1. Chemical context
Boracite is originally known as a mineral with the formula Mg3B7O13Cl. The name boracite also refers to borate compounds with the general formula M3B7O13X, consisting of a negatively charged B–O framework, extraframework divalent cations M, such as Mg2+, Cr2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+ and Cd2+, and extraframework anions X, such as Cl−, Br−, I− and S2− (Schmid, 1965; Nelmes, 1974). The extraframework cations can also be an alkali ion, but only lithium variants Li4–xB7O12+x/2X, Li4B7–3xAl3xO12X and Li4B7–3xGa3xO12Cl (X = Cl, Br; x = 0–1) have been reported to date (Levasseur et al., 1971; Réau et al., 1976; Jeitschko et al., 1977; Calès et al., 1977; Sorokin, 2015; Tezuka et al., 2017; Kajihara et al., 2017; Katsumata et al., 2022). The latter two compounds (Kajihara et al., 2017; Katsumata et al., 2022) are the first examples of boracites containing framework cations other than B3+ ions. The lithium boracites are lithium-ion conducting, and their dc Li+ ion conductivity can be increased to ∼10−5 S cm−1 at room temperature in glass-ceramics consisting mainly of Li4B4M3O12Cl (M = Al, Ga; Kajihara et al., 2017). In addition, Li4B4Al3O12Cl is stable in contact with Li metal and is water-resistant; solid-state cells consisting of an Li4B4Al3O12Cl-based glass-ceramic solid electrolyte, an LiCoO2-based composite cathode containing an ionic liquid and an Li–Au alloy anode worked successfully (Saito et al., 2021). More recently, a thioboracite, Li6B7S13I, a sulfide variant of lithium boracite with room-temperature Li+ ion conductivity of ∼5 × 10−4 S cm−1 has been reported (Kaup et al., 2021). However, single crystals of Li4B4Al3O12Cl have not yet been grown, and the preliminary crystal structure analysis of Li4B4Al3O12Cl (Kajihara et al., 2017; Katsumata et al., 2022) was incomplete. In addition, boracites containing alkali ions other than Li+ have not been reported. Furthermore, a rhombohedral distortion of the unit cell of single-crystalline Li4B7O12Cl was experimentally observed at room temperature (Jeitschko et al., 1977) and was recently theoretically confirmed (Li & Holzwarth, 2022), raising the question whether similar unit-cell distortions occur in other alkali boracites.
In the present study, we report the growth of single crystals of A4B4Al3O12Cl (A = Li, Na) using the self-flux method and their structural characterization by single-crystal X-ray diffraction (XRD).
2. Structural commentary
The crystallites of Li4B4Al3O12Cl exhibit complete extinction under cross-polarized light, supporting cubic symmetry. Hence, the unit cell of Li4B4Al3O12Cl is not distorted. At first, the crystal structure was refined in the noncentrosymmetric cubic space group F3c following the model from the Rietveld refinement of powder X-ray diffraction data (Kajihara et al., 2017; Katsumata et al., 2022). The occupancy (g) of Cl1 converged to the upper bound [g(Cl1) = 1] and was fixed at this value. The reliability factor R1 converged to 0.031, and the refinement results agreed well with those derived from the powder samples (Kajihara et al., 2017; Katsumata et al., 2022). The unit cell of Li4B4Al3O12Cl can be divided into eight equivalent cubic subcells, each containing one Cl1 at the cube centre. The Cl1 site is surrounded by six sites with multiplicity 24 (Wyckoff letter c) and four sites with multiplicity 32 (Wyckoff letter e) containing four Li atoms in total, and the resulting ClLi4 moiety is embedded in a negatively charged framework consisting of alternating corner-shared bridges of planar BO3 triangles and AlO4 tetrahedra. The occupancy of Li1 is close to 1, whereas that of Li2 is ∼. The lattice parameter of Li4B4Al3O12Cl [a = 12.9839 (1) Å] is similar to that of the polycrystalline sample obtained by solid-state synthesis [a = 12.9687 (1) Å; Katsumata et al., 2022] but larger than that crystallized from glass-ceramics [a = 12.9149 (5) Å; Kajihara et al., 2017], probably because of an incomplete uptake of Al in crystals obtained from glass-ceramics.
Similar to Li4B4Al3O12Cl, the crystallites of Na4B4Al3O12Cl exhibit complete cross-polarized extinction. Refinement in the space group F3c resulted in a reliability factor R1 of 0.022, and the results indicate that Na4B4Al3O12Cl is isostructural with Li4B4Al3O12Cl, except that Na1 is located at the 48 g site and displaced from the 24 c site at the midpoint between neighbouring Cl1 atoms. The lattice parameter of Na4B4Al3O12Cl [a = 13.5904 (1) Å] is the largest among known cubic boracites, apart from the sulfide variant Li6B7S13I [a = 15.245 (2) Å; Kaup et al., 2021]. The occupancy of Cl1 is less than 1 (∼0.92), possibly because of its higher growth temperature compared to that of Li4B4Al3O12Cl. The equivalent isotropic displacement parameters (Ueq) of extraframework species [Cl1, 0.0350 (9) Å2; Na1, 0.0422 (14) Å2; Na2, 0.017 (2) Å2] of Na4B4Al3O12Cl are notably smaller than those of Li4B4Al3O12Cl [Cl1, 0.0787 (15) Å2; Li1, 0.066 (6) Å2; Li2, 0.028 (11) Å2], despite that the species in the framework (B1, Al1 and O1) are similar or even larger in Na4B4Al3O12Cl. These observations suggest that replacing Li with Na increases the packing density at the extraframework sites and suppresses the thermal motion of the atoms located therein.
The convergence of the structure refinements of Li4B4Al3O12Cl and Na4B4Al3O12Cl in the space group F3c was satisfactory (R1 ≃ 0.03). However, these crystals both exhibit weak hhl reflections with odd h and l, which violate the extinction conditions in space group F3c, as listed in Table 1. The noncentrosymmetric cubic space groups compatible with the observed reflection condition (hhl: h + l = 2n) are F23, F432 and F3m. Among them, only the structure analyses in the space group F23 were successful. The conversion of the space group from F3c to F23 is accompanied by the splitting of atoms except for Al1. This conversion also splits Li1 at the 24 c site of F3c into Li1 and Li2 at the 24 g site of F23. The occupancies of A1 and A2 (A = Li, Na) converged to the upper bound [g(A1) = g(A2) = 0.5] both in Li4B4Al3O12Cl and Na4B4Al3O12Cl, and were fixed at this value. The slightly larger R1 factors in F23 compared to F3c are due to an increased number of measured reflections partially with low intensities.
| Li4B4Al3O12Cl | Na4B4Al3O12Cl | | <I/σ(I)> | Number of reflections | <I/σ(I)> | Number of reflections | No conditions | 14.35 | 325 | 12.14 | 340 | h even | 30.24 | 153 | 24.96 | 165 | h odd | 0.21 | 172 | 0.04 | 175 | l even | 30.24 | 153 | 24.96 | 165 | l odd | 0.21 | 172 | 0.04 | 175 | h + l even | 14.35 | 325 | 12.14 | 340 | h + l odd | 0.00 | 0 | 0.00 | 0 | | |
Fig. 1 summarizes the schematic illustrations of two adjacent cubic octant subcells of the unit cells of Li4B4Al3O12Cl and Na4B4Al3O12Cl, along with their asymmetric units derived from the analyses in the space group F23. In the space group F3c, the eight subcells in a unit cell are equivalent. In contrast, in the space group F23, they are classified into two types of subcells stacked alternately in three dimensions. Nevertheless, the atomic displacements associated with the conversion of the space group from F3c to F23 are small, and the structures solved in these two space groups are very similar, apart from the splitting of Li1 in space group F3c into Li1 and Li2 in space group F23. Such subcell ordering is also observed in the lithium-rich boracite Li5B7O12.5Cl (space group F23) (Vlasse et al., 1981; Tezuka et al., 2017; Li & Holzwarth, 2022); in Li5B7O12.5Cl, the chemical compositions of adjacent subcells differ notably as a result of the incorporation of excess Li and O and the resulting partial conversion of BO3 triangles to BO4 tetrahedra, as well as the ordering of Li. In contrast, in the title compounds Li4B4Al3O12Cl and Na4B4Al3O12Cl, such a distinct structural ordering associated with a compositional change is not observed, as the conversion of BO3 triangles to BO4 tetrahedra is unlikely even under alkali-rich conditions.
| Figure 1 Schematic illustrations of two neighbouring cubic octant subcells in the unit cell of Li4B4Al3O12Cl in the space groups F3c (top left) and F23 (middle left), those of Na4B4Al3O12Cl in the space groups F3c (top right) and F23 (middle right), and asymmetric units with displacement ellipsoids at the 50% probability level of Li4B4Al3O12Cl (bottom left) and Na4B4Al3O12Cl (bottom right) in the space group F23. Red, large green, small green and yellow spheres denote O, Cl, Li and Na atoms, respectively. Green triangles and gray tetrahedra denote BO3 and AlO4 units, respectively. The forefront Al atoms located at z = 0.5 are not shown for clarity. In the middle and bottom figures, red and pale-red spheres denote O1 and O2 atoms, respectively. |
Table 2 lists selected atomic distances and angles. The B—O and Al—O distances are similar between Li4B4Al3O12Cl and Na4B4Al3O12Cl. In contrast, the B—O—Al angles in Na4B4Al3O12Cl are larger than those in Li4B4Al3O12Cl by ∼10°. This widening in the B—O—Al angles is responsible for the expansion of the unit cell in Na4B4Al3O12Cl. The increase in A—O (A = Li, Na) distances from Li4B4Al3O12Cl and Na4B4Al3O12Cl amounts to ∼0.2–0.3 Å, and is consistent with the difference in the ionic radii between Li and Na with the same coordination numbers (1.13–0.73 Å = 0.40 Å for fourfold corrdination and 1.16–0.90 Å = 0.26 Å for sixfold coordination; Shannon, 1976). In contrast, the increase in A—Cl distances is notably smaller (∼0.05 Å) or even negative, indicating an increase in the packing density of extraframework A and Cl. This observation is consistent with the smaller atomic displacement parameters of extraframework A and Cl in Na4B4Al3O12Cl compared to Li4B4Al3O12Cl (see above).
Space group F3c | Space group F23 | | A = Li | A = Na | | A = Li | A = Na | A1—O1 | 2.0828 (17) | 2.2588 (16) | A1—O1 | 2.053 (3) | 2.2585 (18) | A1—O1i | 2.0828 (17) | 2.446 (2) | A1—O2ii | 2.143 (16) | 2.452 (3) | | | | A2—O2iii | 2.056 (4) | 2.2602 (18) | | | | A2—O1iv | 2.132 (16) | 2.442 (3) | A1—Cl1 | 3.2460 (1) | 2.936 (4) | A1—Cl1 | 2.98 (6) | 2.925 (6) | | | | A2—Cl2 | 3.03 (6) | 2.948 (6) | A2—O1v | 2.22 (3) | 2.484 (5) | A3—O2vi | 2.23 (3) | 2.488 (6) | A2—O1vii | 2.828 (8) | 2.913 (2) | A3—O1vii | 2.824 (8) | 2.912 (2) | | | | A4—O1viii | 2.23 (3) | 2.480 (6) | | | | A4—O2ix | 2.826 (8) | 2.914 (2) | A2—Cl1 | 2.57 (5) | 2.605 (9) | A3—Cl1 | 2.55 (6) | 2.599 (10) | | | | A4—Cl2 | 2.55 (5) | 2.612 (10) | B1—O1 | 1.3700 (16) | 1.3693 (15) | B1—O1 | 1.3693 (17) | 1.3684 (16) | | | | B2—O2x | 1.3702 (17) | 1.3684 (16) | Al1—O1xi | 1.7533 (17) | 1.7506 (16) | Al1—O1xi | 1.754 (2) | 1.7495 (18) | | | | Al1—O2xii | 1.754 (2) | 1.7522 (18) | | | | | | | B1—O1—Al1xiii | 118.97 (12) | 128.59 (12) | B1—O1—Al1xiii | 119.05 (13) | 128.62 (14) | | | | B2xiv—O2—Al1vii | 118.94 (13) | 128.66 (14) | Symmetry code(s): (i) −x, −z + , y; (ii) −x, y, −z + 1; (iii) x + , −y + 1, −z + ; (iv) −x + , −y + 1, z + ; (v) −y + , x + , −z + ; (vi) −z + 1, x + , −y + ; (vii) z, −x + , −y + ; (viii) x + 1, −y + 1, −z + 1; (ix) −x + 1, y + , −z + ; (x) z, x + , y + ; (xi) z, x, y; (xii) −y + , z − , −x; (xiii) y, z, x; (xiv) x − , y − , z. | |
3. Synthesis and crystallization
Li2CO3 (Fujifilm Wako Chemicals, 99%), Na2CO3 (Fujifilm Wako Chemicals, 99%), B2O3 (Kojundo Chemical Laboratory, 99.9%), γ-Al2O3 (Kojundo Chemical Laboratory, 99.99%), LiCl (Kanto Chemical, 99.9%) and NaCl (Kojundo Chemical Laboratory, 99.9%) were mixed in an A2CO3:B2O3:γ-Al2O3:ACl (A = Li, Na) molar ratio of 3:4:3:14, with a B2O3 content of 10 mmol. LiCl (melting point: 878 K) and NaCl (melting point: 1074 K), acting as self-fluxes, were added in excess. The mixture of sample 1 (A = Li) or 2 (A = Na) was placed in a platinum crucible covered by an alumina crucible, heated to 1073 K for 3 h (sample 1) or 1123 K for 4 h (sample 2), maintained for 5 h, cooled at a rate of 3 K h−1 for 50 h, and then cooled to room temperature in the furnace by turning off the power.
The resulting mixtures were washed with water to leach out water-soluble components. The residues were characterized by powder X-ray diffraction (SmartLab diffractometer, Rigaku) using Cu Kα radiation. The main impurity phases in the residues of samples 1 and 2 were Li2BAlO4 (space group P21/c) and LiAl5O8 (space group P4132), and Na2Al2B4O7 (space group P1c), respectively. Single-crystal particles with cubic symmetry were selected using an optical microscope (BH2, Olympus), showing complete light extinction under crossed polarizers.
4. Refinement
Crystal data, data collection and structure refinement details are summarized in Table 3. The crystal structures of Li4B4Al3O12Cl and Na4B4Al3O12Cl were solved both in the space groups F3c and F23 using the same hkl file. In the refinements in the space group F23, all reflections were used. In the refinements in the space group F3c, reflections that violate the extinction conditions (885 in Li4B4Al3O12Cl and 1010 in Na4B4Al3O12Cl) were rejected by SHELXL (Sheldrick, 2015b), but few rejected reflections had intensities with I/σ(I) > 3 (3 in Li4B4Al3O12Cl and 4 in Na4B4Al3O12Cl). To maintain charge neutrality, the occupancies, g, of A (A = Li, Na) and Cl were refined under the restraint that the total number of A in the unit cell was larger by 24 than that of Cl [e.g. 24g(Li1) + 32g(Li2) − 8g(Cl1) = 24 for Li4B4Al3O12Cl solved in F3c], while permitting possible Cl deficiency. The summary of reflections was derived by the program SpaceGroup in WinGX (Farrugia, 2012).
| Li4B4Al3O12Cl in F3c | Li4B4Al3O12Cl in F23 | Na3.92B4Al3O12Cl0.92 in F3c | Na3.92B4Al3O12Cl0.92 in F23 | Crystal data | Chemical formula | Li4B4Al3O12Cl | Li4B4Al3O12Cl | Na3.92B4Al3O12Cl0.92 | Na3.92B4Al3O12Cl0.92 | Mr | 379.39 | 379.39 | 438.91 | 438.91 | Crystal system, space group | Cubic, F3c | Cubic, F23 | Cubic, F3c | Cubic, F23 | Temperature (K) | 297 | 297 | 294 | 294 | a (Å) | 12.9839 (1) | 12.9839 (1) | 13.5904 (1) | 13.5904 (1) | V (Å3) | 2188.85 (5) | 2188.85 (5) | 2510.13 (6) | 2510.13 (6) | Z | 8 | 8 | 8 | 8 | Radiation type | Cu Kα | Cu Kα | Cu Kα | Cu Kα | μ (mm−1) | 6.12 | 6.12 | 6.78 | 6.78 | Crystal size (mm) | 0.11 × 0.10 × 0.06 | 0.11 × 0.10 × 0.06 | 0.08 × 0.06 × 0.04 | 0.08 × 0.06 × 0.04 | | Data collection | Diffractometer | Bruker D8 goniometer | Bruker D8 goniometer | Bruker D8 goniometer | Bruker D8 goniometer | Absorption correction | Multi-scan (SADABS; Krause et al., 2015) | Multi-scan (SADABS; Krause et al., 2015) | Multi-scan (SADABS; Krause et al., 2015) | Multi-scan (SADABS; Krause et al., 2015) | Tmin, Tmax | 0.62, 0.75 | 0.62, 0.75 | 0.66, 0.75 | 0.66, 0.75 | No. of measured, independent and observed [I > 2σ(I)] reflections | 3843, 193, 191 | 4728, 389, 317 | 4504, 218, 216 | 5514, 437, 355 | Rint | 0.023 | 0.024 | 0.027 | 0.028 | (sin θ/λ)max (Å−1) | 0.621 | 0.621 | 0.624 | 0.624 | | Refinement | R[F2 > 2σ(F2)], wR(F2), S | 0.031, 0.075, 1.16 | 0.032, 0.081, 1.17 | 0.022, 0.055, 1.20 | 0.024, 0.066, 1.12 | No. of reflections | 193 | 389 | 218 | 437 | No. of parameters | 23 | 50 | 27 | 52 | No. of restraints | 1 | 1 | 1 | 1 | Δρmax, Δρmin (e Å−3) | 0.20, −0.63 | 0.20, −0.91 | 0.15, −0.45 | 0.17, −0.58 | Absolute structure | Flack x determined using 80 quotients [(I+) − (I−)]/[(I+) + (I−)] (Parsons et al., 2013) | Flack x determined using 132 quotients [(I+) − (I−)]/[(I+) + (I−)] (Parsons et al., 2013). | Flack x determined using 89 quotients [(I+) − (I−)]/[(I+) + (I−)] (Parsons et al., 2013) | Flack x determined using 142 quotients [(I+) − (I−)]/[(I+) + (I−)] (Parsons et al., 2013). | Absolute structure parameter | −0.03 (3) | −0.03 (2) | 0.01 (3) | 0.01 (2) | Computer programs: BIS (Bruker, 2021), SAINT (Bruker, 2019), SHELXTL (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), ShelXle (Hübschle et al., 2011), VESTA (Momma & Izumi, 2011) and publCIF (Westrip, 2010). | |
Supporting information
Lithium aluminoboracite (kjh0818yoshinoL14_0m_a)
top Crystal data top Li4B4Al3O12Cl | Cu Kα radiation, λ = 1.54178 Å |
Mr = 379.39 | Cell parameters from 2808 reflections |
Cubic, F43c | θ = 6.8–73.2° |
a = 12.9839 (1) Å | µ = 6.12 mm−1 |
V = 2188.85 (5) Å3 | T = 297 K |
Z = 8 | Plate, colorless |
F(000) = 1472 | 0.11 × 0.10 × 0.06 mm |
Dx = 2.303 Mg m−3 | |
Data collection top Bruker D8 goniometer diffractometer | 193 independent reflections |
Radiation source: sealed tube | 191 reflections with I > 2σ(I) |
Detector resolution: 7.3910 pixels mm-1 | Rint = 0.023 |
ω scans | θmax = 73.2°, θmin = 6.8° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −15→12 |
Tmin = 0.62, Tmax = 0.75 | k = −15→16 |
3843 measured reflections | l = −16→15 |
Refinement top Refinement on F2 | 1 restraint |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0536P)2 + 3.2978P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.031 | (Δ/σ)max < 0.001 |
wR(F2) = 0.075 | Δρmax = 0.20 e Å−3 |
S = 1.16 | Δρmin = −0.63 e Å−3 |
193 reflections | Absolute structure: Flack x determined using 80 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
23 parameters | Absolute structure parameter: −0.03 (3) |
Special details top Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | Occ. (<1) |
Li1 | 0.000000 | 0.250000 | 0.250000 | 0.066 (6) | 0.991 (13) |
Li2 | 0.364 (2) | 0.364 (2) | 0.364 (2) | 0.028 (11) | 0.256 (10) |
B1 | 0.1057 (3) | 0.1057 (3) | 0.1057 (3) | 0.0114 (10) | |
Al1 | 0.250000 | 0.000000 | 0.000000 | 0.0118 (6) | |
O1 | 0.02786 (13) | 0.11000 (13) | 0.17680 (15) | 0.0166 (6) | |
Cl1 | 0.250000 | 0.250000 | 0.250000 | 0.0787 (15) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Li1 | 0.156 (18) | 0.021 (4) | 0.021 (4) | 0.000 | 0.000 | 0.000 |
Li2 | 0.028 (11) | 0.028 (11) | 0.028 (11) | 0.000 (9) | 0.000 (9) | 0.000 (9) |
B1 | 0.0114 (10) | 0.0114 (10) | 0.0114 (10) | −0.0014 (14) | −0.0014 (14) | −0.0014 (14) |
Al1 | 0.0115 (8) | 0.0120 (6) | 0.0120 (6) | 0.000 | 0.000 | 0.000 |
O1 | 0.0185 (11) | 0.0154 (10) | 0.0158 (9) | 0.0048 (7) | 0.0067 (10) | 0.0044 (9) |
Cl1 | 0.0787 (15) | 0.0787 (15) | 0.0787 (15) | 0.000 | 0.000 | 0.000 |
Geometric parameters (Å, º) top Li1—O1 | 2.0828 (17) | Li2—O1xiii | 2.22 (3) |
Li1—O1i | 2.0828 (17) | Li2—Cl1 | 2.57 (5) |
Li1—O1ii | 2.0828 (17) | Li2—O1ix | 2.828 (8) |
Li1—O1iii | 2.0828 (17) | Li2—O1xiv | 2.828 (8) |
Li1—Li2iv | 2.740 (13) | Li2—O1vi | 2.828 (8) |
Li1—Li2v | 2.740 (13) | Li2—Al1xv | 2.90 (2) |
Li1—Li2vi | 2.740 (13) | Li2—Al1xvi | 2.90 (2) |
Li1—Li2vii | 2.740 (13) | B1—O1x | 1.3700 (16) |
Li1—Cl1 | 3.2460 (1) | B1—O1xvii | 1.3700 (16) |
Li1—Al1viii | 3.2460 (1) | B1—O1 | 1.3700 (16) |
Li1—Al1ix | 3.2460 (1) | Al1—O1xviii | 1.7533 (17) |
Li1—Al1x | 3.2460 (1) | Al1—O1xix | 1.7533 (17) |
Li2—O1xi | 2.22 (3) | Al1—O1xvii | 1.7533 (17) |
Li2—O1xii | 2.22 (3) | Al1—O1xx | 1.7533 (17) |
| | | |
O1—Li1—O1i | 160.00 (10) | O1ix—Li2—O1vi | 118.0 (5) |
O1—Li1—O1ii | 91.729 (17) | O1xiv—Li2—O1vi | 118.0 (5) |
O1i—Li1—O1ii | 91.729 (17) | O1xi—Li2—Al1xv | 69.0 (7) |
O1—Li1—O1iii | 91.729 (17) | O1xii—Li2—Al1xv | 37.1 (3) |
O1i—Li1—O1iii | 91.729 (17) | O1xiii—Li2—Al1xv | 123 (2) |
O1ii—Li1—O1iii | 160.00 (10) | Cl1—Li2—Al1xv | 114.0 (9) |
O1—Li1—Li2iv | 52.6 (10) | Li1xiv—Li2—Al1xv | 171 (2) |
O1i—Li1—Li2iv | 146.2 (9) | Li1ix—Li2—Al1xv | 70.20 (14) |
O1ii—Li1—Li2iv | 70.29 (8) | Li1vi—Li2—Al1xv | 70.20 (14) |
O1iii—Li1—Li2iv | 96.5 (4) | O1ix—Li2—Al1xv | 106.4 (4) |
O1—Li1—Li2v | 96.5 (4) | O1xiv—Li2—Al1xv | 134.8 (7) |
O1i—Li1—Li2v | 70.29 (8) | O1vi—Li2—Al1xv | 35.62 (12) |
O1ii—Li1—Li2v | 52.6 (10) | O1xi—Li2—Al1xvi | 123 (2) |
O1iii—Li1—Li2v | 146.2 (9) | O1xii—Li2—Al1xvi | 69.0 (7) |
Li2iv—Li1—Li2v | 114.4 (12) | O1xiii—Li2—Al1xvi | 37.1 (3) |
O1—Li1—Li2vi | 70.29 (8) | Cl1—Li2—Al1xvi | 114.0 (9) |
O1i—Li1—Li2vi | 96.5 (4) | Li1xiv—Li2—Al1xvi | 70.20 (14) |
O1ii—Li1—Li2vi | 146.2 (9) | Li1ix—Li2—Al1xvi | 70.20 (14) |
O1iii—Li1—Li2vi | 52.6 (10) | Li1vi—Li2—Al1xvi | 171 (2) |
Li2iv—Li1—Li2vi | 114.4 (12) | O1ix—Li2—Al1xvi | 35.62 (12) |
Li2v—Li1—Li2vi | 100 (2) | O1xiv—Li2—Al1xvi | 106.4 (4) |
O1—Li1—Li2vii | 146.2 (9) | O1vi—Li2—Al1xvi | 134.8 (7) |
O1i—Li1—Li2vii | 52.6 (10) | Al1xv—Li2—Al1xvi | 104.6 (11) |
O1ii—Li1—Li2vii | 96.5 (4) | O1x—B1—O1xvii | 119.981 (12) |
O1iii—Li1—Li2vii | 70.29 (8) | O1x—B1—O1 | 119.980 (12) |
Li2iv—Li1—Li2vii | 100 (2) | O1xvii—B1—O1 | 119.982 (12) |
Li2v—Li1—Li2vii | 114.4 (12) | O1xviii—Al1—O1xix | 107.09 (6) |
Li2vi—Li1—Li2vii | 114.4 (12) | O1xviii—Al1—O1xvii | 114.35 (13) |
O1—Li1—Cl1 | 80.00 (5) | O1xix—Al1—O1xvii | 107.09 (6) |
O1i—Li1—Cl1 | 80.00 (5) | O1xviii—Al1—O1xx | 107.09 (6) |
O1ii—Li1—Cl1 | 100.00 (5) | O1xix—Al1—O1xx | 114.35 (13) |
O1iii—Li1—Cl1 | 100.00 (5) | O1xvii—Al1—O1xx | 107.09 (6) |
Li2iv—Li1—Cl1 | 130.0 (11) | O1xviii—Al1—Li2i | 153.8 (2) |
Li2v—Li1—Cl1 | 50.0 (11) | O1xix—Al1—Li2i | 49.7 (3) |
Li2vi—Li1—Cl1 | 50.0 (11) | O1xvii—Al1—Li2i | 69.9 (9) |
Li2vii—Li1—Cl1 | 130.0 (11) | O1xx—Al1—Li2i | 95.3 (7) |
O1—Li1—Al1viii | 150.78 (5) | O1xviii—Al1—Li2xxi | 69.9 (9) |
O1i—Li1—Al1viii | 29.22 (5) | O1xix—Al1—Li2xxi | 95.3 (7) |
O1ii—Li1—Al1viii | 62.85 (5) | O1xvii—Al1—Li2xxi | 153.8 (2) |
O1iii—Li1—Al1viii | 117.15 (5) | O1xx—Al1—Li2xxi | 49.7 (3) |
Li2iv—Li1—Al1viii | 122.8 (6) | Li2i—Al1—Li2xxi | 118.5 (19) |
Li2v—Li1—Al1viii | 57.2 (6) | O1xviii—Al1—Li2xxii | 95.3 (7) |
Li2vi—Li1—Al1viii | 122.8 (6) | O1xix—Al1—Li2xxii | 153.8 (2) |
Li2vii—Li1—Al1viii | 57.2 (6) | O1xvii—Al1—Li2xxii | 49.7 (3) |
Cl1—Li1—Al1viii | 90.0 | O1xx—Al1—Li2xxii | 69.9 (9) |
O1—Li1—Al1ix | 117.15 (5) | Li2i—Al1—Li2xxii | 105.2 (9) |
O1i—Li1—Al1ix | 62.85 (5) | Li2xxi—Al1—Li2xxii | 105.2 (9) |
O1ii—Li1—Al1ix | 150.78 (5) | O1xviii—Al1—Li2xxiii | 49.7 (3) |
O1iii—Li1—Al1ix | 29.22 (5) | O1xix—Al1—Li2xxiii | 69.9 (9) |
Li2iv—Li1—Al1ix | 122.8 (6) | O1xvii—Al1—Li2xxiii | 95.3 (7) |
Li2v—Li1—Al1ix | 122.8 (6) | O1xx—Al1—Li2xxiii | 153.8 (2) |
Li2vi—Li1—Al1ix | 57.2 (6) | Li2i—Al1—Li2xxiii | 105.2 (9) |
Li2vii—Li1—Al1ix | 57.2 (6) | Li2xxi—Al1—Li2xxiii | 105.2 (9) |
Cl1—Li1—Al1ix | 90.0 | Li2xxii—Al1—Li2xxiii | 118.5 (19) |
Al1viii—Li1—Al1ix | 90.0 | O1xviii—Al1—Li1xxiv | 78.09 (5) |
O1—Li1—Al1x | 29.22 (5) | O1xix—Al1—Li1xxiv | 144.55 (6) |
O1i—Li1—Al1x | 150.78 (5) | O1xvii—Al1—Li1xxiv | 101.91 (5) |
O1ii—Li1—Al1x | 117.15 (5) | O1xx—Al1—Li1xxiv | 35.45 (6) |
O1iii—Li1—Al1x | 62.85 (5) | Li2i—Al1—Li1xxiv | 127.4 (4) |
Li2iv—Li1—Al1x | 57.2 (6) | Li2xxi—Al1—Li1xxiv | 52.6 (4) |
Li2v—Li1—Al1x | 122.8 (6) | Li2xxii—Al1—Li1xxiv | 52.6 (4) |
Li2vi—Li1—Al1x | 57.2 (6) | Li2xxiii—Al1—Li1xxiv | 127.4 (4) |
Li2vii—Li1—Al1x | 122.8 (6) | O1xviii—Al1—Li1x | 101.91 (5) |
Cl1—Li1—Al1x | 90.0 | O1xix—Al1—Li1x | 35.45 (6) |
Al1viii—Li1—Al1x | 180.0 | O1xvii—Al1—Li1x | 78.09 (5) |
Al1ix—Li1—Al1x | 90.0 | O1xx—Al1—Li1x | 144.55 (6) |
O1xi—Li2—O1xii | 97.0 (15) | Li2i—Al1—Li1x | 52.6 (4) |
O1xi—Li2—O1xiii | 97.0 (15) | Li2xxi—Al1—Li1x | 127.4 (4) |
O1xii—Li2—O1xiii | 97.0 (15) | Li2xxii—Al1—Li1x | 127.4 (4) |
O1xi—Li2—Cl1 | 120.1 (12) | Li2xxiii—Al1—Li1x | 52.6 (4) |
O1xii—Li2—Cl1 | 120.1 (12) | Li1xxiv—Al1—Li1x | 180.0 |
O1xiii—Li2—Cl1 | 120.1 (12) | O1xviii—Al1—Li1xvii | 144.55 (6) |
O1xi—Li2—Li1xiv | 107.0 (3) | O1xix—Al1—Li1xvii | 101.91 (5) |
O1xii—Li2—Li1xiv | 139.1 (8) | O1xvii—Al1—Li1xvii | 35.45 (6) |
O1xiii—Li2—Li1xiv | 48.29 (9) | O1xx—Al1—Li1xvii | 78.09 (5) |
Cl1—Li2—Li1xiv | 75.3 (11) | Li2i—Al1—Li1xvii | 52.6 (4) |
O1xi—Li2—Li1ix | 139.1 (8) | Li2xxi—Al1—Li1xvii | 127.4 (4) |
O1xii—Li2—Li1ix | 48.29 (9) | Li2xxii—Al1—Li1xvii | 52.6 (4) |
O1xiii—Li2—Li1ix | 107.0 (3) | Li2xxiii—Al1—Li1xvii | 127.4 (4) |
Cl1—Li2—Li1ix | 75.3 (11) | Li1xxiv—Al1—Li1xvii | 90.0 |
Li1xiv—Li2—Li1ix | 113.8 (9) | Li1x—Al1—Li1xvii | 90.0 |
O1xi—Li2—Li1vi | 48.29 (9) | O1xviii—Al1—Li1xviii | 35.45 (6) |
O1xii—Li2—Li1vi | 107.0 (3) | O1xix—Al1—Li1xviii | 78.09 (5) |
O1xiii—Li2—Li1vi | 139.1 (8) | O1xvii—Al1—Li1xviii | 144.55 (6) |
Cl1—Li2—Li1vi | 75.3 (11) | O1xx—Al1—Li1xviii | 101.91 (5) |
Li1xiv—Li2—Li1vi | 113.8 (9) | Li2i—Al1—Li1xviii | 127.4 (4) |
Li1ix—Li2—Li1vi | 113.8 (9) | Li2xxi—Al1—Li1xviii | 52.6 (4) |
O1xi—Li2—O1ix | 158 (2) | Li2xxii—Al1—Li1xviii | 127.4 (4) |
O1xii—Li2—O1ix | 71.54 (19) | Li2xxiii—Al1—Li1xviii | 52.6 (4) |
O1xiii—Li2—O1ix | 66.73 (16) | Li1xxiv—Al1—Li1xviii | 90.0 |
Cl1—Li2—O1ix | 81.8 (11) | Li1x—Al1—Li1xviii | 90.0 |
Li1xiv—Li2—O1ix | 74.1 (3) | Li1xvii—Al1—Li1xviii | 180.0 |
Li1ix—Li2—O1ix | 43.90 (17) | B1—O1—Al1x | 118.97 (12) |
Li1vi—Li2—O1ix | 152.3 (17) | B1—O1—Li1 | 118.1 (2) |
O1xi—Li2—O1xiv | 66.73 (16) | Al1x—O1—Li1 | 115.33 (9) |
O1xii—Li2—O1xiv | 158 (2) | B1—O1—Li2iv | 123.5 (10) |
O1xiii—Li2—O1xiv | 71.54 (19) | Al1x—O1—Li2iv | 93.18 (8) |
Cl1—Li2—O1xiv | 81.8 (11) | Li1—O1—Li2iv | 79.2 (11) |
Li1xiv—Li2—O1xiv | 43.90 (17) | Li2—Cl1—Li2i | 109.471 (6) |
Li1ix—Li2—O1xiv | 152.3 (17) | Li2—Cl1—Li2vi | 109.471 (1) |
Li1vi—Li2—O1xiv | 74.1 (3) | Li2i—Cl1—Li2vi | 109.5 |
O1ix—Li2—O1xiv | 118.0 (5) | Li2—Cl1—Li2v | 109.471 (3) |
O1xi—Li2—O1vi | 71.54 (19) | Li2i—Cl1—Li2v | 109.471 (1) |
O1xii—Li2—O1vi | 66.73 (16) | Li2vi—Cl1—Li2v | 109.471 (1) |
O1xiii—Li2—O1vi | 158 (2) | Li2—Cl1—Li1 | 125.264 (1) |
Cl1—Li2—O1vi | 81.8 (11) | Li2i—Cl1—Li1 | 125.264 (1) |
Li1xiv—Li2—O1vi | 152.3 (17) | Li2vi—Cl1—Li1 | 54.736 (1) |
Li1ix—Li2—O1vi | 74.1 (3) | Li2v—Cl1—Li1 | 54.736 (1) |
Li1vi—Li2—O1vi | 43.90 (17) | | |
Symmetry codes: (i) x, −y+1/2, −z+1/2; (ii) −x, −z+1/2, y; (iii) −x, z, −y+1/2; (iv) y−1/2, −x+1/2, −z+1/2; (v) −x+1/2, y, −z+1/2; (vi) −x+1/2, −y+1/2, z; (vii) y−1/2, x, z; (viii) −y, z+1/2, −x+1/2; (ix) z, −x+1/2, −y+1/2; (x) y, z, x; (xi) x+1/2, −z+1/2, −y+1/2; (xii) −y+1/2, x+1/2, −z+1/2; (xiii) −z+1/2, −y+1/2, x+1/2; (xiv) −y+1/2, z, −x+1/2; (xv) y+1/2, z+1/2, x; (xvi) x, y+1/2, z+1/2; (xvii) z, x, y; (xviii) z, −x, −y; (xix) −z+1/2, y, −x; (xx) −z+1/2, −y, x; (xxi) x, y−1/2, z−1/2; (xxii) −y+1/2, x−1/2, −z+1/2; (xxiii) −y+1/2, −x+1/2, z−1/2; (xxiv) −y+1/2, z−1/2, −x. |
Lithium aluminoboracite (kjh0818yoshinoL14_0m_a_1)
top Crystal data top Li4B4Al3O12Cl | Cu Kα radiation, λ = 1.54178 Å |
Mr = 379.39 | Cell parameters from 2808 reflections |
Cubic, F23 | θ = 6.8–73.2° |
a = 12.9839 (1) Å | µ = 6.12 mm−1 |
V = 2188.85 (5) Å3 | T = 297 K |
Z = 8 | Plate, colorless |
F(000) = 1472 | 0.11 × 0.10 × 0.06 mm |
Dx = 2.303 Mg m−3 | |
Data collection top Bruker D8 goniometer diffractometer | 389 independent reflections |
Radiation source: sealed tube | 317 reflections with I > 2σ(I) |
Detector resolution: 7.3910 pixels mm-1 | Rint = 0.024 |
ω scans | θmax = 73.2°, θmin = 5.9° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −15→12 |
Tmin = 0.62, Tmax = 0.75 | k = −15→16 |
4728 measured reflections | l = −16→15 |
Refinement top Refinement on F2 | 1 restraint |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0537P)2 + 1.5774P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.032 | (Δ/σ)max = 0.003 |
wR(F2) = 0.081 | Δρmax = 0.20 e Å−3 |
S = 1.17 | Δρmin = −0.91 e Å−3 |
389 reflections | Absolute structure: Flack x determined using 132 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013). |
50 parameters | Absolute structure parameter: −0.03 (2) |
Special details top Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | Occ. (<1) |
Li1 | 0.020 (4) | 0.250000 | 0.250000 | 0.047 (13) | 0.5 |
Li2 | 0.517 (5) | 0.750000 | 0.750000 | 0.050 (15) | 0.5 |
Li3 | 0.363 (3) | 0.363 (3) | 0.363 (3) | 0.020 (12) | 0.205 (14) |
Li4 | 0.864 (2) | 0.864 (2) | 0.864 (2) | 0.035 (12) | 0.295 (14) |
B1 | 0.1060 (3) | 0.1060 (3) | 0.1060 (3) | 0.0112 (10) | |
B2 | 0.6057 (3) | 0.6057 (3) | 0.6057 (3) | 0.0119 (10) | |
Al1 | 0.24997 (11) | 0.000000 | 0.000000 | 0.0118 (5) | |
O1 | 0.02797 (13) | 0.11005 (14) | 0.17683 (14) | 0.0170 (5) | |
O2 | 0.02784 (13) | 0.17681 (14) | 0.61004 (14) | 0.0171 (5) | |
Cl1 | 0.250000 | 0.250000 | 0.250000 | 0.0774 (16) | |
Cl2 | 0.750000 | 0.750000 | 0.750000 | 0.0786 (16) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Li1 | 0.08 (3) | 0.015 (11) | 0.040 (17) | 0.000 | 0.000 | −0.012 (14) |
Li2 | 0.11 (5) | 0.031 (14) | 0.010 (11) | 0.000 | 0.000 | −0.008 (13) |
Li3 | 0.020 (12) | 0.020 (12) | 0.020 (12) | −0.004 (10) | −0.004 (10) | −0.004 (10) |
Li4 | 0.035 (12) | 0.035 (12) | 0.035 (12) | 0.000 (10) | 0.000 (10) | 0.000 (10) |
B1 | 0.0112 (10) | 0.0112 (10) | 0.0112 (10) | −0.0005 (15) | −0.0005 (15) | −0.0005 (15) |
B2 | 0.0119 (10) | 0.0119 (10) | 0.0119 (10) | −0.0001 (15) | −0.0001 (15) | −0.0001 (15) |
Al1 | 0.0115 (6) | 0.0119 (6) | 0.0120 (6) | 0.000 | 0.000 | 0.0003 (4) |
O1 | 0.0185 (10) | 0.0161 (9) | 0.0164 (10) | 0.0050 (6) | 0.0069 (9) | 0.0048 (9) |
O2 | 0.0196 (11) | 0.0164 (10) | 0.0154 (9) | 0.0071 (9) | 0.0050 (6) | 0.0048 (9) |
Cl1 | 0.0774 (16) | 0.0774 (16) | 0.0774 (16) | 0.000 | 0.000 | 0.000 |
Cl2 | 0.0786 (16) | 0.0786 (16) | 0.0786 (16) | 0.000 | 0.000 | 0.000 |
Geometric parameters (Å, º) top Li1—Li2i | 0.48 (10) | Li3—O2xxiii | 2.23 (3) |
Li1—O1ii | 2.053 (3) | Li3—O2xxiv | 2.23 (3) |
Li1—O1 | 2.053 (3) | Li3—Cl1 | 2.55 (6) |
Li1—O2iii | 2.143 (16) | Li3—O1xxv | 2.824 (8) |
Li1—O2iv | 2.143 (16) | Li3—O1xxvi | 2.824 (8) |
Li1—Li3v | 2.57 (4) | Li3—O1vi | 2.824 (8) |
Li1—Li3vi | 2.57 (4) | Li4—O1xxvii | 2.23 (3) |
Li1—Li4vii | 2.91 (4) | Li4—O1xxviii | 2.23 (3) |
Li1—Li4viii | 2.91 (4) | Li4—O1xxix | 2.23 (3) |
Li1—Cl1 | 2.98 (6) | Li4—Cl2 | 2.55 (5) |
Li1—Al1ix | 3.256 (5) | Li4—O2xxx | 2.826 (8) |
Li1—Al1x | 3.256 (5) | Li4—O2xxxi | 2.826 (8) |
Li2—O2xi | 2.056 (4) | Li4—O2xxxii | 2.826 (8) |
Li2—O2xii | 2.056 (4) | Li4—Al1xxxiii | 2.91 (2) |
Li2—O1xiii | 2.132 (16) | Li4—Al1xxxiv | 2.91 (2) |
Li2—O1xiv | 2.132 (16) | B1—O1 | 1.3693 (17) |
Li2—Li4xv | 2.60 (4) | B1—O1ix | 1.3693 (17) |
Li2—Li4xvi | 2.60 (4) | B1—O1x | 1.3693 (17) |
Li2—Li3xvii | 2.88 (4) | B2—O2xxxv | 1.3702 (17) |
Li2—Li3xviii | 2.88 (4) | B2—O2xii | 1.3702 (17) |
Li2—Cl2 | 3.03 (6) | B2—O2xxxvi | 1.3702 (17) |
Li2—Al1xix | 3.253 (4) | Al1—O1xxxvii | 1.754 (2) |
Li2—Al1xx | 3.253 (4) | Al1—O2xxxviii | 1.754 (2) |
Li2—Al1xxi | 3.253 (4) | Al1—O1x | 1.754 (2) |
Li3—O2xxii | 2.23 (3) | Al1—O2xxxix | 1.754 (2) |
| | | |
Li2i—Li1—O1ii | 92.8 (16) | Li2xvi—Li4—Li2xliii | 110.8 (14) |
Li2i—Li1—O1 | 92.8 (16) | Li2xlii—Li4—Li2xliii | 110.9 (14) |
O1ii—Li1—O1 | 174 (3) | O1xxvii—Li4—O2xxx | 157 (2) |
Li2i—Li1—O2iii | 73.1 (14) | O1xxviii—Li4—O2xxx | 71.5 (2) |
O1ii—Li1—O2iii | 90.8 (4) | O1xxix—Li4—O2xxx | 66.70 (16) |
O1—Li1—O2iii | 90.8 (4) | Cl2—Li4—O2xxx | 82.1 (11) |
Li2i—Li1—O2iv | 73.1 (14) | Li2xvi—Li4—O2xxx | 44.3 (2) |
O1ii—Li1—O2iv | 90.8 (4) | Li2xlii—Li4—O2xxx | 74.0 (4) |
O1—Li1—O2iv | 90.8 (4) | Li2xliii—Li4—O2xxx | 150 (2) |
O2iii—Li1—O2iv | 146 (3) | O1xxvii—Li4—O2xxxi | 66.70 (16) |
Li2i—Li1—Li3v | 126.0 (15) | O1xxviii—Li4—O2xxxi | 157 (2) |
O1ii—Li1—Li3v | 74.3 (8) | O1xxix—Li4—O2xxxi | 71.5 (2) |
O1—Li1—Li3v | 102.3 (12) | Cl2—Li4—O2xxxi | 82.1 (11) |
O2iii—Li1—Li3v | 55.4 (12) | Li2xvi—Li4—O2xxxi | 150 (2) |
O2iv—Li1—Li3v | 155 (2) | Li2xlii—Li4—O2xxxi | 44.3 (2) |
Li2i—Li1—Li3vi | 126.0 (15) | Li2xliii—Li4—O2xxxi | 74.0 (4) |
O1ii—Li1—Li3vi | 102.3 (12) | O2xxx—Li4—O2xxxi | 118.2 (5) |
O1—Li1—Li3vi | 74.3 (8) | O1xxvii—Li4—O2xxxii | 71.5 (2) |
O2iii—Li1—Li3vi | 155 (2) | O1xxviii—Li4—O2xxxii | 66.70 (16) |
O2iv—Li1—Li3vi | 55.4 (12) | O1xxix—Li4—O2xxxii | 157 (2) |
Li3v—Li1—Li3vi | 108 (3) | Cl2—Li4—O2xxxii | 82.1 (11) |
Li2i—Li1—Li4vii | 45.7 (13) | Li2xvi—Li4—O2xxxii | 74.0 (4) |
O1ii—Li1—Li4vii | 136 (2) | Li2xlii—Li4—O2xxxii | 150 (2) |
O1—Li1—Li4vii | 49.6 (13) | Li2xliii—Li4—O2xxxii | 44.3 (2) |
O2iii—Li1—Li4vii | 65.9 (10) | O2xxx—Li4—O2xxxii | 118.2 (5) |
O2iv—Li1—Li4vii | 90.1 (14) | O2xxxi—Li4—O2xxxii | 118.2 (5) |
Li3v—Li1—Li4vii | 114.3 (10) | O1xxvii—Li4—Al1xxxiii | 68.7 (7) |
Li3vi—Li1—Li4vii | 114.3 (10) | O1xxviii—Li4—Al1xxxiii | 37.0 (3) |
Li2i—Li1—Li4viii | 45.7 (13) | O1xxix—Li4—Al1xxxiii | 122 (2) |
O1ii—Li1—Li4viii | 49.6 (13) | Cl2—Li4—Al1xxxiii | 114.3 (9) |
O1—Li1—Li4viii | 136 (2) | Li2xvi—Li4—Al1xxxiii | 72.2 (6) |
O2iii—Li1—Li4viii | 90.1 (14) | Li2xlii—Li4—Al1xxxiii | 174 (2) |
O2iv—Li1—Li4viii | 65.9 (10) | Li2xliii—Li4—Al1xxxiii | 72.2 (6) |
Li3v—Li1—Li4viii | 114.3 (10) | O2xxx—Li4—Al1xxxiii | 106.3 (4) |
Li3vi—Li1—Li4viii | 114.3 (10) | O2xxxi—Li4—Al1xxxiii | 134.6 (7) |
Li4vii—Li1—Li4viii | 91 (3) | O2xxxii—Li4—Al1xxxiii | 35.59 (12) |
Li2i—Li1—Cl1 | 180.0 | O1xxvii—Li4—Al1xxxiv | 37.0 (3) |
O1ii—Li1—Cl1 | 87.2 (16) | O1xxviii—Li4—Al1xxxiv | 122 (2) |
O1—Li1—Cl1 | 87.2 (16) | O1xxix—Li4—Al1xxxiv | 68.7 (7) |
O2iii—Li1—Cl1 | 106.9 (14) | Cl2—Li4—Al1xxxiv | 114.3 (9) |
O2iv—Li1—Cl1 | 106.9 (14) | Li2xvi—Li4—Al1xxxiv | 174 (2) |
Li3v—Li1—Cl1 | 54.0 (15) | Li2xlii—Li4—Al1xxxiv | 72.2 (6) |
Li3vi—Li1—Cl1 | 54.0 (15) | Li2xliii—Li4—Al1xxxiv | 72.2 (6) |
Li4vii—Li1—Cl1 | 134.3 (13) | O2xxx—Li4—Al1xxxiv | 134.6 (7) |
Li4viii—Li1—Cl1 | 134.3 (13) | O2xxxi—Li4—Al1xxxiv | 35.59 (12) |
Li2i—Li1—Al1ix | 85.4 (10) | O2xxxii—Li4—Al1xxxiv | 106.3 (4) |
O1ii—Li1—Al1ix | 152.41 (19) | Al1xxxiii—Li4—Al1xxxiv | 104.3 (11) |
O1—Li1—Al1ix | 28.56 (17) | O1—B1—O1ix | 119.972 (15) |
O2iii—Li1—Al1ix | 114.7 (7) | O1—B1—O1x | 119.972 (15) |
O2iv—Li1—Al1ix | 62.3 (2) | O1ix—B1—O1x | 119.972 (15) |
Li3v—Li1—Al1ix | 128.1 (12) | O2xxxv—B2—O2xii | 119.982 (12) |
Li3vi—Li1—Al1ix | 58.5 (7) | O2xxxv—B2—O2xxxvi | 119.982 (13) |
Li4vii—Li1—Al1ix | 55.9 (7) | O2xii—B2—O2xxxvi | 119.982 (12) |
Li4viii—Li1—Al1ix | 116.6 (14) | O1xxxvii—Al1—O2xxxviii | 107.12 (9) |
Cl1—Li1—Al1ix | 94.6 (10) | O1xxxvii—Al1—O1x | 114.42 (15) |
Li2i—Li1—Al1x | 85.4 (10) | O2xxxviii—Al1—O1x | 107.03 (8) |
O1ii—Li1—Al1x | 117.73 (11) | O1xxxvii—Al1—O2xxxix | 107.03 (8) |
O1—Li1—Al1x | 62.78 (10) | O2xxxviii—Al1—O2xxxix | 114.35 (15) |
O2iii—Li1—Al1x | 29.72 (10) | O1x—Al1—O2xxxix | 107.12 (9) |
O2iv—Li1—Al1x | 145.3 (15) | O1xxxvii—Al1—Li4xliv | 95.5 (7) |
Li3v—Li1—Al1x | 58.5 (7) | O2xxxviii—Al1—Li4xliv | 153.8 (2) |
Li3vi—Li1—Al1x | 128.1 (12) | O1x—Al1—Li4xliv | 49.8 (3) |
Li4vii—Li1—Al1x | 55.9 (7) | O2xxxix—Al1—Li4xliv | 69.7 (8) |
Li4viii—Li1—Al1x | 116.6 (14) | O1xxxvii—Al1—Li4xlv | 49.8 (3) |
Cl1—Li1—Al1x | 94.6 (10) | O2xxxviii—Al1—Li4xlv | 69.7 (8) |
Al1ix—Li1—Al1x | 89.62 (17) | O1x—Al1—Li4xlv | 95.5 (7) |
O2xi—Li2—O2xii | 172 (3) | O2xxxix—Al1—Li4xlv | 153.8 (2) |
O2xi—Li2—O1xiii | 91.1 (4) | Li4xliv—Al1—Li4xlv | 119.1 (19) |
O2xii—Li2—O1xiii | 91.1 (4) | O1xxxvii—Al1—Li3ii | 153.8 (2) |
O2xi—Li2—O1xiv | 91.1 (4) | O2xxxviii—Al1—Li3ii | 49.8 (3) |
O2xii—Li2—O1xiv | 91.1 (4) | O1x—Al1—Li3ii | 69.5 (9) |
O1xiii—Li2—O1xiv | 148 (3) | O2xxxix—Al1—Li3ii | 95.6 (7) |
O2xi—Li2—Li4xv | 101.4 (13) | Li4xliv—Al1—Li3ii | 104.9 (7) |
O2xii—Li2—Li4xv | 73.7 (9) | Li4xlv—Al1—Li3ii | 104.9 (7) |
O1xiii—Li2—Li4xv | 154 (2) | O1xxxvii—Al1—Li3xli | 69.5 (9) |
O1xiv—Li2—Li4xv | 55.1 (12) | O2xxxviii—Al1—Li3xli | 95.6 (7) |
O2xi—Li2—Li4xvi | 73.7 (9) | O1x—Al1—Li3xli | 153.8 (2) |
O2xii—Li2—Li4xvi | 101.4 (13) | O2xxxix—Al1—Li3xli | 49.8 (3) |
O1xiii—Li2—Li4xvi | 55.1 (12) | Li4xliv—Al1—Li3xli | 104.9 (7) |
O1xiv—Li2—Li4xvi | 154 (2) | Li4xlv—Al1—Li3xli | 104.9 (7) |
Li4xv—Li2—Li4xvi | 107 (3) | Li3ii—Al1—Li3xli | 119 (2) |
O2xi—Li2—Li3xvii | 137 (2) | O1xxxvii—Al1—Li2xlvi | 37.0 (5) |
O2xii—Li2—Li3xvii | 50.2 (14) | O2xxxviii—Al1—Li2xlvi | 74.9 (9) |
O1xiii—Li2—Li3xvii | 66.6 (10) | O1x—Al1—Li2xlvi | 143.0 (5) |
O1xiv—Li2—Li3xvii | 91.1 (15) | O2xxxix—Al1—Li2xlvi | 105.1 (9) |
Li4xv—Li2—Li3xvii | 114.4 (10) | Li4xliv—Al1—Li2xlvi | 130.5 (9) |
Li4xvi—Li2—Li3xvii | 114.4 (10) | Li4xlv—Al1—Li2xlvi | 49.5 (9) |
O2xi—Li2—Li3xviii | 50.2 (13) | Li3ii—Al1—Li2xlvi | 124.6 (9) |
O2xii—Li2—Li3xviii | 137 (2) | Li3xli—Al1—Li2xlvi | 55.4 (9) |
O1xiii—Li2—Li3xviii | 91.1 (15) | O1xxxvii—Al1—Li2xlvii | 98.7 (9) |
O1xiv—Li2—Li3xviii | 66.6 (10) | O2xxxviii—Al1—Li2xlvii | 34.2 (3) |
Li4xv—Li2—Li3xviii | 114.4 (10) | O1x—Al1—Li2xlvii | 81.3 (9) |
Li4xvi—Li2—Li3xviii | 114.4 (10) | O2xxxix—Al1—Li2xlvii | 145.8 (3) |
Li3xvii—Li2—Li3xviii | 92 (3) | Li4xliv—Al1—Li2xlvii | 130.5 (9) |
O2xi—Li2—Cl2 | 86.0 (17) | Li4xlv—Al1—Li2xlvii | 49.5 (9) |
O2xii—Li2—Cl2 | 86.0 (17) | Li3ii—Al1—Li2xlvii | 55.4 (9) |
O1xiii—Li2—Cl2 | 105.9 (15) | Li3xli—Al1—Li2xlvii | 124.6 (9) |
O1xiv—Li2—Cl2 | 105.9 (15) | Li2xlvi—Al1—Li2xlvii | 82 (2) |
Li4xv—Li2—Cl2 | 53.3 (15) | O1xxxvii—Al1—Li2xlviii | 81.3 (9) |
Li4xvi—Li2—Cl2 | 53.3 (15) | O2xxxviii—Al1—Li2xlviii | 145.8 (3) |
Li3xvii—Li2—Cl2 | 133.8 (13) | O1x—Al1—Li2xlviii | 98.7 (9) |
Li3xviii—Li2—Cl2 | 133.8 (13) | O2xxxix—Al1—Li2xlviii | 34.2 (3) |
O2xi—Li2—Al1xix | 117.76 (6) | Li4xliv—Al1—Li2xlviii | 49.5 (9) |
O2xii—Li2—Al1xix | 62.84 (9) | Li4xlv—Al1—Li2xlviii | 130.5 (9) |
O1xiii—Li2—Al1xix | 29.66 (11) | Li3ii—Al1—Li2xlviii | 124.6 (9) |
O1xiv—Li2—Al1xix | 146.3 (15) | Li3xli—Al1—Li2xlviii | 55.4 (9) |
Li4xv—Li2—Al1xix | 127.3 (13) | Li2xlvi—Al1—Li2xlviii | 98 (2) |
Li4xvi—Li2—Al1xix | 58.3 (7) | Li2xlvii—Al1—Li2xlviii | 179.99 (5) |
Li3xvii—Li2—Al1xix | 56.2 (7) | O1xxxvii—Al1—Li2xlix | 143.0 (5) |
Li3xviii—Li2—Al1xix | 117.5 (15) | O2xxxviii—Al1—Li2xlix | 105.1 (9) |
Cl2—Li2—Al1xix | 93.9 (10) | O1x—Al1—Li2xlix | 37.0 (5) |
O2xi—Li2—Al1xx | 152.45 (6) | O2xxxix—Al1—Li2xlix | 74.9 (9) |
O2xii—Li2—Al1xx | 28.68 (17) | Li4xliv—Al1—Li2xlix | 49.5 (9) |
O1xiii—Li2—Al1xx | 115.2 (7) | Li4xlv—Al1—Li2xlix | 130.5 (9) |
O1xiv—Li2—Al1xx | 62.41 (19) | Li3ii—Al1—Li2xlix | 55.4 (9) |
Li4xv—Li2—Al1xx | 58.3 (7) | Li3xli—Al1—Li2xlix | 124.6 (9) |
Li4xvi—Li2—Al1xx | 127.3 (13) | Li2xlvi—Al1—Li2xlix | 180.0 (17) |
Li3xvii—Li2—Al1xx | 56.2 (7) | Li2xlvii—Al1—Li2xlix | 98 (2) |
Li3xviii—Li2—Al1xx | 117.5 (15) | Li2xlviii—Al1—Li2xlix | 82 (2) |
Cl2—Li2—Al1xx | 93.9 (10) | B1—O1—Al1ix | 119.05 (13) |
Al1xix—Li2—Al1xx | 89.75 (15) | B1—O1—Li1 | 112.4 (12) |
O2xi—Li2—Al1xxi | 28.68 (17) | Al1ix—O1—Li1 | 117.4 (4) |
O2xii—Li2—Al1xxi | 152.45 (6) | B1—O1—Li2i | 122.3 (12) |
O1xiii—Li2—Al1xxi | 62.41 (19) | Al1ix—O1—Li2i | 113.4 (6) |
O1xiv—Li2—Al1xxi | 115.2 (7) | Li1—O1—Li2i | 13 (3) |
Li4xv—Li2—Al1xxi | 127.3 (13) | B1—O1—Li4vii | 123.9 (9) |
Li4xvi—Li2—Al1xxi | 58.3 (7) | Al1ix—O1—Li4vii | 93.12 (8) |
Li3xvii—Li2—Al1xxi | 117.5 (15) | Li1—O1—Li4vii | 85.7 (19) |
Li3xviii—Li2—Al1xxi | 56.2 (7) | Li2i—O1—Li4vii | 73.2 (19) |
Cl2—Li2—Al1xxi | 93.9 (10) | B1—O1—Li3vi | 102.2 (9) |
Al1xix—Li2—Al1xxi | 89.73 (15) | Al1ix—O1—Li3vi | 74.9 (10) |
Al1xx—Li2—Al1xxi | 172 (2) | Li1—O1—Li3vi | 61.3 (10) |
O2xxii—Li3—O2xxiii | 96.4 (16) | Li2i—O1—Li3vi | 69.5 (10) |
O2xxii—Li3—O2xxiv | 96.4 (16) | Li4vii—O1—Li3vi | 131.5 (12) |
O2xxiii—Li3—O2xxiv | 96.4 (16) | B1—O1—Li3 | 75.8 (3) |
O2xxii—Li3—Cl1 | 120.6 (12) | Al1ix—O1—Li3 | 112.35 (10) |
O2xxiii—Li3—Cl1 | 120.6 (12) | Li1—O1—Li3 | 50.3 (16) |
O2xxiv—Li3—Cl1 | 120.6 (12) | Li2i—O1—Li3 | 63.2 (15) |
O2xxii—Li3—Li1vi | 108.9 (5) | Li4vii—O1—Li3 | 135.3 (9) |
O2xxiii—Li3—Li1vi | 140.8 (8) | Li3vi—O1—Li3 | 38.8 (10) |
O2xxiv—Li3—Li1vi | 52.5 (10) | B2l—O2—Al1xxvi | 118.94 (13) |
Cl1—Li3—Li1vi | 71.3 (15) | B2l—O2—Li2l | 113.5 (13) |
O2xxii—Li3—Li1xxvi | 52.4 (10) | Al1xxvi—O2—Li2l | 117.1 (5) |
O2xxiii—Li3—Li1xxvi | 108.9 (5) | B2l—O2—Li1li | 123.2 (11) |
O2xxiv—Li3—Li1xxvi | 140.8 (8) | Al1xxvi—O2—Li1li | 113.0 (5) |
Cl1—Li3—Li1xxvi | 71.3 (15) | Li2l—O2—Li1li | 13 (3) |
Li1vi—Li3—Li1xxvi | 110.2 (15) | B2l—O2—Li3lii | 123.8 (10) |
O2xxii—Li3—Li1xxv | 140.8 (8) | Al1xxvi—O2—Li3lii | 93.19 (8) |
O2xxiii—Li3—Li1xxv | 52.4 (10) | Li2l—O2—Li3lii | 85 (2) |
O2xxiv—Li3—Li1xxv | 108.9 (5) | Li1li—O2—Li3lii | 72.1 (18) |
Cl1—Li3—Li1xxv | 71.3 (15) | B2l—O2—Li4liii | 102.4 (9) |
Li1vi—Li3—Li1xxv | 110.2 (15) | Al1xxvi—O2—Li4liii | 74.7 (10) |
Li1xxvi—Li3—Li1xxv | 110.2 (15) | Li2l—O2—Li4liii | 62.0 (11) |
O2xxii—Li3—O1xxv | 157 (2) | Li1li—O2—Li4liii | 70.2 (10) |
O2xxiii—Li3—O1xxv | 71.5 (2) | Li3lii—O2—Li4liii | 131.4 (12) |
O2xxiv—Li3—O1xxv | 66.68 (17) | B2l—O2—Li4 | 82.6 (3) |
Cl1—Li3—O1xxv | 82.2 (11) | Al1xxvi—O2—Li4 | 90.33 (9) |
Li1vi—Li3—O1xxv | 74.0 (4) | Li2l—O2—Li4 | 64.2 (14) |
Li1xxvi—Li3—O1xxv | 149 (2) | Li1li—O2—Li4 | 75.6 (13) |
Li1xxv—Li3—O1xxv | 44.4 (3) | Li3lii—O2—Li4 | 146.2 (12) |
O2xxii—Li3—O1xxvi | 71.5 (2) | Li4liii—O2—Li4 | 21.0 (10) |
O2xxiii—Li3—O1xxvi | 66.68 (17) | Li3—Cl1—Li3ii | 109.468 (7) |
O2xxiv—Li3—O1xxvi | 157 (2) | Li3—Cl1—Li3v | 109.473 (3) |
Cl1—Li3—O1xxvi | 82.2 (11) | Li3ii—Cl1—Li3v | 109.473 (1) |
Li1vi—Li3—O1xxvi | 149 (2) | Li3—Cl1—Li3vi | 109.473 (1) |
Li1xxvi—Li3—O1xxvi | 44.4 (3) | Li3ii—Cl1—Li3vi | 109.5 |
Li1xxv—Li3—O1xxvi | 73.9 (4) | Li3v—Cl1—Li3vi | 109.468 (2) |
O1xxv—Li3—O1xxvi | 118.2 (5) | Li3—Cl1—Li1 | 125.266 (1) |
O2xxii—Li3—O1vi | 66.68 (17) | Li3ii—Cl1—Li1 | 125.266 (4) |
O2xxiii—Li3—O1vi | 157 (2) | Li3v—Cl1—Li1 | 54.734 (1) |
O2xxiv—Li3—O1vi | 71.5 (2) | Li3vi—Cl1—Li1 | 54.734 (2) |
Cl1—Li3—O1vi | 82.2 (11) | Li3—Cl1—Li1xxvi | 54.736 (2) |
Li1vi—Li3—O1vi | 44.4 (3) | Li3ii—Cl1—Li1xxvi | 125.264 (3) |
Li1xxvi—Li3—O1vi | 73.9 (4) | Li3v—Cl1—Li1xxvi | 54.736 (2) |
Li1xxv—Li3—O1vi | 149 (2) | Li3vi—Cl1—Li1xxvi | 125.264 (2) |
O1xxv—Li3—O1vi | 118.2 (5) | Li1—Cl1—Li1xxvi | 90.000 (3) |
O1xxvi—Li3—O1vi | 118.2 (5) | Li3—Cl1—Li1ix | 125.264 (5) |
O2xxii—Li3—Li2xl | 45.2 (8) | Li3ii—Cl1—Li1ix | 54.736 (1) |
O2xxiii—Li3—Li2xl | 105.2 (6) | Li3v—Cl1—Li1ix | 54.736 (2) |
O2xxiv—Li3—Li2xl | 137.0 (11) | Li3vi—Cl1—Li1ix | 125.264 (4) |
Cl1—Li3—Li2xl | 79.1 (13) | Li1—Cl1—Li1ix | 90.000 (3) |
Li1vi—Li3—Li2xl | 113.8 (9) | Li1xxvi—Cl1—Li1ix | 90.0 |
Li1xxvi—Li3—Li2xl | 7.8 (17) | Li3—Cl1—Li1xxv | 54.736 (2) |
Li1xxv—Li3—Li2xl | 113.8 (9) | Li3ii—Cl1—Li1xxv | 125.264 (1) |
O1xxv—Li3—Li2xl | 155.6 (18) | Li3v—Cl1—Li1xxv | 125.264 (2) |
O1xxvi—Li3—Li2xl | 43.86 (15) | Li3vi—Cl1—Li1xxv | 54.736 (2) |
O1vi—Li3—Li2xl | 74.5 (3) | Li1—Cl1—Li1xxv | 90.000 (3) |
O2xxii—Li3—Li2xli | 105.2 (6) | Li1xxvi—Cl1—Li1xxv | 90.0 |
O2xxiii—Li3—Li2xli | 137.0 (11) | Li1ix—Cl1—Li1xxv | 180.0 |
O2xxiv—Li3—Li2xli | 45.2 (8) | Li3—Cl1—Li1x | 125.264 (1) |
Cl1—Li3—Li2xli | 79.1 (13) | Li3ii—Cl1—Li1x | 54.736 (1) |
Li1vi—Li3—Li2xli | 7.8 (17) | Li3v—Cl1—Li1x | 125.264 (4) |
Li1xxvi—Li3—Li2xli | 113.8 (9) | Li3vi—Cl1—Li1x | 54.736 (1) |
Li1xxv—Li3—Li2xli | 113.8 (9) | Li1—Cl1—Li1x | 90.000 (4) |
O1xxv—Li3—Li2xli | 74.5 (3) | Li1xxvi—Cl1—Li1x | 180.0 |
O1xxvi—Li3—Li2xli | 155.6 (18) | Li1ix—Cl1—Li1x | 90.000 (2) |
O1vi—Li3—Li2xli | 43.86 (15) | Li1xxv—Cl1—Li1x | 90.0 |
Li2xl—Li3—Li2xli | 116.5 (8) | Li3—Cl1—Li1vi | 54.734 (2) |
O1xxvii—Li4—O1xxviii | 96.6 (15) | Li3ii—Cl1—Li1vi | 54.734 (3) |
O1xxvii—Li4—O1xxix | 96.6 (15) | Li3v—Cl1—Li1vi | 125.266 (2) |
O1xxviii—Li4—O1xxix | 96.6 (15) | Li3vi—Cl1—Li1vi | 125.266 (1) |
O1xxvii—Li4—Cl2 | 120.5 (12) | Li1—Cl1—Li1vi | 180.0 |
O1xxviii—Li4—Cl2 | 120.5 (12) | Li1xxvi—Cl1—Li1vi | 90.000 (5) |
O1xxix—Li4—Cl2 | 120.5 (12) | Li1ix—Cl1—Li1vi | 90.0 |
O1xxvii—Li4—Li2xvi | 140.6 (8) | Li1xxv—Cl1—Li1vi | 90.000 (4) |
O1xxviii—Li4—Li2xvi | 51.7 (10) | Li1x—Cl1—Li1vi | 90.000 (1) |
O1xxix—Li4—Li2xvi | 108.6 (5) | Li4—Cl2—Li4liv | 109.474 (11) |
Cl2—Li4—Li2xvi | 71.9 (15) | Li4—Cl2—Li4xvi | 109.470 (2) |
O1xxvii—Li4—Li2xlii | 108.6 (5) | Li4liv—Cl2—Li4xvi | 109.470 (3) |
O1xxviii—Li4—Li2xlii | 140.6 (8) | Li4—Cl2—Li4xv | 109.470 (6) |
O1xxix—Li4—Li2xlii | 51.7 (10) | Li4liv—Cl2—Li4xv | 109.5 |
Cl2—Li4—Li2xlii | 71.9 (15) | Li4xvi—Cl2—Li4xv | 109.474 (7) |
Li2xvi—Li4—Li2xlii | 110.8 (14) | Li4—Cl2—Li2 | 125.263 (4) |
O1xxvii—Li4—Li2xliii | 51.7 (10) | Li4liv—Cl2—Li2 | 125.263 (12) |
O1xxviii—Li4—Li2xliii | 108.6 (5) | Li4xvi—Cl2—Li2 | 54.737 (7) |
O1xxix—Li4—Li2xliii | 140.6 (8) | Li4xv—Cl2—Li2 | 54.737 (6) |
Cl2—Li4—Li2xliii | 71.9 (15) | | |
Symmetry codes: (i) −x+1/2, −y+1, z−1/2; (ii) x, −y+1/2, −z+1/2; (iii) −x, −y+1/2, z−1/2; (iv) −x, y, −z+1; (v) −x+1/2, y, −z+1/2; (vi) −x+1/2, −y+1/2, z; (vii) x−1, −y+1, −z+1; (viii) x−1, y−1/2, z−1/2; (ix) y, z, x; (x) z, x, y; (xi) x+1/2, −y+1, −z+3/2; (xii) x+1/2, y+1/2, z; (xiii) −x+1/2, y+1/2, −z+1; (xiv) −x+1/2, −y+1, z+1/2; (xv) −x+3/2, y, −z+3/2; (xvi) −x+3/2, −y+3/2, z; (xvii) x, −y+1, −z+1; (xviii) x, y+1/2, z+1/2; (xix) −y+1/2, z+1/2, −x+1; (xx) z+1/2, −x+1, −y+1/2; (xxi) z+1/2, x+1/2, y+1; (xxii) −z+1, x+1/2, −y+1/2; (xxiii) −y+1/2, −z+1, x+1/2; (xxiv) x+1/2, −y+1/2, −z+1; (xxv) −y+1/2, z, −x+1/2; (xxvi) z, −x+1/2, −y+1/2; (xxvii) −z+1, x+1, −y+1; (xxviii) x+1, −y+1, −z+1; (xxix) −y+1, −z+1, x+1; (xxx) −x+1, y+1/2, −z+3/2; (xxxi) y+1/2, −z+3/2, −x+1; (xxxii) −z+3/2, −x+1, y+1/2; (xxxiii) −y+1, z+1, −x+1; (xxxiv) −x+1, −y+1, z+1; (xxxv) y+1/2, z, x+1/2; (xxxvi) z, x+1/2, y+1/2; (xxxvii) z, −x, −y; (xxxviii) −y+1/2, z−1/2, −x; (xxxix) −y+1/2, −z+1/2, x; (xl) z−1/2, x, y−1/2; (xli) x, y−1/2, z−1/2; (xlii) −y+3/2, z, −x+3/2; (xliii) z, −x+3/2, −y+3/2; (xliv) −x+1, y−1, −z+1; (xlv) −x+1, −y+1, z−1; (xlvi) z−1/2, x−1/2, y−1; (xlvii) −y+1, z−1/2, −x+1/2; (xlviii) y−1/2, z−1, x−1/2; (xlix) z−1/2, −x+1/2, −y+1; (l) x−1/2, y−1/2, z; (li) −x, −y+1/2, z+1/2; (lii) x−1/2, −y+1/2, −z+1; (liii) −x+1, y−1/2, −z+3/2; (liv) x, −y+3/2, −z+3/2. |
Sodium aluminoboracite (kjh230804yoshinoN4_0m_a)
top Crystal data top Na3.92B4Al3O12Cl0.92 | Cu Kα radiation, λ = 1.54178 Å |
Mr = 438.91 | Cell parameters from 3423 reflections |
Cubic, F43c | θ = 4.6–74.3° |
a = 13.5904 (1) Å | µ = 6.78 mm−1 |
V = 2510.13 (6) Å3 | T = 294 K |
Z = 8 | Plate, colorless |
F(000) = 1728 | 0.08 × 0.06 × 0.04 mm |
Dx = 2.323 Mg m−3 | |
Data collection top Bruker D8 goniometer diffractometer | 218 independent reflections |
Radiation source: sealed tube | 216 reflections with I > 2σ(I) |
Detector resolution: 7.3910 pixels mm-1 | Rint = 0.027 |
ω scans | θmax = 74.3°, θmin = 6.5° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −16→16 |
Tmin = 0.66, Tmax = 0.75 | k = −16→16 |
4504 measured reflections | l = −16→14 |
Refinement top Refinement on F2 | 1 restraint |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0311P)2 + 4.0293P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.022 | (Δ/σ)max < 0.001 |
wR(F2) = 0.055 | Δρmax = 0.15 e Å−3 |
S = 1.20 | Δρmin = −0.45 e Å−3 |
218 reflections | Absolute structure: Flack x determined using 89 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
27 parameters | Absolute structure parameter: 0.01 (3) |
Special details top Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | Occ. (<1) |
Na1 | 0.0340 (3) | 0.250000 | 0.250000 | 0.0422 (14) | 0.499 (4) |
Na2 | 0.3606 (4) | 0.3606 (4) | 0.3606 (4) | 0.017 (2) | 0.231 (6) |
B1 | 0.1039 (2) | 0.1039 (2) | 0.1039 (2) | 0.0143 (9) | |
Al1 | 0.250000 | 0.000000 | 0.000000 | 0.0095 (4) | |
O1 | 0.03513 (13) | 0.10047 (12) | 0.17745 (12) | 0.0176 (5) | |
Cl1 | 0.250000 | 0.250000 | 0.250000 | 0.0350 (9) | 0.920 (10) |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Na1 | 0.096 (4) | 0.0127 (18) | 0.0182 (19) | 0.000 | 0.000 | −0.0066 (17) |
Na2 | 0.017 (2) | 0.017 (2) | 0.017 (2) | −0.0006 (18) | −0.0006 (18) | −0.0006 (18) |
B1 | 0.0143 (9) | 0.0143 (9) | 0.0143 (9) | 0.0015 (12) | 0.0015 (12) | 0.0015 (12) |
Al1 | 0.0096 (6) | 0.0095 (5) | 0.0095 (5) | 0.000 | 0.000 | 0.000 |
O1 | 0.0189 (9) | 0.0149 (8) | 0.0188 (8) | 0.0060 (6) | 0.0102 (8) | 0.0061 (7) |
Cl1 | 0.0350 (9) | 0.0350 (9) | 0.0350 (9) | 0.000 | 0.000 | 0.000 |
Geometric parameters (Å, º) top Na1—Na1i | 0.923 (8) | Na2—O1x | 2.484 (5) |
Na1—O1ii | 2.2588 (16) | Na2—Cl1 | 2.605 (9) |
Na1—O1 | 2.2588 (16) | Na2—O1xi | 2.913 (2) |
Na1—O1iii | 2.446 (2) | Na2—O1v | 2.913 (2) |
Na1—O1i | 2.446 (2) | Na2—O1xii | 2.913 (2) |
Na1—Na2iv | 2.564 (4) | Na2—Al1xiii | 3.072 (4) |
Na1—Na2v | 2.564 (4) | Na2—Al1xiv | 3.072 (4) |
Na1—Cl1 | 2.936 (4) | B1—O1xv | 1.3692 (15) |
Na1—B1ii | 2.965 (3) | B1—O1xvi | 1.3692 (15) |
Na1—B1 | 2.965 (3) | B1—O1 | 1.3693 (15) |
Na1—Na2vi | 3.174 (3) | Al1—O1xvii | 1.7506 (16) |
Na1—Na2vii | 3.174 (3) | Al1—O1xviii | 1.7506 (16) |
Na2—O1viii | 2.484 (5) | Al1—O1xvi | 1.7506 (16) |
Na2—O1ix | 2.484 (5) | Al1—O1xix | 1.7506 (16) |
| | | |
Na1i—Na1—O1ii | 90.40 (11) | O1—B1—Na1 | 46.75 (14) |
Na1i—Na1—O1 | 90.40 (11) | O1xv—B1—Na1xv | 46.75 (14) |
O1ii—Na1—O1 | 179.2 (2) | O1xvi—B1—Na1xv | 87.53 (15) |
Na1i—Na1—O1iii | 67.42 (9) | O1—B1—Na1xv | 135.5 (3) |
O1ii—Na1—O1iii | 90.15 (4) | Na1—B1—Na1xv | 88.88 (15) |
O1—Na1—O1iii | 90.15 (4) | O1xv—B1—Na1xvi | 135.5 (3) |
Na1i—Na1—O1i | 67.42 (9) | O1xvi—B1—Na1xvi | 46.75 (14) |
O1ii—Na1—O1i | 90.15 (4) | O1—B1—Na1xvi | 87.53 (15) |
O1—Na1—O1i | 90.15 (4) | Na1—B1—Na1xvi | 88.88 (15) |
O1iii—Na1—O1i | 134.84 (18) | Na1xv—B1—Na1xvi | 88.88 (15) |
Na1i—Na1—Na2iv | 124.0 (2) | O1xvii—Al1—O1xviii | 108.49 (6) |
O1ii—Na1—Na2iv | 74.01 (7) | O1xvii—Al1—O1xvi | 111.44 (11) |
O1—Na1—Na2iv | 105.53 (9) | O1xviii—Al1—O1xvi | 108.49 (6) |
O1iii—Na1—Na2iv | 59.39 (18) | O1xvii—Al1—O1xix | 108.49 (6) |
O1i—Na1—Na2iv | 159.73 (13) | O1xviii—Al1—O1xix | 111.44 (11) |
Na1i—Na1—Na2v | 124.0 (2) | O1xvi—Al1—O1xix | 108.49 (6) |
O1ii—Na1—Na2v | 105.53 (9) | O1xvii—Al1—Na2ii | 157.64 (7) |
O1—Na1—Na2v | 74.01 (7) | O1xviii—Al1—Na2ii | 53.95 (9) |
O1iii—Na1—Na2v | 159.73 (13) | O1xvi—Al1—Na2ii | 68.08 (15) |
O1i—Na1—Na2v | 59.39 (18) | O1xix—Al1—Na2ii | 92.12 (11) |
Na2iv—Na1—Na2v | 112.1 (4) | O1xvii—Al1—Na2xx | 68.08 (15) |
Na1i—Na1—Cl1 | 180.0 | O1xviii—Al1—Na2xx | 92.12 (11) |
O1ii—Na1—Cl1 | 89.60 (11) | O1xvi—Al1—Na2xx | 157.64 (7) |
O1—Na1—Cl1 | 89.60 (11) | O1xix—Al1—Na2xx | 53.95 (9) |
O1iii—Na1—Cl1 | 112.58 (9) | Na2ii—Al1—Na2xx | 121.4 (3) |
O1i—Na1—Cl1 | 112.58 (9) | O1xvii—Al1—Na2xxi | 92.12 (11) |
Na2iv—Na1—Cl1 | 56.0 (2) | O1xviii—Al1—Na2xxi | 157.64 (7) |
Na2v—Na1—Cl1 | 56.0 (2) | O1xvi—Al1—Na2xxi | 53.95 (9) |
Na1i—Na1—B1ii | 108.69 (11) | O1xix—Al1—Na2xxi | 68.08 (15) |
O1ii—Na1—B1ii | 26.20 (7) | Na2ii—Al1—Na2xxi | 103.87 (13) |
O1—Na1—B1ii | 153.23 (14) | Na2xx—Al1—Na2xxi | 103.87 (13) |
O1iii—Na1—B1ii | 114.17 (5) | O1xvii—Al1—Na2xxii | 53.95 (9) |
O1i—Na1—B1ii | 80.59 (6) | O1xviii—Al1—Na2xxii | 68.08 (15) |
Na2iv—Na1—B1ii | 79.69 (9) | O1xvi—Al1—Na2xxii | 92.12 (11) |
Na2v—Na1—B1ii | 79.69 (9) | O1xix—Al1—Na2xxii | 157.64 (7) |
Cl1—Na1—B1ii | 71.31 (11) | Na2ii—Al1—Na2xxii | 103.87 (13) |
Na1i—Na1—B1 | 108.68 (11) | Na2xx—Al1—Na2xxii | 103.87 (13) |
O1ii—Na1—B1 | 153.23 (14) | Na2xxi—Al1—Na2xxii | 121.4 (3) |
O1—Na1—B1 | 26.20 (7) | O1xvii—Al1—Na1xxiii | 67.96 (7) |
O1iii—Na1—B1 | 80.59 (6) | O1xviii—Al1—Na1xxiii | 137.41 (6) |
O1i—Na1—B1 | 114.17 (5) | O1xvi—Al1—Na1xxiii | 112.04 (7) |
Na2iv—Na1—B1 | 79.69 (9) | O1xix—Al1—Na1xxiii | 42.59 (6) |
Na2v—Na1—B1 | 79.69 (9) | Na2ii—Al1—Na1xxiii | 133.95 (9) |
Cl1—Na1—B1 | 71.32 (11) | Na2xx—Al1—Na1xxiii | 46.05 (9) |
B1ii—Na1—B1 | 142.6 (2) | Na2xxi—Al1—Na1xxiii | 58.13 (7) |
Na1i—Na1—Na2vi | 42.07 (17) | Na2xxii—Al1—Na1xxiii | 121.87 (7) |
O1ii—Na1—Na2vi | 129.7 (2) | O1xvii—Al1—Na1xvii | 35.94 (5) |
O1—Na1—Na2vi | 51.10 (16) | O1xviii—Al1—Na1xvii | 80.49 (8) |
O1iii—Na1—Na2vi | 60.81 (7) | O1xvi—Al1—Na1xvii | 144.06 (5) |
O1i—Na1—Na2vi | 85.28 (12) | O1xix—Al1—Na1xvii | 99.51 (8) |
Na2iv—Na1—Na2vi | 114.50 (19) | Na2ii—Al1—Na1xvii | 133.95 (9) |
Na2v—Na1—Na2vi | 114.50 (19) | Na2xx—Al1—Na1xvii | 46.05 (9) |
Cl1—Na1—Na2vi | 137.93 (17) | Na2xxi—Al1—Na1xvii | 121.87 (7) |
B1ii—Na1—Na2vi | 150.8 (2) | Na2xxii—Al1—Na1xvii | 58.13 (7) |
B1—Na1—Na2vi | 66.6 (2) | Na1xxiii—Al1—Na1xvii | 74.52 (12) |
Na1i—Na1—Na2vii | 42.07 (17) | O1xvii—Al1—Na1xvi | 144.06 (5) |
O1ii—Na1—Na2vii | 51.10 (16) | O1xviii—Al1—Na1xvi | 99.51 (8) |
O1—Na1—Na2vii | 129.7 (2) | O1xvi—Al1—Na1xvi | 35.94 (5) |
O1iii—Na1—Na2vii | 85.28 (12) | O1xix—Al1—Na1xvi | 80.49 (8) |
O1i—Na1—Na2vii | 60.81 (7) | Na2ii—Al1—Na1xvi | 46.05 (9) |
Na2iv—Na1—Na2vii | 114.50 (19) | Na2xx—Al1—Na1xvi | 133.95 (9) |
Na2v—Na1—Na2vii | 114.50 (19) | Na2xxi—Al1—Na1xvi | 58.13 (7) |
Cl1—Na1—Na2vii | 137.93 (17) | Na2xxii—Al1—Na1xvi | 121.87 (7) |
B1ii—Na1—Na2vii | 66.6 (2) | Na1xxiii—Al1—Na1xvi | 105.48 (12) |
B1—Na1—Na2vii | 150.8 (2) | Na1xvii—Al1—Na1xvi | 180.00 (12) |
Na2vi—Na1—Na2vii | 84.1 (3) | O1xvii—Al1—Na1xv | 112.04 (7) |
O1viii—Na2—O1ix | 92.3 (2) | O1xviii—Al1—Na1xv | 42.59 (6) |
O1viii—Na2—O1x | 92.3 (2) | O1xvi—Al1—Na1xv | 67.96 (7) |
O1ix—Na2—O1x | 92.3 (2) | O1xix—Al1—Na1xv | 137.41 (6) |
O1viii—Na2—Na1xi | 108.59 (7) | Na2ii—Al1—Na1xv | 46.05 (9) |
O1ix—Na2—Na1xi | 143.23 (13) | Na2xx—Al1—Na1xv | 133.95 (9) |
O1x—Na2—Na1xi | 57.95 (8) | Na2xxi—Al1—Na1xv | 121.87 (7) |
O1viii—Na2—Na1xii | 57.95 (8) | Na2xxii—Al1—Na1xv | 58.13 (7) |
O1ix—Na2—Na1xii | 108.59 (7) | Na1xxiii—Al1—Na1xv | 180.0 |
O1x—Na2—Na1xii | 143.23 (13) | Na1xvii—Al1—Na1xv | 105.48 (12) |
Na1xi—Na2—Na1xii | 108.1 (2) | Na1xvi—Al1—Na1xv | 74.52 (12) |
O1viii—Na2—Na1v | 143.23 (13) | B1—O1—Al1xv | 128.59 (12) |
O1ix—Na2—Na1v | 57.95 (8) | B1—O1—Na1 | 107.1 (2) |
O1x—Na2—Na1v | 108.59 (7) | Al1xv—O1—Na1 | 117.00 (8) |
Na1xi—Na2—Na1v | 108.1 (2) | B1—O1—Na1i | 121.89 (16) |
Na1xii—Na2—Na1v | 108.1 (2) | Al1xv—O1—Na1i | 108.44 (8) |
O1viii—Na2—Cl1 | 123.62 (17) | Na1—O1—Na1i | 22.18 (18) |
O1ix—Na2—Cl1 | 123.62 (17) | B1—O1—Na2vi | 119.5 (2) |
O1x—Na2—Cl1 | 123.62 (17) | Al1xv—O1—Na2vi | 91.32 (7) |
Na1xi—Na2—Cl1 | 69.2 (2) | Na1—O1—Na2vi | 83.85 (18) |
Na1xii—Na2—Cl1 | 69.2 (2) | Na1i—O1—Na2vi | 62.66 (18) |
Na1v—Na2—Cl1 | 69.2 (2) | B1—O1—Na2v | 106.6 (3) |
O1viii—Na2—O1xi | 62.95 (7) | Al1xv—O1—Na2v | 78.04 (18) |
O1ix—Na2—O1xi | 151.5 (3) | Na1—O1—Na2v | 57.80 (10) |
O1x—Na2—O1xi | 75.84 (7) | Na1i—O1—Na2v | 72.03 (7) |
Na1xi—Na2—O1xi | 48.20 (5) | Na2vi—O1—Na2v | 127.14 (10) |
Na1xii—Na2—O1xi | 71.49 (6) | Na2ii—Cl1—Na2iv | 109.5 |
Na1v—Na2—O1xi | 150.4 (3) | Na2ii—Cl1—Na2v | 109.5 |
Cl1—Na2—O1xi | 83.80 (18) | Na2iv—Cl1—Na2v | 109.5 |
O1viii—Na2—O1v | 151.5 (3) | Na2ii—Cl1—Na2 | 109.471 (1) |
O1ix—Na2—O1v | 75.84 (7) | Na2iv—Cl1—Na2 | 109.471 (1) |
O1x—Na2—O1v | 62.95 (7) | Na2v—Cl1—Na2 | 109.5 |
Na1xi—Na2—O1v | 71.49 (6) | Na2ii—Cl1—Na1 | 125.3 |
Na1xii—Na2—O1v | 150.4 (3) | Na2iv—Cl1—Na1 | 54.7 |
Na1v—Na2—O1v | 48.20 (5) | Na2v—Cl1—Na1 | 54.7 |
Cl1—Na2—O1v | 83.80 (18) | Na2—Cl1—Na1 | 125.3 |
O1xi—Na2—O1v | 118.85 (6) | Na2ii—Cl1—Na1xi | 125.3 |
O1viii—Na2—O1xii | 75.84 (7) | Na2iv—Cl1—Na1xi | 54.7 |
O1ix—Na2—O1xii | 62.95 (7) | Na2v—Cl1—Na1xi | 125.3 |
O1x—Na2—O1xii | 151.5 (3) | Na2—Cl1—Na1xi | 54.7 |
Na1xi—Na2—O1xii | 150.4 (3) | Na1—Cl1—Na1xi | 90.0 |
Na1xii—Na2—O1xii | 48.20 (5) | Na2ii—Cl1—Na1xv | 54.7 |
Na1v—Na2—O1xii | 71.49 (6) | Na2iv—Cl1—Na1xv | 54.7 |
Cl1—Na2—O1xii | 83.80 (18) | Na2v—Cl1—Na1xv | 125.3 |
O1xi—Na2—O1xii | 118.85 (6) | Na2—Cl1—Na1xv | 125.3 |
O1v—Na2—O1xii | 118.85 (6) | Na1—Cl1—Na1xv | 90.0 |
O1viii—Na2—Al1xiii | 117.7 (3) | Na1xi—Cl1—Na1xv | 90.0 |
O1ix—Na2—Al1xiii | 69.15 (13) | Na2ii—Cl1—Na1xii | 125.3 |
O1x—Na2—Al1xiii | 34.73 (6) | Na2iv—Cl1—Na1xii | 125.3 |
Na1xi—Na2—Al1xiii | 74.34 (5) | Na2v—Cl1—Na1xii | 54.7 |
Na1xii—Na2—Al1xiii | 175.4 (3) | Na2—Cl1—Na1xii | 54.7 |
Na1v—Na2—Al1xiii | 74.34 (5) | Na1—Cl1—Na1xii | 90.0 |
Cl1—Na2—Al1xiii | 115.42 (15) | Na1xi—Cl1—Na1xii | 90.0 |
O1xi—Na2—Al1xiii | 108.42 (8) | Na1xv—Cl1—Na1xii | 180.0 |
O1v—Na2—Al1xiii | 33.89 (4) | Na2ii—Cl1—Na1v | 54.7 |
O1xii—Na2—Al1xiii | 130.79 (12) | Na2iv—Cl1—Na1v | 125.3 |
O1viii—Na2—Al1xiv | 69.15 (13) | Na2v—Cl1—Na1v | 125.3 |
O1ix—Na2—Al1xiv | 34.73 (6) | Na2—Cl1—Na1v | 54.7 |
O1x—Na2—Al1xiv | 117.7 (3) | Na1—Cl1—Na1v | 180.0 |
Na1xi—Na2—Al1xiv | 175.4 (3) | Na1xi—Cl1—Na1v | 90.0 |
Na1xii—Na2—Al1xiv | 74.34 (5) | Na1xv—Cl1—Na1v | 90.0 |
Na1v—Na2—Al1xiv | 74.34 (5) | Na1xii—Cl1—Na1v | 90.0 |
Cl1—Na2—Al1xiv | 115.42 (15) | Na2ii—Cl1—Na1xvi | 54.7 |
O1xi—Na2—Al1xiv | 130.79 (12) | Na2iv—Cl1—Na1xvi | 125.3 |
O1v—Na2—Al1xiv | 108.42 (8) | Na2v—Cl1—Na1xvi | 54.7 |
O1xii—Na2—Al1xiv | 33.89 (4) | Na2—Cl1—Na1xvi | 125.3 |
Al1xiii—Na2—Al1xiv | 102.92 (18) | Na1—Cl1—Na1xvi | 90.0 |
O1xv—B1—O1xvi | 119.993 (7) | Na1xi—Cl1—Na1xvi | 180.0 |
O1xv—B1—O1 | 119.993 (7) | Na1xv—Cl1—Na1xvi | 90.0 |
O1xvi—B1—O1 | 119.993 (7) | Na1xii—Cl1—Na1xvi | 90.0 |
O1xv—B1—Na1 | 87.53 (15) | Na1v—Cl1—Na1xvi | 90.0 |
O1xvi—B1—Na1 | 135.5 (3) | | |
Symmetry codes: (i) −x, z, −y+1/2; (ii) x, −y+1/2, −z+1/2; (iii) −x, −z+1/2, y; (iv) −x+1/2, y, −z+1/2; (v) −x+1/2, −y+1/2, z; (vi) y−1/2, −x+1/2, −z+1/2; (vii) y−1/2, x, z; (viii) −z+1/2, −y+1/2, x+1/2; (ix) x+1/2, −z+1/2, −y+1/2; (x) −y+1/2, x+1/2, −z+1/2; (xi) z, −x+1/2, −y+1/2; (xii) −y+1/2, z, −x+1/2; (xiii) y+1/2, z+1/2, x; (xiv) z+1/2, x, y+1/2; (xv) y, z, x; (xvi) z, x, y; (xvii) z, −x, −y; (xviii) −z+1/2, y, −x; (xix) −z+1/2, −y, x; (xx) x, y−1/2, z−1/2; (xxi) −y+1/2, x−1/2, −z+1/2; (xxii) −y+1/2, −x+1/2, z−1/2; (xxiii) −y+1/2, z−1/2, −x. |
Sodium aluminoboracite (kjh230804yoshinoN4_0m_a_1)
top Crystal data top Na3.92B4Al3O12Cl0.92 | Cu Kα radiation, λ = 1.54178 Å |
Mr = 438.91 | Cell parameters from 3423 reflections |
Cubic, F23 | θ = 4.6–74.3° |
a = 13.5904 (1) Å | µ = 6.78 mm−1 |
V = 2510.13 (6) Å3 | T = 294 K |
Z = 8 | Plate, colorless |
F(000) = 1728 | 0.08 × 0.06 × 0.04 mm |
Dx = 2.323 Mg m−3 | |
Data collection top Bruker D8 goniometer diffractometer | 437 independent reflections |
Radiation source: sealed tube | 355 reflections with I > 2σ(I) |
Detector resolution: 7.3910 pixels mm-1 | Rint = 0.028 |
ω scans | θmax = 74.3°, θmin = 5.6° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −16→16 |
Tmin = 0.66, Tmax = 0.75 | k = −16→16 |
5514 measured reflections | l = −16→14 |
Refinement top Refinement on F2 | 1 restraint |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0396P)2 + 2.0455P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.024 | (Δ/σ)max = 0.006 |
wR(F2) = 0.066 | Δρmax = 0.17 e Å−3 |
S = 1.12 | Δρmin = −0.58 e Å−3 |
437 reflections | Absolute structure: Flack x determined using 142 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013). |
52 parameters | Absolute structure parameter: 0.01 (2) |
Special details top Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | Occ. (<1) |
Na1 | 0.0348 (5) | 0.250000 | 0.250000 | 0.0429 (12) | 0.5 |
Na2 | 0.5331 (5) | 0.750000 | 0.750000 | 0.0430 (12) | 0.5 |
Na3 | 0.3604 (4) | 0.3604 (4) | 0.3604 (4) | 0.015 (2) | 0.226 (7) |
Na4 | 0.8610 (4) | 0.8610 (4) | 0.8610 (4) | 0.020 (2) | 0.235 (7) |
B1 | 0.1039 (3) | 0.1039 (3) | 0.1039 (3) | 0.0149 (10) | |
B2 | 0.6039 (3) | 0.6039 (3) | 0.6039 (3) | 0.0138 (10) | |
Al1 | 0.25008 (10) | 0.000000 | 0.000000 | 0.0099 (3) | |
O1 | 0.03517 (13) | 0.10051 (12) | 0.17740 (13) | 0.0181 (5) | |
O2 | 0.03517 (13) | 0.17741 (13) | 0.60039 (12) | 0.0182 (5) | |
Cl1 | 0.250000 | 0.250000 | 0.250000 | 0.0359 (9) | 0.921 (9) |
Cl2 | 0.750000 | 0.750000 | 0.750000 | 0.0350 (9) | 0.921 (9) |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Na1 | 0.092 (4) | 0.0156 (18) | 0.0210 (19) | 0.000 | 0.000 | −0.0062 (17) |
Na2 | 0.100 (4) | 0.0169 (18) | 0.0118 (17) | 0.000 | 0.000 | −0.0067 (16) |
Na3 | 0.015 (2) | 0.015 (2) | 0.015 (2) | −0.0008 (19) | −0.0008 (19) | −0.0008 (19) |
Na4 | 0.020 (2) | 0.020 (2) | 0.020 (2) | −0.002 (2) | −0.002 (2) | −0.002 (2) |
B1 | 0.0149 (10) | 0.0149 (10) | 0.0149 (10) | 0.0013 (13) | 0.0013 (13) | 0.0013 (13) |
B2 | 0.0138 (10) | 0.0138 (10) | 0.0138 (10) | 0.0030 (13) | 0.0030 (13) | 0.0030 (13) |
Al1 | 0.0100 (5) | 0.0099 (5) | 0.0099 (5) | 0.000 | 0.000 | −0.0001 (4) |
O1 | 0.0192 (9) | 0.0153 (8) | 0.0198 (10) | 0.0061 (7) | 0.0107 (8) | 0.0059 (8) |
O2 | 0.0194 (9) | 0.0196 (10) | 0.0156 (8) | 0.0105 (8) | 0.0056 (7) | 0.0070 (8) |
Cl1 | 0.0359 (9) | 0.0359 (9) | 0.0359 (9) | 0.000 | 0.000 | 0.000 |
Cl2 | 0.0350 (9) | 0.0350 (9) | 0.0350 (9) | 0.000 | 0.000 | 0.000 |
Geometric parameters (Å, º) top Na1—Na2i | 0.922 (6) | Na3—Cl1 | 2.599 (10) |
Na1—O1ii | 2.2585 (18) | Na3—O1xxi | 2.912 (2) |
Na1—O1 | 2.2585 (18) | Na3—O1xxii | 2.912 (2) |
Na1—O2iii | 2.452 (3) | Na3—O1vi | 2.912 (2) |
Na1—O2iv | 2.452 (3) | Na3—Al1xvii | 3.074 (4) |
Na1—Na3v | 2.556 (5) | Na3—Al1xxiii | 3.074 (4) |
Na1—Na3vi | 2.556 (5) | Na4—O1xxiv | 2.480 (6) |
Na1—Cl1 | 2.925 (6) | Na4—O1xxv | 2.480 (6) |
Na1—B1ii | 2.961 (4) | Na4—O1xxvi | 2.480 (6) |
Na1—B1 | 2.961 (4) | Na4—Cl2 | 2.612 (10) |
Na1—Na4vii | 3.182 (5) | Na4—O2xxvii | 2.914 (2) |
Na1—Na4viii | 3.182 (5) | Na4—O2xxviii | 2.914 (2) |
Na2—O2ix | 2.2602 (18) | Na4—O2xxix | 2.914 (2) |
Na2—O2x | 2.2602 (18) | Na4—Al1xxx | 3.069 (4) |
Na2—O1xi | 2.442 (3) | Na4—Al1xxxi | 3.069 (4) |
Na2—O1xii | 2.442 (3) | B1—O1xxxii | 1.3684 (16) |
Na2—Na4xiii | 2.573 (5) | B1—O1xxxiii | 1.3684 (16) |
Na2—Na4xiv | 2.573 (5) | B1—O1 | 1.3684 (16) |
Na2—Cl2 | 2.948 (6) | B2—O2xxxiv | 1.3685 (16) |
Na2—B2xv | 2.969 (4) | B2—O2xxxv | 1.3684 (16) |
Na2—B2 | 2.969 (4) | B2—O2x | 1.3684 (16) |
Na2—Na3xvi | 3.164 (5) | Al1—O2xxxvi | 1.7495 (18) |
Na2—Na3xvii | 3.164 (5) | Al1—O2xxxvii | 1.7495 (18) |
Na3—O2xviii | 2.488 (6) | Al1—O1xxxviii | 1.7522 (18) |
Na3—O2xix | 2.488 (6) | Al1—O1xxxii | 1.7522 (18) |
Na3—O2xx | 2.488 (6) | | |
| | | |
Na2i—Na1—O1ii | 90.14 (17) | Cl2—Na4—O2xxix | 83.7 (2) |
Na2i—Na1—O1 | 90.14 (17) | O2xxvii—Na4—O2xxix | 118.80 (8) |
O1ii—Na1—O1 | 179.7 (3) | O2xxviii—Na4—O2xxix | 118.80 (8) |
Na2i—Na1—O2iii | 67.19 (14) | O1xxiv—Na4—Al1xxx | 118.0 (4) |
O1ii—Na1—O2iii | 90.07 (9) | O1xxv—Na4—Al1xxx | 69.23 (15) |
O1—Na1—O2iii | 90.04 (9) | O1xxvi—Na4—Al1xxx | 34.80 (7) |
Na2i—Na1—O2iv | 67.19 (14) | Na2xxxix—Na4—Al1xxx | 74.23 (8) |
O1ii—Na1—O2iv | 90.04 (9) | Na2xiv—Na4—Al1xxx | 74.23 (8) |
O1—Na1—O2iv | 90.07 (9) | Na2xl—Na4—Al1xxx | 175.4 (4) |
O2iii—Na1—O2iv | 134.4 (3) | Cl2—Na4—Al1xxx | 115.28 (18) |
Na2i—Na1—Na3v | 123.9 (3) | O2xxvii—Na4—Al1xxx | 33.88 (5) |
O1ii—Na1—Na3v | 74.16 (9) | O2xxviii—Na4—Al1xxx | 130.86 (15) |
O1—Na1—Na3v | 105.68 (13) | O2xxix—Na4—Al1xxx | 108.51 (9) |
O2iii—Na1—Na3v | 59.5 (2) | O1xxiv—Na4—Al1xxxi | 34.80 (7) |
O2iv—Na1—Na3v | 159.92 (19) | O1xxv—Na4—Al1xxxi | 118.0 (4) |
Na2i—Na1—Na3vi | 123.9 (3) | O1xxvi—Na4—Al1xxxi | 69.23 (15) |
O1ii—Na1—Na3vi | 105.68 (13) | Na2xxxix—Na4—Al1xxxi | 175.4 (4) |
O1—Na1—Na3vi | 74.16 (9) | Na2xiv—Na4—Al1xxxi | 74.23 (8) |
O2iii—Na1—Na3vi | 159.92 (19) | Na2xl—Na4—Al1xxxi | 74.23 (8) |
O2iv—Na1—Na3vi | 59.5 (2) | Cl2—Na4—Al1xxxi | 115.28 (18) |
Na3v—Na1—Na3vi | 112.2 (5) | O2xxvii—Na4—Al1xxxi | 130.86 (15) |
Na2i—Na1—Cl1 | 180.0 | O2xxviii—Na4—Al1xxxi | 108.51 (9) |
O1ii—Na1—Cl1 | 89.86 (17) | O2xxix—Na4—Al1xxxi | 33.88 (5) |
O1—Na1—Cl1 | 89.86 (17) | Al1xxx—Na4—Al1xxxi | 103.1 (2) |
O2iii—Na1—Cl1 | 112.81 (14) | O1xxxii—B1—O1xxxiii | 119.995 (7) |
O2iv—Na1—Cl1 | 112.81 (14) | O1xxxii—B1—O1 | 119.995 (7) |
Na3v—Na1—Cl1 | 56.1 (3) | O1xxxiii—B1—O1 | 119.992 (7) |
Na3vi—Na1—Cl1 | 56.1 (3) | O1xxxii—B1—Na1xxxii | 46.89 (18) |
Na2i—Na1—B1ii | 108.51 (15) | O1xxxiii—B1—Na1xxxii | 135.4 (3) |
O1ii—Na1—B1ii | 26.25 (9) | O1—B1—Na1xxxii | 87.58 (17) |
O1—Na1—B1ii | 153.5 (2) | O1xxxii—B1—Na1xxxiii | 87.58 (17) |
O2iii—Na1—B1ii | 114.16 (5) | O1xxxiii—B1—Na1xxxiii | 46.89 (18) |
O2iv—Na1—B1ii | 80.61 (6) | O1—B1—Na1xxxiii | 135.4 (3) |
Na3v—Na1—B1ii | 79.81 (13) | Na1xxxii—B1—Na1xxxiii | 88.6 (2) |
Na3vi—Na1—B1ii | 79.81 (13) | O1xxxii—B1—Na1 | 135.4 (3) |
Cl1—Na1—B1ii | 71.49 (15) | O1xxxiii—B1—Na1 | 87.58 (17) |
Na2i—Na1—B1 | 108.51 (15) | O1—B1—Na1 | 46.89 (18) |
O1ii—Na1—B1 | 153.5 (2) | Na1xxxii—B1—Na1 | 88.6 (2) |
O1—Na1—B1 | 26.25 (9) | Na1xxxiii—B1—Na1 | 88.6 (2) |
O2iii—Na1—B1 | 80.61 (6) | O2xxxiv—B2—O2xxxv | 119.993 (8) |
O2iv—Na1—B1 | 114.16 (5) | O2xxxiv—B2—O2x | 119.994 (8) |
Na3v—Na1—B1 | 79.81 (13) | O2xxxv—B2—O2x | 119.995 (8) |
Na3vi—Na1—B1 | 79.81 (13) | O2xxxiv—B2—Na2 | 135.7 (3) |
Cl1—Na1—B1 | 71.49 (15) | O2xxxv—B2—Na2 | 87.51 (17) |
B1ii—Na1—B1 | 143.0 (3) | O2x—B2—Na2 | 46.65 (18) |
Na2i—Na1—Na4vii | 42.1 (2) | O2xxxiv—B2—Na2xxxiii | 46.65 (18) |
O1ii—Na1—Na4vii | 129.4 (3) | O2xxxv—B2—Na2xxxiii | 135.7 (3) |
O1—Na1—Na4vii | 50.85 (19) | O2x—B2—Na2xxxiii | 87.51 (17) |
O2iii—Na1—Na4vii | 60.65 (11) | Na2—B2—Na2xxxiii | 89.2 (2) |
O2iv—Na1—Na4vii | 85.09 (18) | O2xxxiv—B2—Na2xxxii | 87.51 (17) |
Na3v—Na1—Na4vii | 114.45 (17) | O2xxxv—B2—Na2xxxii | 46.65 (18) |
Na3vi—Na1—Na4vii | 114.45 (17) | O2x—B2—Na2xxxii | 135.7 (3) |
Cl1—Na1—Na4vii | 137.9 (2) | Na2—B2—Na2xxxii | 89.2 (2) |
B1ii—Na1—Na4vii | 150.6 (3) | Na2xxxiii—B2—Na2xxxii | 89.2 (2) |
B1—Na1—Na4vii | 66.4 (2) | O2xxxvi—Al1—O2xxxvii | 111.44 (14) |
Na2i—Na1—Na4viii | 42.1 (2) | O2xxxvi—Al1—O1xxxviii | 108.50 (8) |
O1ii—Na1—Na4viii | 50.85 (19) | O2xxxvii—Al1—O1xxxviii | 108.53 (8) |
O1—Na1—Na4viii | 129.4 (3) | O2xxxvi—Al1—O1xxxii | 108.53 (8) |
O2iii—Na1—Na4viii | 85.09 (18) | O2xxxvii—Al1—O1xxxii | 108.50 (8) |
O2iv—Na1—Na4viii | 60.65 (11) | O1xxxviii—Al1—O1xxxii | 111.37 (14) |
Na3v—Na1—Na4viii | 114.45 (17) | O2xxxvi—Al1—Na4xli | 157.72 (8) |
Na3vi—Na1—Na4viii | 114.45 (17) | O2xxxvii—Al1—Na4xli | 68.19 (18) |
Cl1—Na1—Na4viii | 137.9 (2) | O1xxxviii—Al1—Na4xli | 92.00 (14) |
B1ii—Na1—Na4viii | 66.4 (2) | O1xxxii—Al1—Na4xli | 53.90 (9) |
B1—Na1—Na4viii | 150.6 (3) | O2xxxvi—Al1—Na4xlii | 68.19 (18) |
Na4vii—Na1—Na4viii | 84.1 (4) | O2xxxvii—Al1—Na4xlii | 157.72 (8) |
Na1xii—Na2—O2ix | 90.71 (17) | O1xxxviii—Al1—Na4xlii | 53.90 (9) |
Na1xii—Na2—O2x | 90.71 (17) | O1xxxii—Al1—Na4xlii | 92.00 (14) |
O2ix—Na2—O2x | 178.6 (3) | Na4xli—Al1—Na4xlii | 121.1 (4) |
Na1xii—Na2—O1xi | 67.66 (14) | O2xxxvi—Al1—Na3ii | 54.03 (9) |
O2ix—Na2—O1xi | 90.25 (9) | O2xxxvii—Al1—Na3ii | 92.18 (13) |
O2x—Na2—O1xi | 90.29 (9) | O1xxxviii—Al1—Na3ii | 157.61 (8) |
Na1xii—Na2—O1xii | 67.66 (15) | O1xxxii—Al1—Na3ii | 67.99 (17) |
O2ix—Na2—O1xii | 90.29 (9) | Na4xli—Al1—Na3ii | 103.88 (11) |
O2x—Na2—O1xii | 90.25 (9) | Na4xlii—Al1—Na3ii | 103.88 (11) |
O1xi—Na2—O1xii | 135.3 (3) | O2xxxvi—Al1—Na3xliii | 92.18 (13) |
Na1xii—Na2—Na4xiii | 124.0 (3) | O2xxxvii—Al1—Na3xliii | 54.03 (9) |
O2ix—Na2—Na4xiii | 105.33 (14) | O1xxxviii—Al1—Na3xliii | 67.99 (17) |
O2x—Na2—Na4xiii | 73.84 (9) | O1xxxii—Al1—Na3xliii | 157.61 (8) |
O1xi—Na2—Na4xiii | 159.6 (2) | Na4xli—Al1—Na3xliii | 103.88 (11) |
O1xii—Na2—Na4xiii | 59.2 (2) | Na4xlii—Al1—Na3xliii | 103.88 (11) |
Na1xii—Na2—Na4xiv | 124.0 (3) | Na3ii—Al1—Na3xliii | 121.6 (4) |
O2ix—Na2—Na4xiv | 73.84 (9) | O2xxxvi—Al1—Na2xliv | 68.10 (10) |
O2x—Na2—Na4xiv | 105.33 (14) | O2xxxvii—Al1—Na2xliv | 111.93 (11) |
O1xi—Na2—Na4xiv | 59.2 (2) | O1xxxviii—Al1—Na2xliv | 42.50 (8) |
O1xii—Na2—Na4xiv | 159.6 (2) | O1xxxii—Al1—Na2xliv | 137.46 (9) |
Na4xiii—Na2—Na4xiv | 111.9 (5) | Na4xli—Al1—Na2xliv | 133.72 (12) |
Na1xii—Na2—Cl2 | 180.0 | Na4xlii—Al1—Na2xliv | 46.26 (12) |
O2ix—Na2—Cl2 | 89.29 (17) | Na3ii—Al1—Na2xliv | 122.08 (10) |
O2x—Na2—Cl2 | 89.29 (17) | Na3xliii—Al1—Na2xliv | 57.94 (10) |
O1xi—Na2—Cl2 | 112.34 (14) | O2xxxvi—Al1—Na2xlv | 36.03 (6) |
O1xii—Na2—Cl2 | 112.34 (14) | O2xxxvii—Al1—Na2xlv | 144.01 (8) |
Na4xiii—Na2—Cl2 | 56.0 (3) | O1xxxviii—Al1—Na2xlv | 99.67 (11) |
Na4xiv—Na2—Cl2 | 56.0 (3) | O1xxxii—Al1—Na2xlv | 80.31 (10) |
Na1xii—Na2—B2xv | 108.90 (15) | Na4xli—Al1—Na2xlv | 133.72 (12) |
O2ix—Na2—B2xv | 26.12 (9) | Na4xlii—Al1—Na2xlv | 46.26 (12) |
O2x—Na2—B2xv | 152.8 (2) | Na3ii—Al1—Na2xlv | 57.94 (10) |
O1xi—Na2—B2xv | 114.17 (5) | Na3xliii—Al1—Na2xlv | 122.08 (10) |
O1xii—Na2—B2xv | 80.61 (6) | Na2xliv—Al1—Na2xlv | 74.9 (2) |
Na4xiii—Na2—B2xv | 79.56 (13) | O2xxxvi—Al1—Na2xlvi | 144.01 (8) |
Na4xiv—Na2—B2xv | 79.56 (13) | O2xxxvii—Al1—Na2xlvi | 36.03 (6) |
Cl2—Na2—B2xv | 71.10 (15) | O1xxxviii—Al1—Na2xlvi | 80.31 (10) |
Na1xii—Na2—B2 | 108.90 (15) | O1xxxii—Al1—Na2xlvi | 99.67 (11) |
O2ix—Na2—B2 | 152.9 (2) | Na4xli—Al1—Na2xlvi | 46.26 (12) |
O2x—Na2—B2 | 26.12 (9) | Na4xlii—Al1—Na2xlvi | 133.72 (12) |
O1xi—Na2—B2 | 80.61 (6) | Na3ii—Al1—Na2xlvi | 122.08 (10) |
O1xii—Na2—B2 | 114.17 (5) | Na3xliii—Al1—Na2xlvi | 57.94 (10) |
Na4xiii—Na2—B2 | 79.56 (13) | Na2xliv—Al1—Na2xlvi | 105.1 (2) |
Na4xiv—Na2—B2 | 79.56 (13) | Na2xlv—Al1—Na2xlvi | 179.96 (4) |
Cl2—Na2—B2 | 71.10 (15) | O2xxxvi—Al1—Na2xlvii | 111.93 (11) |
B2xv—Na2—B2 | 142.2 (3) | O2xxxvii—Al1—Na2xlvii | 68.10 (10) |
Na1xii—Na2—Na3xvi | 42.1 (2) | O1xxxviii—Al1—Na2xlvii | 137.46 (9) |
O2ix—Na2—Na3xvi | 130.0 (3) | O1xxxii—Al1—Na2xlvii | 42.50 (8) |
O2x—Na2—Na3xvi | 51.37 (19) | Na4xli—Al1—Na2xlvii | 46.26 (12) |
O1xi—Na2—Na3xvi | 61.00 (11) | Na4xlii—Al1—Na2xlvii | 133.72 (12) |
O1xii—Na2—Na3xvi | 85.47 (18) | Na3ii—Al1—Na2xlvii | 57.94 (10) |
Na4xiii—Na2—Na3xvi | 114.53 (18) | Na3xliii—Al1—Na2xlvii | 122.08 (10) |
Na4xiv—Na2—Na3xvi | 114.53 (18) | Na2xliv—Al1—Na2xlvii | 179.96 (12) |
Cl2—Na2—Na3xvi | 137.9 (2) | Na2xlv—Al1—Na2xlvii | 105.1 (2) |
B2xv—Na2—Na3xvi | 151.0 (3) | Na2xlvi—Al1—Na2xlvii | 74.9 (2) |
B2—Na2—Na3xvi | 66.8 (2) | B1—O1—Al1xxxiii | 128.62 (14) |
Na1xii—Na2—Na3xvii | 42.1 (2) | B1—O1—Na1 | 106.9 (3) |
O2ix—Na2—Na3xvii | 51.37 (18) | Al1xxxiii—O1—Na1 | 117.02 (10) |
O2x—Na2—Na3xvii | 130.0 (3) | B1—O1—Na2i | 121.75 (19) |
O1xi—Na2—Na3xvii | 85.47 (18) | Al1xxxiii—O1—Na2i | 108.49 (10) |
O1xii—Na2—Na3xvii | 61.00 (11) | Na1—O1—Na2i | 22.20 (14) |
Na4xiii—Na2—Na3xvii | 114.53 (18) | B1—O1—Na4vii | 119.4 (2) |
Na4xiv—Na2—Na3xvii | 114.53 (18) | Al1xxxiii—O1—Na4vii | 91.30 (7) |
Cl2—Na2—Na3xvii | 137.9 (2) | Na1—O1—Na4vii | 84.2 (2) |
B2xv—Na2—Na3xvii | 66.8 (2) | Na2i—O1—Na4vii | 63.0 (2) |
B2—Na2—Na3xvii | 151.0 (3) | B1—O1—Na3vi | 106.5 (3) |
Na3xvi—Na2—Na3xvii | 84.2 (4) | Al1xxxiii—O1—Na3vi | 78.1 (2) |
O2xviii—Na3—O2xix | 92.1 (3) | Na1—O1—Na3vi | 57.59 (12) |
O2xviii—Na3—O2xx | 92.1 (3) | Na2i—O1—Na3vi | 71.84 (11) |
O2xix—Na3—O2xx | 92.1 (3) | Na4vii—O1—Na3vi | 127.3 (2) |
O2xviii—Na3—Na1vi | 143.25 (16) | B2xlviii—O2—Al1xxii | 128.66 (14) |
O2xix—Na3—Na1vi | 108.65 (10) | B2xlviii—O2—Na2xlviii | 107.2 (3) |
O2xx—Na3—Na1vi | 58.15 (12) | Al1xxii—O2—Na2xlviii | 116.89 (10) |
O2xviii—Na3—Na1xxi | 58.15 (12) | B2xlviii—O2—Na1xlix | 121.99 (19) |
O2xix—Na3—Na1xxi | 143.26 (16) | Al1xxii—O2—Na1xlix | 108.31 (10) |
O2xx—Na3—Na1xxi | 108.65 (10) | Na2xlviii—O2—Na1xlix | 22.10 (14) |
Na1vi—Na3—Na1xxi | 108.1 (3) | B2xlviii—O2—Na3l | 119.5 (2) |
O2xviii—Na3—Na1xxii | 108.65 (10) | Al1xxii—O2—Na3l | 91.29 (7) |
O2xix—Na3—Na1xxii | 58.15 (12) | Na2xlviii—O2—Na3l | 83.4 (2) |
O2xx—Na3—Na1xxii | 143.25 (16) | Na1xlix—O2—Na3l | 62.3 (2) |
Na1vi—Na3—Na1xxii | 108.1 (3) | B2xlviii—O2—Na4li | 106.8 (3) |
Na1xxi—Na3—Na1xxii | 108.1 (3) | Al1xxii—O2—Na4li | 77.9 (2) |
O2xviii—Na3—Cl1 | 123.8 (2) | Na2xlviii—O2—Na4li | 58.00 (12) |
O2xix—Na3—Cl1 | 123.8 (2) | Na1xlix—O2—Na4li | 72.17 (10) |
O2xx—Na3—Cl1 | 123.8 (2) | Na3l—O2—Na4li | 126.9 (2) |
Na1vi—Na3—Cl1 | 69.1 (3) | Na3—Cl1—Na3ii | 109.472 (1) |
Na1xxi—Na3—Cl1 | 69.1 (3) | Na3—Cl1—Na3v | 109.5 |
Na1xxii—Na3—Cl1 | 69.1 (3) | Na3ii—Cl1—Na3v | 109.5 |
O2xviii—Na3—O1xxi | 75.84 (8) | Na3—Cl1—Na3vi | 109.5 |
O2xix—Na3—O1xxi | 151.3 (4) | Na3ii—Cl1—Na3vi | 109.5 |
O2xx—Na3—O1xxi | 62.94 (6) | Na3v—Cl1—Na3vi | 109.5 |
Na1vi—Na3—O1xxi | 71.52 (7) | Na3—Cl1—Na1vi | 54.7 |
Na1xxi—Na3—O1xxi | 48.25 (5) | Na3ii—Cl1—Na1vi | 54.736 (1) |
Na1xxii—Na3—O1xxi | 150.4 (4) | Na3v—Cl1—Na1vi | 125.3 |
Cl1—Na3—O1xxi | 83.9 (2) | Na3vi—Cl1—Na1vi | 125.3 |
O2xviii—Na3—O1xxii | 62.94 (6) | Na3—Cl1—Na1xxii | 54.7 |
O2xix—Na3—O1xxii | 75.84 (8) | Na3ii—Cl1—Na1xxii | 125.3 |
O2xx—Na3—O1xxii | 151.3 (4) | Na3v—Cl1—Na1xxii | 54.7 |
Na1vi—Na3—O1xxii | 150.4 (4) | Na3vi—Cl1—Na1xxii | 125.3 |
Na1xxi—Na3—O1xxii | 71.53 (7) | Na1vi—Cl1—Na1xxii | 90.0 |
Na1xxii—Na3—O1xxii | 48.25 (5) | Na3—Cl1—Na1xxxiii | 125.3 |
Cl1—Na3—O1xxii | 83.9 (2) | Na3ii—Cl1—Na1xxxiii | 54.7 |
O1xxi—Na3—O1xxii | 118.89 (7) | Na3v—Cl1—Na1xxxiii | 54.7 |
O2xviii—Na3—O1vi | 151.3 (4) | Na3vi—Cl1—Na1xxxiii | 125.3 |
O2xix—Na3—O1vi | 62.94 (6) | Na1vi—Cl1—Na1xxxiii | 90.0 |
O2xx—Na3—O1vi | 75.84 (8) | Na1xxii—Cl1—Na1xxxiii | 90.0 |
Na1vi—Na3—O1vi | 48.25 (5) | Na3—Cl1—Na1xxi | 54.7 |
Na1xxi—Na3—O1vi | 150.4 (4) | Na3ii—Cl1—Na1xxi | 125.3 |
Na1xxii—Na3—O1vi | 71.52 (7) | Na3v—Cl1—Na1xxi | 125.3 |
Cl1—Na3—O1vi | 83.9 (2) | Na3vi—Cl1—Na1xxi | 54.7 |
O1xxi—Na3—O1vi | 118.88 (7) | Na1vi—Cl1—Na1xxi | 90.0 |
O1xxii—Na3—O1vi | 118.88 (7) | Na1xxii—Cl1—Na1xxi | 90.0 |
O2xviii—Na3—Al1xvii | 34.68 (7) | Na1xxxiii—Cl1—Na1xxi | 180.0 |
O2xix—Na3—Al1xvii | 69.06 (15) | Na3—Cl1—Na1xxxii | 125.3 |
O2xx—Na3—Al1xvii | 117.4 (4) | Na3ii—Cl1—Na1xxxii | 54.7 |
Na1vi—Na3—Al1xvii | 175.3 (4) | Na3v—Cl1—Na1xxxii | 125.3 |
Na1xxi—Na3—Al1xvii | 74.45 (8) | Na3vi—Cl1—Na1xxxii | 54.7 |
Na1xxii—Na3—Al1xvii | 74.45 (8) | Na1vi—Cl1—Na1xxxii | 90.0 |
Cl1—Na3—Al1xvii | 115.54 (18) | Na1xxii—Cl1—Na1xxxii | 180.0 |
O1xxi—Na3—Al1xvii | 108.38 (9) | Na1xxxiii—Cl1—Na1xxxii | 90.0 |
O1xxii—Na3—Al1xvii | 33.91 (5) | Na1xxi—Cl1—Na1xxxii | 90.0 |
O1vi—Na3—Al1xvii | 130.71 (15) | Na3—Cl1—Na1 | 125.3 |
O2xviii—Na3—Al1xxiii | 117.4 (4) | Na3ii—Cl1—Na1 | 125.264 (1) |
O2xix—Na3—Al1xxiii | 34.68 (7) | Na3v—Cl1—Na1 | 54.7 |
O2xx—Na3—Al1xxiii | 69.06 (15) | Na3vi—Cl1—Na1 | 54.7 |
Na1vi—Na3—Al1xxiii | 74.45 (8) | Na1vi—Cl1—Na1 | 180.0 |
Na1xxi—Na3—Al1xxiii | 175.3 (4) | Na1xxii—Cl1—Na1 | 90.0 |
Na1xxii—Na3—Al1xxiii | 74.45 (8) | Na1xxxiii—Cl1—Na1 | 90.0 |
Cl1—Na3—Al1xxiii | 115.54 (18) | Na1xxi—Cl1—Na1 | 90.0 |
O1xxi—Na3—Al1xxiii | 130.71 (14) | Na1xxxii—Cl1—Na1 | 90.0 |
O1xxii—Na3—Al1xxiii | 108.38 (10) | Na4xiv—Cl2—Na4xv | 109.472 (1) |
O1vi—Na3—Al1xxiii | 33.91 (5) | Na4xiv—Cl2—Na4xiii | 109.470 (1) |
Al1xvii—Na3—Al1xxiii | 102.8 (2) | Na4xv—Cl2—Na4xiii | 109.472 (1) |
O1xxiv—Na4—O1xxv | 92.5 (3) | Na4xiv—Cl2—Na4 | 109.5 |
O1xxiv—Na4—O1xxvi | 92.5 (3) | Na4xv—Cl2—Na4 | 109.470 (2) |
O1xxv—Na4—O1xxvi | 92.5 (3) | Na4xiii—Cl2—Na4 | 109.472 (1) |
O1xxiv—Na4—Na2xxxix | 143.20 (16) | Na4xiv—Cl2—Na2xxxii | 54.7 |
O1xxv—Na4—Na2xxxix | 57.75 (12) | Na4xv—Cl2—Na2xxxii | 54.7 |
O1xxvi—Na4—Na2xxxix | 108.55 (10) | Na4xiii—Cl2—Na2xxxii | 125.264 (2) |
O1xxiv—Na4—Na2xiv | 108.55 (10) | Na4—Cl2—Na2xxxii | 125.3 |
O1xxv—Na4—Na2xiv | 143.20 (16) | Na4xiv—Cl2—Na2xxxix | 125.3 |
O1xxvi—Na4—Na2xiv | 57.75 (12) | Na4xv—Cl2—Na2xxxix | 125.264 (1) |
Na2xxxix—Na4—Na2xiv | 108.2 (3) | Na4xiii—Cl2—Na2xxxix | 54.736 (1) |
O1xxiv—Na4—Na2xl | 57.75 (12) | Na4—Cl2—Na2xxxix | 54.7 |
O1xxv—Na4—Na2xl | 108.55 (10) | Na2xxxii—Cl2—Na2xxxix | 180.0 |
O1xxvi—Na4—Na2xl | 143.20 (16) | Na4xiv—Cl2—Na2xxxiii | 125.264 (1) |
Na2xxxix—Na4—Na2xl | 108.2 (3) | Na4xv—Cl2—Na2xxxiii | 54.736 (1) |
Na2xiv—Na4—Na2xl | 108.2 (3) | Na4xiii—Cl2—Na2xxxiii | 54.7 |
O1xxiv—Na4—Cl2 | 123.5 (2) | Na4—Cl2—Na2xxxiii | 125.264 (1) |
O1xxv—Na4—Cl2 | 123.5 (2) | Na2xxxii—Cl2—Na2xxxiii | 90.0 |
O1xxvi—Na4—Cl2 | 123.5 (2) | Na2xxxix—Cl2—Na2xxxiii | 90.0 |
Na2xxxix—Na4—Cl2 | 69.3 (3) | Na4xiv—Cl2—Na2xl | 54.736 (1) |
Na2xiv—Na4—Cl2 | 69.3 (3) | Na4xv—Cl2—Na2xl | 125.3 |
Na2xl—Na4—Cl2 | 69.3 (3) | Na4xiii—Cl2—Na2xl | 125.264 (1) |
O1xxiv—Na4—O2xxvii | 151.8 (4) | Na4—Cl2—Na2xl | 54.736 (1) |
O1xxv—Na4—O2xxvii | 75.89 (8) | Na2xxxii—Cl2—Na2xl | 90.0 |
O1xxvi—Na4—O2xxvii | 62.98 (6) | Na2xxxix—Cl2—Na2xl | 90.0 |
Na2xxxix—Na4—O2xxvii | 48.16 (5) | Na2xxxiii—Cl2—Na2xl | 180.0 |
Na2xiv—Na4—O2xxvii | 71.42 (7) | Na4xiv—Cl2—Na2 | 54.735 (1) |
Na2xl—Na4—O2xxvii | 150.3 (4) | Na4xv—Cl2—Na2 | 125.265 (1) |
Cl2—Na4—O2xxvii | 83.7 (2) | Na4xiii—Cl2—Na2 | 54.735 (1) |
O1xxiv—Na4—O2xxviii | 75.89 (8) | Na4—Cl2—Na2 | 125.3 |
O1xxv—Na4—O2xxviii | 62.98 (6) | Na2xxxii—Cl2—Na2 | 90.000 (2) |
O1xxvi—Na4—O2xxviii | 151.8 (4) | Na2xxxix—Cl2—Na2 | 90.0 |
Na2xxxix—Na4—O2xxviii | 71.42 (7) | Na2xxxiii—Cl2—Na2 | 90.000 (1) |
Na2xiv—Na4—O2xxviii | 150.3 (4) | Na2xl—Cl2—Na2 | 90.0 |
Na2xl—Na4—O2xxviii | 48.16 (5) | Na4xiv—Cl2—Na2xiv | 125.3 |
Cl2—Na4—O2xxviii | 83.7 (2) | Na4xv—Cl2—Na2xiv | 54.735 (1) |
O2xxvii—Na4—O2xxviii | 118.80 (8) | Na4xiii—Cl2—Na2xiv | 125.265 (1) |
O1xxiv—Na4—O2xxix | 62.98 (6) | Na4—Cl2—Na2xiv | 54.735 (1) |
O1xxv—Na4—O2xxix | 151.8 (4) | Na2xxxii—Cl2—Na2xiv | 90.0 |
O1xxvi—Na4—O2xxix | 75.89 (8) | Na2xxxix—Cl2—Na2xiv | 90.000 (2) |
Na2xxxix—Na4—O2xxix | 150.3 (4) | Na2xxxiii—Cl2—Na2xiv | 90.0 |
Na2xiv—Na4—O2xxix | 48.16 (5) | Na2xl—Cl2—Na2xiv | 90.000 (1) |
Na2xl—Na4—O2xxix | 71.42 (7) | Na2—Cl2—Na2xiv | 180.0 |
Symmetry codes: (i) −x+1/2, −y+1, z−1/2; (ii) x, −y+1/2, −z+1/2; (iii) −x, −y+1/2, z−1/2; (iv) −x, y, −z+1; (v) −x+1/2, y, −z+1/2; (vi) −x+1/2, −y+1/2, z; (vii) x−1, −y+1, −z+1; (viii) x−1, y−1/2, z−1/2; (ix) x+1/2, −y+1, −z+3/2; (x) x+1/2, y+1/2, z; (xi) −x+1/2, y+1/2, −z+1; (xii) −x+1/2, −y+1, z+1/2; (xiii) −x+3/2, y, −z+3/2; (xiv) −x+3/2, −y+3/2, z; (xv) x, −y+3/2, −z+3/2; (xvi) x, −y+1, −z+1; (xvii) x, y+1/2, z+1/2; (xviii) −y+1/2, −z+1, x+1/2; (xix) −z+1, x+1/2, −y+1/2; (xx) x+1/2, −y+1/2, −z+1; (xxi) −y+1/2, z, −x+1/2; (xxii) z, −x+1/2, −y+1/2; (xxiii) y+1/2, z+1/2, x; (xxiv) −y+1, −z+1, x+1; (xxv) −z+1, x+1, −y+1; (xxvi) x+1, −y+1, −z+1; (xxvii) −z+3/2, −x+1, y+1/2; (xxviii) y+1/2, −z+3/2, −x+1; (xxix) −x+1, y+1/2, −z+3/2; (xxx) −y+1, z+1, −x+1; (xxxi) z+1, −x+1, −y+1; (xxxii) z, x, y; (xxxiii) y, z, x; (xxxiv) y+1/2, z, x+1/2; (xxxv) z, x+1/2, y+1/2; (xxxvi) −y+1/2, z−1/2, −x; (xxxvii) −y+1/2, −z+1/2, x; (xxxviii) z, −x, −y; (xxxix) z, −x+3/2, −y+3/2; (xl) −y+3/2, z, −x+3/2; (xli) −x+1, y−1, −z+1; (xlii) −x+1, −y+1, z−1; (xliii) x, y−1/2, z−1/2; (xliv) z−1/2, x−1/2, y−1; (xlv) −y+1, z−1/2, −x+1/2; (xlvi) y−1/2, z−1, x−1/2; (xlvii) z−1/2, −x+1/2, −y+1; (xlviii) x−1/2, y−1/2, z; (xlix) −x, −y+1/2, z+1/2; (l) x−1/2, −y+1/2, −z+1; (li) −x+1, y−1/2, −z+3/2. |
Summary of the observed hhl reflections in Li4B4Al3O12Cl and Na4B4Al3O12Cl top | Li4B4Al3O12Cl | | Na4B4Al3O12Cl | |
| <I/σ(I)> | Number of reflections | <I/σ(I)> | Number of reflections |
No conditions | 14.35 | 325 | 12.14 | 340 |
h even | 30.24 | 153 | 24.96 | 165 |
h odd | 0.21 | 172 | 0.04 | 175 |
l even | 30.24 | 153 | 24.96 | 165 |
l odd | 0.21 | 172 | 0.04 | 175 |
h + l even | 14.35 | 325 | 12.14 | 340 |
h + l odd | 0.00 | 0 | 0.00 | 0 |
Selected bond lengths and angles (Å, °) in A4B4Al3O12Cl crystal structures topSpace group F43c | | | Space group F23 | | |
| A = Li | A = Na | | A = Li | A = Na |
A1—O1 | 2.0828 (17) | 2.2588 (16) | A1—O1 | 2.053 (3) | 2.2585 (18) |
A1—O1i | 2.0828 (17) | 2.446 (2) | A1—O2ii | 2.143 (16) | 2.452 (3) |
| | | A2—O2iii | 2.056 (4) | 2.2602 (18) |
| | | A2—O1iv | 2.132 (16) | 2.442 (3) |
A1—Cl1 | 3.2460 (1) | 2.936 (4) | A1—Cl1 | 2.98 (6) | 2.925 (6) |
| | | A2—Cl2 | 3.03 (6) | 2.948 (6) |
A2—O1v | 2.22 (3) | 2.484 (5) | A3—O2vi | 2.23 (3) | 2.488 (6) |
A2—O1vii | 2.828 (8) | 2.913 (2) | A3—O1vii | 2.824 (8) | 2.912 (2) |
| | | A4—O1viii | 2.23 (3) | 2.480 (6) |
| | | A4—O2ix | 2.826 (8) | 2.914 (2) |
A2—Cl1 | 2.57 (5) | 2.605 (9) | A3—Cl1 | 2.55 (6) | 2.599 (10) |
| | | A4—Cl2 | 2.55 (5) | 2.612 (10) |
B1—O1 | 1.3700 (16) | 1.3693 (15) | B1—O1 | 1.3693 (17) | 1.3684 (16) |
| | | B2—O2x | 1.3702 (17) | 1.3684 (16) |
Al1—O1xi | 1.7533 (17) | 1.7506 (16) | Al1—O1xi | 1.754 (2) | 1.7495 (18) |
| | | Al1—O2xii | 1.754 (2) | 1.7522 (18) |
| | | | | |
B1—O1—Al1xiii | 118.97 (12) | 128.59 (12) | B1—O1—Al1xiii | 119.05 (13) | 128.62 (14) |
| | | B2xiv—O2—Al1vii | 118.94 (13) | 128.66 (14) |
Symmetry code(s): (i) -x, -z+1/2, y; (ii) -x, y, -z+1; (iii) x+1/2, -y+1, -z+3/2; (iv) -x+1/2, -y+1, z+1/2; (v) -y+1/2, x+1/2, -z+1/2; (vi) -z+1, x+1/2, -y+1/2; (vii) z, -x+1/2, -y+1/2; (viii) x+1, -y+1, -z+1; (ix) -x+1, y+1/2, -z+3/2; (x) z, x+1/2, y+1/2; (xi) z, x, y; (xii) -y+1/2, z-1/2, -x; (xiii) y, z, x; (xiv) x-1/2, y-1/2, z. |
Funding information
Funding for this research was provided by: Japan Society for the Promotion of Science (grant No. 19H00828).
References
Bruker (2019). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2021). BIS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Calès, B., Levasseur, A., Fouassier, C., Réau, J. M. & Hagenmuller, P. (1977). Solid State Commun. 24, 323–325. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. Web of Science CrossRef IUCr Journals Google Scholar
Jeitschko, W., Bither, T. A. & Bierstedt, P. E. (1977). Acta Cryst. B33, 2767–2775. CrossRef ICSD CAS IUCr Journals Google Scholar
Kajihara, K., Tezuka, N., Shoji, M., Wakasugi, J., Munakata, H. & Kanamura, K. (2017). Bull. Chem. Soc. Jpn, 90, 1279–1286. CrossRef CAS Google Scholar
Katsumata, T., Aoki, Y., Fushimi, K., Otsuka, K., Ueda, K. & Inaguma, Y. (2022). Solid State Ionics, 380, 115921. CrossRef ICSD Google Scholar
Kaup, K., Bishop, K., Assoud, A., Liu, J. & Nazar, L. F. (2021). J. Am. Chem. Soc. 143, 6952–6961. CrossRef ICSD CAS PubMed Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Levasseur, A., Fouassier, C. & Hagenmuller, P. (1971). Mater. Res. Bull. 6, 15–22. CrossRef CAS Google Scholar
Li, Y. & Holzwarth, N. A. W. (2022). Phys. Rev. Mater. 6, 025401. CrossRef Google Scholar
Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nelmes, R. J. (1974). J. Phys. C.: Solid State Phys. 7, 3840–3854. CrossRef CAS Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Réau, J.-M., Levasseur, A., Magniez, G. & Calès, B. (1976). Mater. Res. Bull. 11, 1087–1090. Google Scholar
Saito, M., Arima, H., Shoji, M., Kizuki, Y., Munakata, H., Kanamura, K. & Kajihara, K. (2021). J. Electrochem. Soc. 168, 040524. CrossRef Google Scholar
Schmid, H. (1965). J. Phys. Chem. Solids, 26, 973–976. CrossRef CAS Google Scholar
Shannon, R. D. (1976). Acta Cryst. A32, 751–767. CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sorokin, N. I. (2015). Phys. Solid State, 57, 314–315. CrossRef CAS Google Scholar
Tezuka, N., Okawa, Y., Kajihara, K. & Kanamura, K. (2017). J. Ceram. Soc. Japan, 125, 348–352. CrossRef CAS Google Scholar
Vlasse, M., Levasseur, A. & Hagenmuller, P. (1981). Solid State Ionics, 2, 33–37. CrossRef ICSD CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
| CRYSTALLOGRAPHIC COMMUNICATIONS |
ISSN: 2056-9890
Open
access