research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of the alkali aluminoboracites A4B4Al3O12Cl (A = Li, Na)

crossmark logo

aDepartment of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachoji, Tokyo 192-0397, Japan
*Correspondence e-mail: kkaji@tmu.ac.jp

Edited by M. Weil, Vienna University of Technology, Austria (Received 13 November 2023; accepted 13 January 2024; online 26 January 2024)

Single crystals of alkali aluminoboracites, A4B4Al3O12Cl (A = Li, Na), were grown using the self-flux method, and their isotypic cubic crystal structures were determined by single-crystal X-ray diffraction. Na4B4Al3O12Cl is the first reported sodium boracite, and its lattice parameter [13.5904 (1) Å] is the largest among the boracites consisting of a cation–oxygen framework reported so far. For both crystals, structure models refined in the cubic space group F[\overline{4}]3c, which assume that all cubic octant subcells in the unit cell are equivalent, converged with R1 factors of ∼0.03. However, the presence of weak hhl reflections with odd h and l values indicates that refinements in the space group F23, which presume a checkerboard-like ordering of two types of subcells with slightly different atomic positions, are more appropriate.

1. Chemical context

Boracite is originally known as a mineral with the formula Mg3B7O13Cl. The name boracite also refers to borate compounds with the general formula M3B7O13X, consisting of a negatively charged B–O framework, extraframework divalent cations M, such as Mg2+, Cr2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+ and Cd2+, and extraframework anions X, such as Cl, Br, I and S2− (Schmid, 1965[Schmid, H. (1965). J. Phys. Chem. Solids, 26, 973-976.]; Nelmes, 1974[Nelmes, R. J. (1974). J. Phys. C.: Solid State Phys. 7, 3840-3854.]). The extraframework cations can also be an alkali ion, but only lithium variants Li4–xB7O12+x/2X, Li4B7–3xAl3xO12X and Li4B7–3xGa3xO12Cl (X = Cl, Br; x = 0–1) have been reported to date (Levasseur et al., 1971[Levasseur, A., Fouassier, C. & Hagenmuller, P. (1971). Mater. Res. Bull. 6, 15-22.]; Réau et al., 1976[Réau, J.-M., Levasseur, A., Magniez, G. & Calès, B. (1976). Mater. Res. Bull. 11, 1087-1090.]; Jeitschko et al., 1977[Jeitschko, W., Bither, T. A. & Bierstedt, P. E. (1977). Acta Cryst. B33, 2767-2775.]; Calès et al., 1977[Calès, B., Levasseur, A., Fouassier, C., Réau, J. M. & Hagenmuller, P. (1977). Solid State Commun. 24, 323-325.]; Sorokin, 2015[Sorokin, N. I. (2015). Phys. Solid State, 57, 314-315.]; Tezuka et al., 2017[Tezuka, N., Okawa, Y., Kajihara, K. & Kanamura, K. (2017). J. Ceram. Soc. Japan, 125, 348-352.]; Kajihara et al., 2017[Kajihara, K., Tezuka, N., Shoji, M., Wakasugi, J., Munakata, H. & Kanamura, K. (2017). Bull. Chem. Soc. Jpn, 90, 1279-1286.]; Katsumata et al., 2022[Katsumata, T., Aoki, Y., Fushimi, K., Otsuka, K., Ueda, K. & Inaguma, Y. (2022). Solid State Ionics, 380, 115921.]). The latter two compounds (Kajihara et al., 2017[Kajihara, K., Tezuka, N., Shoji, M., Wakasugi, J., Munakata, H. & Kanamura, K. (2017). Bull. Chem. Soc. Jpn, 90, 1279-1286.]; Katsumata et al., 2022[Katsumata, T., Aoki, Y., Fushimi, K., Otsuka, K., Ueda, K. & Inaguma, Y. (2022). Solid State Ionics, 380, 115921.]) are the first examples of boracites containing framework cations other than B3+ ions. The lithium boracites are lithium-ion conducting, and their dc Li+ ion conductivity can be increased to ∼10−5 S cm−1 at room temperature in glass-ceramics con­sisting mainly of Li4B4M3O12Cl (M = Al, Ga; Kajihara et al., 2017[Kajihara, K., Tezuka, N., Shoji, M., Wakasugi, J., Munakata, H. & Kanamura, K. (2017). Bull. Chem. Soc. Jpn, 90, 1279-1286.]). In addition, Li4B4Al3O12Cl is stable in contact with Li metal and is water-resistant; solid-state cells consisting of an Li4B4Al3O12Cl-based glass-ceramic solid electrolyte, an LiCoO2-based composite cathode containing an ionic liquid and an Li–Au alloy anode worked successfully (Saito et al., 2021[Saito, M., Arima, H., Shoji, M., Kizuki, Y., Munakata, H., Kanamura, K. & Kajihara, K. (2021). J. Electrochem. Soc. 168, 040524.]). More recently, a thio­boracite, Li6B7S13I, a sulfide variant of lithium boracite with room-temperature Li+ ion conductivity of ∼5 × 10−4 S cm−1 has been reported (Kaup et al., 2021[Kaup, K., Bishop, K., Assoud, A., Liu, J. & Nazar, L. F. (2021). J. Am. Chem. Soc. 143, 6952-6961.]). However, single crystals of Li4B4Al3O12Cl have not yet been grown, and the preliminary crystal structure analysis of Li4B4Al3O12Cl (Kajihara et al., 2017[Kajihara, K., Tezuka, N., Shoji, M., Wakasugi, J., Munakata, H. & Kanamura, K. (2017). Bull. Chem. Soc. Jpn, 90, 1279-1286.]; Katsumata et al., 2022[Katsumata, T., Aoki, Y., Fushimi, K., Otsuka, K., Ueda, K. & Inaguma, Y. (2022). Solid State Ionics, 380, 115921.]) was incomplete. In addition, boracites containing alkali ions other than Li+ have not been reported. Furthermore, a rhombohedral distortion of the unit cell of single-crystalline Li4B7O12Cl was experimentally observed at room temperature (Jeitschko et al., 1977[Jeitschko, W., Bither, T. A. & Bierstedt, P. E. (1977). Acta Cryst. B33, 2767-2775.]) and was recently theoretically confirmed (Li & Holzwarth, 2022[Li, Y. & Holzwarth, N. A. W. (2022). Phys. Rev. Mater. 6, 025401.]), raising the question whether similar unit-cell distortions occur in other alkali boracites.

In the present study, we report the growth of single crystals of A4B4Al3O12Cl (A = Li, Na) using the self-flux method and their structural characterization by single-crystal X-ray diffraction (XRD).

2. Structural commentary

The crystallites of Li4B4Al3O12Cl exhibit complete extinction under cross-polarized light, supporting cubic symmetry. Hence, the unit cell of Li4B4Al3O12Cl is not distorted. At first, the crystal structure was refined in the noncentrosymmetric cubic space group F[\overline{4}]3c following the model from the Rietveld refinement of powder X-ray diffraction data (Kajihara et al., 2017[Kajihara, K., Tezuka, N., Shoji, M., Wakasugi, J., Munakata, H. & Kanamura, K. (2017). Bull. Chem. Soc. Jpn, 90, 1279-1286.]; Katsumata et al., 2022[Katsumata, T., Aoki, Y., Fushimi, K., Otsuka, K., Ueda, K. & Inaguma, Y. (2022). Solid State Ionics, 380, 115921.]). The occupancy (g) of Cl1 converged to the upper bound [g(Cl1) = 1] and was fixed at this value. The reliability factor R1 converged to 0.031, and the refinement results agreed well with those derived from the powder samples (Kajihara et al., 2017[Kajihara, K., Tezuka, N., Shoji, M., Wakasugi, J., Munakata, H. & Kanamura, K. (2017). Bull. Chem. Soc. Jpn, 90, 1279-1286.]; Katsumata et al., 2022[Katsumata, T., Aoki, Y., Fushimi, K., Otsuka, K., Ueda, K. & Inaguma, Y. (2022). Solid State Ionics, 380, 115921.]). The unit cell of Li4B4Al3O12Cl can be divided into eight equivalent cubic subcells, each containing one Cl1 at the cube centre. The Cl1 site is surrounded by six sites with multiplicity 24 (Wyckoff letter c) and four sites with multiplicity 32 (Wyckoff letter e) containing four Li atoms in total, and the resulting ClLi4 moiety is embedded in a negatively charged framework consisting of alternating corner-shared bridges of planar BO3 triangles and AlO4 tetra­hedra. The occupancy of Li1 is close to 1, whereas that of Li2 is ∼[1 \over 4]. The lattice parameter of Li4B4Al3O12Cl [a = 12.9839 (1) Å] is similar to that of the polycrystalline sample obtained by solid-state synthesis [a = 12.9687 (1) Å; Katsumata et al., 2022[Katsumata, T., Aoki, Y., Fushimi, K., Otsuka, K., Ueda, K. & Inaguma, Y. (2022). Solid State Ionics, 380, 115921.]] but larger than that crystallized from glass-ceramics [a = 12.9149 (5) Å; Kajihara et al., 2017[Kajihara, K., Tezuka, N., Shoji, M., Wakasugi, J., Munakata, H. & Kanamura, K. (2017). Bull. Chem. Soc. Jpn, 90, 1279-1286.]], probably because of an incomplete uptake of Al in crystals obtained from glass-ceramics.

Similar to Li4B4Al3O12Cl, the crystallites of Na4B4Al3O12Cl exhibit complete cross-polarized extinction. Refinement in the space group F[\overline{4}]3c resulted in a reliability factor R1 of 0.022, and the results indicate that Na4B4Al3O12Cl is isostructural with Li4B4Al3O12Cl, except that Na1 is located at the 48 g site and displaced from the 24 c site at the midpoint between neighbouring Cl1 atoms. The lattice parameter of Na4B4Al3O12Cl [a = 13.5904 (1) Å] is the largest among known cubic boracites, apart from the sulfide variant Li6B7S13I [a = 15.245 (2) Å; Kaup et al., 2021[Kaup, K., Bishop, K., Assoud, A., Liu, J. & Nazar, L. F. (2021). J. Am. Chem. Soc. 143, 6952-6961.]]. The occupancy of Cl1 is less than 1 (∼0.92), possibly because of its higher growth tem­per­ature compared to that of Li4B4Al3O12Cl. The equivalent isotropic displacement parameters (Ueq) of extraframework species [Cl1, 0.0350 (9) Å2; Na1, 0.0422 (14) Å2; Na2, 0.017 (2) Å2] of Na4B4Al3O12Cl are notably smaller than those of Li4B4Al3O12Cl [Cl1, 0.0787 (15) Å2; Li1, 0.066 (6) Å2; Li2, 0.028 (11) Å2], despite that the species in the framework (B1, Al1 and O1) are similar or even larger in Na4B4Al3O12Cl. These observations suggest that replacing Li with Na increases the packing density at the extraframework sites and suppresses the thermal motion of the atoms located therein.

The convergence of the structure refinements of Li4B4Al3O12Cl and Na4B4Al3O12Cl in the space group F[\overline{4}]3c was satisfactory (R1 ≃ 0.03). However, these crystals both exhibit weak hhl reflections with odd h and l, which violate the extinction conditions in space group F[\overline{4}]3c, as listed in Table 1[link]. The noncentrosymmetric cubic space groups compatible with the observed reflection condition (hhl: h + l = 2n) are F23, F432 and F[\overline{4}]3m. Among them, only the structure analyses in the space group F23 were successful. The conversion of the space group from F[\overline{4}]3c to F23 is accompanied by the splitting of atoms except for Al1. This conversion also splits Li1 at the 24 c site of F[\overline{4}]3c into Li1 and Li2 at the 24 g site of F23. The occupancies of A1 and A2 (A = Li, Na) converged to the upper bound [g(A1) = g(A2) = 0.5] both in Li4B4Al3O12Cl and Na4B4Al3O12Cl, and were fixed at this value. The slightly larger R1 factors in F23 compared to F[\overline{4}]3c are due to an increased number of measured reflections partially with low intensities.

Table 1
Summary of the observed hhl reflections in Li4B4Al3O12Cl and Na4B4Al3O12Cl

  Li4B4Al3O12Cl Na4B4Al3O12Cl
  <I/σ(I)> Number of reflections <I/σ(I)> Number of reflections
No conditions 14.35 325 12.14 340
h even 30.24 153 24.96 165
h odd 0.21 172 0.04 175
l even 30.24 153 24.96 165
l odd 0.21 172 0.04 175
h + l even 14.35 325 12.14 340
h + l odd 0.00 0 0.00 0

Fig. 1[link] summarizes the schematic illustrations of two adjacent cubic octant subcells of the unit cells of Li4B4Al3O12Cl and Na4B4Al3O12Cl, along with their asymmetric units derived from the analyses in the space group F23. In the space group F[\overline{4}]3c, the eight subcells in a unit cell are equivalent. In contrast, in the space group F23, they are classified into two types of subcells stacked alternately in three dimensions. Nevertheless, the atomic displacements associated with the conversion of the space group from F[\overline{4}]3c to F23 are small, and the structures solved in these two space groups are very similar, apart from the splitting of Li1 in space group F[\overline{4}]3c into Li1 and Li2 in space group F23. Such subcell ordering is also observed in the lithium-rich boracite Li5B7O12.5Cl (space group F23) (Vlasse et al., 1981[Vlasse, M., Levasseur, A. & Hagenmuller, P. (1981). Solid State Ionics, 2, 33-37.]; Tezuka et al., 2017[Tezuka, N., Okawa, Y., Kajihara, K. & Kanamura, K. (2017). J. Ceram. Soc. Japan, 125, 348-352.]; Li & Holzwarth, 2022[Li, Y. & Holzwarth, N. A. W. (2022). Phys. Rev. Mater. 6, 025401.]); in Li5B7O12.5Cl, the chemical compositions of adjacent subcells differ notably as a result of the incorporation of excess Li and O and the resulting partial conversion of BO3 triangles to BO4 tetra­hedra, as well as the ordering of Li. In contrast, in the title compounds Li4B4Al3O12Cl and Na4B4Al3O12Cl, such a distinct structural ordering associated with a compositional change is not observed, as the conversion of BO3 triangles to BO4 tetra­hedra is unlikely even under alkali-rich conditions.

[Figure 1]
Figure 1
Schematic illustrations of two neighbouring cubic octant subcells in the unit cell of Li4B4Al3O12Cl in the space groups F[\overline{4}]3c (top left) and F23 (middle left), those of Na4B4Al3O12Cl in the space groups F[\overline{4}]3c (top right) and F23 (middle right), and asymmetric units with displacement ellipsoids at the 50% probability level of Li4B4Al3O12Cl (bottom left) and Na4B4Al3O12Cl (bottom right) in the space group F23. Red, large green, small green and yellow spheres denote O, Cl, Li and Na atoms, respectively. Green triangles and gray tetra­hedra denote BO3 and AlO4 units, respectively. The forefront Al atoms located at z = 0.5 are not shown for clarity. In the middle and bottom figures, red and pale-red spheres denote O1 and O2 atoms, respectively.

Table 2[link] lists selected atomic distances and angles. The B—O and Al—O distances are similar between Li4B4Al3O12Cl and Na4B4Al3O12Cl. In contrast, the B—O—Al angles in Na4B4Al3O12Cl are larger than those in Li4B4Al3O12Cl by ∼10°. This widening in the B—O—Al angles is responsible for the expansion of the unit cell in Na4B4Al3O12Cl. The increase in A—O (A = Li, Na) distances from Li4B4Al3O12Cl and Na4B4Al3O12Cl amounts to ∼0.2–0.3 Å, and is consistent with the difference in the ionic radii between Li and Na with the same coordination numbers (1.13–0.73 Å = 0.40 Å for fourfold corrdination and 1.16–0.90 Å = 0.26 Å for sixfold coordination; Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]). In contrast, the increase in A—Cl distances is notably smaller (∼0.05 Å) or even negative, indicating an increase in the packing density of extraframework A and Cl. This observation is consistent with the smaller atomic displacement parameters of extraframework A and Cl in Na4B4Al3O12Cl compared to Li4B4Al3O12Cl (see above).

Table 2
Selected bond lengths and angles (Å, °) in A4B4Al3O12Cl crystal structures

Space group F[\overline{4}]3c Space group F23
  A = Li A = Na   A = Li A = Na
A1—O1 2.0828 (17) 2.2588 (16) A1—O1 2.053 (3) 2.2585 (18)
A1—O1i 2.0828 (17) 2.446 (2) A1—O2ii 2.143 (16) 2.452 (3)
      A2—O2iii 2.056 (4) 2.2602 (18)
      A2—O1iv 2.132 (16) 2.442 (3)
A1—Cl1 3.2460 (1) 2.936 (4) A1—Cl1 2.98 (6) 2.925 (6)
      A2—Cl2 3.03 (6) 2.948 (6)
A2—O1v 2.22 (3) 2.484 (5) A3—O2vi 2.23 (3) 2.488 (6)
A2—O1vii 2.828 (8) 2.913 (2) A3—O1vii 2.824 (8) 2.912 (2)
      A4—O1viii 2.23 (3) 2.480 (6)
      A4—O2ix 2.826 (8) 2.914 (2)
A2—Cl1 2.57 (5) 2.605 (9) A3—Cl1 2.55 (6) 2.599 (10)
      A4—Cl2 2.55 (5) 2.612 (10)
B1—O1 1.3700 (16) 1.3693 (15) B1—O1 1.3693 (17) 1.3684 (16)
      B2—O2x 1.3702 (17) 1.3684 (16)
Al1—O1xi 1.7533 (17) 1.7506 (16) Al1—O1xi 1.754 (2) 1.7495 (18)
      Al1—O2xii 1.754 (2) 1.7522 (18)
           
B1—O1—Al1xiii 118.97 (12) 128.59 (12) B1—O1—Al1xiii 119.05 (13) 128.62 (14)
      B2xiv—O2—Al1vii 118.94 (13) 128.66 (14)
Symmetry code(s): (i) −x, −z + [{1\over 2}], y; (ii) −x, y, −z + 1; (iii) x + [{1\over 2}], −y + 1, −z + [{3\over 2}]; (iv) −x + [{1\over 2}], −y + 1, z + [{1\over 2}]; (v) −y + [{1\over 2}], x + [{1\over 2}], −z + [{1\over 2}]; (vi) −z + 1, x + [{1\over 2}], −y + [{1\over 2}]; (vii) z, −x + [{1\over 2}], −y + [{1\over 2}]; (viii) x + 1, −y + 1, −z + 1; (ix) −x + 1, y + [{1\over 2}], −z + [{3\over 2}]; (x) z, x + [{1\over 2}], y + [{1\over 2}]; (xi) z, x, y; (xii) −y + [{1\over 2}], z − [{1\over 2}], −x; (xiii) y, z, x; (xiv) x − [{1\over 2}], y − [{1\over 2}], z.

3. Synthesis and crystallization

Li2CO3 (Fujifilm Wako Chemicals, 99%), Na2CO3 (Fujifilm Wako Chemicals, 99%), B2O3 (Kojundo Chemical Laboratory, 99.9%), γ-Al2O3 (Kojundo Chemical Laboratory, 99.99%), LiCl (Kanto Chemical, 99.9%) and NaCl (Kojundo Chemical Laboratory, 99.9%) were mixed in an A2CO3:B2O3:γ-Al2O3:ACl (A = Li, Na) molar ratio of 3:4:3:14, with a B2O3 content of 10 mmol. LiCl (melting point: 878 K) and NaCl (melting point: 1074 K), acting as self-fluxes, were added in excess. The mixture of sample 1 (A = Li) or 2 (A = Na) was placed in a platinum crucible covered by an alumina crucible, heated to 1073 K for 3 h (sample 1) or 1123 K for 4 h (sample 2), maintained for 5 h, cooled at a rate of 3 K h−1 for 50 h, and then cooled to room temperature in the furnace by turning off the power.

The resulting mixtures were washed with water to leach out water-soluble components. The residues were characterized by powder X-ray diffraction (SmartLab diffractometer, Rigaku) using Cu Kα radiation. The main impurity phases in the residues of samples 1 and 2 were Li2BAlO4 (space group P21/c) and LiAl5O8 (space group P4132), and Na2Al2B4O7 (space group P[\overline{3}]1c), respectively. Single-crystal particles with cubic symmetry were selected using an optical microscope (BH2, Olympus), showing complete light extinction under crossed polarizers.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The crystal structures of Li4B4Al3O12Cl and Na4B4Al3O12Cl were solved both in the space groups F[\overline{4}]3c and F23 using the same hkl file. In the refinements in the space group F23, all reflections were used. In the refinements in the space group F[\overline{4}]3c, reflections that violate the extinction conditions (885 in Li4B4Al3O12Cl and 1010 in Na4B4Al3O12Cl) were rejected by SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), but few rejected reflections had intensities with I/σ(I) > 3 (3 in Li4B4Al3O12Cl and 4 in Na4B4Al3O12Cl). To maintain charge neutrality, the occupancies, g, of A (A = Li, Na) and Cl were refined under the restraint that the total number of A in the unit cell was larger by 24 than that of Cl [e.g. 24g(Li1) + 32g(Li2) − 8g(Cl1) = 24 for Li4B4Al3O12Cl solved in F[\overline{4}]3c], while permitting possible Cl deficiency. The summary of reflections was derived by the program SpaceGroup in WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Table 3
Experimental details

  Li4B4Al3O12Cl in F[\overline{4}]3c Li4B4Al3O12Cl in F23 Na3.92B4Al3O12Cl0.92 in F[\overline{4}]3c Na3.92B4Al3O12Cl0.92 in F23
Crystal data
Chemical formula Li4B4Al3O12Cl Li4B4Al3O12Cl Na3.92B4Al3O12Cl0.92 Na3.92B4Al3O12Cl0.92
Mr 379.39 379.39 438.91 438.91
Crystal system, space group Cubic, F[\overline{4}]3c Cubic, F23 Cubic, F[\overline{4}]3c Cubic, F23
Temperature (K) 297 297 294 294
a (Å) 12.9839 (1) 12.9839 (1) 13.5904 (1) 13.5904 (1)
V3) 2188.85 (5) 2188.85 (5) 2510.13 (6) 2510.13 (6)
Z 8 8 8 8
Radiation type Cu Kα Cu Kα Cu Kα Cu Kα
μ (mm−1) 6.12 6.12 6.78 6.78
Crystal size (mm) 0.11 × 0.10 × 0.06 0.11 × 0.10 × 0.06 0.08 × 0.06 × 0.04 0.08 × 0.06 × 0.04
 
Data collection
Diffractometer Bruker D8 goniometer Bruker D8 goniometer Bruker D8 goniometer Bruker D8 goniometer
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.62, 0.75 0.62, 0.75 0.66, 0.75 0.66, 0.75
No. of measured, independent and observed [I > 2σ(I)] reflections 3843, 193, 191 4728, 389, 317 4504, 218, 216 5514, 437, 355
Rint 0.023 0.024 0.027 0.028
(sin θ/λ)max−1) 0.621 0.621 0.624 0.624
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.075, 1.16 0.032, 0.081, 1.17 0.022, 0.055, 1.20 0.024, 0.066, 1.12
No. of reflections 193 389 218 437
No. of parameters 23 50 27 52
No. of restraints 1 1 1 1
Δρmax, Δρmin (e Å−3) 0.20, −0.63 0.20, −0.91 0.15, −0.45 0.17, −0.58
Absolute structure Flack x determined using 80 quotients [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 132 quotients [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]). Flack x determined using 89 quotients [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 142 quotients [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).
Absolute structure parameter −0.03 (3) −0.03 (2) 0.01 (3) 0.01 (2)
Computer programs: BIS (Bruker, 2021[Bruker (2021). BIS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2019[Bruker (2019). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXTL (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ShelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), VESTA (Momma & Izumi, 2011[Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Lithium aluminoboracite (kjh0818yoshinoL14_0m_a) top
Crystal data top
Li4B4Al3O12ClCu Kα radiation, λ = 1.54178 Å
Mr = 379.39Cell parameters from 2808 reflections
Cubic, F43cθ = 6.8–73.2°
a = 12.9839 (1) ŵ = 6.12 mm1
V = 2188.85 (5) Å3T = 297 K
Z = 8Plate, colorless
F(000) = 14720.11 × 0.10 × 0.06 mm
Dx = 2.303 Mg m3
Data collection top
Bruker D8 goniometer
diffractometer
193 independent reflections
Radiation source: sealed tube191 reflections with I > 2σ(I)
Detector resolution: 7.3910 pixels mm-1Rint = 0.023
ω scansθmax = 73.2°, θmin = 6.8°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1512
Tmin = 0.62, Tmax = 0.75k = 1516
3843 measured reflectionsl = 1615
Refinement top
Refinement on F21 restraint
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0536P)2 + 3.2978P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.031(Δ/σ)max < 0.001
wR(F2) = 0.075Δρmax = 0.20 e Å3
S = 1.16Δρmin = 0.63 e Å3
193 reflectionsAbsolute structure: Flack x determined using 80 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
23 parametersAbsolute structure parameter: 0.03 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Li10.0000000.2500000.2500000.066 (6)0.991 (13)
Li20.364 (2)0.364 (2)0.364 (2)0.028 (11)0.256 (10)
B10.1057 (3)0.1057 (3)0.1057 (3)0.0114 (10)
Al10.2500000.0000000.0000000.0118 (6)
O10.02786 (13)0.11000 (13)0.17680 (15)0.0166 (6)
Cl10.2500000.2500000.2500000.0787 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Li10.156 (18)0.021 (4)0.021 (4)0.0000.0000.000
Li20.028 (11)0.028 (11)0.028 (11)0.000 (9)0.000 (9)0.000 (9)
B10.0114 (10)0.0114 (10)0.0114 (10)0.0014 (14)0.0014 (14)0.0014 (14)
Al10.0115 (8)0.0120 (6)0.0120 (6)0.0000.0000.000
O10.0185 (11)0.0154 (10)0.0158 (9)0.0048 (7)0.0067 (10)0.0044 (9)
Cl10.0787 (15)0.0787 (15)0.0787 (15)0.0000.0000.000
Geometric parameters (Å, º) top
Li1—O12.0828 (17)Li2—O1xiii2.22 (3)
Li1—O1i2.0828 (17)Li2—Cl12.57 (5)
Li1—O1ii2.0828 (17)Li2—O1ix2.828 (8)
Li1—O1iii2.0828 (17)Li2—O1xiv2.828 (8)
Li1—Li2iv2.740 (13)Li2—O1vi2.828 (8)
Li1—Li2v2.740 (13)Li2—Al1xv2.90 (2)
Li1—Li2vi2.740 (13)Li2—Al1xvi2.90 (2)
Li1—Li2vii2.740 (13)B1—O1x1.3700 (16)
Li1—Cl13.2460 (1)B1—O1xvii1.3700 (16)
Li1—Al1viii3.2460 (1)B1—O11.3700 (16)
Li1—Al1ix3.2460 (1)Al1—O1xviii1.7533 (17)
Li1—Al1x3.2460 (1)Al1—O1xix1.7533 (17)
Li2—O1xi2.22 (3)Al1—O1xvii1.7533 (17)
Li2—O1xii2.22 (3)Al1—O1xx1.7533 (17)
O1—Li1—O1i160.00 (10)O1ix—Li2—O1vi118.0 (5)
O1—Li1—O1ii91.729 (17)O1xiv—Li2—O1vi118.0 (5)
O1i—Li1—O1ii91.729 (17)O1xi—Li2—Al1xv69.0 (7)
O1—Li1—O1iii91.729 (17)O1xii—Li2—Al1xv37.1 (3)
O1i—Li1—O1iii91.729 (17)O1xiii—Li2—Al1xv123 (2)
O1ii—Li1—O1iii160.00 (10)Cl1—Li2—Al1xv114.0 (9)
O1—Li1—Li2iv52.6 (10)Li1xiv—Li2—Al1xv171 (2)
O1i—Li1—Li2iv146.2 (9)Li1ix—Li2—Al1xv70.20 (14)
O1ii—Li1—Li2iv70.29 (8)Li1vi—Li2—Al1xv70.20 (14)
O1iii—Li1—Li2iv96.5 (4)O1ix—Li2—Al1xv106.4 (4)
O1—Li1—Li2v96.5 (4)O1xiv—Li2—Al1xv134.8 (7)
O1i—Li1—Li2v70.29 (8)O1vi—Li2—Al1xv35.62 (12)
O1ii—Li1—Li2v52.6 (10)O1xi—Li2—Al1xvi123 (2)
O1iii—Li1—Li2v146.2 (9)O1xii—Li2—Al1xvi69.0 (7)
Li2iv—Li1—Li2v114.4 (12)O1xiii—Li2—Al1xvi37.1 (3)
O1—Li1—Li2vi70.29 (8)Cl1—Li2—Al1xvi114.0 (9)
O1i—Li1—Li2vi96.5 (4)Li1xiv—Li2—Al1xvi70.20 (14)
O1ii—Li1—Li2vi146.2 (9)Li1ix—Li2—Al1xvi70.20 (14)
O1iii—Li1—Li2vi52.6 (10)Li1vi—Li2—Al1xvi171 (2)
Li2iv—Li1—Li2vi114.4 (12)O1ix—Li2—Al1xvi35.62 (12)
Li2v—Li1—Li2vi100 (2)O1xiv—Li2—Al1xvi106.4 (4)
O1—Li1—Li2vii146.2 (9)O1vi—Li2—Al1xvi134.8 (7)
O1i—Li1—Li2vii52.6 (10)Al1xv—Li2—Al1xvi104.6 (11)
O1ii—Li1—Li2vii96.5 (4)O1x—B1—O1xvii119.981 (12)
O1iii—Li1—Li2vii70.29 (8)O1x—B1—O1119.980 (12)
Li2iv—Li1—Li2vii100 (2)O1xvii—B1—O1119.982 (12)
Li2v—Li1—Li2vii114.4 (12)O1xviii—Al1—O1xix107.09 (6)
Li2vi—Li1—Li2vii114.4 (12)O1xviii—Al1—O1xvii114.35 (13)
O1—Li1—Cl180.00 (5)O1xix—Al1—O1xvii107.09 (6)
O1i—Li1—Cl180.00 (5)O1xviii—Al1—O1xx107.09 (6)
O1ii—Li1—Cl1100.00 (5)O1xix—Al1—O1xx114.35 (13)
O1iii—Li1—Cl1100.00 (5)O1xvii—Al1—O1xx107.09 (6)
Li2iv—Li1—Cl1130.0 (11)O1xviii—Al1—Li2i153.8 (2)
Li2v—Li1—Cl150.0 (11)O1xix—Al1—Li2i49.7 (3)
Li2vi—Li1—Cl150.0 (11)O1xvii—Al1—Li2i69.9 (9)
Li2vii—Li1—Cl1130.0 (11)O1xx—Al1—Li2i95.3 (7)
O1—Li1—Al1viii150.78 (5)O1xviii—Al1—Li2xxi69.9 (9)
O1i—Li1—Al1viii29.22 (5)O1xix—Al1—Li2xxi95.3 (7)
O1ii—Li1—Al1viii62.85 (5)O1xvii—Al1—Li2xxi153.8 (2)
O1iii—Li1—Al1viii117.15 (5)O1xx—Al1—Li2xxi49.7 (3)
Li2iv—Li1—Al1viii122.8 (6)Li2i—Al1—Li2xxi118.5 (19)
Li2v—Li1—Al1viii57.2 (6)O1xviii—Al1—Li2xxii95.3 (7)
Li2vi—Li1—Al1viii122.8 (6)O1xix—Al1—Li2xxii153.8 (2)
Li2vii—Li1—Al1viii57.2 (6)O1xvii—Al1—Li2xxii49.7 (3)
Cl1—Li1—Al1viii90.0O1xx—Al1—Li2xxii69.9 (9)
O1—Li1—Al1ix117.15 (5)Li2i—Al1—Li2xxii105.2 (9)
O1i—Li1—Al1ix62.85 (5)Li2xxi—Al1—Li2xxii105.2 (9)
O1ii—Li1—Al1ix150.78 (5)O1xviii—Al1—Li2xxiii49.7 (3)
O1iii—Li1—Al1ix29.22 (5)O1xix—Al1—Li2xxiii69.9 (9)
Li2iv—Li1—Al1ix122.8 (6)O1xvii—Al1—Li2xxiii95.3 (7)
Li2v—Li1—Al1ix122.8 (6)O1xx—Al1—Li2xxiii153.8 (2)
Li2vi—Li1—Al1ix57.2 (6)Li2i—Al1—Li2xxiii105.2 (9)
Li2vii—Li1—Al1ix57.2 (6)Li2xxi—Al1—Li2xxiii105.2 (9)
Cl1—Li1—Al1ix90.0Li2xxii—Al1—Li2xxiii118.5 (19)
Al1viii—Li1—Al1ix90.0O1xviii—Al1—Li1xxiv78.09 (5)
O1—Li1—Al1x29.22 (5)O1xix—Al1—Li1xxiv144.55 (6)
O1i—Li1—Al1x150.78 (5)O1xvii—Al1—Li1xxiv101.91 (5)
O1ii—Li1—Al1x117.15 (5)O1xx—Al1—Li1xxiv35.45 (6)
O1iii—Li1—Al1x62.85 (5)Li2i—Al1—Li1xxiv127.4 (4)
Li2iv—Li1—Al1x57.2 (6)Li2xxi—Al1—Li1xxiv52.6 (4)
Li2v—Li1—Al1x122.8 (6)Li2xxii—Al1—Li1xxiv52.6 (4)
Li2vi—Li1—Al1x57.2 (6)Li2xxiii—Al1—Li1xxiv127.4 (4)
Li2vii—Li1—Al1x122.8 (6)O1xviii—Al1—Li1x101.91 (5)
Cl1—Li1—Al1x90.0O1xix—Al1—Li1x35.45 (6)
Al1viii—Li1—Al1x180.0O1xvii—Al1—Li1x78.09 (5)
Al1ix—Li1—Al1x90.0O1xx—Al1—Li1x144.55 (6)
O1xi—Li2—O1xii97.0 (15)Li2i—Al1—Li1x52.6 (4)
O1xi—Li2—O1xiii97.0 (15)Li2xxi—Al1—Li1x127.4 (4)
O1xii—Li2—O1xiii97.0 (15)Li2xxii—Al1—Li1x127.4 (4)
O1xi—Li2—Cl1120.1 (12)Li2xxiii—Al1—Li1x52.6 (4)
O1xii—Li2—Cl1120.1 (12)Li1xxiv—Al1—Li1x180.0
O1xiii—Li2—Cl1120.1 (12)O1xviii—Al1—Li1xvii144.55 (6)
O1xi—Li2—Li1xiv107.0 (3)O1xix—Al1—Li1xvii101.91 (5)
O1xii—Li2—Li1xiv139.1 (8)O1xvii—Al1—Li1xvii35.45 (6)
O1xiii—Li2—Li1xiv48.29 (9)O1xx—Al1—Li1xvii78.09 (5)
Cl1—Li2—Li1xiv75.3 (11)Li2i—Al1—Li1xvii52.6 (4)
O1xi—Li2—Li1ix139.1 (8)Li2xxi—Al1—Li1xvii127.4 (4)
O1xii—Li2—Li1ix48.29 (9)Li2xxii—Al1—Li1xvii52.6 (4)
O1xiii—Li2—Li1ix107.0 (3)Li2xxiii—Al1—Li1xvii127.4 (4)
Cl1—Li2—Li1ix75.3 (11)Li1xxiv—Al1—Li1xvii90.0
Li1xiv—Li2—Li1ix113.8 (9)Li1x—Al1—Li1xvii90.0
O1xi—Li2—Li1vi48.29 (9)O1xviii—Al1—Li1xviii35.45 (6)
O1xii—Li2—Li1vi107.0 (3)O1xix—Al1—Li1xviii78.09 (5)
O1xiii—Li2—Li1vi139.1 (8)O1xvii—Al1—Li1xviii144.55 (6)
Cl1—Li2—Li1vi75.3 (11)O1xx—Al1—Li1xviii101.91 (5)
Li1xiv—Li2—Li1vi113.8 (9)Li2i—Al1—Li1xviii127.4 (4)
Li1ix—Li2—Li1vi113.8 (9)Li2xxi—Al1—Li1xviii52.6 (4)
O1xi—Li2—O1ix158 (2)Li2xxii—Al1—Li1xviii127.4 (4)
O1xii—Li2—O1ix71.54 (19)Li2xxiii—Al1—Li1xviii52.6 (4)
O1xiii—Li2—O1ix66.73 (16)Li1xxiv—Al1—Li1xviii90.0
Cl1—Li2—O1ix81.8 (11)Li1x—Al1—Li1xviii90.0
Li1xiv—Li2—O1ix74.1 (3)Li1xvii—Al1—Li1xviii180.0
Li1ix—Li2—O1ix43.90 (17)B1—O1—Al1x118.97 (12)
Li1vi—Li2—O1ix152.3 (17)B1—O1—Li1118.1 (2)
O1xi—Li2—O1xiv66.73 (16)Al1x—O1—Li1115.33 (9)
O1xii—Li2—O1xiv158 (2)B1—O1—Li2iv123.5 (10)
O1xiii—Li2—O1xiv71.54 (19)Al1x—O1—Li2iv93.18 (8)
Cl1—Li2—O1xiv81.8 (11)Li1—O1—Li2iv79.2 (11)
Li1xiv—Li2—O1xiv43.90 (17)Li2—Cl1—Li2i109.471 (6)
Li1ix—Li2—O1xiv152.3 (17)Li2—Cl1—Li2vi109.471 (1)
Li1vi—Li2—O1xiv74.1 (3)Li2i—Cl1—Li2vi109.5
O1ix—Li2—O1xiv118.0 (5)Li2—Cl1—Li2v109.471 (3)
O1xi—Li2—O1vi71.54 (19)Li2i—Cl1—Li2v109.471 (1)
O1xii—Li2—O1vi66.73 (16)Li2vi—Cl1—Li2v109.471 (1)
O1xiii—Li2—O1vi158 (2)Li2—Cl1—Li1125.264 (1)
Cl1—Li2—O1vi81.8 (11)Li2i—Cl1—Li1125.264 (1)
Li1xiv—Li2—O1vi152.3 (17)Li2vi—Cl1—Li154.736 (1)
Li1ix—Li2—O1vi74.1 (3)Li2v—Cl1—Li154.736 (1)
Li1vi—Li2—O1vi43.90 (17)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, z+1/2, y; (iii) x, z, y+1/2; (iv) y1/2, x+1/2, z+1/2; (v) x+1/2, y, z+1/2; (vi) x+1/2, y+1/2, z; (vii) y1/2, x, z; (viii) y, z+1/2, x+1/2; (ix) z, x+1/2, y+1/2; (x) y, z, x; (xi) x+1/2, z+1/2, y+1/2; (xii) y+1/2, x+1/2, z+1/2; (xiii) z+1/2, y+1/2, x+1/2; (xiv) y+1/2, z, x+1/2; (xv) y+1/2, z+1/2, x; (xvi) x, y+1/2, z+1/2; (xvii) z, x, y; (xviii) z, x, y; (xix) z+1/2, y, x; (xx) z+1/2, y, x; (xxi) x, y1/2, z1/2; (xxii) y+1/2, x1/2, z+1/2; (xxiii) y+1/2, x+1/2, z1/2; (xxiv) y+1/2, z1/2, x.
Lithium aluminoboracite (kjh0818yoshinoL14_0m_a_1) top
Crystal data top
Li4B4Al3O12ClCu Kα radiation, λ = 1.54178 Å
Mr = 379.39Cell parameters from 2808 reflections
Cubic, F23θ = 6.8–73.2°
a = 12.9839 (1) ŵ = 6.12 mm1
V = 2188.85 (5) Å3T = 297 K
Z = 8Plate, colorless
F(000) = 14720.11 × 0.10 × 0.06 mm
Dx = 2.303 Mg m3
Data collection top
Bruker D8 goniometer
diffractometer
389 independent reflections
Radiation source: sealed tube317 reflections with I > 2σ(I)
Detector resolution: 7.3910 pixels mm-1Rint = 0.024
ω scansθmax = 73.2°, θmin = 5.9°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1512
Tmin = 0.62, Tmax = 0.75k = 1516
4728 measured reflectionsl = 1615
Refinement top
Refinement on F21 restraint
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0537P)2 + 1.5774P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.032(Δ/σ)max = 0.003
wR(F2) = 0.081Δρmax = 0.20 e Å3
S = 1.17Δρmin = 0.91 e Å3
389 reflectionsAbsolute structure: Flack x determined using 132 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
50 parametersAbsolute structure parameter: 0.03 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Li10.020 (4)0.2500000.2500000.047 (13)0.5
Li20.517 (5)0.7500000.7500000.050 (15)0.5
Li30.363 (3)0.363 (3)0.363 (3)0.020 (12)0.205 (14)
Li40.864 (2)0.864 (2)0.864 (2)0.035 (12)0.295 (14)
B10.1060 (3)0.1060 (3)0.1060 (3)0.0112 (10)
B20.6057 (3)0.6057 (3)0.6057 (3)0.0119 (10)
Al10.24997 (11)0.0000000.0000000.0118 (5)
O10.02797 (13)0.11005 (14)0.17683 (14)0.0170 (5)
O20.02784 (13)0.17681 (14)0.61004 (14)0.0171 (5)
Cl10.2500000.2500000.2500000.0774 (16)
Cl20.7500000.7500000.7500000.0786 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Li10.08 (3)0.015 (11)0.040 (17)0.0000.0000.012 (14)
Li20.11 (5)0.031 (14)0.010 (11)0.0000.0000.008 (13)
Li30.020 (12)0.020 (12)0.020 (12)0.004 (10)0.004 (10)0.004 (10)
Li40.035 (12)0.035 (12)0.035 (12)0.000 (10)0.000 (10)0.000 (10)
B10.0112 (10)0.0112 (10)0.0112 (10)0.0005 (15)0.0005 (15)0.0005 (15)
B20.0119 (10)0.0119 (10)0.0119 (10)0.0001 (15)0.0001 (15)0.0001 (15)
Al10.0115 (6)0.0119 (6)0.0120 (6)0.0000.0000.0003 (4)
O10.0185 (10)0.0161 (9)0.0164 (10)0.0050 (6)0.0069 (9)0.0048 (9)
O20.0196 (11)0.0164 (10)0.0154 (9)0.0071 (9)0.0050 (6)0.0048 (9)
Cl10.0774 (16)0.0774 (16)0.0774 (16)0.0000.0000.000
Cl20.0786 (16)0.0786 (16)0.0786 (16)0.0000.0000.000
Geometric parameters (Å, º) top
Li1—Li2i0.48 (10)Li3—O2xxiii2.23 (3)
Li1—O1ii2.053 (3)Li3—O2xxiv2.23 (3)
Li1—O12.053 (3)Li3—Cl12.55 (6)
Li1—O2iii2.143 (16)Li3—O1xxv2.824 (8)
Li1—O2iv2.143 (16)Li3—O1xxvi2.824 (8)
Li1—Li3v2.57 (4)Li3—O1vi2.824 (8)
Li1—Li3vi2.57 (4)Li4—O1xxvii2.23 (3)
Li1—Li4vii2.91 (4)Li4—O1xxviii2.23 (3)
Li1—Li4viii2.91 (4)Li4—O1xxix2.23 (3)
Li1—Cl12.98 (6)Li4—Cl22.55 (5)
Li1—Al1ix3.256 (5)Li4—O2xxx2.826 (8)
Li1—Al1x3.256 (5)Li4—O2xxxi2.826 (8)
Li2—O2xi2.056 (4)Li4—O2xxxii2.826 (8)
Li2—O2xii2.056 (4)Li4—Al1xxxiii2.91 (2)
Li2—O1xiii2.132 (16)Li4—Al1xxxiv2.91 (2)
Li2—O1xiv2.132 (16)B1—O11.3693 (17)
Li2—Li4xv2.60 (4)B1—O1ix1.3693 (17)
Li2—Li4xvi2.60 (4)B1—O1x1.3693 (17)
Li2—Li3xvii2.88 (4)B2—O2xxxv1.3702 (17)
Li2—Li3xviii2.88 (4)B2—O2xii1.3702 (17)
Li2—Cl23.03 (6)B2—O2xxxvi1.3702 (17)
Li2—Al1xix3.253 (4)Al1—O1xxxvii1.754 (2)
Li2—Al1xx3.253 (4)Al1—O2xxxviii1.754 (2)
Li2—Al1xxi3.253 (4)Al1—O1x1.754 (2)
Li3—O2xxii2.23 (3)Al1—O2xxxix1.754 (2)
Li2i—Li1—O1ii92.8 (16)Li2xvi—Li4—Li2xliii110.8 (14)
Li2i—Li1—O192.8 (16)Li2xlii—Li4—Li2xliii110.9 (14)
O1ii—Li1—O1174 (3)O1xxvii—Li4—O2xxx157 (2)
Li2i—Li1—O2iii73.1 (14)O1xxviii—Li4—O2xxx71.5 (2)
O1ii—Li1—O2iii90.8 (4)O1xxix—Li4—O2xxx66.70 (16)
O1—Li1—O2iii90.8 (4)Cl2—Li4—O2xxx82.1 (11)
Li2i—Li1—O2iv73.1 (14)Li2xvi—Li4—O2xxx44.3 (2)
O1ii—Li1—O2iv90.8 (4)Li2xlii—Li4—O2xxx74.0 (4)
O1—Li1—O2iv90.8 (4)Li2xliii—Li4—O2xxx150 (2)
O2iii—Li1—O2iv146 (3)O1xxvii—Li4—O2xxxi66.70 (16)
Li2i—Li1—Li3v126.0 (15)O1xxviii—Li4—O2xxxi157 (2)
O1ii—Li1—Li3v74.3 (8)O1xxix—Li4—O2xxxi71.5 (2)
O1—Li1—Li3v102.3 (12)Cl2—Li4—O2xxxi82.1 (11)
O2iii—Li1—Li3v55.4 (12)Li2xvi—Li4—O2xxxi150 (2)
O2iv—Li1—Li3v155 (2)Li2xlii—Li4—O2xxxi44.3 (2)
Li2i—Li1—Li3vi126.0 (15)Li2xliii—Li4—O2xxxi74.0 (4)
O1ii—Li1—Li3vi102.3 (12)O2xxx—Li4—O2xxxi118.2 (5)
O1—Li1—Li3vi74.3 (8)O1xxvii—Li4—O2xxxii71.5 (2)
O2iii—Li1—Li3vi155 (2)O1xxviii—Li4—O2xxxii66.70 (16)
O2iv—Li1—Li3vi55.4 (12)O1xxix—Li4—O2xxxii157 (2)
Li3v—Li1—Li3vi108 (3)Cl2—Li4—O2xxxii82.1 (11)
Li2i—Li1—Li4vii45.7 (13)Li2xvi—Li4—O2xxxii74.0 (4)
O1ii—Li1—Li4vii136 (2)Li2xlii—Li4—O2xxxii150 (2)
O1—Li1—Li4vii49.6 (13)Li2xliii—Li4—O2xxxii44.3 (2)
O2iii—Li1—Li4vii65.9 (10)O2xxx—Li4—O2xxxii118.2 (5)
O2iv—Li1—Li4vii90.1 (14)O2xxxi—Li4—O2xxxii118.2 (5)
Li3v—Li1—Li4vii114.3 (10)O1xxvii—Li4—Al1xxxiii68.7 (7)
Li3vi—Li1—Li4vii114.3 (10)O1xxviii—Li4—Al1xxxiii37.0 (3)
Li2i—Li1—Li4viii45.7 (13)O1xxix—Li4—Al1xxxiii122 (2)
O1ii—Li1—Li4viii49.6 (13)Cl2—Li4—Al1xxxiii114.3 (9)
O1—Li1—Li4viii136 (2)Li2xvi—Li4—Al1xxxiii72.2 (6)
O2iii—Li1—Li4viii90.1 (14)Li2xlii—Li4—Al1xxxiii174 (2)
O2iv—Li1—Li4viii65.9 (10)Li2xliii—Li4—Al1xxxiii72.2 (6)
Li3v—Li1—Li4viii114.3 (10)O2xxx—Li4—Al1xxxiii106.3 (4)
Li3vi—Li1—Li4viii114.3 (10)O2xxxi—Li4—Al1xxxiii134.6 (7)
Li4vii—Li1—Li4viii91 (3)O2xxxii—Li4—Al1xxxiii35.59 (12)
Li2i—Li1—Cl1180.0O1xxvii—Li4—Al1xxxiv37.0 (3)
O1ii—Li1—Cl187.2 (16)O1xxviii—Li4—Al1xxxiv122 (2)
O1—Li1—Cl187.2 (16)O1xxix—Li4—Al1xxxiv68.7 (7)
O2iii—Li1—Cl1106.9 (14)Cl2—Li4—Al1xxxiv114.3 (9)
O2iv—Li1—Cl1106.9 (14)Li2xvi—Li4—Al1xxxiv174 (2)
Li3v—Li1—Cl154.0 (15)Li2xlii—Li4—Al1xxxiv72.2 (6)
Li3vi—Li1—Cl154.0 (15)Li2xliii—Li4—Al1xxxiv72.2 (6)
Li4vii—Li1—Cl1134.3 (13)O2xxx—Li4—Al1xxxiv134.6 (7)
Li4viii—Li1—Cl1134.3 (13)O2xxxi—Li4—Al1xxxiv35.59 (12)
Li2i—Li1—Al1ix85.4 (10)O2xxxii—Li4—Al1xxxiv106.3 (4)
O1ii—Li1—Al1ix152.41 (19)Al1xxxiii—Li4—Al1xxxiv104.3 (11)
O1—Li1—Al1ix28.56 (17)O1—B1—O1ix119.972 (15)
O2iii—Li1—Al1ix114.7 (7)O1—B1—O1x119.972 (15)
O2iv—Li1—Al1ix62.3 (2)O1ix—B1—O1x119.972 (15)
Li3v—Li1—Al1ix128.1 (12)O2xxxv—B2—O2xii119.982 (12)
Li3vi—Li1—Al1ix58.5 (7)O2xxxv—B2—O2xxxvi119.982 (13)
Li4vii—Li1—Al1ix55.9 (7)O2xii—B2—O2xxxvi119.982 (12)
Li4viii—Li1—Al1ix116.6 (14)O1xxxvii—Al1—O2xxxviii107.12 (9)
Cl1—Li1—Al1ix94.6 (10)O1xxxvii—Al1—O1x114.42 (15)
Li2i—Li1—Al1x85.4 (10)O2xxxviii—Al1—O1x107.03 (8)
O1ii—Li1—Al1x117.73 (11)O1xxxvii—Al1—O2xxxix107.03 (8)
O1—Li1—Al1x62.78 (10)O2xxxviii—Al1—O2xxxix114.35 (15)
O2iii—Li1—Al1x29.72 (10)O1x—Al1—O2xxxix107.12 (9)
O2iv—Li1—Al1x145.3 (15)O1xxxvii—Al1—Li4xliv95.5 (7)
Li3v—Li1—Al1x58.5 (7)O2xxxviii—Al1—Li4xliv153.8 (2)
Li3vi—Li1—Al1x128.1 (12)O1x—Al1—Li4xliv49.8 (3)
Li4vii—Li1—Al1x55.9 (7)O2xxxix—Al1—Li4xliv69.7 (8)
Li4viii—Li1—Al1x116.6 (14)O1xxxvii—Al1—Li4xlv49.8 (3)
Cl1—Li1—Al1x94.6 (10)O2xxxviii—Al1—Li4xlv69.7 (8)
Al1ix—Li1—Al1x89.62 (17)O1x—Al1—Li4xlv95.5 (7)
O2xi—Li2—O2xii172 (3)O2xxxix—Al1—Li4xlv153.8 (2)
O2xi—Li2—O1xiii91.1 (4)Li4xliv—Al1—Li4xlv119.1 (19)
O2xii—Li2—O1xiii91.1 (4)O1xxxvii—Al1—Li3ii153.8 (2)
O2xi—Li2—O1xiv91.1 (4)O2xxxviii—Al1—Li3ii49.8 (3)
O2xii—Li2—O1xiv91.1 (4)O1x—Al1—Li3ii69.5 (9)
O1xiii—Li2—O1xiv148 (3)O2xxxix—Al1—Li3ii95.6 (7)
O2xi—Li2—Li4xv101.4 (13)Li4xliv—Al1—Li3ii104.9 (7)
O2xii—Li2—Li4xv73.7 (9)Li4xlv—Al1—Li3ii104.9 (7)
O1xiii—Li2—Li4xv154 (2)O1xxxvii—Al1—Li3xli69.5 (9)
O1xiv—Li2—Li4xv55.1 (12)O2xxxviii—Al1—Li3xli95.6 (7)
O2xi—Li2—Li4xvi73.7 (9)O1x—Al1—Li3xli153.8 (2)
O2xii—Li2—Li4xvi101.4 (13)O2xxxix—Al1—Li3xli49.8 (3)
O1xiii—Li2—Li4xvi55.1 (12)Li4xliv—Al1—Li3xli104.9 (7)
O1xiv—Li2—Li4xvi154 (2)Li4xlv—Al1—Li3xli104.9 (7)
Li4xv—Li2—Li4xvi107 (3)Li3ii—Al1—Li3xli119 (2)
O2xi—Li2—Li3xvii137 (2)O1xxxvii—Al1—Li2xlvi37.0 (5)
O2xii—Li2—Li3xvii50.2 (14)O2xxxviii—Al1—Li2xlvi74.9 (9)
O1xiii—Li2—Li3xvii66.6 (10)O1x—Al1—Li2xlvi143.0 (5)
O1xiv—Li2—Li3xvii91.1 (15)O2xxxix—Al1—Li2xlvi105.1 (9)
Li4xv—Li2—Li3xvii114.4 (10)Li4xliv—Al1—Li2xlvi130.5 (9)
Li4xvi—Li2—Li3xvii114.4 (10)Li4xlv—Al1—Li2xlvi49.5 (9)
O2xi—Li2—Li3xviii50.2 (13)Li3ii—Al1—Li2xlvi124.6 (9)
O2xii—Li2—Li3xviii137 (2)Li3xli—Al1—Li2xlvi55.4 (9)
O1xiii—Li2—Li3xviii91.1 (15)O1xxxvii—Al1—Li2xlvii98.7 (9)
O1xiv—Li2—Li3xviii66.6 (10)O2xxxviii—Al1—Li2xlvii34.2 (3)
Li4xv—Li2—Li3xviii114.4 (10)O1x—Al1—Li2xlvii81.3 (9)
Li4xvi—Li2—Li3xviii114.4 (10)O2xxxix—Al1—Li2xlvii145.8 (3)
Li3xvii—Li2—Li3xviii92 (3)Li4xliv—Al1—Li2xlvii130.5 (9)
O2xi—Li2—Cl286.0 (17)Li4xlv—Al1—Li2xlvii49.5 (9)
O2xii—Li2—Cl286.0 (17)Li3ii—Al1—Li2xlvii55.4 (9)
O1xiii—Li2—Cl2105.9 (15)Li3xli—Al1—Li2xlvii124.6 (9)
O1xiv—Li2—Cl2105.9 (15)Li2xlvi—Al1—Li2xlvii82 (2)
Li4xv—Li2—Cl253.3 (15)O1xxxvii—Al1—Li2xlviii81.3 (9)
Li4xvi—Li2—Cl253.3 (15)O2xxxviii—Al1—Li2xlviii145.8 (3)
Li3xvii—Li2—Cl2133.8 (13)O1x—Al1—Li2xlviii98.7 (9)
Li3xviii—Li2—Cl2133.8 (13)O2xxxix—Al1—Li2xlviii34.2 (3)
O2xi—Li2—Al1xix117.76 (6)Li4xliv—Al1—Li2xlviii49.5 (9)
O2xii—Li2—Al1xix62.84 (9)Li4xlv—Al1—Li2xlviii130.5 (9)
O1xiii—Li2—Al1xix29.66 (11)Li3ii—Al1—Li2xlviii124.6 (9)
O1xiv—Li2—Al1xix146.3 (15)Li3xli—Al1—Li2xlviii55.4 (9)
Li4xv—Li2—Al1xix127.3 (13)Li2xlvi—Al1—Li2xlviii98 (2)
Li4xvi—Li2—Al1xix58.3 (7)Li2xlvii—Al1—Li2xlviii179.99 (5)
Li3xvii—Li2—Al1xix56.2 (7)O1xxxvii—Al1—Li2xlix143.0 (5)
Li3xviii—Li2—Al1xix117.5 (15)O2xxxviii—Al1—Li2xlix105.1 (9)
Cl2—Li2—Al1xix93.9 (10)O1x—Al1—Li2xlix37.0 (5)
O2xi—Li2—Al1xx152.45 (6)O2xxxix—Al1—Li2xlix74.9 (9)
O2xii—Li2—Al1xx28.68 (17)Li4xliv—Al1—Li2xlix49.5 (9)
O1xiii—Li2—Al1xx115.2 (7)Li4xlv—Al1—Li2xlix130.5 (9)
O1xiv—Li2—Al1xx62.41 (19)Li3ii—Al1—Li2xlix55.4 (9)
Li4xv—Li2—Al1xx58.3 (7)Li3xli—Al1—Li2xlix124.6 (9)
Li4xvi—Li2—Al1xx127.3 (13)Li2xlvi—Al1—Li2xlix180.0 (17)
Li3xvii—Li2—Al1xx56.2 (7)Li2xlvii—Al1—Li2xlix98 (2)
Li3xviii—Li2—Al1xx117.5 (15)Li2xlviii—Al1—Li2xlix82 (2)
Cl2—Li2—Al1xx93.9 (10)B1—O1—Al1ix119.05 (13)
Al1xix—Li2—Al1xx89.75 (15)B1—O1—Li1112.4 (12)
O2xi—Li2—Al1xxi28.68 (17)Al1ix—O1—Li1117.4 (4)
O2xii—Li2—Al1xxi152.45 (6)B1—O1—Li2i122.3 (12)
O1xiii—Li2—Al1xxi62.41 (19)Al1ix—O1—Li2i113.4 (6)
O1xiv—Li2—Al1xxi115.2 (7)Li1—O1—Li2i13 (3)
Li4xv—Li2—Al1xxi127.3 (13)B1—O1—Li4vii123.9 (9)
Li4xvi—Li2—Al1xxi58.3 (7)Al1ix—O1—Li4vii93.12 (8)
Li3xvii—Li2—Al1xxi117.5 (15)Li1—O1—Li4vii85.7 (19)
Li3xviii—Li2—Al1xxi56.2 (7)Li2i—O1—Li4vii73.2 (19)
Cl2—Li2—Al1xxi93.9 (10)B1—O1—Li3vi102.2 (9)
Al1xix—Li2—Al1xxi89.73 (15)Al1ix—O1—Li3vi74.9 (10)
Al1xx—Li2—Al1xxi172 (2)Li1—O1—Li3vi61.3 (10)
O2xxii—Li3—O2xxiii96.4 (16)Li2i—O1—Li3vi69.5 (10)
O2xxii—Li3—O2xxiv96.4 (16)Li4vii—O1—Li3vi131.5 (12)
O2xxiii—Li3—O2xxiv96.4 (16)B1—O1—Li375.8 (3)
O2xxii—Li3—Cl1120.6 (12)Al1ix—O1—Li3112.35 (10)
O2xxiii—Li3—Cl1120.6 (12)Li1—O1—Li350.3 (16)
O2xxiv—Li3—Cl1120.6 (12)Li2i—O1—Li363.2 (15)
O2xxii—Li3—Li1vi108.9 (5)Li4vii—O1—Li3135.3 (9)
O2xxiii—Li3—Li1vi140.8 (8)Li3vi—O1—Li338.8 (10)
O2xxiv—Li3—Li1vi52.5 (10)B2l—O2—Al1xxvi118.94 (13)
Cl1—Li3—Li1vi71.3 (15)B2l—O2—Li2l113.5 (13)
O2xxii—Li3—Li1xxvi52.4 (10)Al1xxvi—O2—Li2l117.1 (5)
O2xxiii—Li3—Li1xxvi108.9 (5)B2l—O2—Li1li123.2 (11)
O2xxiv—Li3—Li1xxvi140.8 (8)Al1xxvi—O2—Li1li113.0 (5)
Cl1—Li3—Li1xxvi71.3 (15)Li2l—O2—Li1li13 (3)
Li1vi—Li3—Li1xxvi110.2 (15)B2l—O2—Li3lii123.8 (10)
O2xxii—Li3—Li1xxv140.8 (8)Al1xxvi—O2—Li3lii93.19 (8)
O2xxiii—Li3—Li1xxv52.4 (10)Li2l—O2—Li3lii85 (2)
O2xxiv—Li3—Li1xxv108.9 (5)Li1li—O2—Li3lii72.1 (18)
Cl1—Li3—Li1xxv71.3 (15)B2l—O2—Li4liii102.4 (9)
Li1vi—Li3—Li1xxv110.2 (15)Al1xxvi—O2—Li4liii74.7 (10)
Li1xxvi—Li3—Li1xxv110.2 (15)Li2l—O2—Li4liii62.0 (11)
O2xxii—Li3—O1xxv157 (2)Li1li—O2—Li4liii70.2 (10)
O2xxiii—Li3—O1xxv71.5 (2)Li3lii—O2—Li4liii131.4 (12)
O2xxiv—Li3—O1xxv66.68 (17)B2l—O2—Li482.6 (3)
Cl1—Li3—O1xxv82.2 (11)Al1xxvi—O2—Li490.33 (9)
Li1vi—Li3—O1xxv74.0 (4)Li2l—O2—Li464.2 (14)
Li1xxvi—Li3—O1xxv149 (2)Li1li—O2—Li475.6 (13)
Li1xxv—Li3—O1xxv44.4 (3)Li3lii—O2—Li4146.2 (12)
O2xxii—Li3—O1xxvi71.5 (2)Li4liii—O2—Li421.0 (10)
O2xxiii—Li3—O1xxvi66.68 (17)Li3—Cl1—Li3ii109.468 (7)
O2xxiv—Li3—O1xxvi157 (2)Li3—Cl1—Li3v109.473 (3)
Cl1—Li3—O1xxvi82.2 (11)Li3ii—Cl1—Li3v109.473 (1)
Li1vi—Li3—O1xxvi149 (2)Li3—Cl1—Li3vi109.473 (1)
Li1xxvi—Li3—O1xxvi44.4 (3)Li3ii—Cl1—Li3vi109.5
Li1xxv—Li3—O1xxvi73.9 (4)Li3v—Cl1—Li3vi109.468 (2)
O1xxv—Li3—O1xxvi118.2 (5)Li3—Cl1—Li1125.266 (1)
O2xxii—Li3—O1vi66.68 (17)Li3ii—Cl1—Li1125.266 (4)
O2xxiii—Li3—O1vi157 (2)Li3v—Cl1—Li154.734 (1)
O2xxiv—Li3—O1vi71.5 (2)Li3vi—Cl1—Li154.734 (2)
Cl1—Li3—O1vi82.2 (11)Li3—Cl1—Li1xxvi54.736 (2)
Li1vi—Li3—O1vi44.4 (3)Li3ii—Cl1—Li1xxvi125.264 (3)
Li1xxvi—Li3—O1vi73.9 (4)Li3v—Cl1—Li1xxvi54.736 (2)
Li1xxv—Li3—O1vi149 (2)Li3vi—Cl1—Li1xxvi125.264 (2)
O1xxv—Li3—O1vi118.2 (5)Li1—Cl1—Li1xxvi90.000 (3)
O1xxvi—Li3—O1vi118.2 (5)Li3—Cl1—Li1ix125.264 (5)
O2xxii—Li3—Li2xl45.2 (8)Li3ii—Cl1—Li1ix54.736 (1)
O2xxiii—Li3—Li2xl105.2 (6)Li3v—Cl1—Li1ix54.736 (2)
O2xxiv—Li3—Li2xl137.0 (11)Li3vi—Cl1—Li1ix125.264 (4)
Cl1—Li3—Li2xl79.1 (13)Li1—Cl1—Li1ix90.000 (3)
Li1vi—Li3—Li2xl113.8 (9)Li1xxvi—Cl1—Li1ix90.0
Li1xxvi—Li3—Li2xl7.8 (17)Li3—Cl1—Li1xxv54.736 (2)
Li1xxv—Li3—Li2xl113.8 (9)Li3ii—Cl1—Li1xxv125.264 (1)
O1xxv—Li3—Li2xl155.6 (18)Li3v—Cl1—Li1xxv125.264 (2)
O1xxvi—Li3—Li2xl43.86 (15)Li3vi—Cl1—Li1xxv54.736 (2)
O1vi—Li3—Li2xl74.5 (3)Li1—Cl1—Li1xxv90.000 (3)
O2xxii—Li3—Li2xli105.2 (6)Li1xxvi—Cl1—Li1xxv90.0
O2xxiii—Li3—Li2xli137.0 (11)Li1ix—Cl1—Li1xxv180.0
O2xxiv—Li3—Li2xli45.2 (8)Li3—Cl1—Li1x125.264 (1)
Cl1—Li3—Li2xli79.1 (13)Li3ii—Cl1—Li1x54.736 (1)
Li1vi—Li3—Li2xli7.8 (17)Li3v—Cl1—Li1x125.264 (4)
Li1xxvi—Li3—Li2xli113.8 (9)Li3vi—Cl1—Li1x54.736 (1)
Li1xxv—Li3—Li2xli113.8 (9)Li1—Cl1—Li1x90.000 (4)
O1xxv—Li3—Li2xli74.5 (3)Li1xxvi—Cl1—Li1x180.0
O1xxvi—Li3—Li2xli155.6 (18)Li1ix—Cl1—Li1x90.000 (2)
O1vi—Li3—Li2xli43.86 (15)Li1xxv—Cl1—Li1x90.0
Li2xl—Li3—Li2xli116.5 (8)Li3—Cl1—Li1vi54.734 (2)
O1xxvii—Li4—O1xxviii96.6 (15)Li3ii—Cl1—Li1vi54.734 (3)
O1xxvii—Li4—O1xxix96.6 (15)Li3v—Cl1—Li1vi125.266 (2)
O1xxviii—Li4—O1xxix96.6 (15)Li3vi—Cl1—Li1vi125.266 (1)
O1xxvii—Li4—Cl2120.5 (12)Li1—Cl1—Li1vi180.0
O1xxviii—Li4—Cl2120.5 (12)Li1xxvi—Cl1—Li1vi90.000 (5)
O1xxix—Li4—Cl2120.5 (12)Li1ix—Cl1—Li1vi90.0
O1xxvii—Li4—Li2xvi140.6 (8)Li1xxv—Cl1—Li1vi90.000 (4)
O1xxviii—Li4—Li2xvi51.7 (10)Li1x—Cl1—Li1vi90.000 (1)
O1xxix—Li4—Li2xvi108.6 (5)Li4—Cl2—Li4liv109.474 (11)
Cl2—Li4—Li2xvi71.9 (15)Li4—Cl2—Li4xvi109.470 (2)
O1xxvii—Li4—Li2xlii108.6 (5)Li4liv—Cl2—Li4xvi109.470 (3)
O1xxviii—Li4—Li2xlii140.6 (8)Li4—Cl2—Li4xv109.470 (6)
O1xxix—Li4—Li2xlii51.7 (10)Li4liv—Cl2—Li4xv109.5
Cl2—Li4—Li2xlii71.9 (15)Li4xvi—Cl2—Li4xv109.474 (7)
Li2xvi—Li4—Li2xlii110.8 (14)Li4—Cl2—Li2125.263 (4)
O1xxvii—Li4—Li2xliii51.7 (10)Li4liv—Cl2—Li2125.263 (12)
O1xxviii—Li4—Li2xliii108.6 (5)Li4xvi—Cl2—Li254.737 (7)
O1xxix—Li4—Li2xliii140.6 (8)Li4xv—Cl2—Li254.737 (6)
Cl2—Li4—Li2xliii71.9 (15)
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x, y, z+1; (v) x+1/2, y, z+1/2; (vi) x+1/2, y+1/2, z; (vii) x1, y+1, z+1; (viii) x1, y1/2, z1/2; (ix) y, z, x; (x) z, x, y; (xi) x+1/2, y+1, z+3/2; (xii) x+1/2, y+1/2, z; (xiii) x+1/2, y+1/2, z+1; (xiv) x+1/2, y+1, z+1/2; (xv) x+3/2, y, z+3/2; (xvi) x+3/2, y+3/2, z; (xvii) x, y+1, z+1; (xviii) x, y+1/2, z+1/2; (xix) y+1/2, z+1/2, x+1; (xx) z+1/2, x+1, y+1/2; (xxi) z+1/2, x+1/2, y+1; (xxii) z+1, x+1/2, y+1/2; (xxiii) y+1/2, z+1, x+1/2; (xxiv) x+1/2, y+1/2, z+1; (xxv) y+1/2, z, x+1/2; (xxvi) z, x+1/2, y+1/2; (xxvii) z+1, x+1, y+1; (xxviii) x+1, y+1, z+1; (xxix) y+1, z+1, x+1; (xxx) x+1, y+1/2, z+3/2; (xxxi) y+1/2, z+3/2, x+1; (xxxii) z+3/2, x+1, y+1/2; (xxxiii) y+1, z+1, x+1; (xxxiv) x+1, y+1, z+1; (xxxv) y+1/2, z, x+1/2; (xxxvi) z, x+1/2, y+1/2; (xxxvii) z, x, y; (xxxviii) y+1/2, z1/2, x; (xxxix) y+1/2, z+1/2, x; (xl) z1/2, x, y1/2; (xli) x, y1/2, z1/2; (xlii) y+3/2, z, x+3/2; (xliii) z, x+3/2, y+3/2; (xliv) x+1, y1, z+1; (xlv) x+1, y+1, z1; (xlvi) z1/2, x1/2, y1; (xlvii) y+1, z1/2, x+1/2; (xlviii) y1/2, z1, x1/2; (xlix) z1/2, x+1/2, y+1; (l) x1/2, y1/2, z; (li) x, y+1/2, z+1/2; (lii) x1/2, y+1/2, z+1; (liii) x+1, y1/2, z+3/2; (liv) x, y+3/2, z+3/2.
Sodium aluminoboracite (kjh230804yoshinoN4_0m_a) top
Crystal data top
Na3.92B4Al3O12Cl0.92Cu Kα radiation, λ = 1.54178 Å
Mr = 438.91Cell parameters from 3423 reflections
Cubic, F43cθ = 4.6–74.3°
a = 13.5904 (1) ŵ = 6.78 mm1
V = 2510.13 (6) Å3T = 294 K
Z = 8Plate, colorless
F(000) = 17280.08 × 0.06 × 0.04 mm
Dx = 2.323 Mg m3
Data collection top
Bruker D8 goniometer
diffractometer
218 independent reflections
Radiation source: sealed tube216 reflections with I > 2σ(I)
Detector resolution: 7.3910 pixels mm-1Rint = 0.027
ω scansθmax = 74.3°, θmin = 6.5°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1616
Tmin = 0.66, Tmax = 0.75k = 1616
4504 measured reflectionsl = 1614
Refinement top
Refinement on F21 restraint
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0311P)2 + 4.0293P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.022(Δ/σ)max < 0.001
wR(F2) = 0.055Δρmax = 0.15 e Å3
S = 1.20Δρmin = 0.45 e Å3
218 reflectionsAbsolute structure: Flack x determined using 89 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
27 parametersAbsolute structure parameter: 0.01 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Na10.0340 (3)0.2500000.2500000.0422 (14)0.499 (4)
Na20.3606 (4)0.3606 (4)0.3606 (4)0.017 (2)0.231 (6)
B10.1039 (2)0.1039 (2)0.1039 (2)0.0143 (9)
Al10.2500000.0000000.0000000.0095 (4)
O10.03513 (13)0.10047 (12)0.17745 (12)0.0176 (5)
Cl10.2500000.2500000.2500000.0350 (9)0.920 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.096 (4)0.0127 (18)0.0182 (19)0.0000.0000.0066 (17)
Na20.017 (2)0.017 (2)0.017 (2)0.0006 (18)0.0006 (18)0.0006 (18)
B10.0143 (9)0.0143 (9)0.0143 (9)0.0015 (12)0.0015 (12)0.0015 (12)
Al10.0096 (6)0.0095 (5)0.0095 (5)0.0000.0000.000
O10.0189 (9)0.0149 (8)0.0188 (8)0.0060 (6)0.0102 (8)0.0061 (7)
Cl10.0350 (9)0.0350 (9)0.0350 (9)0.0000.0000.000
Geometric parameters (Å, º) top
Na1—Na1i0.923 (8)Na2—O1x2.484 (5)
Na1—O1ii2.2588 (16)Na2—Cl12.605 (9)
Na1—O12.2588 (16)Na2—O1xi2.913 (2)
Na1—O1iii2.446 (2)Na2—O1v2.913 (2)
Na1—O1i2.446 (2)Na2—O1xii2.913 (2)
Na1—Na2iv2.564 (4)Na2—Al1xiii3.072 (4)
Na1—Na2v2.564 (4)Na2—Al1xiv3.072 (4)
Na1—Cl12.936 (4)B1—O1xv1.3692 (15)
Na1—B1ii2.965 (3)B1—O1xvi1.3692 (15)
Na1—B12.965 (3)B1—O11.3693 (15)
Na1—Na2vi3.174 (3)Al1—O1xvii1.7506 (16)
Na1—Na2vii3.174 (3)Al1—O1xviii1.7506 (16)
Na2—O1viii2.484 (5)Al1—O1xvi1.7506 (16)
Na2—O1ix2.484 (5)Al1—O1xix1.7506 (16)
Na1i—Na1—O1ii90.40 (11)O1—B1—Na146.75 (14)
Na1i—Na1—O190.40 (11)O1xv—B1—Na1xv46.75 (14)
O1ii—Na1—O1179.2 (2)O1xvi—B1—Na1xv87.53 (15)
Na1i—Na1—O1iii67.42 (9)O1—B1—Na1xv135.5 (3)
O1ii—Na1—O1iii90.15 (4)Na1—B1—Na1xv88.88 (15)
O1—Na1—O1iii90.15 (4)O1xv—B1—Na1xvi135.5 (3)
Na1i—Na1—O1i67.42 (9)O1xvi—B1—Na1xvi46.75 (14)
O1ii—Na1—O1i90.15 (4)O1—B1—Na1xvi87.53 (15)
O1—Na1—O1i90.15 (4)Na1—B1—Na1xvi88.88 (15)
O1iii—Na1—O1i134.84 (18)Na1xv—B1—Na1xvi88.88 (15)
Na1i—Na1—Na2iv124.0 (2)O1xvii—Al1—O1xviii108.49 (6)
O1ii—Na1—Na2iv74.01 (7)O1xvii—Al1—O1xvi111.44 (11)
O1—Na1—Na2iv105.53 (9)O1xviii—Al1—O1xvi108.49 (6)
O1iii—Na1—Na2iv59.39 (18)O1xvii—Al1—O1xix108.49 (6)
O1i—Na1—Na2iv159.73 (13)O1xviii—Al1—O1xix111.44 (11)
Na1i—Na1—Na2v124.0 (2)O1xvi—Al1—O1xix108.49 (6)
O1ii—Na1—Na2v105.53 (9)O1xvii—Al1—Na2ii157.64 (7)
O1—Na1—Na2v74.01 (7)O1xviii—Al1—Na2ii53.95 (9)
O1iii—Na1—Na2v159.73 (13)O1xvi—Al1—Na2ii68.08 (15)
O1i—Na1—Na2v59.39 (18)O1xix—Al1—Na2ii92.12 (11)
Na2iv—Na1—Na2v112.1 (4)O1xvii—Al1—Na2xx68.08 (15)
Na1i—Na1—Cl1180.0O1xviii—Al1—Na2xx92.12 (11)
O1ii—Na1—Cl189.60 (11)O1xvi—Al1—Na2xx157.64 (7)
O1—Na1—Cl189.60 (11)O1xix—Al1—Na2xx53.95 (9)
O1iii—Na1—Cl1112.58 (9)Na2ii—Al1—Na2xx121.4 (3)
O1i—Na1—Cl1112.58 (9)O1xvii—Al1—Na2xxi92.12 (11)
Na2iv—Na1—Cl156.0 (2)O1xviii—Al1—Na2xxi157.64 (7)
Na2v—Na1—Cl156.0 (2)O1xvi—Al1—Na2xxi53.95 (9)
Na1i—Na1—B1ii108.69 (11)O1xix—Al1—Na2xxi68.08 (15)
O1ii—Na1—B1ii26.20 (7)Na2ii—Al1—Na2xxi103.87 (13)
O1—Na1—B1ii153.23 (14)Na2xx—Al1—Na2xxi103.87 (13)
O1iii—Na1—B1ii114.17 (5)O1xvii—Al1—Na2xxii53.95 (9)
O1i—Na1—B1ii80.59 (6)O1xviii—Al1—Na2xxii68.08 (15)
Na2iv—Na1—B1ii79.69 (9)O1xvi—Al1—Na2xxii92.12 (11)
Na2v—Na1—B1ii79.69 (9)O1xix—Al1—Na2xxii157.64 (7)
Cl1—Na1—B1ii71.31 (11)Na2ii—Al1—Na2xxii103.87 (13)
Na1i—Na1—B1108.68 (11)Na2xx—Al1—Na2xxii103.87 (13)
O1ii—Na1—B1153.23 (14)Na2xxi—Al1—Na2xxii121.4 (3)
O1—Na1—B126.20 (7)O1xvii—Al1—Na1xxiii67.96 (7)
O1iii—Na1—B180.59 (6)O1xviii—Al1—Na1xxiii137.41 (6)
O1i—Na1—B1114.17 (5)O1xvi—Al1—Na1xxiii112.04 (7)
Na2iv—Na1—B179.69 (9)O1xix—Al1—Na1xxiii42.59 (6)
Na2v—Na1—B179.69 (9)Na2ii—Al1—Na1xxiii133.95 (9)
Cl1—Na1—B171.32 (11)Na2xx—Al1—Na1xxiii46.05 (9)
B1ii—Na1—B1142.6 (2)Na2xxi—Al1—Na1xxiii58.13 (7)
Na1i—Na1—Na2vi42.07 (17)Na2xxii—Al1—Na1xxiii121.87 (7)
O1ii—Na1—Na2vi129.7 (2)O1xvii—Al1—Na1xvii35.94 (5)
O1—Na1—Na2vi51.10 (16)O1xviii—Al1—Na1xvii80.49 (8)
O1iii—Na1—Na2vi60.81 (7)O1xvi—Al1—Na1xvii144.06 (5)
O1i—Na1—Na2vi85.28 (12)O1xix—Al1—Na1xvii99.51 (8)
Na2iv—Na1—Na2vi114.50 (19)Na2ii—Al1—Na1xvii133.95 (9)
Na2v—Na1—Na2vi114.50 (19)Na2xx—Al1—Na1xvii46.05 (9)
Cl1—Na1—Na2vi137.93 (17)Na2xxi—Al1—Na1xvii121.87 (7)
B1ii—Na1—Na2vi150.8 (2)Na2xxii—Al1—Na1xvii58.13 (7)
B1—Na1—Na2vi66.6 (2)Na1xxiii—Al1—Na1xvii74.52 (12)
Na1i—Na1—Na2vii42.07 (17)O1xvii—Al1—Na1xvi144.06 (5)
O1ii—Na1—Na2vii51.10 (16)O1xviii—Al1—Na1xvi99.51 (8)
O1—Na1—Na2vii129.7 (2)O1xvi—Al1—Na1xvi35.94 (5)
O1iii—Na1—Na2vii85.28 (12)O1xix—Al1—Na1xvi80.49 (8)
O1i—Na1—Na2vii60.81 (7)Na2ii—Al1—Na1xvi46.05 (9)
Na2iv—Na1—Na2vii114.50 (19)Na2xx—Al1—Na1xvi133.95 (9)
Na2v—Na1—Na2vii114.50 (19)Na2xxi—Al1—Na1xvi58.13 (7)
Cl1—Na1—Na2vii137.93 (17)Na2xxii—Al1—Na1xvi121.87 (7)
B1ii—Na1—Na2vii66.6 (2)Na1xxiii—Al1—Na1xvi105.48 (12)
B1—Na1—Na2vii150.8 (2)Na1xvii—Al1—Na1xvi180.00 (12)
Na2vi—Na1—Na2vii84.1 (3)O1xvii—Al1—Na1xv112.04 (7)
O1viii—Na2—O1ix92.3 (2)O1xviii—Al1—Na1xv42.59 (6)
O1viii—Na2—O1x92.3 (2)O1xvi—Al1—Na1xv67.96 (7)
O1ix—Na2—O1x92.3 (2)O1xix—Al1—Na1xv137.41 (6)
O1viii—Na2—Na1xi108.59 (7)Na2ii—Al1—Na1xv46.05 (9)
O1ix—Na2—Na1xi143.23 (13)Na2xx—Al1—Na1xv133.95 (9)
O1x—Na2—Na1xi57.95 (8)Na2xxi—Al1—Na1xv121.87 (7)
O1viii—Na2—Na1xii57.95 (8)Na2xxii—Al1—Na1xv58.13 (7)
O1ix—Na2—Na1xii108.59 (7)Na1xxiii—Al1—Na1xv180.0
O1x—Na2—Na1xii143.23 (13)Na1xvii—Al1—Na1xv105.48 (12)
Na1xi—Na2—Na1xii108.1 (2)Na1xvi—Al1—Na1xv74.52 (12)
O1viii—Na2—Na1v143.23 (13)B1—O1—Al1xv128.59 (12)
O1ix—Na2—Na1v57.95 (8)B1—O1—Na1107.1 (2)
O1x—Na2—Na1v108.59 (7)Al1xv—O1—Na1117.00 (8)
Na1xi—Na2—Na1v108.1 (2)B1—O1—Na1i121.89 (16)
Na1xii—Na2—Na1v108.1 (2)Al1xv—O1—Na1i108.44 (8)
O1viii—Na2—Cl1123.62 (17)Na1—O1—Na1i22.18 (18)
O1ix—Na2—Cl1123.62 (17)B1—O1—Na2vi119.5 (2)
O1x—Na2—Cl1123.62 (17)Al1xv—O1—Na2vi91.32 (7)
Na1xi—Na2—Cl169.2 (2)Na1—O1—Na2vi83.85 (18)
Na1xii—Na2—Cl169.2 (2)Na1i—O1—Na2vi62.66 (18)
Na1v—Na2—Cl169.2 (2)B1—O1—Na2v106.6 (3)
O1viii—Na2—O1xi62.95 (7)Al1xv—O1—Na2v78.04 (18)
O1ix—Na2—O1xi151.5 (3)Na1—O1—Na2v57.80 (10)
O1x—Na2—O1xi75.84 (7)Na1i—O1—Na2v72.03 (7)
Na1xi—Na2—O1xi48.20 (5)Na2vi—O1—Na2v127.14 (10)
Na1xii—Na2—O1xi71.49 (6)Na2ii—Cl1—Na2iv109.5
Na1v—Na2—O1xi150.4 (3)Na2ii—Cl1—Na2v109.5
Cl1—Na2—O1xi83.80 (18)Na2iv—Cl1—Na2v109.5
O1viii—Na2—O1v151.5 (3)Na2ii—Cl1—Na2109.471 (1)
O1ix—Na2—O1v75.84 (7)Na2iv—Cl1—Na2109.471 (1)
O1x—Na2—O1v62.95 (7)Na2v—Cl1—Na2109.5
Na1xi—Na2—O1v71.49 (6)Na2ii—Cl1—Na1125.3
Na1xii—Na2—O1v150.4 (3)Na2iv—Cl1—Na154.7
Na1v—Na2—O1v48.20 (5)Na2v—Cl1—Na154.7
Cl1—Na2—O1v83.80 (18)Na2—Cl1—Na1125.3
O1xi—Na2—O1v118.85 (6)Na2ii—Cl1—Na1xi125.3
O1viii—Na2—O1xii75.84 (7)Na2iv—Cl1—Na1xi54.7
O1ix—Na2—O1xii62.95 (7)Na2v—Cl1—Na1xi125.3
O1x—Na2—O1xii151.5 (3)Na2—Cl1—Na1xi54.7
Na1xi—Na2—O1xii150.4 (3)Na1—Cl1—Na1xi90.0
Na1xii—Na2—O1xii48.20 (5)Na2ii—Cl1—Na1xv54.7
Na1v—Na2—O1xii71.49 (6)Na2iv—Cl1—Na1xv54.7
Cl1—Na2—O1xii83.80 (18)Na2v—Cl1—Na1xv125.3
O1xi—Na2—O1xii118.85 (6)Na2—Cl1—Na1xv125.3
O1v—Na2—O1xii118.85 (6)Na1—Cl1—Na1xv90.0
O1viii—Na2—Al1xiii117.7 (3)Na1xi—Cl1—Na1xv90.0
O1ix—Na2—Al1xiii69.15 (13)Na2ii—Cl1—Na1xii125.3
O1x—Na2—Al1xiii34.73 (6)Na2iv—Cl1—Na1xii125.3
Na1xi—Na2—Al1xiii74.34 (5)Na2v—Cl1—Na1xii54.7
Na1xii—Na2—Al1xiii175.4 (3)Na2—Cl1—Na1xii54.7
Na1v—Na2—Al1xiii74.34 (5)Na1—Cl1—Na1xii90.0
Cl1—Na2—Al1xiii115.42 (15)Na1xi—Cl1—Na1xii90.0
O1xi—Na2—Al1xiii108.42 (8)Na1xv—Cl1—Na1xii180.0
O1v—Na2—Al1xiii33.89 (4)Na2ii—Cl1—Na1v54.7
O1xii—Na2—Al1xiii130.79 (12)Na2iv—Cl1—Na1v125.3
O1viii—Na2—Al1xiv69.15 (13)Na2v—Cl1—Na1v125.3
O1ix—Na2—Al1xiv34.73 (6)Na2—Cl1—Na1v54.7
O1x—Na2—Al1xiv117.7 (3)Na1—Cl1—Na1v180.0
Na1xi—Na2—Al1xiv175.4 (3)Na1xi—Cl1—Na1v90.0
Na1xii—Na2—Al1xiv74.34 (5)Na1xv—Cl1—Na1v90.0
Na1v—Na2—Al1xiv74.34 (5)Na1xii—Cl1—Na1v90.0
Cl1—Na2—Al1xiv115.42 (15)Na2ii—Cl1—Na1xvi54.7
O1xi—Na2—Al1xiv130.79 (12)Na2iv—Cl1—Na1xvi125.3
O1v—Na2—Al1xiv108.42 (8)Na2v—Cl1—Na1xvi54.7
O1xii—Na2—Al1xiv33.89 (4)Na2—Cl1—Na1xvi125.3
Al1xiii—Na2—Al1xiv102.92 (18)Na1—Cl1—Na1xvi90.0
O1xv—B1—O1xvi119.993 (7)Na1xi—Cl1—Na1xvi180.0
O1xv—B1—O1119.993 (7)Na1xv—Cl1—Na1xvi90.0
O1xvi—B1—O1119.993 (7)Na1xii—Cl1—Na1xvi90.0
O1xv—B1—Na187.53 (15)Na1v—Cl1—Na1xvi90.0
O1xvi—B1—Na1135.5 (3)
Symmetry codes: (i) x, z, y+1/2; (ii) x, y+1/2, z+1/2; (iii) x, z+1/2, y; (iv) x+1/2, y, z+1/2; (v) x+1/2, y+1/2, z; (vi) y1/2, x+1/2, z+1/2; (vii) y1/2, x, z; (viii) z+1/2, y+1/2, x+1/2; (ix) x+1/2, z+1/2, y+1/2; (x) y+1/2, x+1/2, z+1/2; (xi) z, x+1/2, y+1/2; (xii) y+1/2, z, x+1/2; (xiii) y+1/2, z+1/2, x; (xiv) z+1/2, x, y+1/2; (xv) y, z, x; (xvi) z, x, y; (xvii) z, x, y; (xviii) z+1/2, y, x; (xix) z+1/2, y, x; (xx) x, y1/2, z1/2; (xxi) y+1/2, x1/2, z+1/2; (xxii) y+1/2, x+1/2, z1/2; (xxiii) y+1/2, z1/2, x.
Sodium aluminoboracite (kjh230804yoshinoN4_0m_a_1) top
Crystal data top
Na3.92B4Al3O12Cl0.92Cu Kα radiation, λ = 1.54178 Å
Mr = 438.91Cell parameters from 3423 reflections
Cubic, F23θ = 4.6–74.3°
a = 13.5904 (1) ŵ = 6.78 mm1
V = 2510.13 (6) Å3T = 294 K
Z = 8Plate, colorless
F(000) = 17280.08 × 0.06 × 0.04 mm
Dx = 2.323 Mg m3
Data collection top
Bruker D8 goniometer
diffractometer
437 independent reflections
Radiation source: sealed tube355 reflections with I > 2σ(I)
Detector resolution: 7.3910 pixels mm-1Rint = 0.028
ω scansθmax = 74.3°, θmin = 5.6°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1616
Tmin = 0.66, Tmax = 0.75k = 1616
5514 measured reflectionsl = 1614
Refinement top
Refinement on F21 restraint
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0396P)2 + 2.0455P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.024(Δ/σ)max = 0.006
wR(F2) = 0.066Δρmax = 0.17 e Å3
S = 1.12Δρmin = 0.58 e Å3
437 reflectionsAbsolute structure: Flack x determined using 142 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
52 parametersAbsolute structure parameter: 0.01 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Na10.0348 (5)0.2500000.2500000.0429 (12)0.5
Na20.5331 (5)0.7500000.7500000.0430 (12)0.5
Na30.3604 (4)0.3604 (4)0.3604 (4)0.015 (2)0.226 (7)
Na40.8610 (4)0.8610 (4)0.8610 (4)0.020 (2)0.235 (7)
B10.1039 (3)0.1039 (3)0.1039 (3)0.0149 (10)
B20.6039 (3)0.6039 (3)0.6039 (3)0.0138 (10)
Al10.25008 (10)0.0000000.0000000.0099 (3)
O10.03517 (13)0.10051 (12)0.17740 (13)0.0181 (5)
O20.03517 (13)0.17741 (13)0.60039 (12)0.0182 (5)
Cl10.2500000.2500000.2500000.0359 (9)0.921 (9)
Cl20.7500000.7500000.7500000.0350 (9)0.921 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.092 (4)0.0156 (18)0.0210 (19)0.0000.0000.0062 (17)
Na20.100 (4)0.0169 (18)0.0118 (17)0.0000.0000.0067 (16)
Na30.015 (2)0.015 (2)0.015 (2)0.0008 (19)0.0008 (19)0.0008 (19)
Na40.020 (2)0.020 (2)0.020 (2)0.002 (2)0.002 (2)0.002 (2)
B10.0149 (10)0.0149 (10)0.0149 (10)0.0013 (13)0.0013 (13)0.0013 (13)
B20.0138 (10)0.0138 (10)0.0138 (10)0.0030 (13)0.0030 (13)0.0030 (13)
Al10.0100 (5)0.0099 (5)0.0099 (5)0.0000.0000.0001 (4)
O10.0192 (9)0.0153 (8)0.0198 (10)0.0061 (7)0.0107 (8)0.0059 (8)
O20.0194 (9)0.0196 (10)0.0156 (8)0.0105 (8)0.0056 (7)0.0070 (8)
Cl10.0359 (9)0.0359 (9)0.0359 (9)0.0000.0000.000
Cl20.0350 (9)0.0350 (9)0.0350 (9)0.0000.0000.000
Geometric parameters (Å, º) top
Na1—Na2i0.922 (6)Na3—Cl12.599 (10)
Na1—O1ii2.2585 (18)Na3—O1xxi2.912 (2)
Na1—O12.2585 (18)Na3—O1xxii2.912 (2)
Na1—O2iii2.452 (3)Na3—O1vi2.912 (2)
Na1—O2iv2.452 (3)Na3—Al1xvii3.074 (4)
Na1—Na3v2.556 (5)Na3—Al1xxiii3.074 (4)
Na1—Na3vi2.556 (5)Na4—O1xxiv2.480 (6)
Na1—Cl12.925 (6)Na4—O1xxv2.480 (6)
Na1—B1ii2.961 (4)Na4—O1xxvi2.480 (6)
Na1—B12.961 (4)Na4—Cl22.612 (10)
Na1—Na4vii3.182 (5)Na4—O2xxvii2.914 (2)
Na1—Na4viii3.182 (5)Na4—O2xxviii2.914 (2)
Na2—O2ix2.2602 (18)Na4—O2xxix2.914 (2)
Na2—O2x2.2602 (18)Na4—Al1xxx3.069 (4)
Na2—O1xi2.442 (3)Na4—Al1xxxi3.069 (4)
Na2—O1xii2.442 (3)B1—O1xxxii1.3684 (16)
Na2—Na4xiii2.573 (5)B1—O1xxxiii1.3684 (16)
Na2—Na4xiv2.573 (5)B1—O11.3684 (16)
Na2—Cl22.948 (6)B2—O2xxxiv1.3685 (16)
Na2—B2xv2.969 (4)B2—O2xxxv1.3684 (16)
Na2—B22.969 (4)B2—O2x1.3684 (16)
Na2—Na3xvi3.164 (5)Al1—O2xxxvi1.7495 (18)
Na2—Na3xvii3.164 (5)Al1—O2xxxvii1.7495 (18)
Na3—O2xviii2.488 (6)Al1—O1xxxviii1.7522 (18)
Na3—O2xix2.488 (6)Al1—O1xxxii1.7522 (18)
Na3—O2xx2.488 (6)
Na2i—Na1—O1ii90.14 (17)Cl2—Na4—O2xxix83.7 (2)
Na2i—Na1—O190.14 (17)O2xxvii—Na4—O2xxix118.80 (8)
O1ii—Na1—O1179.7 (3)O2xxviii—Na4—O2xxix118.80 (8)
Na2i—Na1—O2iii67.19 (14)O1xxiv—Na4—Al1xxx118.0 (4)
O1ii—Na1—O2iii90.07 (9)O1xxv—Na4—Al1xxx69.23 (15)
O1—Na1—O2iii90.04 (9)O1xxvi—Na4—Al1xxx34.80 (7)
Na2i—Na1—O2iv67.19 (14)Na2xxxix—Na4—Al1xxx74.23 (8)
O1ii—Na1—O2iv90.04 (9)Na2xiv—Na4—Al1xxx74.23 (8)
O1—Na1—O2iv90.07 (9)Na2xl—Na4—Al1xxx175.4 (4)
O2iii—Na1—O2iv134.4 (3)Cl2—Na4—Al1xxx115.28 (18)
Na2i—Na1—Na3v123.9 (3)O2xxvii—Na4—Al1xxx33.88 (5)
O1ii—Na1—Na3v74.16 (9)O2xxviii—Na4—Al1xxx130.86 (15)
O1—Na1—Na3v105.68 (13)O2xxix—Na4—Al1xxx108.51 (9)
O2iii—Na1—Na3v59.5 (2)O1xxiv—Na4—Al1xxxi34.80 (7)
O2iv—Na1—Na3v159.92 (19)O1xxv—Na4—Al1xxxi118.0 (4)
Na2i—Na1—Na3vi123.9 (3)O1xxvi—Na4—Al1xxxi69.23 (15)
O1ii—Na1—Na3vi105.68 (13)Na2xxxix—Na4—Al1xxxi175.4 (4)
O1—Na1—Na3vi74.16 (9)Na2xiv—Na4—Al1xxxi74.23 (8)
O2iii—Na1—Na3vi159.92 (19)Na2xl—Na4—Al1xxxi74.23 (8)
O2iv—Na1—Na3vi59.5 (2)Cl2—Na4—Al1xxxi115.28 (18)
Na3v—Na1—Na3vi112.2 (5)O2xxvii—Na4—Al1xxxi130.86 (15)
Na2i—Na1—Cl1180.0O2xxviii—Na4—Al1xxxi108.51 (9)
O1ii—Na1—Cl189.86 (17)O2xxix—Na4—Al1xxxi33.88 (5)
O1—Na1—Cl189.86 (17)Al1xxx—Na4—Al1xxxi103.1 (2)
O2iii—Na1—Cl1112.81 (14)O1xxxii—B1—O1xxxiii119.995 (7)
O2iv—Na1—Cl1112.81 (14)O1xxxii—B1—O1119.995 (7)
Na3v—Na1—Cl156.1 (3)O1xxxiii—B1—O1119.992 (7)
Na3vi—Na1—Cl156.1 (3)O1xxxii—B1—Na1xxxii46.89 (18)
Na2i—Na1—B1ii108.51 (15)O1xxxiii—B1—Na1xxxii135.4 (3)
O1ii—Na1—B1ii26.25 (9)O1—B1—Na1xxxii87.58 (17)
O1—Na1—B1ii153.5 (2)O1xxxii—B1—Na1xxxiii87.58 (17)
O2iii—Na1—B1ii114.16 (5)O1xxxiii—B1—Na1xxxiii46.89 (18)
O2iv—Na1—B1ii80.61 (6)O1—B1—Na1xxxiii135.4 (3)
Na3v—Na1—B1ii79.81 (13)Na1xxxii—B1—Na1xxxiii88.6 (2)
Na3vi—Na1—B1ii79.81 (13)O1xxxii—B1—Na1135.4 (3)
Cl1—Na1—B1ii71.49 (15)O1xxxiii—B1—Na187.58 (17)
Na2i—Na1—B1108.51 (15)O1—B1—Na146.89 (18)
O1ii—Na1—B1153.5 (2)Na1xxxii—B1—Na188.6 (2)
O1—Na1—B126.25 (9)Na1xxxiii—B1—Na188.6 (2)
O2iii—Na1—B180.61 (6)O2xxxiv—B2—O2xxxv119.993 (8)
O2iv—Na1—B1114.16 (5)O2xxxiv—B2—O2x119.994 (8)
Na3v—Na1—B179.81 (13)O2xxxv—B2—O2x119.995 (8)
Na3vi—Na1—B179.81 (13)O2xxxiv—B2—Na2135.7 (3)
Cl1—Na1—B171.49 (15)O2xxxv—B2—Na287.51 (17)
B1ii—Na1—B1143.0 (3)O2x—B2—Na246.65 (18)
Na2i—Na1—Na4vii42.1 (2)O2xxxiv—B2—Na2xxxiii46.65 (18)
O1ii—Na1—Na4vii129.4 (3)O2xxxv—B2—Na2xxxiii135.7 (3)
O1—Na1—Na4vii50.85 (19)O2x—B2—Na2xxxiii87.51 (17)
O2iii—Na1—Na4vii60.65 (11)Na2—B2—Na2xxxiii89.2 (2)
O2iv—Na1—Na4vii85.09 (18)O2xxxiv—B2—Na2xxxii87.51 (17)
Na3v—Na1—Na4vii114.45 (17)O2xxxv—B2—Na2xxxii46.65 (18)
Na3vi—Na1—Na4vii114.45 (17)O2x—B2—Na2xxxii135.7 (3)
Cl1—Na1—Na4vii137.9 (2)Na2—B2—Na2xxxii89.2 (2)
B1ii—Na1—Na4vii150.6 (3)Na2xxxiii—B2—Na2xxxii89.2 (2)
B1—Na1—Na4vii66.4 (2)O2xxxvi—Al1—O2xxxvii111.44 (14)
Na2i—Na1—Na4viii42.1 (2)O2xxxvi—Al1—O1xxxviii108.50 (8)
O1ii—Na1—Na4viii50.85 (19)O2xxxvii—Al1—O1xxxviii108.53 (8)
O1—Na1—Na4viii129.4 (3)O2xxxvi—Al1—O1xxxii108.53 (8)
O2iii—Na1—Na4viii85.09 (18)O2xxxvii—Al1—O1xxxii108.50 (8)
O2iv—Na1—Na4viii60.65 (11)O1xxxviii—Al1—O1xxxii111.37 (14)
Na3v—Na1—Na4viii114.45 (17)O2xxxvi—Al1—Na4xli157.72 (8)
Na3vi—Na1—Na4viii114.45 (17)O2xxxvii—Al1—Na4xli68.19 (18)
Cl1—Na1—Na4viii137.9 (2)O1xxxviii—Al1—Na4xli92.00 (14)
B1ii—Na1—Na4viii66.4 (2)O1xxxii—Al1—Na4xli53.90 (9)
B1—Na1—Na4viii150.6 (3)O2xxxvi—Al1—Na4xlii68.19 (18)
Na4vii—Na1—Na4viii84.1 (4)O2xxxvii—Al1—Na4xlii157.72 (8)
Na1xii—Na2—O2ix90.71 (17)O1xxxviii—Al1—Na4xlii53.90 (9)
Na1xii—Na2—O2x90.71 (17)O1xxxii—Al1—Na4xlii92.00 (14)
O2ix—Na2—O2x178.6 (3)Na4xli—Al1—Na4xlii121.1 (4)
Na1xii—Na2—O1xi67.66 (14)O2xxxvi—Al1—Na3ii54.03 (9)
O2ix—Na2—O1xi90.25 (9)O2xxxvii—Al1—Na3ii92.18 (13)
O2x—Na2—O1xi90.29 (9)O1xxxviii—Al1—Na3ii157.61 (8)
Na1xii—Na2—O1xii67.66 (15)O1xxxii—Al1—Na3ii67.99 (17)
O2ix—Na2—O1xii90.29 (9)Na4xli—Al1—Na3ii103.88 (11)
O2x—Na2—O1xii90.25 (9)Na4xlii—Al1—Na3ii103.88 (11)
O1xi—Na2—O1xii135.3 (3)O2xxxvi—Al1—Na3xliii92.18 (13)
Na1xii—Na2—Na4xiii124.0 (3)O2xxxvii—Al1—Na3xliii54.03 (9)
O2ix—Na2—Na4xiii105.33 (14)O1xxxviii—Al1—Na3xliii67.99 (17)
O2x—Na2—Na4xiii73.84 (9)O1xxxii—Al1—Na3xliii157.61 (8)
O1xi—Na2—Na4xiii159.6 (2)Na4xli—Al1—Na3xliii103.88 (11)
O1xii—Na2—Na4xiii59.2 (2)Na4xlii—Al1—Na3xliii103.88 (11)
Na1xii—Na2—Na4xiv124.0 (3)Na3ii—Al1—Na3xliii121.6 (4)
O2ix—Na2—Na4xiv73.84 (9)O2xxxvi—Al1—Na2xliv68.10 (10)
O2x—Na2—Na4xiv105.33 (14)O2xxxvii—Al1—Na2xliv111.93 (11)
O1xi—Na2—Na4xiv59.2 (2)O1xxxviii—Al1—Na2xliv42.50 (8)
O1xii—Na2—Na4xiv159.6 (2)O1xxxii—Al1—Na2xliv137.46 (9)
Na4xiii—Na2—Na4xiv111.9 (5)Na4xli—Al1—Na2xliv133.72 (12)
Na1xii—Na2—Cl2180.0Na4xlii—Al1—Na2xliv46.26 (12)
O2ix—Na2—Cl289.29 (17)Na3ii—Al1—Na2xliv122.08 (10)
O2x—Na2—Cl289.29 (17)Na3xliii—Al1—Na2xliv57.94 (10)
O1xi—Na2—Cl2112.34 (14)O2xxxvi—Al1—Na2xlv36.03 (6)
O1xii—Na2—Cl2112.34 (14)O2xxxvii—Al1—Na2xlv144.01 (8)
Na4xiii—Na2—Cl256.0 (3)O1xxxviii—Al1—Na2xlv99.67 (11)
Na4xiv—Na2—Cl256.0 (3)O1xxxii—Al1—Na2xlv80.31 (10)
Na1xii—Na2—B2xv108.90 (15)Na4xli—Al1—Na2xlv133.72 (12)
O2ix—Na2—B2xv26.12 (9)Na4xlii—Al1—Na2xlv46.26 (12)
O2x—Na2—B2xv152.8 (2)Na3ii—Al1—Na2xlv57.94 (10)
O1xi—Na2—B2xv114.17 (5)Na3xliii—Al1—Na2xlv122.08 (10)
O1xii—Na2—B2xv80.61 (6)Na2xliv—Al1—Na2xlv74.9 (2)
Na4xiii—Na2—B2xv79.56 (13)O2xxxvi—Al1—Na2xlvi144.01 (8)
Na4xiv—Na2—B2xv79.56 (13)O2xxxvii—Al1—Na2xlvi36.03 (6)
Cl2—Na2—B2xv71.10 (15)O1xxxviii—Al1—Na2xlvi80.31 (10)
Na1xii—Na2—B2108.90 (15)O1xxxii—Al1—Na2xlvi99.67 (11)
O2ix—Na2—B2152.9 (2)Na4xli—Al1—Na2xlvi46.26 (12)
O2x—Na2—B226.12 (9)Na4xlii—Al1—Na2xlvi133.72 (12)
O1xi—Na2—B280.61 (6)Na3ii—Al1—Na2xlvi122.08 (10)
O1xii—Na2—B2114.17 (5)Na3xliii—Al1—Na2xlvi57.94 (10)
Na4xiii—Na2—B279.56 (13)Na2xliv—Al1—Na2xlvi105.1 (2)
Na4xiv—Na2—B279.56 (13)Na2xlv—Al1—Na2xlvi179.96 (4)
Cl2—Na2—B271.10 (15)O2xxxvi—Al1—Na2xlvii111.93 (11)
B2xv—Na2—B2142.2 (3)O2xxxvii—Al1—Na2xlvii68.10 (10)
Na1xii—Na2—Na3xvi42.1 (2)O1xxxviii—Al1—Na2xlvii137.46 (9)
O2ix—Na2—Na3xvi130.0 (3)O1xxxii—Al1—Na2xlvii42.50 (8)
O2x—Na2—Na3xvi51.37 (19)Na4xli—Al1—Na2xlvii46.26 (12)
O1xi—Na2—Na3xvi61.00 (11)Na4xlii—Al1—Na2xlvii133.72 (12)
O1xii—Na2—Na3xvi85.47 (18)Na3ii—Al1—Na2xlvii57.94 (10)
Na4xiii—Na2—Na3xvi114.53 (18)Na3xliii—Al1—Na2xlvii122.08 (10)
Na4xiv—Na2—Na3xvi114.53 (18)Na2xliv—Al1—Na2xlvii179.96 (12)
Cl2—Na2—Na3xvi137.9 (2)Na2xlv—Al1—Na2xlvii105.1 (2)
B2xv—Na2—Na3xvi151.0 (3)Na2xlvi—Al1—Na2xlvii74.9 (2)
B2—Na2—Na3xvi66.8 (2)B1—O1—Al1xxxiii128.62 (14)
Na1xii—Na2—Na3xvii42.1 (2)B1—O1—Na1106.9 (3)
O2ix—Na2—Na3xvii51.37 (18)Al1xxxiii—O1—Na1117.02 (10)
O2x—Na2—Na3xvii130.0 (3)B1—O1—Na2i121.75 (19)
O1xi—Na2—Na3xvii85.47 (18)Al1xxxiii—O1—Na2i108.49 (10)
O1xii—Na2—Na3xvii61.00 (11)Na1—O1—Na2i22.20 (14)
Na4xiii—Na2—Na3xvii114.53 (18)B1—O1—Na4vii119.4 (2)
Na4xiv—Na2—Na3xvii114.53 (18)Al1xxxiii—O1—Na4vii91.30 (7)
Cl2—Na2—Na3xvii137.9 (2)Na1—O1—Na4vii84.2 (2)
B2xv—Na2—Na3xvii66.8 (2)Na2i—O1—Na4vii63.0 (2)
B2—Na2—Na3xvii151.0 (3)B1—O1—Na3vi106.5 (3)
Na3xvi—Na2—Na3xvii84.2 (4)Al1xxxiii—O1—Na3vi78.1 (2)
O2xviii—Na3—O2xix92.1 (3)Na1—O1—Na3vi57.59 (12)
O2xviii—Na3—O2xx92.1 (3)Na2i—O1—Na3vi71.84 (11)
O2xix—Na3—O2xx92.1 (3)Na4vii—O1—Na3vi127.3 (2)
O2xviii—Na3—Na1vi143.25 (16)B2xlviii—O2—Al1xxii128.66 (14)
O2xix—Na3—Na1vi108.65 (10)B2xlviii—O2—Na2xlviii107.2 (3)
O2xx—Na3—Na1vi58.15 (12)Al1xxii—O2—Na2xlviii116.89 (10)
O2xviii—Na3—Na1xxi58.15 (12)B2xlviii—O2—Na1xlix121.99 (19)
O2xix—Na3—Na1xxi143.26 (16)Al1xxii—O2—Na1xlix108.31 (10)
O2xx—Na3—Na1xxi108.65 (10)Na2xlviii—O2—Na1xlix22.10 (14)
Na1vi—Na3—Na1xxi108.1 (3)B2xlviii—O2—Na3l119.5 (2)
O2xviii—Na3—Na1xxii108.65 (10)Al1xxii—O2—Na3l91.29 (7)
O2xix—Na3—Na1xxii58.15 (12)Na2xlviii—O2—Na3l83.4 (2)
O2xx—Na3—Na1xxii143.25 (16)Na1xlix—O2—Na3l62.3 (2)
Na1vi—Na3—Na1xxii108.1 (3)B2xlviii—O2—Na4li106.8 (3)
Na1xxi—Na3—Na1xxii108.1 (3)Al1xxii—O2—Na4li77.9 (2)
O2xviii—Na3—Cl1123.8 (2)Na2xlviii—O2—Na4li58.00 (12)
O2xix—Na3—Cl1123.8 (2)Na1xlix—O2—Na4li72.17 (10)
O2xx—Na3—Cl1123.8 (2)Na3l—O2—Na4li126.9 (2)
Na1vi—Na3—Cl169.1 (3)Na3—Cl1—Na3ii109.472 (1)
Na1xxi—Na3—Cl169.1 (3)Na3—Cl1—Na3v109.5
Na1xxii—Na3—Cl169.1 (3)Na3ii—Cl1—Na3v109.5
O2xviii—Na3—O1xxi75.84 (8)Na3—Cl1—Na3vi109.5
O2xix—Na3—O1xxi151.3 (4)Na3ii—Cl1—Na3vi109.5
O2xx—Na3—O1xxi62.94 (6)Na3v—Cl1—Na3vi109.5
Na1vi—Na3—O1xxi71.52 (7)Na3—Cl1—Na1vi54.7
Na1xxi—Na3—O1xxi48.25 (5)Na3ii—Cl1—Na1vi54.736 (1)
Na1xxii—Na3—O1xxi150.4 (4)Na3v—Cl1—Na1vi125.3
Cl1—Na3—O1xxi83.9 (2)Na3vi—Cl1—Na1vi125.3
O2xviii—Na3—O1xxii62.94 (6)Na3—Cl1—Na1xxii54.7
O2xix—Na3—O1xxii75.84 (8)Na3ii—Cl1—Na1xxii125.3
O2xx—Na3—O1xxii151.3 (4)Na3v—Cl1—Na1xxii54.7
Na1vi—Na3—O1xxii150.4 (4)Na3vi—Cl1—Na1xxii125.3
Na1xxi—Na3—O1xxii71.53 (7)Na1vi—Cl1—Na1xxii90.0
Na1xxii—Na3—O1xxii48.25 (5)Na3—Cl1—Na1xxxiii125.3
Cl1—Na3—O1xxii83.9 (2)Na3ii—Cl1—Na1xxxiii54.7
O1xxi—Na3—O1xxii118.89 (7)Na3v—Cl1—Na1xxxiii54.7
O2xviii—Na3—O1vi151.3 (4)Na3vi—Cl1—Na1xxxiii125.3
O2xix—Na3—O1vi62.94 (6)Na1vi—Cl1—Na1xxxiii90.0
O2xx—Na3—O1vi75.84 (8)Na1xxii—Cl1—Na1xxxiii90.0
Na1vi—Na3—O1vi48.25 (5)Na3—Cl1—Na1xxi54.7
Na1xxi—Na3—O1vi150.4 (4)Na3ii—Cl1—Na1xxi125.3
Na1xxii—Na3—O1vi71.52 (7)Na3v—Cl1—Na1xxi125.3
Cl1—Na3—O1vi83.9 (2)Na3vi—Cl1—Na1xxi54.7
O1xxi—Na3—O1vi118.88 (7)Na1vi—Cl1—Na1xxi90.0
O1xxii—Na3—O1vi118.88 (7)Na1xxii—Cl1—Na1xxi90.0
O2xviii—Na3—Al1xvii34.68 (7)Na1xxxiii—Cl1—Na1xxi180.0
O2xix—Na3—Al1xvii69.06 (15)Na3—Cl1—Na1xxxii125.3
O2xx—Na3—Al1xvii117.4 (4)Na3ii—Cl1—Na1xxxii54.7
Na1vi—Na3—Al1xvii175.3 (4)Na3v—Cl1—Na1xxxii125.3
Na1xxi—Na3—Al1xvii74.45 (8)Na3vi—Cl1—Na1xxxii54.7
Na1xxii—Na3—Al1xvii74.45 (8)Na1vi—Cl1—Na1xxxii90.0
Cl1—Na3—Al1xvii115.54 (18)Na1xxii—Cl1—Na1xxxii180.0
O1xxi—Na3—Al1xvii108.38 (9)Na1xxxiii—Cl1—Na1xxxii90.0
O1xxii—Na3—Al1xvii33.91 (5)Na1xxi—Cl1—Na1xxxii90.0
O1vi—Na3—Al1xvii130.71 (15)Na3—Cl1—Na1125.3
O2xviii—Na3—Al1xxiii117.4 (4)Na3ii—Cl1—Na1125.264 (1)
O2xix—Na3—Al1xxiii34.68 (7)Na3v—Cl1—Na154.7
O2xx—Na3—Al1xxiii69.06 (15)Na3vi—Cl1—Na154.7
Na1vi—Na3—Al1xxiii74.45 (8)Na1vi—Cl1—Na1180.0
Na1xxi—Na3—Al1xxiii175.3 (4)Na1xxii—Cl1—Na190.0
Na1xxii—Na3—Al1xxiii74.45 (8)Na1xxxiii—Cl1—Na190.0
Cl1—Na3—Al1xxiii115.54 (18)Na1xxi—Cl1—Na190.0
O1xxi—Na3—Al1xxiii130.71 (14)Na1xxxii—Cl1—Na190.0
O1xxii—Na3—Al1xxiii108.38 (10)Na4xiv—Cl2—Na4xv109.472 (1)
O1vi—Na3—Al1xxiii33.91 (5)Na4xiv—Cl2—Na4xiii109.470 (1)
Al1xvii—Na3—Al1xxiii102.8 (2)Na4xv—Cl2—Na4xiii109.472 (1)
O1xxiv—Na4—O1xxv92.5 (3)Na4xiv—Cl2—Na4109.5
O1xxiv—Na4—O1xxvi92.5 (3)Na4xv—Cl2—Na4109.470 (2)
O1xxv—Na4—O1xxvi92.5 (3)Na4xiii—Cl2—Na4109.472 (1)
O1xxiv—Na4—Na2xxxix143.20 (16)Na4xiv—Cl2—Na2xxxii54.7
O1xxv—Na4—Na2xxxix57.75 (12)Na4xv—Cl2—Na2xxxii54.7
O1xxvi—Na4—Na2xxxix108.55 (10)Na4xiii—Cl2—Na2xxxii125.264 (2)
O1xxiv—Na4—Na2xiv108.55 (10)Na4—Cl2—Na2xxxii125.3
O1xxv—Na4—Na2xiv143.20 (16)Na4xiv—Cl2—Na2xxxix125.3
O1xxvi—Na4—Na2xiv57.75 (12)Na4xv—Cl2—Na2xxxix125.264 (1)
Na2xxxix—Na4—Na2xiv108.2 (3)Na4xiii—Cl2—Na2xxxix54.736 (1)
O1xxiv—Na4—Na2xl57.75 (12)Na4—Cl2—Na2xxxix54.7
O1xxv—Na4—Na2xl108.55 (10)Na2xxxii—Cl2—Na2xxxix180.0
O1xxvi—Na4—Na2xl143.20 (16)Na4xiv—Cl2—Na2xxxiii125.264 (1)
Na2xxxix—Na4—Na2xl108.2 (3)Na4xv—Cl2—Na2xxxiii54.736 (1)
Na2xiv—Na4—Na2xl108.2 (3)Na4xiii—Cl2—Na2xxxiii54.7
O1xxiv—Na4—Cl2123.5 (2)Na4—Cl2—Na2xxxiii125.264 (1)
O1xxv—Na4—Cl2123.5 (2)Na2xxxii—Cl2—Na2xxxiii90.0
O1xxvi—Na4—Cl2123.5 (2)Na2xxxix—Cl2—Na2xxxiii90.0
Na2xxxix—Na4—Cl269.3 (3)Na4xiv—Cl2—Na2xl54.736 (1)
Na2xiv—Na4—Cl269.3 (3)Na4xv—Cl2—Na2xl125.3
Na2xl—Na4—Cl269.3 (3)Na4xiii—Cl2—Na2xl125.264 (1)
O1xxiv—Na4—O2xxvii151.8 (4)Na4—Cl2—Na2xl54.736 (1)
O1xxv—Na4—O2xxvii75.89 (8)Na2xxxii—Cl2—Na2xl90.0
O1xxvi—Na4—O2xxvii62.98 (6)Na2xxxix—Cl2—Na2xl90.0
Na2xxxix—Na4—O2xxvii48.16 (5)Na2xxxiii—Cl2—Na2xl180.0
Na2xiv—Na4—O2xxvii71.42 (7)Na4xiv—Cl2—Na254.735 (1)
Na2xl—Na4—O2xxvii150.3 (4)Na4xv—Cl2—Na2125.265 (1)
Cl2—Na4—O2xxvii83.7 (2)Na4xiii—Cl2—Na254.735 (1)
O1xxiv—Na4—O2xxviii75.89 (8)Na4—Cl2—Na2125.3
O1xxv—Na4—O2xxviii62.98 (6)Na2xxxii—Cl2—Na290.000 (2)
O1xxvi—Na4—O2xxviii151.8 (4)Na2xxxix—Cl2—Na290.0
Na2xxxix—Na4—O2xxviii71.42 (7)Na2xxxiii—Cl2—Na290.000 (1)
Na2xiv—Na4—O2xxviii150.3 (4)Na2xl—Cl2—Na290.0
Na2xl—Na4—O2xxviii48.16 (5)Na4xiv—Cl2—Na2xiv125.3
Cl2—Na4—O2xxviii83.7 (2)Na4xv—Cl2—Na2xiv54.735 (1)
O2xxvii—Na4—O2xxviii118.80 (8)Na4xiii—Cl2—Na2xiv125.265 (1)
O1xxiv—Na4—O2xxix62.98 (6)Na4—Cl2—Na2xiv54.735 (1)
O1xxv—Na4—O2xxix151.8 (4)Na2xxxii—Cl2—Na2xiv90.0
O1xxvi—Na4—O2xxix75.89 (8)Na2xxxix—Cl2—Na2xiv90.000 (2)
Na2xxxix—Na4—O2xxix150.3 (4)Na2xxxiii—Cl2—Na2xiv90.0
Na2xiv—Na4—O2xxix48.16 (5)Na2xl—Cl2—Na2xiv90.000 (1)
Na2xl—Na4—O2xxix71.42 (7)Na2—Cl2—Na2xiv180.0
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x, y, z+1; (v) x+1/2, y, z+1/2; (vi) x+1/2, y+1/2, z; (vii) x1, y+1, z+1; (viii) x1, y1/2, z1/2; (ix) x+1/2, y+1, z+3/2; (x) x+1/2, y+1/2, z; (xi) x+1/2, y+1/2, z+1; (xii) x+1/2, y+1, z+1/2; (xiii) x+3/2, y, z+3/2; (xiv) x+3/2, y+3/2, z; (xv) x, y+3/2, z+3/2; (xvi) x, y+1, z+1; (xvii) x, y+1/2, z+1/2; (xviii) y+1/2, z+1, x+1/2; (xix) z+1, x+1/2, y+1/2; (xx) x+1/2, y+1/2, z+1; (xxi) y+1/2, z, x+1/2; (xxii) z, x+1/2, y+1/2; (xxiii) y+1/2, z+1/2, x; (xxiv) y+1, z+1, x+1; (xxv) z+1, x+1, y+1; (xxvi) x+1, y+1, z+1; (xxvii) z+3/2, x+1, y+1/2; (xxviii) y+1/2, z+3/2, x+1; (xxix) x+1, y+1/2, z+3/2; (xxx) y+1, z+1, x+1; (xxxi) z+1, x+1, y+1; (xxxii) z, x, y; (xxxiii) y, z, x; (xxxiv) y+1/2, z, x+1/2; (xxxv) z, x+1/2, y+1/2; (xxxvi) y+1/2, z1/2, x; (xxxvii) y+1/2, z+1/2, x; (xxxviii) z, x, y; (xxxix) z, x+3/2, y+3/2; (xl) y+3/2, z, x+3/2; (xli) x+1, y1, z+1; (xlii) x+1, y+1, z1; (xliii) x, y1/2, z1/2; (xliv) z1/2, x1/2, y1; (xlv) y+1, z1/2, x+1/2; (xlvi) y1/2, z1, x1/2; (xlvii) z1/2, x+1/2, y+1; (xlviii) x1/2, y1/2, z; (xlix) x, y+1/2, z+1/2; (l) x1/2, y+1/2, z+1; (li) x+1, y1/2, z+3/2.
Summary of the observed hhl reflections in Li4B4Al3O12Cl and Na4B4Al3O12Cl top
Li4B4Al3O12ClNa4B4Al3O12Cl
<I/σ(I)>Number of reflections<I/σ(I)>Number of reflections
No conditions14.3532512.14340
h even30.2415324.96165
h odd0.211720.04175
l even30.2415324.96165
l odd0.211720.04175
h + l even14.3532512.14340
h + l odd0.0000.000
Selected bond lengths and angles (Å, °) in A4B4Al3O12Cl crystal structures top
Space group F43cSpace group F23
A = LiA = NaA = LiA = Na
A1—O12.0828 (17)2.2588 (16)A1—O12.053 (3)2.2585 (18)
A1—O1i2.0828 (17)2.446 (2)A1—O2ii2.143 (16)2.452 (3)
A2—O2iii2.056 (4)2.2602 (18)
A2—O1iv2.132 (16)2.442 (3)
A1—Cl13.2460 (1)2.936 (4)A1—Cl12.98 (6)2.925 (6)
A2—Cl23.03 (6)2.948 (6)
A2—O1v2.22 (3)2.484 (5)A3—O2vi2.23 (3)2.488 (6)
A2—O1vii2.828 (8)2.913 (2)A3—O1vii2.824 (8)2.912 (2)
A4—O1viii2.23 (3)2.480 (6)
A4—O2ix2.826 (8)2.914 (2)
A2—Cl12.57 (5)2.605 (9)A3—Cl12.55 (6)2.599 (10)
A4—Cl22.55 (5)2.612 (10)
B1—O11.3700 (16)1.3693 (15)B1—O11.3693 (17)1.3684 (16)
B2—O2x1.3702 (17)1.3684 (16)
Al1—O1xi1.7533 (17)1.7506 (16)Al1—O1xi1.754 (2)1.7495 (18)
Al1—O2xii1.754 (2)1.7522 (18)
B1—O1—Al1xiii118.97 (12)128.59 (12)B1—O1—Al1xiii119.05 (13)128.62 (14)
B2xiv—O2—Al1vii118.94 (13)128.66 (14)
Symmetry code(s): (i) -x, -z+1/2, y; (ii) -x, y, -z+1; (iii) x+1/2, -y+1, -z+3/2; (iv) -x+1/2, -y+1, z+1/2; (v) -y+1/2, x+1/2, -z+1/2; (vi) -z+1, x+1/2, -y+1/2; (vii) z, -x+1/2, -y+1/2; (viii) x+1, -y+1, -z+1; (ix) -x+1, y+1/2, -z+3/2; (x) z, x+1/2, y+1/2; (xi) z, x, y; (xii) -y+1/2, z-1/2, -x; (xiii) y, z, x; (xiv) x-1/2, y-1/2, z.
 

Funding information

Funding for this research was provided by: Japan Society for the Promotion of Science (grant No. 19H00828).

References

First citationBruker (2019). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2021). BIS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalès, B., Levasseur, A., Fouassier, C., Réau, J. M. & Hagenmuller, P. (1977). Solid State Commun. 24, 323–325.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJeitschko, W., Bither, T. A. & Bierstedt, P. E. (1977). Acta Cryst. B33, 2767–2775.  CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKajihara, K., Tezuka, N., Shoji, M., Wakasugi, J., Munakata, H. & Kanamura, K. (2017). Bull. Chem. Soc. Jpn, 90, 1279–1286.  CrossRef CAS Google Scholar
First citationKatsumata, T., Aoki, Y., Fushimi, K., Otsuka, K., Ueda, K. & Inaguma, Y. (2022). Solid State Ionics, 380, 115921.  CrossRef ICSD Google Scholar
First citationKaup, K., Bishop, K., Assoud, A., Liu, J. & Nazar, L. F. (2021). J. Am. Chem. Soc. 143, 6952–6961.  CrossRef ICSD CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLevasseur, A., Fouassier, C. & Hagenmuller, P. (1971). Mater. Res. Bull. 6, 15–22.  CrossRef CAS Google Scholar
First citationLi, Y. & Holzwarth, N. A. W. (2022). Phys. Rev. Mater. 6, 025401.  CrossRef Google Scholar
First citationMomma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNelmes, R. J. (1974). J. Phys. C.: Solid State Phys. 7, 3840–3854.  CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRéau, J.-M., Levasseur, A., Magniez, G. & Calès, B. (1976). Mater. Res. Bull. 11, 1087–1090.  Google Scholar
First citationSaito, M., Arima, H., Shoji, M., Kizuki, Y., Munakata, H., Kanamura, K. & Kajihara, K. (2021). J. Electrochem. Soc. 168, 040524.  CrossRef Google Scholar
First citationSchmid, H. (1965). J. Phys. Chem. Solids, 26, 973–976.  CrossRef CAS Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSorokin, N. I. (2015). Phys. Solid State, 57, 314–315.  CrossRef CAS Google Scholar
First citationTezuka, N., Okawa, Y., Kajihara, K. & Kanamura, K. (2017). J. Ceram. Soc. Japan, 125, 348–352.  CrossRef CAS Google Scholar
First citationVlasse, M., Levasseur, A. & Hagenmuller, P. (1981). Solid State Ionics, 2, 33–37.  CrossRef ICSD CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds