research communications
Synthesis and N1,N2-dimethylethanedihydrazide
ofaDepartment of Chemistry, Kyiv National Taras Shevchenko University, Volodymyrska St 64, Kyiv, Ukraine, bEnamine Ltd., Winston Churchill St 78, Kyiv 02094, Ukraine, and c"Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487 Iasi, Romania
*Correspondence e-mail: yurii.bibik@knu.ua
The title compound, N1,N2-dimethylethanedihydrazide, C4H10N4O2, was obtained by the methylation of oxalyl dihydrazide protected with phthalimide. The molecule is essentially non-planar with a dihedral angle between the two planar hydrazide fragments of 86.5 (2)°. This geometry contributes to the formation of a multi-contact three-dimensional supramolecular network via C—H⋯O, N—H⋯O and N—H⋯N hydrogen bonds.
Keywords: crystal structure; X-ray crystallography; hydrazide; hydrogen bonds.
CCDC reference: 2323887
1. Chemical context
For over a century, researchers have aimed to synthesize diverse heterocycles using well-established available methods. Currently, there is significant research interest in developing new methods for their synthesis, focusing on efficient and atom-economical routes (Favi, 2020; Pathan et al., 2020). Among these novel synthetic approaches, the utilization of stands out as one of the most appealing methods for synthesizing such as pyrazoles, triazoles, oxadiazoles and pyridazines (Majumdar et al., 2014; Mittersteiner et al., 2021; Hosseini & Bayat, 2018; Khomenko et al., 2022).
Organic acid 2. Therefore, this keen interest in hydrazide chemistry appears to arise not only from their diversity but also from the unique properties of these compounds. Acid and their derivatives such as possess biological activities including anticonvulsant (Angelova et al., 2016), antidepressant (Ergenç et al., 1998), anti-inflammatory (Kajal et al., 2014), antimalarial (Walcourt et al., 2004), antimycobacterial (Shalini et al., 2019), anticancer (Witusik-Perkowska et al., 2023; Küçükgüzel et al., 2015) and antimicrobial (Hiremathad et al., 2015; Popiołek et al., 2022; Berillo & Dyusebaeva, 2022; Popiołek, 2021). are also bidentate ligands that can form chelate complexes (Ju et al., 2023).
constitute a broad group of hydrazine derivatives containing the –C(=O)NHNHConsidering the above, we report on the synthesis and
of a new alkylated oxalyl dihydrazide as an attractive synthon for the synthesis of biologically active organic compounds and metal complexes.2. Structural commentary
The title compound crystalizes in the orthorhombic Sohncke P212121 with four formula units per (Fig. 1). The does not show other tautomeric forms. Bond lengths and angles are given in Table 1. The geometrical parameters are comparable to the values found in methylsemicarbazide (Szimhardt & Stierstorfer, 2018) and oxalyl dihydrazide (Quaeyhaegens et al., 1990). The methyl hydrazide core [–C(=O)N(—CH3)NH2] is almost planar (r.m.s. deviation = 0.022 Å). The torsion angles around the N1—C2 and N3—C3 bonds are N2—N1—C2—O1 = 175.1 (4)°, C1—N1—C2—O1 = −1.2 (5)°, N4—N3—C3—O2 = 174.8 (4)°, and C4—N3—C3—O2 = −1.4 (6)°. The methyl hydrazide fragments are almost perpendicular to each other [the dihedral angle between the two moieties is 86.5 (2)°]. The torsion angles around the C2—C3 bond are O1—C2—C3—O2 = 89.9 (4), O1—C2—C3—N3 = −81.4 (4), N1—C2—C3—O2 = −83.2 (4), and N1—C2—C3—N3 = 105.5 (4)°.
|
3. Supramolecular features
In the crystal, each molecule forms chains along the a-axis direction with two neighboring ones via N—H⋯O hydrogen bonds (Table 2, Fig. 2). Neighboring chains form a 3D supramolecular network via C—H⋯O, N—H⋯O and N—H⋯N hydrogen-bonding contacts (Table 2, Fig. 3).
4. Database survey
A search of the Cambridge Structural Database (CSD, version 5.43, last update November 2021; Groom et al., 2016) confirmed that the title compound has not previously been published. A search for the N—N—C(=O)—C(=O)—N—N fragment gave oxalyl dihydrazide (CSD refcode VIPKIO; Quaeyhaegens et al., 1990), its salts: EREQOK (Wu, 2021), NEXMIP (Xu et al., 2018), MIDNOG (Devi et al., 2018), VUHYUU and VUHZAB (Fischer et al., 2014), ZIBBIX and ZIBDAR (Fischer et al., 2013), and derived from it as the closest analogues: CUQPAF (Drexler et al., 1999), HIRHIB (Singh et al., 2013), IYACUH (Ran et al., 2011), KUTREX (Kaluderović et al., 2010), LORQEP (Bi et al., 2009), NAJWUT (Singh et al., 2016), NEQQOQ (Zhu et al., 2006), RIRTET (Singh et al., 2014), SUYWUG (Galvão et al., 2016), UMIZUN (El-Asmy et al., 2015), ZOLQUP and ZOLRAW (Fries et al., 2019). For compound ZOLQOJ (Fries et al., 2019), the fragment is part of a ring structure. Notably, a strictly planar structure is observed for the molecules oxalyl dihydrazide VIPKIO and dimethyl oxalate DMEOXA (Dougill & Jeffrey, 1953).
A search for the methyl hydrazide moiety gave methylsemicarbazide (XIBFEW; Szimhardt & Stierstorfer, 2018). Its geometric parameters agree well with those of the title compound. Further searches also revealed two structural analogues with a second non-hydrogen substituent at the amide-nitrogen atom: N,N,N′,N′-tetramethyloxamide and N,N,N′,N′-tetramethylmonothiooxamide (TMOXAM and TMTHOX, respectively; Adiwidjaja & Voss, 1977). These two crystal structures have a different packing and belong to monoclinic space groups. However, they exhibit very similar geometries in terms of the rotation of the molecule fragments around the central C—C bond. The O=C—C=O(S) torsion angles are 105.1 (2) and 89.6 (2)°, respectively.
5. Synthesis and crystallization
The title compound (5) was obtained according to the reaction scheme shown in Fig. 4.
N,N'-bis(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)ethanediamide (3): compound 3 was synthesized from the commercially available precursors (Enamine Ltd.) according to the following method: 12.45 g (84 mmol, 2 eq.) of phthalic anhydride (2) were dissolved in 125 ml of DMF and 4.96 g (42 mmol, 1 eq.) of oxalyl dihydrazide (1) were added to the boiling solution. The obtained mixture was refluxed for 5 h. Upon cooling, precipitation of the product was observed. It was filtered off and dried. White powder; yield 73%. 1H NMR (400 MHz, DMSO-d6): δ 8.05–8.15 (m, 4H, 4-Ph), 11.57 (br, 1H, NH).
N1,N2-dimethylethanedihydrazide (5): 11.0 g (79.7 mmol, 3 eq.) of K2CO3 and 3.65 ml (58.6 mmol, 2.2 eq.) of CH3I were added to a solution containing 10.0 g (26.5 mmol, 1 eq.) of compound 3 in 50 ml DMF. The reaction mixture was stirred for 6 h at room temperature. The inorganic precipitate was filtered off, the filtrate was evaporated and the residue was stirred in water, filtered off and dried in air. Yield: 9.9 g.
The crude precipitate of 4 (4 g, 9.8 mmol, 1 eq.) obtained from the previous step was refluxed with 1.1 ml (20.6 mmol, 2.1 eq.) of methylhydrazine in ethanol for 6 h. The precipitate was filtered off, ethanol was evaporated and the residue was recrystallized from 2-propanol and dried in air. The title compound was isolated as a white solid. Crystals suitable for X-ray analysis were obtained during the recrystallization. White powder; yield 84%. LC–MS (ESI) m/z 147 (MH+) . IR (ATR, ν, cm−1) : ν 3290, 3214, 1672, 1616, 1414, 1386, 1234, 1066, 1014, 870, 782, 762. 1H NMR (400 MHz, DMSO-d6): δ 2.90*, 2.95 and 3.00* (s, 3H, CH3), 4.68, 4.85* and 4.93* (s, 2H, NH2). *Minor signals indicate about the (O)C—N bond.
6. Refinement
Crystal data, data collection and structure . For the NH2 group, the hydrogen atoms were placed from a difference-Fourier map and refined freely. The CH3 hydrogen atoms were placed geometrically and refined as riding with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C).
details are summarized in Table 3
|
Supporting information
CCDC reference: 2323887
https://doi.org/10.1107/S2056989024000239/vm2294sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024000239/vm2294Isup4.hkl
C4H10N4O2 | Dx = 1.332 Mg m−3 |
Mr = 146.16 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 809 reflections |
a = 6.0356 (5) Å | θ = 2.6–21.5° |
b = 7.6501 (6) Å | µ = 0.11 mm−1 |
c = 15.7851 (14) Å | T = 293 K |
V = 728.84 (10) Å3 | Prism, clear light colourless |
Z = 4 | 0.25 × 0.2 × 0.15 mm |
F(000) = 312 |
Xcalibur, Eos diffractometer | 1279 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 1014 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
Detector resolution: 8.0797 pixels mm-1 | θmax = 25.0°, θmin = 2.6° |
ω scans | h = −4→7 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) | k = −6→9 |
Tmin = 0.975, Tmax = 1.000 | l = −17→18 |
2356 measured reflections |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.050 | w = 1/[σ2(Fo2) + (0.0311P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.093 | (Δ/σ)max < 0.001 |
S = 1.04 | Δρmax = 0.14 e Å−3 |
1279 reflections | Δρmin = −0.11 e Å−3 |
107 parameters | Absolute structure: Flack x determined using 280 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
6 restraints | Absolute structure parameter: −0.7 (10) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | −0.3495 (5) | −0.6601 (3) | −0.39158 (16) | 0.0534 (8) | |
O2 | −0.1053 (4) | −0.3057 (4) | −0.38063 (17) | 0.0565 (8) | |
N1 | −0.5715 (5) | −0.4389 (3) | −0.43410 (17) | 0.0356 (8) | |
N2 | −0.6265 (6) | −0.2617 (4) | −0.4206 (2) | 0.0390 (8) | |
N3 | −0.2831 (5) | −0.3723 (4) | −0.2592 (2) | 0.0418 (8) | |
N4 | −0.4758 (7) | −0.4508 (6) | −0.2252 (2) | 0.0510 (10) | |
C1 | −0.7056 (7) | −0.5453 (5) | −0.4913 (2) | 0.0520 (11) | |
H1A | −0.703336 | −0.494920 | −0.546990 | 0.078* | |
H1B | −0.855356 | −0.549500 | −0.470930 | 0.078* | |
H1C | −0.646056 | −0.661570 | −0.493510 | 0.078* | |
C2 | −0.4040 (6) | −0.5050 (5) | −0.3896 (2) | 0.0357 (9) | |
C3 | −0.2571 (6) | −0.3787 (4) | −0.3421 (2) | 0.0359 (9) | |
C4 | −0.1283 (7) | −0.2793 (5) | −0.2043 (3) | 0.0661 (13) | |
H4C | −0.188175 | −0.166675 | −0.190369 | 0.099* | |
H4D | 0.010785 | −0.264855 | −0.232939 | 0.099* | |
H4E | −0.105945 | −0.345315 | −0.153239 | 0.099* | |
H2A | −0.763 (8) | −0.255 (5) | −0.404 (2) | 0.061 (14)* | |
H4A | −0.537 (7) | −0.378 (5) | −0.199 (2) | 0.053 (15)* | |
H2B | −0.621 (6) | −0.208 (5) | −0.471 (2) | 0.056 (14)* | |
H4B | −0.432 (9) | −0.548 (7) | −0.187 (3) | 0.12 (2)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0640 (19) | 0.0427 (15) | 0.0536 (18) | 0.0182 (15) | −0.0038 (16) | −0.0062 (13) |
O2 | 0.0318 (15) | 0.084 (2) | 0.0542 (18) | −0.0106 (15) | 0.0054 (15) | 0.0102 (15) |
N1 | 0.0346 (17) | 0.0386 (16) | 0.0335 (17) | 0.0029 (15) | −0.0068 (15) | −0.0064 (14) |
N2 | 0.0321 (19) | 0.0372 (18) | 0.048 (2) | 0.0026 (17) | 0.0011 (18) | 0.0011 (17) |
N3 | 0.0361 (18) | 0.051 (2) | 0.0377 (19) | −0.0037 (18) | −0.0046 (16) | −0.0015 (15) |
N4 | 0.058 (3) | 0.056 (2) | 0.039 (2) | −0.002 (2) | 0.0052 (19) | −0.002 (2) |
C1 | 0.060 (3) | 0.055 (2) | 0.041 (2) | −0.005 (2) | −0.013 (2) | −0.011 (2) |
C2 | 0.037 (2) | 0.043 (2) | 0.0267 (19) | 0.0058 (19) | 0.0072 (19) | −0.0023 (17) |
C3 | 0.029 (2) | 0.044 (2) | 0.035 (2) | 0.0081 (19) | −0.0022 (18) | 0.0048 (18) |
C4 | 0.057 (3) | 0.084 (3) | 0.057 (3) | −0.008 (3) | −0.017 (3) | −0.015 (3) |
O1—C2 | 1.231 (4) | N4—H4A | 0.79 (4) |
O2—C3 | 1.233 (4) | N4—H4B | 0.99 (5) |
N1—N2 | 1.412 (4) | C1—H1A | 0.9599 |
N1—C1 | 1.460 (4) | C1—H1B | 0.9601 |
N1—C2 | 1.331 (4) | C1—H1C | 0.9600 |
N2—H2A | 0.87 (4) | C2—C3 | 1.511 (5) |
N2—H2B | 0.89 (4) | C4—H4C | 0.9600 |
N3—N4 | 1.414 (4) | C4—H4D | 0.9600 |
N3—C3 | 1.319 (4) | C4—H4E | 0.9601 |
N3—C4 | 1.460 (4) | ||
N2—N1—C1 | 119.9 (3) | H1A—C1—H1B | 109.5 |
C2—N1—N2 | 117.6 (3) | H1A—C1—H1C | 109.5 |
C2—N1—C1 | 122.4 (3) | H1B—C1—H1C | 109.5 |
N1—N2—H2A | 109 (3) | O1—C2—N1 | 123.8 (3) |
N1—N2—H2B | 108 (2) | O1—C2—C3 | 118.2 (3) |
H2A—N2—H2B | 106 (4) | N1—C2—C3 | 117.7 (3) |
N4—N3—C4 | 120.5 (3) | O2—C3—N3 | 124.1 (4) |
C3—N3—N4 | 117.3 (3) | O2—C3—C2 | 118.7 (3) |
C3—N3—C4 | 122.1 (4) | N3—C3—C2 | 116.5 (3) |
N3—N4—H4A | 107 (3) | N3—C4—H4C | 109.4 |
N3—N4—H4B | 109 (3) | N3—C4—H4D | 109.6 |
H4A—N4—H4B | 109 (4) | N3—C4—H4E | 109.4 |
N1—C1—H1A | 109.6 | H4C—C4—H4D | 109.5 |
N1—C1—H1B | 109.5 | H4C—C4—H4E | 109.5 |
N1—C1—H1C | 109.4 | H4D—C4—H4E | 109.5 |
O1—C2—C3—O2 | 89.9 (4) | N4—N3—C3—O2 | 174.8 (4) |
O1—C2—C3—N3 | −81.4 (4) | N4—N3—C3—C2 | −14.4 (5) |
N1—C2—C3—O2 | −83.2 (4) | C1—N1—C2—O1 | −1.2 (5) |
N1—C2—C3—N3 | 105.5 (4) | C1—N1—C2—C3 | 171.6 (3) |
N2—N1—C2—O1 | 175.1 (4) | C4—N3—C3—O2 | −1.4 (6) |
N2—N1—C2—C3 | −12.2 (4) | C4—N3—C3—C2 | 169.4 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1C···O1i | 0.96 | 2.58 | 3.042 (4) | 110 |
N2—H2A···O2ii | 0.87 (5) | 2.13 (5) | 2.977 (4) | 164 (4) |
N2—H2B···O2iii | 0.90 (3) | 2.35 (3) | 3.182 (4) | 155 (3) |
N4—H4A···O1iv | 0.79 (4) | 2.30 (4) | 3.075 (5) | 169 (4) |
N4—H4B···N2v | 0.99 (5) | 2.38 (5) | 3.367 (5) | 170 (4) |
Symmetry codes: (i) x−1/2, −y−3/2, −z−1; (ii) x−1, y, z; (iii) x−1/2, −y−1/2, −z−1; (iv) −x−1, y+1/2, −z−1/2; (v) −x−1, y−1/2, −z−1/2. |
Acknowledgements
We are grateful to the Ministry of Education and Science of Ukraine and to the Ministry of Research, Innovation and Digitization of Romania for financial support.
Funding information
Funding for this research was provided by: Ministry of Education and Science of Ukraine (grant for the perspective development of the scientific direction `Mathematical sciences and natural sciences' and grant No. 22BF037-06 at the Taras Shevchenko National University of Kyiv); Ministry of Research, Innovation and Digitization (Romania), CCCDI - UEFISCDI, project number PN-III-P2-2.1-PED-2021-3900, within PNCDI III, Contract PED 698/2022 (AI-Syn-PPOSS).
References
Adiwidjaja, G. & Voss, J. (1977). Chem. Ber. 110, 1159–1166. CSD CrossRef CAS Web of Science Google Scholar
Angelova, V., Karabeliov, V., Andreeva–Gateva, P. A. & Tchekalarova, J. (2016). Drug Dev. Res. 77, 379–392. Web of Science CrossRef CAS PubMed Google Scholar
Berillo, D. A. & Dyusebaeva, M. A. (2022). Saudi Pharm. J. 30, 1036–1043. Web of Science CrossRef CAS PubMed Google Scholar
Bi, W.-T., Hu, N.-L. & Bi, J.-H. (2009). Acta Cryst. E65, o782. Web of Science CSD CrossRef IUCr Journals Google Scholar
Devi, A., Dharavath, S. & Ghule, V. D. (2018). ChemistrySelect, 3, 4501–4504. Web of Science CSD CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dougill, M. W. & Jeffrey, G. A. (1953). Acta Cryst. 6, 831–837. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Drexler, K., Dehne, H. & Reinke, H. (1999). CSD Communication (CCDC 137595, refcode CUQPAF). CCDC, Cambridge, England. Google Scholar
El-Asmy, A., Jeragh, B. & Ali, M. (2015). Chem. Cent. J. 9, 69. Web of Science PubMed Google Scholar
Ergenç, N., Günay, N. S. & Demirdamar, R. (1998). Eur. J. Med. Chem. 33, 143–148. Google Scholar
Favi, G. (2020). Molecules, 25, 10–13. Web of Science CrossRef Google Scholar
Fischer, D., Klapötke, T. M. & Stierstorfer, J. (2014). J. Energetic Mater. 32, 37–49. Web of Science CSD CrossRef CAS Google Scholar
Fischer, N., Klapötke, T. M., Reymann, M. & Stierstorfer, J. (2013). Eur. J. Inorg. Chem. pp. 2167–2180. Web of Science CSD CrossRef Google Scholar
Fries, M., Mertens, M., Teske, N., Kipp, M., Beyer, C., Willms, T., Valkonen, A., Rissanen, K., Albrecht, M. & Clarner, T. (2019). ACS Omega, 4, 1685–1689. Web of Science CSD CrossRef CAS Google Scholar
Galvão, A. M., Carvalho, M. F. N. N. & Ferreira, A. S. D. (2016). J. Mol. Struct. 1108, 708–716. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hiremathad, A., Patil, M. R., Chand, K., Santos, M. A. & Keri, R. S. (2015). RSC Adv. 5, 96809–96828. Web of Science CrossRef CAS Google Scholar
Hosseini, H. & Bayat, M. (2018). Cyanoacetohydrazides. In Synthesis of Heterocyclic Compounds. Cham, Switzerland: Springer International Publishing. Google Scholar
Ju, H., Zhu, Q. L., Zuo, M., Liang, S., Du, M., Zheng, Q. & Wu, Z. L. (2023). Chem. Eur. J. 29, e202300969. Web of Science CrossRef PubMed Google Scholar
Kajal, A., Bala, S., Sharma, N., Kamboj, S. & Saini, V. (2014). Int. J. Med. Chem. 2014, 1–11. Google Scholar
Kaluderović, G. N., Mohamad Eshkourfu, R. O., Gómez-Ruiz, S., Mitić, D. & Andelković, K. K. (2010). Acta Cryst. E66, o904–o905. Web of Science CSD CrossRef IUCr Journals Google Scholar
Khomenko, D. M., Doroshchuk, R. O., Ohorodnik, Y. M., Ivanova, H. V., Zakharchenko, B. V., Raspertova, I. V., Vaschenko, O. V., Dobrydnev, A. V., Grygorenko, O. O. & Lampeka, R. D. (2022). Chem. Heterocycl. C. 58, 116–128. Web of Science CrossRef CAS Google Scholar
Küçükgüzel, G. Ş., Koç, D., Çıkla–Süzgün, P., Özsavcı, D., Bingöl–Özakpınar, Ö., Mega–Tiber, P., Orun, O., Erzincan, P., Sağ–Erdem, S. & Şahin, F. (2015). Arch. Pharm. 348, 730–742. Google Scholar
Majumdar, P., Pati, A., Patra, M., Behera, R. K. & Behera, A. K. (2014). Chem. Rev. 114, 2942–2977. Web of Science CrossRef CAS PubMed Google Scholar
Mittersteiner, M., Bonacorso, H. G., Martins, M. A. P. & Zanatta, N. (2021). Eur. J. Org. Chem. pp. 3886–3911. Web of Science CrossRef Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Pathan, S. I., Chundawat, N. S., Chauhan, N. P. S. & Singh, G. P. (2020). Synth. Commun. 50, 1251–1285. Web of Science CrossRef CAS Google Scholar
Popiołek, Ł. (2021). Int. J. Mol. Sci. 22, 9389. Web of Science PubMed Google Scholar
Popiołek, Ł., Tuszyńska, K. & Biernasiuk, A. (2022). Biomed. Pharmacother. 153, 113302. Web of Science PubMed Google Scholar
Quaeyhaegens, F., Desseyn, H. O., Bracke, B. & Lenstra, A. T. H. (1990). J. Mol. Struct. 238, 139–157. CSD CrossRef CAS Web of Science Google Scholar
Ran, X., Zhang, P., Qu, S., Wang, H., Bai, B., Liu, H., Zhao, C. & Li, M. (2011). Langmuir, 27, 3945–3951. Web of Science CSD CrossRef CAS PubMed Google Scholar
Rigaku, OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Shalini, Johansen, M. D., Kremer, L. & Kumar, V. (2019). Chem. Biol. Drug Des. 94, 1300–1305. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Singh, D. P., Allam, B. K., Singh, K. N. & Singh, V. P. (2014). RSC Adv. 4, 1155–1158. Web of Science CSD CrossRef CAS Google Scholar
Singh, D. P., Allam, B. K., Singh, R., Singh, K. N. & Singh, V. P. (2016). RSC Adv. 6, 15518–15524. Web of Science CSD CrossRef CAS Google Scholar
Singh, D. P., Raghuvanshi, D. S., Singh, K. N. & Singh, V. P. (2013). J. Mol. Catal. A Chem. 379, 21–29. Web of Science CSD CrossRef CAS Google Scholar
Szimhardt, N. & Stierstorfer, J. (2018). Chem. A Eur. J. 24, 2687–2698. Web of Science CSD CrossRef CAS Google Scholar
Walcourt, A., Loyevsky, M., Lovejoy, D. B., Gordeuk, V. R. & Richardson, D. R. (2004). Int. J. Biochem. & Cell. Biol. 36, 401–407. Web of Science CrossRef CAS Google Scholar
Witusik-Perkowska, M., Głowacka, P., Pieczonka, A. M., Świderska, E., Pudlarz, A., Rachwalski, M., Szymańska, J., Zakrzewska, M., Jaskólski, D. J. & Szemraj, J. (2023). Cells, 12, 1906. Web of Science PubMed Google Scholar
Wu, B. (2021). CSD Communication (CCDC 2079326, refcode EREQOK). CCDC, Cambridge, England. Google Scholar
Xu, Y., Lin, Q., Wang, P. & Lu, M. (2018). Chem. Asian J. 13, 924–928. Web of Science CSD CrossRef CAS PubMed Google Scholar
Zhu, L.-N., Li, C.-Q., Li, X.-Z. & Li, R. (2006). Acta Cryst. E62, o4603–o4605. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.