordered over two sites each). All atomic sites are situated at the general 8 f of I2/a. The resulting coordination polyhedra around Cd1, Cd2 and P are depicted in Fig. 1. For the sake of simplicity, the of Cd2(PO4)OH will be described in the following without the disorder of atoms O1 and O2. Considering Cd—O distances < 3.0 Å as relevant, both Cd sites are coordinated by six oxygen atoms forming significantly distorted [CdO4(OH)2] octahedra (Table 1, where only the bonds for O atoms with major occupancy are indicated). The mean Cd—O distances in the two polyhedra (Cd1—O = 2.31, Cd2—O = 2.28 Å) are in good agreement with the literature value of 2.302 (69) Å for six-coordinate Cd (Gagné & Hawthorne, 2020). Each [CdO4(OH)2] octahedron shares four of its edges with neighbouring [CdO4(OH)2] octahedra, two with each Cd (Cd1 and Cd2). Additionally, each [CdO4(OH)2] unit shares four of its O atoms with [PO4] tetrahedra, leading to a tri-periodic structure (Fig. 2).
Of the five oxygen sites, four (O1–O4) are bound to two Cd and one P atom each. The site associated with the OH group is bound to four Cd sites. This assignment is supported by bond-valence calculations (Brown, 2002), using the parameters of Brese & O'Keeffe (1991). The bond-valence sum (BVS) of the OH site amounts to 1.67 valence units (1.92–2.08 valence units for the other O sites). The OH site is the one occupied by the F− anion in the isotypic triplite-type structures. The [(OH)Cd4] polyhedron has a distorted tetrahedral shape with bond lengths in the range 2.101 (6)–2.484 (7) Å. The [(OH)Cd4] tetrahedra are linked to each other by sharing two edges with neighbouring tetrahedra forming 1∞[(OH)Cd4/2] chains extending parallel to [001] (Fig. 2).
The environment of the OH site suggests multiple acceptor atoms for possible O—H⋯O hydrogen-bonding interactions and is the putative reason why the hydrogen atom could not be localized and also for the disorder of O1 and O2. Taking into account hydrogen-bonding interactions with O⋯O distances < 3.0 Å as significant, there are six O atoms in the vicinity of each OH site (Fig. 3). The shortest contact amounts to 2.635 (12) Å towards a symmetry-related OH site, the longest to 2.94 (8) Å to O2A. In the isotypic of Cd2(PO4)F (Rea & Kostiner, 1974), the F site (corresponding to the OH site in the title structure) is not split and has four contacts < 3.0 Å to two F sites [2.756 (6) and 2.800 (7) Å] and to two O sites [2.828 (5) and 2.832 (5) Å].
Owing to the disorder present in Cd2(PO4)OH, a quantitative comparison with the ordered isotypic M2(XO4)Y crystal structures adopting the triplite-structure type was not undertaken.
Cd5(PO4)2(OH)4. The of Cd5(PO4)2(OH)4 comprises five Cd, two P and twelve O sites, all located on the general 4 a of P212121; the H-atom sites could not be localized. All five Cd sites are surrounded by six O atoms, resulting in a distorted octahedral environment for each metal atom. The Cd—O bond lengths are in a broad range between 2.184 (6) and 2.599 (6) Å (Table 2). The mean bond lengths are 2.341 Å (Cd1), 2.283 Å (Cd2), 2.222 Å (Cd3), 2.331 Å (Cd4) and 2.336 Å (Cd5), again in good agreement with the literature value specified above. The BVS values of the Cd atoms amount to 1.91, 2.16, 1.98, 2.00 and 1.90 valence units and thus show good agreement with the expected value of 2.
|
Of the twelve O sites present in the structure of Cd5(PO4)2(OH)4, four are occupied by the O atom of a hydroxide anion, as revealed by BVS calculations. O2, O4, O5, and O8 have considerably lower BVS values of 1.14, 1.17, 1.30 and 1.18 valence units, respectively, than the remaining O atoms [1.78 (O1), 1.96 (O3), 1.97 (O6), 1.90 (O7), 1.94 (O9), 1.95 (O10), 1.71 (O11) and 1.79 (O12) valence units]. Moreover, these four oxygen sites are the only ones that are not part of a phosphate group. Each of the hydroxide O atoms is connected to three Cd atoms in the form of a flat trigonal pyramid. According to the oxygen environments around the hydroxide O atoms, the closest possible acceptor groups for O—H⋯O hydrogen-bonding interactions are located at 2.997 (8) Å for O2⋯O1(−x, y + , −z + ), 2.986 (9) Å for O4⋯O9(−x + , −y + 1, z + ), 2.890 (9) Å for O5⋯O12(−x + 1, y + , −z + ), and 2.827 (9) Å for O8⋯O11(−x + , −y + 1, z + ), indicating rather weak hydrogen bonds in each case.
The [CdO6] polyhedra {[Cd1O3(OH)3], [Cd2O2(OH)4], [Cd3O4(OH)2], [Cd4O4(OH)2] and [Cd5O5(OH)]} define the structure by forming two main sub-units. Through edge-sharing, the octahedra around Cd1, Cd2 and Cd4 form corrugated double ribbons extending parallel to [100] as the first unit. The second unit is defined by the octahedra around Cd3 and Cd5. By sharing corners and edges, another corrugated ribbon is formed and also propagates parallel to [100]. The two types of ribbons are linked into a tri-periodic arrangement by sharing corners, as well as by sharing the two PO4 tetrahedra (Fig. 4). The latter show deviations from an ideal tetrahedral arrangement, as revealed by slightly different bond lengths (Table 2) and by angular distortions, with O—P—O angles ranging from 106.2 (3) to 112.2 (3)° for P1 and 104.6 (4) to 114.0 (4)° for P2.
Cd5(PO4)2(OH)4 and the four isotypic M5(XO4)2(OH)4 crystal structures (M = Cd, Mn, Co; X = P, As, V) were quantitatively compared using the compstru software (de la Flor et al., 2016) available at the Bilbao Crystallographic server (Aroyo et al., 2006). For this purpose and for direct comparison of bond lengths (Table 2), the hydrogen atoms (if part of the model) were removed, and all crystal structures were standardized with STRUCTURE-TIDY (Gelato & Parthé, 1987). With Cd5(PO4)2(OH)4 as the reference structure, numerical values of parameter of comparison (degree of S, the arithmetic mean of the distance between paired atoms dav, the maximum difference between the atomic positions of the matching atoms dmax, and the measure of similarity Δ) are collated in Table 2. As expected for isotypic structures, the low values for Δ indicate high similarities of Cd5(PO4)2(OH)4 with the four M5(XO4)2(OH)4 crystal structures. The differences in bond lengths of the individual structural units ([MO6]; [XO4]) are due to the different sizes of MII and XV, viz. 0.745 Å for Co (high spin), 0.83 Å for Mn (high spin), 0.95 Å for Cd, and 0.17 Å for P, 0.335 Å for As, 0.355 Å for V; all values were taken from Shannon (1976). As a simple measure, the quotient X:M can be used for correlation. The closer the quotient is to that of P:Cd = 0.178, the higher is the similarity.
3. Synthesis and crystallization
Crystals of Cd2(PO4)OH and Cd5(PO4)2(OH)4 were both obtained from reactions under hydrothermal conditions. The starting materials were 0.1927 g (1.129 mmol) CdCO3, 0.1784 g (1.118 mmol) TeO2 and 0.1289 g (1.118 mmol) of 85%wt H3PO4 for the Cd2(PO4)OH batch, and 0.1874 g (0.607 mmol) Cd(NO3)2·4H2O, 0.0296 g (0.257 mmol) 85%wt H3PO4, and 0.2197 g (3.916 mmol) KOH for the Cd5(PO4)2(OH)4 batch. The reactants were weighed into small Teflon containers with a volume of ca 3 ml and mixed with deionized water so that the inner volume was filled to about two thirds with liquid. Then, the Teflon containers were placed into a steel autoclave and heated to 483 K for 7 d. Afterwards the autoclave was cooled down to room temperature within about 4 h. The formed solids were filtered off, washed with mother liquor, water and ethanol, and dried in air.
For the Cd2(PO4)OH batch, the reaction product was a mixture of a white and bright-yellow solid. An X-ray powder diffraction measurement revealed α-TeO2, which can be associated with the yellow solid, as a side product besides Cd2(PO4)OH. Small colourless block-shaped crystals of Cd2(PO4)OH could be isolated for single crystal X-ray diffraction.
For the Cd5(PO4)2(OH)4 batch, the reaction product was a white powder. Apart from Cd(OH)2 and Cd5(PO4)2(OH)4 no other phases could be identified in the X-ray powder diffraction pattern. Colourless block-shaped crystals of Cd5(PO4)2(OH)4 could be isolated for single crystal X-ray diffraction.
4. Refinement
Crystal data, data collection and structure .
details are summarized in Table 3
|
For structure 2(PO4)OH, labelling and fractional coordinates of atoms were adapted from the of triplite (Waldrop, 1969). For direct comparison with other triplite-like structures (Waldrop, 1969; Đorđević & Kolitsch, 2013), the unconventional setting I2/a of space-group type No. 15 was chosen. The conventional setting in C2/c transforms with −a − c, −b, c to the chosen unconventional setting. Oxygen atoms O1 and O2 were found to be positionally disordered over two sites. The pairs O1A/O1B and O2A/O2B were refined with common displacement parameters each. The site occupation factors were refined for the pair O1A/O2A and O1A/O2A to a ratio of 0.349 (18):0.651 (18). Remaining positive and negative residual electron density close to the Cd1 position suggests possible positional disorder of this atom as well. However, using split positions for Cd1 led to a physically non-meaningful model and was not considered for the final H atoms could not be located for Cd2(PO4)OH.
of triplite-type CdFor better comparison with the isotypic crystal structures of M5(XO4)2(OH)4 compounds (M = Cd, Mn, Co; X = P, As), structure data of Cd5(PO4)2(OH)4 were standardized with STRUCTURE-TIDY (Gelato & Parthé, 1987). H atoms could not be located reliably for Cd5(PO4)2(OH)4.
Supporting information
https://doi.org/10.1107/S2056989024000793/tx2081sup1.cif
contains datablocks CdPO4OH, Cd5PO42OH2, global. DOI:Structure factors: contains datablock CdPO4OH. DOI: https://doi.org/10.1107/S2056989024000793/tx2081CdPO4OHsup2.hkl
Structure factors: contains datablock Cd5PO42OH2. DOI: https://doi.org/10.1107/S2056989024000793/tx2081Cd5PO42OH2sup3.hkl
Cd2(PO4)OH | F(000) = 1216 |
Mr = 336.78 | Dx = 5.267 Mg m−3 |
Monoclinic, I2/a | Mo Kα radiation, λ = 0.71073 Å |
a = 12.4307 (13) Å | Cell parameters from 1272 reflections |
b = 6.6910 (6) Å | θ = 3.4–25.8° |
c = 10.7087 (10) Å | µ = 10.30 mm−1 |
β = 107.506 (3)° | T = 296 K |
V = 849.43 (14) Å3 | Block, colourless |
Z = 8 | 0.10 × 0.08 × 0.05 mm |
Bruker APEXII CCD diffractometer | 1026 reflections with I > 2σ(I) |
ω– and φ–scan | Rint = 0.065 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 32.1°, θmin = 3.4° |
Tmin = 0.600, Tmax = 0.746 | h = −18→18 |
7833 measured reflections | k = −9→9 |
1477 independent reflections | l = −15→15 |
Refinement on F2 | 80 parameters |
Least-squares matrix: full | 0 restraints |
R[F2 > 2σ(F2)] = 0.047 | w = 1/[σ2(Fo2) + (0.0267P)2 + 36.2119P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.100 | (Δ/σ)max < 0.001 |
S = 1.03 | Δρmax = 2.91 e Å−3 |
1477 reflections | Δρmin = −3.55 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cd1 | 0.20094 (5) | −0.00573 (10) | 0.19098 (6) | 0.01905 (15) | |
Cd2 | 0.10811 (8) | 0.15931 (10) | 0.44546 (7) | 0.0293 (2) | |
P1 | 0.07732 (19) | 0.6694 (3) | 0.3759 (2) | 0.0151 (4) | |
O1A | 0.123 (2) | 0.856 (3) | 0.469 (2) | 0.028 (3) | 0.349 (18) |
O1B | 0.0590 (13) | 0.8402 (17) | 0.4621 (11) | 0.028 (3) | 0.651 (18) |
O2A | 0.970 (8) | 0.592 (15) | 0.297 (10) | 0.040 (7) | 0.349 (18) |
O2B | 0.958 (4) | 0.640 (7) | 0.287 (5) | 0.040 (7) | 0.651 (18) |
O3 | 0.1538 (6) | 0.7093 (10) | 0.2916 (7) | 0.0299 (16) | |
O4 | 0.1231 (6) | 0.4933 (10) | 0.4698 (6) | 0.0261 (14) | |
OH | 0.2574 (6) | 0.1685 (10) | 0.3799 (6) | 0.0265 (14) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.0173 (3) | 0.0217 (3) | 0.0184 (3) | 0.0027 (3) | 0.0058 (2) | 0.0029 (3) |
Cd2 | 0.0639 (6) | 0.0122 (3) | 0.0167 (3) | 0.0014 (3) | 0.0197 (3) | −0.0001 (3) |
P1 | 0.0196 (11) | 0.0113 (8) | 0.0157 (9) | 0.0003 (8) | 0.0072 (8) | −0.0014 (8) |
O1A | 0.043 (8) | 0.017 (4) | 0.025 (4) | 0.009 (6) | 0.012 (6) | −0.004 (3) |
O1B | 0.043 (8) | 0.017 (4) | 0.025 (4) | 0.009 (6) | 0.012 (6) | −0.004 (3) |
O2A | 0.011 (10) | 0.08 (2) | 0.029 (9) | 0.002 (11) | 0.000 (8) | 0.033 (12) |
O2B | 0.011 (10) | 0.08 (2) | 0.029 (9) | 0.002 (11) | 0.000 (8) | 0.033 (12) |
O3 | 0.019 (4) | 0.030 (4) | 0.046 (4) | 0.002 (3) | 0.019 (3) | 0.014 (3) |
O4 | 0.041 (4) | 0.018 (3) | 0.020 (3) | 0.007 (3) | 0.011 (3) | 0.005 (3) |
OH | 0.040 (4) | 0.023 (3) | 0.014 (3) | 0.009 (3) | 0.003 (3) | −0.003 (3) |
Cd1—O3i | 2.224 (7) | Cd2—O4 | 2.251 (7) |
Cd1—OH | 2.256 (6) | Cd2—O2Bii | 2.38 (5) |
Cd1—O2Aii | 2.26 (10) | Cd2—O2Aii | 2.52 (9) |
Cd1—O4iii | 2.275 (6) | Cd2—O1Bvi | 2.556 (14) |
Cd1—O2Bii | 2.28 (5) | Cd2—Cd2v | 3.3659 (18) |
Cd1—O3iv | 2.350 (6) | P1—O2Avii | 1.44 (11) |
Cd1—OHi | 2.484 (7) | P1—O2Bvii | 1.51 (5) |
Cd1—Cd2iii | 3.4339 (9) | P1—O3 | 1.519 (7) |
Cd1—Cd2 | 3.4453 (10) | P1—O1B | 1.528 (11) |
Cd2—O1Aiv | 2.05 (2) | P1—O4 | 1.542 (7) |
Cd2—OHv | 2.101 (6) | P1—O1A | 1.59 (2) |
Cd2—OH | 2.174 (7) | O1A—O1B | 0.78 (2) |
Cd2—O1Biv | 2.242 (12) | ||
O3i—Cd1—OH | 102.4 (3) | O1Biv—Cd2—Cd2v | 104.7 (4) |
O3i—Cd1—O2Aii | 158 (3) | O4—Cd2—Cd2v | 85.30 (18) |
OH—Cd1—O2Aii | 81.1 (17) | O2Bii—Cd2—Cd2v | 111.2 (12) |
O3i—Cd1—O4iii | 100.9 (3) | O2Aii—Cd2—Cd2v | 113 (2) |
OH—Cd1—O4iii | 146.6 (2) | O1Bvi—Cd2—Cd2v | 139.0 (3) |
O2Aii—Cd1—O4iii | 86 (3) | O1Aiv—Cd2—Cd1viii | 125.3 (6) |
O3i—Cd1—O2Bii | 163.9 (15) | OHv—Cd2—Cd1viii | 45.93 (19) |
OH—Cd1—O2Bii | 74.4 (8) | OH—Cd2—Cd1viii | 96.04 (17) |
O2Aii—Cd1—O2Bii | 9 (2) | O1Biv—Cd2—Cd1viii | 128.2 (3) |
O4iii—Cd1—O2Bii | 89.0 (13) | O4—Cd2—Cd1viii | 40.91 (16) |
O3i—Cd1—O3iv | 76.9 (2) | O2Bii—Cd2—Cd1viii | 140.2 (11) |
OH—Cd1—O3iv | 93.5 (3) | O2Aii—Cd2—Cd1viii | 148 (2) |
O2Aii—Cd1—O3iv | 81 (3) | O1Bvi—Cd2—Cd1viii | 80.1 (3) |
O4iii—Cd1—O3iv | 114.9 (3) | Cd2v—Cd2—Cd1viii | 70.04 (2) |
O2Bii—Cd1—O3iv | 87.5 (14) | O1Aiv—Cd2—Cd1 | 75.0 (7) |
O3i—Cd1—OHi | 110.1 (2) | OHv—Cd2—Cd1 | 110.3 (2) |
OH—Cd1—OHi | 76.5 (2) | OH—Cd2—Cd1 | 39.81 (17) |
O2Aii—Cd1—OHi | 92 (3) | O1Biv—Cd2—Cd1 | 85.5 (3) |
O4iii—Cd1—OHi | 73.2 (2) | O4—Cd2—Cd1 | 111.95 (16) |
O2Bii—Cd1—OHi | 84.8 (13) | O2Bii—Cd2—Cd1 | 41.3 (12) |
O3iv—Cd1—OHi | 168.8 (2) | O2Aii—Cd2—Cd1 | 41 (2) |
O3i—Cd1—Cd2iii | 123.70 (17) | O1Bvi—Cd2—Cd1 | 144.2 (3) |
OH—Cd1—Cd2iii | 106.25 (17) | Cd2v—Cd2—Cd1 | 73.08 (3) |
O2Aii—Cd1—Cd2iii | 75 (3) | Cd1viii—Cd2—Cd1 | 134.96 (3) |
O4iii—Cd1—Cd2iii | 40.40 (16) | O2Avii—P1—O2Bvii | 14 (4) |
O2Bii—Cd1—Cd2iii | 71.9 (16) | O2Avii—P1—O3 | 110 (4) |
O3iv—Cd1—Cd2iii | 145.72 (17) | O2Bvii—P1—O3 | 108 (2) |
OHi—Cd1—Cd2iii | 37.43 (15) | O2Avii—P1—O1B | 110 (5) |
O3i—Cd1—Cd2 | 125.92 (19) | O2Bvii—P1—O1B | 101 (2) |
OH—Cd1—Cd2 | 38.11 (19) | O3—P1—O1B | 117.5 (6) |
O2Aii—Cd1—Cd2 | 47 (2) | O2Avii—P1—O4 | 102 (3) |
O4iii—Cd1—Cd2 | 132.32 (18) | O2Bvii—P1—O4 | 114.4 (14) |
O2Bii—Cd1—Cd2 | 43.4 (12) | O3—P1—O4 | 110.3 (4) |
O3iv—Cd1—Cd2 | 73.04 (18) | O1B—P1—O4 | 105.7 (5) |
OHi—Cd1—Cd2 | 95.77 (14) | O2Avii—P1—O1A | 138 (4) |
Cd2iii—Cd1—Cd2 | 105.90 (2) | O2Bvii—P1—O1A | 126 (2) |
O1Aiv—Cd2—OHv | 84.3 (7) | O3—P1—O1A | 93.8 (10) |
O1Aiv—Cd2—OH | 90.8 (8) | O1B—P1—O1A | 29.0 (8) |
OHv—Cd2—OH | 76.1 (3) | O4—P1—O1A | 101.5 (9) |
O1Aiv—Cd2—O1Biv | 20.4 (7) | O1B—O1A—P1 | 71 (2) |
OHv—Cd2—O1Biv | 96.9 (4) | O1B—O1A—Cd2ix | 94 (2) |
OH—Cd2—O1Biv | 109.4 (4) | P1—O1A—Cd2ix | 134.3 (14) |
O1Aiv—Cd2—O4 | 165.7 (7) | O1A—O1B—P1 | 80 (2) |
OHv—Cd2—O4 | 81.5 (2) | O1A—O1B—Cd2ix | 66 (2) |
OH—Cd2—O4 | 87.7 (2) | P1—O1B—Cd2ix | 124.8 (7) |
O1Biv—Cd2—O4 | 162.0 (4) | O1A—O1B—Cd2vi | 152 (2) |
O1Aiv—Cd2—O2Bii | 93.8 (13) | P1—O1B—Cd2vi | 121.4 (8) |
OHv—Cd2—O2Bii | 150.0 (12) | Cd2ix—O1B—Cd2vi | 107.6 (4) |
OH—Cd2—O2Bii | 74.0 (12) | P1x—O2A—Cd1xi | 142 (7) |
O1Biv—Cd2—O2Bii | 90.9 (11) | P1x—O2A—Cd2xi | 123 (5) |
O4—Cd2—O2Bii | 99.5 (12) | Cd1xi—O2A—Cd2xi | 92 (3) |
O1Aiv—Cd2—O2Aii | 87 (3) | P1x—O2B—Cd1xi | 135 (2) |
OHv—Cd2—O2Aii | 151 (2) | P1x—O2B—Cd2xi | 128 (3) |
OH—Cd2—O2Aii | 77 (2) | Cd1xi—O2B—Cd2xi | 95.3 (19) |
O1Biv—Cd2—O2Aii | 83 (2) | P1—O3—Cd1i | 118.7 (4) |
O4—Cd2—O2Aii | 107 (2) | P1—O3—Cd1ix | 134.6 (4) |
O2Bii—Cd2—O2Aii | 8 (3) | Cd1i—O3—Cd1ix | 103.1 (2) |
O1Aiv—Cd2—O1Bvi | 90.4 (8) | P1—O4—Cd2 | 133.0 (4) |
OHv—Cd2—O1Bvi | 100.2 (3) | P1—O4—Cd1viii | 127.5 (4) |
OH—Cd2—O1Bvi | 175.9 (3) | Cd2—O4—Cd1viii | 98.7 (2) |
O1Biv—Cd2—O1Bvi | 72.4 (4) | Cd2v—OH—Cd2 | 103.8 (3) |
O4—Cd2—O1Bvi | 90.2 (3) | Cd2v—OH—Cd1 | 137.1 (3) |
O2Bii—Cd2—O1Bvi | 109.8 (12) | Cd2—OH—Cd1 | 102.1 (3) |
O2Aii—Cd2—O1Bvi | 107 (2) | Cd2v—OH—Cd1i | 96.6 (3) |
O1Aiv—Cd2—Cd2v | 84.9 (8) | Cd2—OH—Cd1i | 113.6 (3) |
OHv—Cd2—Cd2v | 38.84 (19) | Cd1—OH—Cd1i | 103.5 (2) |
OH—Cd2—Cd2v | 37.31 (16) |
Symmetry codes: (i) −x+1/2, −y+1/2, −z+1/2; (ii) −x+1, y−1/2, −z+1/2; (iii) x, −y+1/2, z−1/2; (iv) x, y−1, z; (v) −x+1/2, y, −z+1; (vi) −x, −y+1, −z+1; (vii) x−1, y, z; (viii) x, −y+1/2, z+1/2; (ix) x, y+1, z; (x) x+1, y, z; (xi) −x+1, y+1/2, −z+1/2. |
Cd5(PO4)2(OH)4 | Dx = 5.279 Mg m−3 |
Mr = 819.97 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 2236 reflections |
a = 5.8901 (4) Å | θ = 3.9–33.6° |
b = 9.3455 (6) Å | µ = 10.51 mm−1 |
c = 18.7423 (13) Å | T = 296 K |
V = 1031.69 (12) Å3 | Block, colourless |
Z = 4 | 0.11 × 0.07 × 0.04 mm |
F(000) = 1480 |
Bruker APEXII CCD diffractometer | 3588 reflections with I > 2σ(I) |
ω– and φ–scan | Rint = 0.051 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 35.0°, θmin = 2.2° |
Tmin = 0.517, Tmax = 0.747 | h = −9→9 |
10057 measured reflections | k = −14→11 |
4493 independent reflections | l = −28→30 |
Refinement on F2 | H-atom parameters not defined |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0115P)2] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.039 | (Δ/σ)max < 0.001 |
wR(F2) = 0.059 | Δρmax = 1.53 e Å−3 |
S = 0.97 | Δρmin = −1.76 e Å−3 |
4493 reflections | Absolute structure: Flack x determined using 1284 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
172 parameters | Absolute structure parameter: −0.03 (4) |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cd1 | 0.05007 (11) | 0.10420 (7) | 0.52815 (3) | 0.01113 (12) | |
Cd2 | 0.05248 (11) | 0.37573 (7) | 0.37637 (4) | 0.01083 (12) | |
Cd3 | 0.08667 (9) | 0.49327 (7) | 0.17892 (4) | 0.01161 (13) | |
Cd4 | 0.56114 (11) | 0.34489 (7) | 0.27458 (3) | 0.01154 (12) | |
Cd5 | 0.76352 (10) | 0.25492 (7) | 0.06812 (4) | 0.01085 (12) | |
P1 | 0.3047 (3) | 0.1745 (2) | 0.12271 (13) | 0.0081 (4) | |
P2 | 0.3795 (3) | 0.0690 (2) | 0.37363 (13) | 0.0084 (4) | |
O1 | 0.0817 (9) | 0.2510 (7) | 0.1450 (3) | 0.0120 (12) | |
O2 | 0.1169 (10) | 0.7316 (6) | 0.2081 (3) | 0.0111 (12) | |
O3 | 0.2013 (10) | 0.0034 (7) | 0.4260 (3) | 0.0130 (12) | |
O4 | 0.2237 (11) | 0.5202 (7) | 0.4556 (3) | 0.0126 (13) | |
O5 | 0.2489 (11) | 0.4695 (6) | 0.2841 (3) | 0.0117 (12) | |
O6 | 0.2772 (10) | 0.0109 (7) | 0.1297 (4) | 0.0126 (12) | |
O7 | 0.2995 (10) | 0.0217 (7) | 0.2992 (3) | 0.0146 (13) | |
O8 | 0.3482 (10) | 0.2500 (7) | 0.5450 (3) | 0.0130 (12) | |
O9 | 0.3680 (11) | 0.2095 (7) | 0.0458 (3) | 0.0128 (13) | |
O10 | 0.3790 (9) | 0.2340 (7) | 0.3772 (3) | 0.0113 (12) | |
O11 | 0.3843 (10) | 0.5159 (7) | 0.1066 (3) | 0.0134 (13) | |
O12 | 0.5088 (9) | 0.2213 (7) | 0.1688 (3) | 0.0115 (13) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.0100 (2) | 0.0129 (3) | 0.0104 (3) | −0.0005 (2) | −0.0002 (2) | 0.0010 (2) |
Cd2 | 0.0097 (2) | 0.0114 (3) | 0.0114 (3) | −0.0002 (2) | 0.0002 (2) | −0.0006 (2) |
Cd3 | 0.0107 (2) | 0.0103 (3) | 0.0139 (3) | −0.0001 (2) | −0.0008 (2) | −0.0001 (3) |
Cd4 | 0.0108 (2) | 0.0135 (3) | 0.0103 (3) | 0.0018 (2) | 0.0004 (2) | 0.0008 (2) |
Cd5 | 0.0124 (2) | 0.0096 (3) | 0.0105 (3) | −0.0012 (2) | 0.0008 (2) | 0.0005 (3) |
P1 | 0.0085 (8) | 0.0067 (10) | 0.0090 (10) | −0.0001 (7) | −0.0006 (7) | 0.0002 (9) |
P2 | 0.0078 (8) | 0.0085 (10) | 0.0089 (10) | 0.0015 (7) | 0.0008 (7) | 0.0013 (9) |
O1 | 0.008 (2) | 0.012 (3) | 0.016 (3) | 0.002 (3) | 0.000 (2) | −0.004 (3) |
O2 | 0.011 (2) | 0.007 (3) | 0.015 (3) | −0.003 (2) | 0.002 (2) | −0.003 (3) |
O3 | 0.015 (3) | 0.007 (3) | 0.016 (3) | −0.003 (2) | 0.006 (2) | 0.001 (3) |
O4 | 0.013 (3) | 0.012 (3) | 0.013 (3) | 0.000 (2) | −0.003 (2) | −0.002 (3) |
O5 | 0.016 (3) | 0.006 (3) | 0.013 (3) | −0.001 (2) | 0.001 (2) | 0.006 (2) |
O6 | 0.016 (3) | 0.007 (3) | 0.016 (3) | −0.003 (3) | −0.004 (2) | 0.000 (3) |
O7 | 0.017 (3) | 0.020 (4) | 0.007 (3) | 0.004 (3) | −0.001 (2) | −0.005 (3) |
O8 | 0.016 (3) | 0.012 (3) | 0.011 (3) | 0.001 (3) | 0.002 (2) | 0.001 (3) |
O9 | 0.013 (3) | 0.017 (4) | 0.008 (3) | 0.001 (2) | 0.000 (2) | 0.000 (3) |
O10 | 0.007 (2) | 0.010 (3) | 0.016 (3) | −0.004 (2) | −0.001 (2) | 0.004 (3) |
O11 | 0.011 (2) | 0.015 (3) | 0.015 (3) | −0.003 (2) | 0.001 (2) | −0.001 (3) |
O12 | 0.010 (3) | 0.011 (3) | 0.014 (3) | 0.000 (2) | −0.003 (2) | −0.004 (3) |
Cd1—O8 | 2.245 (7) | Cd4—O2v | 2.196 (6) |
Cd1—O4i | 2.267 (6) | Cd4—O7vi | 2.305 (6) |
Cd1—O8i | 2.269 (6) | Cd4—O12 | 2.315 (6) |
Cd1—O3 | 2.312 (6) | Cd4—O10 | 2.434 (6) |
Cd1—O6ii | 2.412 (7) | Cd4—O6vi | 2.555 (6) |
Cd1—O10i | 2.540 (6) | Cd5—O4v | 2.240 (7) |
Cd2—O8i | 2.236 (6) | Cd5—O9vii | 2.247 (6) |
Cd2—O4 | 2.246 (6) | Cd5—O3vi | 2.334 (6) |
Cd2—O5 | 2.258 (6) | Cd5—O1viii | 2.364 (6) |
Cd2—O2iii | 2.306 (6) | Cd5—O9 | 2.405 (6) |
Cd2—O6iv | 2.319 (6) | Cd5—O12 | 2.432 (6) |
Cd2—O10 | 2.335 (6) | P1—O9 | 1.524 (6) |
Cd3—O5 | 2.202 (6) | P1—O6 | 1.543 (7) |
Cd3—O11 | 2.226 (6) | P1—O12 | 1.544 (6) |
Cd3—O2 | 2.300 (6) | P1—O1 | 1.553 (6) |
Cd3—O7iv | 2.327 (6) | P2—O11v | 1.523 (6) |
Cd3—O1 | 2.351 (6) | P2—O7 | 1.538 (7) |
Cd3—O3iv | 2.599 (6) | P2—O10 | 1.543 (7) |
Cd4—O5 | 2.184 (6) | P2—O3 | 1.562 (6) |
O8—Cd1—O4i | 162.9 (2) | O3vi—Cd5—O1viii | 85.2 (2) |
O8—Cd1—O8i | 97.50 (11) | O4v—Cd5—O9 | 79.9 (2) |
O4i—Cd1—O8i | 86.8 (2) | O9vii—Cd5—O9 | 97.25 (17) |
O8—Cd1—O3 | 93.6 (2) | O3vi—Cd5—O9 | 105.6 (2) |
O4i—Cd1—O3 | 103.2 (2) | O1viii—Cd5—O9 | 150.6 (2) |
O8i—Cd1—O3 | 86.9 (2) | O4v—Cd5—O12 | 92.8 (2) |
O8—Cd1—O6ii | 80.2 (2) | O9vii—Cd5—O12 | 157.8 (2) |
O4i—Cd1—O6ii | 91.3 (2) | O3vi—Cd5—O12 | 98.4 (2) |
O8i—Cd1—O6ii | 165.0 (2) | O1viii—Cd5—O12 | 90.79 (19) |
O3—Cd1—O6ii | 108.0 (2) | O9—Cd5—O12 | 60.93 (19) |
O8—Cd1—O10i | 81.4 (2) | O9—P1—O6 | 108.6 (4) |
O4i—Cd1—O10i | 82.8 (2) | O9—P1—O12 | 106.2 (3) |
O8i—Cd1—O10i | 81.8 (2) | O6—P1—O12 | 108.3 (3) |
O3—Cd1—O10i | 166.9 (2) | O9—P1—O1 | 111.3 (4) |
O6ii—Cd1—O10i | 83.2 (2) | O6—P1—O1 | 110.2 (3) |
O8i—Cd2—O4 | 97.0 (2) | O12—P1—O1 | 112.2 (3) |
O8i—Cd2—O5 | 169.9 (2) | O11v—P2—O7 | 114.0 (4) |
O4—Cd2—O5 | 92.5 (2) | O11v—P2—O10 | 108.5 (3) |
O8i—Cd2—O2iii | 85.0 (2) | O7—P2—O10 | 109.0 (4) |
O4—Cd2—O2iii | 178.0 (2) | O11v—P2—O3 | 109.5 (4) |
O5—Cd2—O2iii | 85.6 (2) | O7—P2—O3 | 104.6 (4) |
O8i—Cd2—O6iv | 82.4 (2) | O10—P2—O3 | 111.3 (4) |
O4—Cd2—O6iv | 94.7 (2) | P1—O1—Cd3 | 120.4 (3) |
O5—Cd2—O6iv | 100.3 (2) | P1—O1—Cd5ix | 120.9 (3) |
O2iii—Cd2—O6iv | 85.5 (2) | Cd3—O1—Cd5ix | 99.2 (2) |
O8i—Cd2—O10 | 98.1 (2) | Cd4vi—O2—Cd3 | 124.7 (3) |
O4—Cd2—O10 | 88.1 (2) | Cd4vi—O2—Cd2iv | 101.1 (2) |
O5—Cd2—O10 | 78.7 (2) | Cd3—O2—Cd2iv | 111.7 (2) |
O2iii—Cd2—O10 | 91.7 (2) | P2—O3—Cd1 | 128.3 (4) |
O6iv—Cd2—O10 | 177.1 (2) | P2—O3—Cd5v | 111.1 (3) |
O5—Cd3—O11 | 102.3 (2) | Cd1—O3—Cd5v | 113.6 (3) |
O5—Cd3—O2 | 81.4 (2) | P2—O3—Cd3iii | 88.7 (3) |
O11—Cd3—O2 | 89.5 (2) | Cd1—O3—Cd3iii | 113.0 (2) |
O5—Cd3—O7iv | 106.1 (2) | Cd5v—O3—Cd3iii | 93.3 (2) |
O11—Cd3—O7iv | 150.1 (2) | Cd5vi—O4—Cd2 | 118.2 (3) |
O2—Cd3—O7iv | 85.6 (2) | Cd5vi—O4—Cd1x | 120.0 (3) |
O5—Cd3—O1 | 98.6 (2) | Cd2—O4—Cd1x | 99.3 (3) |
O11—Cd3—O1 | 86.4 (2) | Cd4—O5—Cd3 | 110.2 (3) |
O2—Cd3—O1 | 175.8 (2) | Cd4—O5—Cd2 | 106.7 (2) |
O7iv—Cd3—O1 | 98.4 (2) | Cd3—O5—Cd2 | 120.2 (3) |
O5—Cd3—O3iv | 164.7 (2) | P1—O6—Cd2iii | 128.6 (3) |
O11—Cd3—O3iv | 92.9 (2) | P1—O6—Cd1xi | 109.3 (3) |
O2—Cd3—O3iv | 101.2 (2) | Cd2iii—O6—Cd1xi | 94.1 (2) |
O7iv—Cd3—O3iv | 59.42 (19) | P1—O6—Cd4v | 128.5 (3) |
O1—Cd3—O3iv | 79.8 (2) | Cd2iii—O6—Cd4v | 90.9 (2) |
O5—Cd4—O2v | 166.4 (2) | Cd1xi—O6—Cd4v | 97.2 (2) |
O5—Cd4—O7vi | 88.1 (2) | P2—O7—Cd4v | 129.9 (4) |
O2v—Cd4—O7vi | 97.3 (2) | P2—O7—Cd3iii | 99.9 (3) |
O5—Cd4—O12 | 102.9 (2) | Cd4v—O7—Cd3iii | 111.8 (3) |
O2v—Cd4—O12 | 90.1 (2) | Cd2x—O8—Cd1 | 101.2 (3) |
O7vi—Cd4—O12 | 83.8 (2) | Cd2x—O8—Cd1x | 115.6 (3) |
O5—Cd4—O10 | 78.0 (2) | Cd1—O8—Cd1x | 133.6 (3) |
O2v—Cd4—O10 | 93.3 (2) | P1—O9—Cd5xii | 149.7 (4) |
O7vi—Cd4—O10 | 159.4 (2) | P1—O9—Cd5 | 96.3 (3) |
O12—Cd4—O10 | 113.9 (2) | Cd5xii—O9—Cd5 | 113.8 (3) |
O5—Cd4—O6vi | 86.1 (2) | P2—O10—Cd2 | 124.6 (3) |
O2v—Cd4—O6vi | 82.4 (2) | P2—O10—Cd4 | 113.0 (3) |
O7vi—Cd4—O6vi | 81.5 (2) | Cd2—O10—Cd4 | 96.7 (2) |
O12—Cd4—O6vi | 162.5 (2) | P2—O10—Cd1x | 128.6 (3) |
O10—Cd4—O6vi | 82.4 (2) | Cd2—O10—Cd1x | 89.6 (2) |
O4v—Cd5—O9vii | 87.0 (2) | Cd4—O10—Cd1x | 97.1 (2) |
O4v—Cd5—O3vi | 168.8 (2) | P2vi—O11—Cd3 | 127.1 (4) |
O9vii—Cd5—O3vi | 82.7 (2) | P1—O12—Cd4 | 136.4 (3) |
O4v—Cd5—O1viii | 94.6 (2) | P1—O12—Cd5 | 94.7 (3) |
O9vii—Cd5—O1viii | 111.4 (2) | Cd4—O12—Cd5 | 121.2 (2) |
Symmetry codes: (i) x−1/2, −y+1/2, −z+1; (ii) −x+1/2, −y, z+1/2; (iii) −x, y−1/2, −z+1/2; (iv) −x, y+1/2, −z+1/2; (v) −x+1, y−1/2, −z+1/2; (vi) −x+1, y+1/2, −z+1/2; (vii) x+1/2, −y+1/2, −z; (viii) x+1, y, z; (ix) x−1, y, z; (x) x+1/2, −y+1/2, −z+1; (xi) −x+1/2, −y, z−1/2; (xii) x−1/2, −y+1/2, −z. |
Cd5(PO4)2(OH)4 | Mn5(AsO4)2(OH)4a | Mn5(PO4)2(OH)4b | Co5(PO4)2(OH)4c | Cd5(VO4)2(OH)4d | |
M1—O8 | 2.245 (7) | 2.19 | 2.156 | 2.063 | 2.295 (4) |
M1—O4i | 2.267 (6) | 2.25 | 2.193 | 2.132 | 2.317 (4) |
M1—O8i | 2.269 (6) | 2.17 | 2.157 | 2.050 | 2.271 (4) |
M1—O3 | 2.312 (6) | 2.20 | 2.214 | 2.207 | 2.287 (3) |
M1—O6ii | 2.412 (7) | 2.31 | 2.299 | 2.162 | 2.378 (4) |
M1—O10i | 2.540 (6) | 2.35 | 2.407 | 2.250 | 2.408 (3) |
M2—O8i | 2.236 (6) | 2.19 | 2.153 | 2.106 | 2.244 (4) |
M2—O4 | 2.246 (6) | 2.13 | 2.131 | 2.047 | 2.2469 (4) |
M2—O5 | 2.258 (6) | 2.19 | 2.166 | 2.107 | 2.265 (4) |
M2—O2iii | 2.306 (6) | 2.18 | 2.181 | 2.061 | 2.293 (4) |
M2—O6iv | 2.319 (6) | 2.19 | 2.229 | 2.171 | 2.321 (3) |
M2—O10 | 2.335 (6) | 2.25 | 2.244 | 2.152 | 2.329 (3) |
M3—O5 | 2.202 (6) | 2.07 | 2.076 | 1.998 | 2.193 (3) |
M3—O11 | 2.226 (6) | 2.06 | 2.076 | 1.983 | 2.212 (3) |
M3—O2 | 2.300 (6) | 2.26 | 2.225 | 2.232 | 2.302 (4) |
M3—O7iv | 2.327 (6) | 2.13 | 2.179 | 2.085 | 2.268 (4) |
M3—O1 | 2.351 (6) | 2.31 | 2.293 | 2.194 | 2.325 (3) |
M3—O3iv | 2.599 (6) | 2.69 | 2.583 | 2.410 | 2.849 (4) |
M4—O5 | 2.184 (6) | 2.15 | 2.107 | 2.029 | 2.241 (4) |
M4—O2v | 2.196 (6) | 2.14 | 2.116 | 2.031 | 2.252 (3) |
M4—O7vi | 2.305 (6) | 2.18 | 2.173 | 2.078 | 2.282 (3) |
M4—O12 | 2.315 (6) | 2.22 | 2.210 | 2.170 | 2.302 (3) |
M4—O10 | 2.434 (6) | 2.29 | 2.328 | 2.194 | 2.365 (4) |
M4—O6vi | 2.555 (6) | 2.36 | 2.453 | 2.340 | 2.413 (4) |
M5—O4v | 2.240 (7) | 2.17 | 2.165 | 2.110 | 2.245 (4) |
M5—O9vii | 2.247 (6) | 2.09 | 2.098 | 2.029 | 2.256 (4) |
M5—O3vi | 2.334 (6) | 2.32 | 2.297 | 2.260 | 2.299 (4) |
M5—O1viii | 2.364 (6) | 2.19 | 2.233 | 2.092 | 2.287 (3) |
M5—O9 | 2.405 (6) | 2.19 | 2.259 | 2.114 | 2.381 (4) |
M5—O12 | 2.432 (6) | 2.43 | 2.384 | 2.281 | 2.642 (4) |
X1—O9 | 1.524 (6) | 1.72 | 1.547 | 1.537 | 1.698 (3) |
X1—O6 | 1.543 (7) | 1.72 | 1.554 | 1.547 | 1.741 (4) |
X1—O12 | 1.544 (6) | 1.65 | 1.528 | 1.545 | 1.695 (4) |
X1—O1 | 1.553 (6) | 1.68 | 1.539 | 1.552 | 1.749 (3) |
X2—O11v | 1.523 (6) | 1.65 | 1.527 | 1.519 | 1.688 (3) |
X2—O7 | 1.538 (7) | 1.67 | 1.540 | 1.546 | 1.721 (3) |
X2—O10 | 1.543 (7) | 1.67 | 1.544 | 1.545 | 1.731 (4) |
X2—O3 | 1.562 (6) | 1.68 | 1.542 | 1.555 | 1.733 (4) |
S | 0.0118 | 0.0199 | 0.0394 | 0.0106 | |
dmax | 0.3033 | 0.1232 | 0.2613 | 0.2351 | |
dav | 0.1378 | 0.0598 | 0.1123 | 0.1264 | |
Δ | 0.044 | 0.013 | 0.026 | 0.100 | |
quotient X:M of ionic radii | 0.178 | 0.404 | 0.205 | 0.228 | 0.374 |
Notes: (a) Lattice parameter after standardization: a = 5.75 (1), b = 9.31 (2), c = 18.29 (2) Å, V = 979.1 Å3. (b) Lattice parameters after standardization: a = 5.6923 (6), b = 9.110 (1), c = 18.032 (4) Å, V = 935.1 Å3. (c) Lattice parameters after standardization: a = 5.5154 (4), b = 8.903 (2), c = 17.397 (2) Å, V = 854.3 Å3. (d) Lattice parameters after standardization: a = 6.0133 (12), b = 9.5411 (19) Å, c = 19.011 (4) Å, V = 1090.7 (4) Å3. Symmetry codes: (i) x - 1/2, -y + 1/2, -z + 1; (ii) -x + 1/2, -y, z + 1/2; (iii) -x, y - 1/2, -z + 1/2; (iv) -x, y + 1/2, -z + 1/2; (v) -x + 1, y - 1/2, -z + 1/2; (vi) -x + 1, y + 1/2, -z + 1/2; (vii) x + 1/2, -y + 1/2, -z; (viii) x + 1, y, z. |
Footnotes
‡Present address: Department of Quantum Matter Physics, Ecole de Physique, University of Geneva, 24, Quai Ernest-Ansermet, CH-1211 Geneva 4 Switzerland.
Acknowledgements
The X-ray centre of TU Wien is acknowledged for granting free access to the powder and single-crystal X-ray diffraction instruments. We thank TU Wien Bibliothek for financial support through its Open Access Funding Programme.
References
Aroyo, M. I., Perez-Mato, J. M., Capillas, C., Kroumova, E., Ivantchev, S., Madariaga, G., Kirov, A. & Wondratschek, H. (2006). Z. Kristallogr. 221, 15–27. Web of Science CrossRef CAS Google Scholar
Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197. CrossRef CAS Web of Science IUCr Journals Google Scholar
Brown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press. Google Scholar
Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Ðorđević, T. & Kolitsch, U. (2013). Miner. Petrol. 107, 243–251. Google Scholar
Dowty, E. (2006). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA. Google Scholar
Eder, F. & Weil, M. (2020). Acta Cryst. E76, 625–628. CrossRef ICSD IUCr Journals Google Scholar
Elliott, P. & Pring, A. (2011). Miner. Mag. 75, 2823–2832. CrossRef CAS Google Scholar
Flor, G. de la, Orobengoa, D., Tasci, E., Perez-Mato, J. M. & Aroyo, M. I. (2016). J. Appl. Cryst. 49, 653–664. Web of Science CrossRef IUCr Journals Google Scholar
Gagné, O. C. & Hawthorne, F. C. (2020). IUCrJ, 7, 581–629. Web of Science CrossRef PubMed IUCr Journals Google Scholar
Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139–143. CrossRef Web of Science IUCr Journals Google Scholar
Hata, M., Okada, K., Iwai, S., Akao, M. & Aoki, H. (1978). Acta Cryst. B34, 3062–3064. CrossRef ICSD CAS IUCr Journals Web of Science Google Scholar
Karanović, L. & Đorđević, T. (2022). Minerals, 12, 1601. Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Moore, P. B. & Molin-Case, J. (1971). Am. Mineral. 56, 1539–1552. CAS Google Scholar
Ok, K. M. & Halasyamani, P. S. (2006). J. Solid State Chem. 179, 1345–1350. CrossRef ICSD CAS Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Rea, J. R. & Kostiner, E. (1974). Acta Cryst. B30, 2901–2903. CrossRef ICSD CAS IUCr Journals Web of Science Google Scholar
Ruszala, F. A., Anderson, J. B. & Kostiner, E. (1977). Inorg. Chem. 16, 2417–2422. CrossRef ICSD CAS Web of Science Google Scholar
Shannon, R. D. (1976). Acta Cryst. A32, 751–767. CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Waldrop, L. (1968). Naturwissenschaften, 55, 178. CrossRef ICSD Google Scholar
Waldrop, L. (1969). Z. Kristallogr. 130, 1–14. CrossRef ICSD CAS Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yao, W.-D., Yan, M., Li, X.-H., Liu, W. & Tang, R.-L. (2021). Eur. J. Inorg. Chem. pp. 4566–4571. CrossRef ICSD Google Scholar
Zhao, M., Dong, W., Wu, Y., Mei, D., Wen, S. & Doert, T. (2021a). J. Alloys Compd. 865, 158785. CrossRef ICSD Google Scholar
Zhao, M., Sun, Y., Wu, Y., Mei, D., Wen, S. & Doert, T. (2021b). J. Alloys Compd. 854, 157243. CrossRef ICSD Google Scholar
Zimmermann, I., Kremer, R. K. & Johnsson, M. (2011). J. Solid State Chem. 184, 3080–3084. Web of Science CrossRef ICSD CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.