research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of N1,N2-di­methyl­ethane­dihydrazide

crossmark logo

aDepartment of Chemistry, Kyiv National Taras Shevchenko University, Volodymyrska St 64, Kyiv, Ukraine, bEnamine Ltd., Winston Churchill St 78, Kyiv 02094, Ukraine, and c"Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487 Iasi, Romania
*Correspondence e-mail: yurii.bibik@knu.ua

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 15 December 2023; accepted 7 January 2024; online 12 January 2024)

The title compound, N1,N2-di­methyl­ethane­dihydrazide, C4H10N4O2, was obtained by the methyl­ation of oxalyl dihydrazide protected with phthalimide. The mol­ecule is essentially non-planar with a dihedral angle between the two planar hydrazide fragments of 86.5 (2)°. This geometry contributes to the formation of a multi-contact three-dimensional supra­molecular network via C—H⋯O, N—H⋯O and N—H⋯N hydrogen bonds.

1. Chemical context

For over a century, researchers have aimed to synthesize diverse heterocycles using well-established available methods. Currently, there is significant research inter­est in developing new methods for their synthesis, focusing on efficient and atom-economical routes (Favi, 2020[Favi, G. (2020). Molecules, 25, 10-13.]; Pathan et al., 2020[Pathan, S. I., Chundawat, N. S., Chauhan, N. P. S. & Singh, G. P. (2020). Synth. Commun. 50, 1251-1285.]). Among these novel synthetic approaches, the utilization of hydrazides stands out as one of the most appealing methods for synthesizing heterocyclic compounds such as pyrazoles, triazoles, oxa­diazo­les and pyridazines (Majumdar et al., 2014[Majumdar, P., Pati, A., Patra, M., Behera, R. K. & Behera, A. K. (2014). Chem. Rev. 114, 2942-2977.]; Mittersteiner et al., 2021[Mittersteiner, M., Bonacorso, H. G., Martins, M. A. P. & Zanatta, N. (2021). Eur. J. Org. Chem. pp. 3886-3911.]; Hosseini & Bayat, 2018[Hosseini, H. & Bayat, M. (2018). Cyanoacetohydrazides. In Synthesis of Heterocyclic Compounds. Cham, Switzerland: Springer International Publishing.]; Khomenko et al., 2022[Khomenko, D. M., Doroshchuk, R. O., Ohorodnik, Y. M., Ivanova, H. V., Zakharchenko, B. V., Raspertova, I. V., Vaschenko, O. V., Dobrydnev, A. V., Grygorenko, O. O. & Lampeka, R. D. (2022). Chem. Heterocycl. C. 58, 116-128.]).

Organic acid hydrazides constitute a broad group of hydrazine derivatives containing the functional group –C(=O)NHNH2. Therefore, this keen inter­est in hydrazide chemistry appears to arise not only from their diversity but also from the unique properties of these compounds. Acid hydrazides and their derivatives such as hydrazones possess biological activities including anti­convulsant (Angelova et al., 2016[Angelova, V., Karabeliov, V., Andreeva-Gateva, P. A. & Tchekalarova, J. (2016). Drug Dev. Res. 77, 379-392.]), anti­depressant (Ergenç et al., 1998[Ergenç, N., Günay, N. S. & Demirdamar, R. (1998). Eur. J. Med. Chem. 33, 143-148.]), anti-inflammatory (Kajal et al., 2014[Kajal, A., Bala, S., Sharma, N., Kamboj, S. & Saini, V. (2014). Int. J. Med. Chem. 2014, 1-11.]), anti­malarial (Walcourt et al., 2004[Walcourt, A., Loyevsky, M., Lovejoy, D. B., Gordeuk, V. R. & Richardson, D. R. (2004). Int. J. Biochem. & Cell. Biol. 36, 401-407.]), anti­mycobacterial (Shalini et al., 2019[Shalini, Johansen, M. D., Kremer, L. & Kumar, V. (2019). Chem. Biol. Drug Des. 94, 1300-1305.]), anti­cancer (Witusik-Perkowska et al., 2023[Witusik-Perkowska, M., Głowacka, P., Pieczonka, A. M., Świderska, E., Pudlarz, A., Rachwalski, M., Szymańska, J., Zakrzewska, M., Jaskólski, D. J. & Szemraj, J. (2023). Cells, 12, 1906.]; Küçükgüzel et al., 2015[Küçükgüzel, G. Ş., Koç, D., Çıkla-Süzgün, P., Özsavcı, D., Bingöl-Özakpınar, Ö., Mega-Tiber, P., Orun, O., Erzincan, P., Sağ-Erdem, S. & Şahin, F. (2015). Arch. Pharm. 348, 730-742.]) and anti­microbial (Hiremathad et al., 2015[Hiremathad, A., Patil, M. R., Chand, K., Santos, M. A. & Keri, R. S. (2015). RSC Adv. 5, 96809-96828.]; Popiołek et al., 2022[Popiołek, Ł., Tuszyńska, K. & Biernasiuk, A. (2022). Biomed. Pharmacother. 153, 113302.]; Berillo & Dyusebaeva, 2022[Berillo, D. A. & Dyusebaeva, M. A. (2022). Saudi Pharm. J. 30, 1036-1043.]; Popiołek, 2021[Popiołek, Ł. (2021). Int. J. Mol. Sci. 22, 9389.]). Hydrazides are also bidentate ligands that can form chelate complexes (Ju et al., 2023[Ju, H., Zhu, Q. L., Zuo, M., Liang, S., Du, M., Zheng, Q. & Wu, Z. L. (2023). Chem. Eur. J. 29, e202300969.]).

[Scheme 1]

Considering the above, we report on the synthesis and crystal structure of a new alkyl­ated oxalyl dihydrazide as an attractive synthon for the synthesis of biologically active organic compounds and metal complexes.

2. Structural commentary

The title compound crystalizes in the ortho­rhom­bic Sohncke space group P212121 with four formula units per unit cell (Fig. 1[link]). The crystal structure does not show other tautomeric forms. Bond lengths and angles are given in Table 1[link]. The geometrical parameters are comparable to the values found in methyl­semicarbazide (Szimhardt & Stierstorfer, 2018[Szimhardt, N. & Stierstorfer, J. (2018). Chem. A Eur. J. 24, 2687-2698.]) and oxalyl dihydrazide (Quaeyhaegens et al., 1990[Quaeyhaegens, F., Desseyn, H. O., Bracke, B. & Lenstra, A. T. H. (1990). J. Mol. Struct. 238, 139-157.]). The methyl hydrazide core [–C(=O)N(—CH3)NH2] is almost planar (r.m.s. deviation = 0.022 Å). The torsion angles around the N1—C2 and N3—C3 bonds are N2—N1—C2—O1 = 175.1 (4)°, C1—N1—C2—O1 = −1.2 (5)°, N4—N3—C3—O2 = 174.8 (4)°, and C4—N3—C3—O2 = −1.4 (6)°. The methyl hydrazide fragments are almost perpendicular to each other [the dihedral angle between the two moieties is 86.5 (2)°]. The torsion angles around the C2—C3 bond are O1—C2—C3—O2 = 89.9 (4), O1—C2—C3—N3 = −81.4 (4), N1—C2—C3—O2 = −83.2 (4), and N1—C2—C3—N3 = 105.5 (4)°.

Table 1
Selected geometric parameters (Å, °)

O1—C2 1.231 (4) N3—N4 1.414 (4)
O2—C3 1.233 (4) N3—C3 1.319 (4)
N1—N2 1.412 (4) N3—C4 1.460 (4)
N1—C1 1.460 (4) C2—C3 1.511 (5)
N1—C2 1.331 (4)    
       
N2—N1—C1 119.9 (3) O1—C2—N1 123.8 (3)
C2—N1—N2 117.6 (3) O1—C2—C3 118.2 (3)
C2—N1—C1 122.4 (3) N1—C2—C3 117.7 (3)
N4—N3—C4 120.5 (3) O2—C3—N3 124.1 (4)
C3—N3—N4 117.3 (3) O2—C3—C2 118.7 (3)
C3—N3—C4 122.1 (4) N3—C3—C2 116.5 (3)
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with atom labeling and displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, each mol­ecule forms chains along the a-axis direction with two neighboring ones via N—H⋯O hydrogen bonds (Table 2[link], Fig. 2[link]). Neighboring chains form a 3D supra­molecular network via C—H⋯O, N—H⋯O and N—H⋯N hydrogen-bonding contacts (Table 2[link], Fig. 3[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1C⋯O1i 0.96 2.58 3.042 (4) 110
N2—H2A⋯O2ii 0.87 (5) 2.13 (5) 2.977 (4) 164 (4)
N2—H2B⋯O2iii 0.90 (3) 2.35 (3) 3.182 (4) 155 (3)
N4—H4A⋯O1iv 0.79 (4) 2.30 (4) 3.075 (5) 169 (4)
N4—H4B⋯N2v 0.99 (5) 2.38 (5) 3.367 (5) 170 (4)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y-{\script{3\over 2}}, -z-1]; (ii) [x-1, y, z]; (iii) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, -z-1]; (iv) [-x-1, y+{\script{1\over 2}}, -z-{\script{1\over 2}}]; (v) [-x-1, y-{\script{1\over 2}}, -z-{\script{1\over 2}}].
[Figure 2]
Figure 2
One-dimensional chains along the a-axis direction formed by N—H⋯O hydrogen bonding.
[Figure 3]
Figure 3
A view normal to plane (100) of the crystal structure of the title compound, showing the three-dimensional supra­molecular hydrogen-bonding network.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.43, last update November 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) confirmed that the title compound has not previously been published. A search for the N—N—C(=O)—C(=O)—N—N fragment gave oxalyl dihydrazide (CSD refcode VIPKIO; Quaeyhaegens et al., 1990[Quaeyhaegens, F., Desseyn, H. O., Bracke, B. & Lenstra, A. T. H. (1990). J. Mol. Struct. 238, 139-157.]), its salts: EREQOK (Wu, 2021[Wu, B. (2021). CSD Communication (CCDC 2079326, refcode EREQOK). CCDC, Cambridge, England.]), NEXMIP (Xu et al., 2018[Xu, Y., Lin, Q., Wang, P. & Lu, M. (2018). Chem. Asian J. 13, 924-928.]), MIDNOG (Devi et al., 2018[Devi, A., Dharavath, S. & Ghule, V. D. (2018). ChemistrySelect, 3, 4501-4504.]), VUHYUU and VUHZAB (Fischer et al., 2014[Fischer, D., Klapötke, T. M. & Stierstorfer, J. (2014). J. Energetic Mater. 32, 37-49.]), ZIBBIX and ZIBDAR (Fischer et al., 2013[Fischer, N., Klapötke, T. M., Reymann, M. & Stierstorfer, J. (2013). Eur. J. Inorg. Chem. pp. 2167-2180.]), and Schiff bases derived from it as the closest analogues: CUQPAF (Drexler et al., 1999[Drexler, K., Dehne, H. & Reinke, H. (1999). CSD Communication (CCDC 137595, refcode CUQPAF). CCDC, Cambridge, England.]), HIRHIB (Singh et al., 2013[Singh, D. P., Raghuvanshi, D. S., Singh, K. N. & Singh, V. P. (2013). J. Mol. Catal. A Chem. 379, 21-29.]), IYACUH (Ran et al., 2011[Ran, X., Zhang, P., Qu, S., Wang, H., Bai, B., Liu, H., Zhao, C. & Li, M. (2011). Langmuir, 27, 3945-3951.]), KUTREX (Kaluderović et al., 2010[Kaluderović, G. N., Mohamad Eshkourfu, R. O., Gómez-Ruiz, S., Mitić, D. & Andelković, K. K. (2010). Acta Cryst. E66, o904-o905.]), LORQEP (Bi et al., 2009[Bi, W.-T., Hu, N.-L. & Bi, J.-H. (2009). Acta Cryst. E65, o782.]), NAJWUT (Singh et al., 2016[Singh, D. P., Allam, B. K., Singh, R., Singh, K. N. & Singh, V. P. (2016). RSC Adv. 6, 15518-15524.]), NEQQOQ (Zhu et al., 2006[Zhu, L.-N., Li, C.-Q., Li, X.-Z. & Li, R. (2006). Acta Cryst. E62, o4603-o4605.]), RIRTET (Singh et al., 2014[Singh, D. P., Allam, B. K., Singh, K. N. & Singh, V. P. (2014). RSC Adv. 4, 1155-1158.]), SUYWUG (Galvão et al., 2016[Galvão, A. M., Carvalho, M. F. N. N. & Ferreira, A. S. D. (2016). J. Mol. Struct. 1108, 708-716.]), UMIZUN (El-Asmy et al., 2015[El-Asmy, A., Jeragh, B. & Ali, M. (2015). Chem. Cent. J. 9, 69.]), ZOLQUP and ZOLRAW (Fries et al., 2019[Fries, M., Mertens, M., Teske, N., Kipp, M., Beyer, C., Willms, T., Valkonen, A., Rissanen, K., Albrecht, M. & Clarner, T. (2019). ACS Omega, 4, 1685-1689.]). For compound ZOLQOJ (Fries et al., 2019[Fries, M., Mertens, M., Teske, N., Kipp, M., Beyer, C., Willms, T., Valkonen, A., Rissanen, K., Albrecht, M. & Clarner, T. (2019). ACS Omega, 4, 1685-1689.]), the fragment is part of a ring structure. Notably, a strictly planar structure is observed for the mol­ecules oxalyl dihydrazide VIPKIO and dimethyl oxalate DMEOXA (Dougill & Jeffrey, 1953[Dougill, M. W. & Jeffrey, G. A. (1953). Acta Cryst. 6, 831-837.]).

A search for the methyl hydrazide moiety gave methyl­semicarbazide (XIBFEW; Szimhardt & Stierstorfer, 2018[Szimhardt, N. & Stierstorfer, J. (2018). Chem. A Eur. J. 24, 2687-2698.]). Its geometric parameters agree well with those of the title compound. Further searches also revealed two structural analogues with a second non-hydrogen substituent at the amide-nitro­gen atom: N,N,N′,N′-tetra­methyl­oxamide and N,N,N′,N′-tetra­methyl­mono­thio­oxamide (TMOXAM and TMTHOX, respectively; Adiwidjaja & Voss, 1977[Adiwidjaja, G. & Voss, J. (1977). Chem. Ber. 110, 1159-1166.]). These two crystal structures have a different packing and belong to monoclinic space groups. However, they exhibit very similar geometries in terms of the rotation of the mol­ecule fragments around the central C—C bond. The O=C—C=O(S) torsion angles are 105.1 (2) and 89.6 (2)°, respectively.

5. Synthesis and crystallization

The title compound (5) was obtained according to the reaction scheme shown in Fig. 4[link].

[Figure 4]
Figure 4
Synthesis of the title compound.

N,N'-bis­(1,3-dioxo-1,3-di­hydro-2H-isoindol-2-yl)ethanedi­amide (3): compound 3 was synthesized from the commercially available precursors (Enamine Ltd.) according to the following method: 12.45 g (84 mmol, 2 eq.) of phthalic anhydride (2) were dissolved in 125 ml of DMF and 4.96 g (42 mmol, 1 eq.) of oxalyl dihydrazide (1) were added to the boiling solution. The obtained mixture was refluxed for 5 h. Upon cooling, precipitation of the product was observed. It was filtered off and dried. White powder; yield 73%. 1H NMR (400 MHz, DMSO-d6): δ 8.05–8.15 (m, 4H, 4-Ph), 11.57 (br, 1H, NH).

N1,N2-di­methyl­ethane­dihydrazide (5): 11.0 g (79.7 mmol, 3 eq.) of K2CO3 and 3.65 ml (58.6 mmol, 2.2 eq.) of CH3I were added to a solution containing 10.0 g (26.5 mmol, 1 eq.) of compound 3 in 50 ml DMF. The reaction mixture was stirred for 6 h at room temperature. The inorganic precipitate was filtered off, the filtrate was evaporated and the residue was stirred in water, filtered off and dried in air. Yield: 9.9 g.

The crude precipitate of 4 (4 g, 9.8 mmol, 1 eq.) obtained from the previous step was refluxed with 1.1 ml (20.6 mmol, 2.1 eq.) of methyl­hydrazine in ethanol for 6 h. The precipitate was filtered off, ethanol was evaporated and the residue was recrystallized from 2-propanol and dried in air. The title compound was isolated as a white solid. Crystals suitable for X-ray analysis were obtained during the recrystallization. White powder; yield 84%. LC–MS (ESI) m/z 147 (MH+) . IR (ATR, ν, cm−1) : ν 3290, 3214, 1672, 1616, 1414, 1386, 1234, 1066, 1014, 870, 782, 762. 1H NMR (400 MHz, DMSO-d6): δ 2.90*, 2.95 and 3.00* (s, 3H, CH3), 4.68, 4.85* and 4.93* (s, 2H, NH2). *Minor signals indicate hindered rotation about the (O)C—N bond.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. For the NH2 group, the hydrogen atoms were placed from a difference-Fourier map and refined freely. The CH3 hydrogen atoms were placed geometrically and refined as riding with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula C4H10N4O2
Mr 146.16
Crystal system, space group Orthorhombic, P212121
Temperature (K) 293
a, b, c (Å) 6.0356 (5), 7.6501 (6), 15.7851 (14)
V3) 728.84 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.25 × 0.2 × 0.15
 
Data collection
Diffractometer Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku, OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.975, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 2356, 1279, 1014
Rint 0.027
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.093, 1.04
No. of reflections 1279
No. of parameters 107
No. of restraints 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.14, −0.12
Absolute structure Flack x determined using 280 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.7 (10)
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku, OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

N1,N2-Dimethylethanedihydrazide top
Crystal data top
C4H10N4O2Dx = 1.332 Mg m3
Mr = 146.16Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 809 reflections
a = 6.0356 (5) Åθ = 2.6–21.5°
b = 7.6501 (6) ŵ = 0.11 mm1
c = 15.7851 (14) ÅT = 293 K
V = 728.84 (10) Å3Prism, clear light colourless
Z = 40.25 × 0.2 × 0.15 mm
F(000) = 312
Data collection top
Xcalibur, Eos
diffractometer
1279 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source1014 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 8.0797 pixels mm-1θmax = 25.0°, θmin = 2.6°
ω scansh = 47
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
k = 69
Tmin = 0.975, Tmax = 1.000l = 1718
2356 measured reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.050 w = 1/[σ2(Fo2) + (0.0311P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.093(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.14 e Å3
1279 reflectionsΔρmin = 0.11 e Å3
107 parametersAbsolute structure: Flack x determined using 280 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
6 restraintsAbsolute structure parameter: 0.7 (10)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3495 (5)0.6601 (3)0.39158 (16)0.0534 (8)
O20.1053 (4)0.3057 (4)0.38063 (17)0.0565 (8)
N10.5715 (5)0.4389 (3)0.43410 (17)0.0356 (8)
N20.6265 (6)0.2617 (4)0.4206 (2)0.0390 (8)
N30.2831 (5)0.3723 (4)0.2592 (2)0.0418 (8)
N40.4758 (7)0.4508 (6)0.2252 (2)0.0510 (10)
C10.7056 (7)0.5453 (5)0.4913 (2)0.0520 (11)
H1A0.7033360.4949200.5469900.078*
H1B0.8553560.5495000.4709300.078*
H1C0.6460560.6615700.4935100.078*
C20.4040 (6)0.5050 (5)0.3896 (2)0.0357 (9)
C30.2571 (6)0.3787 (4)0.3421 (2)0.0359 (9)
C40.1283 (7)0.2793 (5)0.2043 (3)0.0661 (13)
H4C0.1881750.1666750.1903690.099*
H4D0.0107850.2648550.2329390.099*
H4E0.1059450.3453150.1532390.099*
H2A0.763 (8)0.255 (5)0.404 (2)0.061 (14)*
H4A0.537 (7)0.378 (5)0.199 (2)0.053 (15)*
H2B0.621 (6)0.208 (5)0.471 (2)0.056 (14)*
H4B0.432 (9)0.548 (7)0.187 (3)0.12 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0640 (19)0.0427 (15)0.0536 (18)0.0182 (15)0.0038 (16)0.0062 (13)
O20.0318 (15)0.084 (2)0.0542 (18)0.0106 (15)0.0054 (15)0.0102 (15)
N10.0346 (17)0.0386 (16)0.0335 (17)0.0029 (15)0.0068 (15)0.0064 (14)
N20.0321 (19)0.0372 (18)0.048 (2)0.0026 (17)0.0011 (18)0.0011 (17)
N30.0361 (18)0.051 (2)0.0377 (19)0.0037 (18)0.0046 (16)0.0015 (15)
N40.058 (3)0.056 (2)0.039 (2)0.002 (2)0.0052 (19)0.002 (2)
C10.060 (3)0.055 (2)0.041 (2)0.005 (2)0.013 (2)0.011 (2)
C20.037 (2)0.043 (2)0.0267 (19)0.0058 (19)0.0072 (19)0.0023 (17)
C30.029 (2)0.044 (2)0.035 (2)0.0081 (19)0.0022 (18)0.0048 (18)
C40.057 (3)0.084 (3)0.057 (3)0.008 (3)0.017 (3)0.015 (3)
Geometric parameters (Å, º) top
O1—C21.231 (4)N4—H4A0.79 (4)
O2—C31.233 (4)N4—H4B0.99 (5)
N1—N21.412 (4)C1—H1A0.9599
N1—C11.460 (4)C1—H1B0.9601
N1—C21.331 (4)C1—H1C0.9600
N2—H2A0.87 (4)C2—C31.511 (5)
N2—H2B0.89 (4)C4—H4C0.9600
N3—N41.414 (4)C4—H4D0.9600
N3—C31.319 (4)C4—H4E0.9601
N3—C41.460 (4)
N2—N1—C1119.9 (3)H1A—C1—H1B109.5
C2—N1—N2117.6 (3)H1A—C1—H1C109.5
C2—N1—C1122.4 (3)H1B—C1—H1C109.5
N1—N2—H2A109 (3)O1—C2—N1123.8 (3)
N1—N2—H2B108 (2)O1—C2—C3118.2 (3)
H2A—N2—H2B106 (4)N1—C2—C3117.7 (3)
N4—N3—C4120.5 (3)O2—C3—N3124.1 (4)
C3—N3—N4117.3 (3)O2—C3—C2118.7 (3)
C3—N3—C4122.1 (4)N3—C3—C2116.5 (3)
N3—N4—H4A107 (3)N3—C4—H4C109.4
N3—N4—H4B109 (3)N3—C4—H4D109.6
H4A—N4—H4B109 (4)N3—C4—H4E109.4
N1—C1—H1A109.6H4C—C4—H4D109.5
N1—C1—H1B109.5H4C—C4—H4E109.5
N1—C1—H1C109.4H4D—C4—H4E109.5
O1—C2—C3—O289.9 (4)N4—N3—C3—O2174.8 (4)
O1—C2—C3—N381.4 (4)N4—N3—C3—C214.4 (5)
N1—C2—C3—O283.2 (4)C1—N1—C2—O11.2 (5)
N1—C2—C3—N3105.5 (4)C1—N1—C2—C3171.6 (3)
N2—N1—C2—O1175.1 (4)C4—N3—C3—O21.4 (6)
N2—N1—C2—C312.2 (4)C4—N3—C3—C2169.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1C···O1i0.962.583.042 (4)110
N2—H2A···O2ii0.87 (5)2.13 (5)2.977 (4)164 (4)
N2—H2B···O2iii0.90 (3)2.35 (3)3.182 (4)155 (3)
N4—H4A···O1iv0.79 (4)2.30 (4)3.075 (5)169 (4)
N4—H4B···N2v0.99 (5)2.38 (5)3.367 (5)170 (4)
Symmetry codes: (i) x1/2, y3/2, z1; (ii) x1, y, z; (iii) x1/2, y1/2, z1; (iv) x1, y+1/2, z1/2; (v) x1, y1/2, z1/2.
 

Acknowledgements

We are grateful to the Ministry of Education and Science of Ukraine and to the Ministry of Research, Innovation and Digitization of Romania for financial support.

Funding information

Funding for this research was provided by: Ministry of Education and Science of Ukraine (grant for the perspective development of the scientific direction `Mathematical sciences and natural sciences' and grant No. 22BF037-06 at the Taras Shevchenko National University of Kyiv); Ministry of Research, Innovation and Digitization (Romania), CCCDI - UEFISCDI, project number PN-III-P2-2.1-PED-2021-3900, within PNCDI III, Contract PED 698/2022 (AI-Syn-PPOSS).

References

First citationAdiwidjaja, G. & Voss, J. (1977). Chem. Ber. 110, 1159–1166.  CSD CrossRef CAS Web of Science Google Scholar
First citationAngelova, V., Karabeliov, V., Andreeva–Gateva, P. A. & Tchekalarova, J. (2016). Drug Dev. Res. 77, 379–392.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBerillo, D. A. & Dyusebaeva, M. A. (2022). Saudi Pharm. J. 30, 1036–1043.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBi, W.-T., Hu, N.-L. & Bi, J.-H. (2009). Acta Cryst. E65, o782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDevi, A., Dharavath, S. & Ghule, V. D. (2018). ChemistrySelect, 3, 4501–4504.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDougill, M. W. & Jeffrey, G. A. (1953). Acta Cryst. 6, 831–837.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationDrexler, K., Dehne, H. & Reinke, H. (1999). CSD Communication (CCDC 137595, refcode CUQPAF). CCDC, Cambridge, England.  Google Scholar
First citationEl-Asmy, A., Jeragh, B. & Ali, M. (2015). Chem. Cent. J. 9, 69.  Web of Science PubMed Google Scholar
First citationErgenç, N., Günay, N. S. & Demirdamar, R. (1998). Eur. J. Med. Chem. 33, 143–148.  Google Scholar
First citationFavi, G. (2020). Molecules, 25, 10–13.  Web of Science CrossRef Google Scholar
First citationFischer, D., Klapötke, T. M. & Stierstorfer, J. (2014). J. Energetic Mater. 32, 37–49.  Web of Science CSD CrossRef CAS Google Scholar
First citationFischer, N., Klapötke, T. M., Reymann, M. & Stierstorfer, J. (2013). Eur. J. Inorg. Chem. pp. 2167–2180.  Web of Science CSD CrossRef Google Scholar
First citationFries, M., Mertens, M., Teske, N., Kipp, M., Beyer, C., Willms, T., Valkonen, A., Rissanen, K., Albrecht, M. & Clarner, T. (2019). ACS Omega, 4, 1685–1689.  Web of Science CSD CrossRef CAS Google Scholar
First citationGalvão, A. M., Carvalho, M. F. N. N. & Ferreira, A. S. D. (2016). J. Mol. Struct. 1108, 708–716.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHiremathad, A., Patil, M. R., Chand, K., Santos, M. A. & Keri, R. S. (2015). RSC Adv. 5, 96809–96828.  Web of Science CrossRef CAS Google Scholar
First citationHosseini, H. & Bayat, M. (2018). Cyanoacetohydrazides. In Synthesis of Heterocyclic Compounds. Cham, Switzerland: Springer International Publishing.  Google Scholar
First citationJu, H., Zhu, Q. L., Zuo, M., Liang, S., Du, M., Zheng, Q. & Wu, Z. L. (2023). Chem. Eur. J. 29, e202300969.  Web of Science CrossRef PubMed Google Scholar
First citationKajal, A., Bala, S., Sharma, N., Kamboj, S. & Saini, V. (2014). Int. J. Med. Chem. 2014, 1–11.  Google Scholar
First citationKaluderović, G. N., Mohamad Eshkourfu, R. O., Gómez-Ruiz, S., Mitić, D. & Andelković, K. K. (2010). Acta Cryst. E66, o904–o905.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhomenko, D. M., Doroshchuk, R. O., Ohorodnik, Y. M., Ivanova, H. V., Zakharchenko, B. V., Raspertova, I. V., Vaschenko, O. V., Dobrydnev, A. V., Grygorenko, O. O. & Lampeka, R. D. (2022). Chem. Heterocycl. C. 58, 116–128.  Web of Science CrossRef CAS Google Scholar
First citationKüçükgüzel, G. Ş., Koç, D., Çıkla–Süzgün, P., Özsavcı, D., Bingöl–Özakpınar, Ö., Mega–Tiber, P., Orun, O., Erzincan, P., Sağ–Erdem, S. & Şahin, F. (2015). Arch. Pharm. 348, 730–742.  Google Scholar
First citationMajumdar, P., Pati, A., Patra, M., Behera, R. K. & Behera, A. K. (2014). Chem. Rev. 114, 2942–2977.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMittersteiner, M., Bonacorso, H. G., Martins, M. A. P. & Zanatta, N. (2021). Eur. J. Org. Chem. pp. 3886–3911.  Web of Science CrossRef Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPathan, S. I., Chundawat, N. S., Chauhan, N. P. S. & Singh, G. P. (2020). Synth. Commun. 50, 1251–1285.  Web of Science CrossRef CAS Google Scholar
First citationPopiołek, Ł. (2021). Int. J. Mol. Sci. 22, 9389.  Web of Science PubMed Google Scholar
First citationPopiołek, Ł., Tuszyńska, K. & Biernasiuk, A. (2022). Biomed. Pharmacother. 153, 113302.  Web of Science PubMed Google Scholar
First citationQuaeyhaegens, F., Desseyn, H. O., Bracke, B. & Lenstra, A. T. H. (1990). J. Mol. Struct. 238, 139–157.  CSD CrossRef CAS Web of Science Google Scholar
First citationRan, X., Zhang, P., Qu, S., Wang, H., Bai, B., Liu, H., Zhao, C. & Li, M. (2011). Langmuir, 27, 3945–3951.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku, OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationShalini, Johansen, M. D., Kremer, L. & Kumar, V. (2019). Chem. Biol. Drug Des. 94, 1300–1305.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, D. P., Allam, B. K., Singh, K. N. & Singh, V. P. (2014). RSC Adv. 4, 1155–1158.  Web of Science CSD CrossRef CAS Google Scholar
First citationSingh, D. P., Allam, B. K., Singh, R., Singh, K. N. & Singh, V. P. (2016). RSC Adv. 6, 15518–15524.  Web of Science CSD CrossRef CAS Google Scholar
First citationSingh, D. P., Raghuvanshi, D. S., Singh, K. N. & Singh, V. P. (2013). J. Mol. Catal. A Chem. 379, 21–29.  Web of Science CSD CrossRef CAS Google Scholar
First citationSzimhardt, N. & Stierstorfer, J. (2018). Chem. A Eur. J. 24, 2687–2698.  Web of Science CSD CrossRef CAS Google Scholar
First citationWalcourt, A., Loyevsky, M., Lovejoy, D. B., Gordeuk, V. R. & Richardson, D. R. (2004). Int. J. Biochem. & Cell. Biol. 36, 401–407.  Web of Science CrossRef CAS Google Scholar
First citationWitusik-Perkowska, M., Głowacka, P., Pieczonka, A. M., Świderska, E., Pudlarz, A., Rachwalski, M., Szymańska, J., Zakrzewska, M., Jaskólski, D. J. & Szemraj, J. (2023). Cells, 12, 1906.  Web of Science PubMed Google Scholar
First citationWu, B. (2021). CSD Communication (CCDC 2079326, refcode EREQOK). CCDC, Cambridge, England.  Google Scholar
First citationXu, Y., Lin, Q., Wang, P. & Lu, M. (2018). Chem. Asian J. 13, 924–928.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhu, L.-N., Li, C.-Q., Li, X.-Z. & Li, R. (2006). Acta Cryst. E62, o4603–o4605.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds