research communications
Crystal structures and Hirshfeld surface analyses of methyl 4-{2,2-dichloro-1-[(E)-phenyldiazenyl]ethenyl}benzoate, methyl 4-{2,2-dichloro-1-[(E)-(4-methylphenyl)diazenyl]ethenyl}benzoate and methyl 4-{2,2-dichloro-1-[(E)-(3,4-dimethylphenyl)diazenyl]ethenyl}benzoate
aOrganic Chemistry Department, Baku State University, Z. Khalilov str. 23, AZ 1148 Baku, Azerbaijan, bDepartment of Analytical and Organic Chemistry, Azerbaijan State Pedagogical University, Uzeyir Hajibeyli str., 68, Baku, Azerbaijan, cPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow, 117198, Russian Federation, dN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, eDepartment of Aircraft Electrics and Electronics, School of Applied Sciences, Cappadocia University, Mustafapaşa, 50420 Ürgüp, Nevşehir, Türkiye, fDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, and gDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np
The crystal structures and Hirshfeld surface analyses of three similar E)-phenyldiazenyl]ethenyl}benzoate, C16H12Cl2N2O2, (I), and methyl 4-{2,2-dichloro-1-[(E)-(4-methylphenyl)diazenyl]ethenyl}benzoate, C17H14Cl2N2O2, (II), crystallize in the P21/c with Z = 4, and methyl 4-{2,2-dichloro-1-[(E)-(3,4-dimethylphenyl)diazenyl]ethenyl}benzoate, C18H16Cl2N2O2, (III), in the P with Z = 2. In the crystal of (I), molecules are linked by C—H⋯N hydrogen bonds, forming chains with C(6) motifs parallel to the b axis. Short intermolecular Cl⋯O contacts of 2.8421 (16) Å and weak van der Waals interactions between these chains stabilize the In (II), molecules are linked by C—H⋯O hydrogen bonds and C—Cl⋯π interactions, forming layers parallel to (010). Weak van der Waals interactions between these layers consolidate the molecular packing. In (III), molecules are linked by C—H⋯π and C—Cl⋯π interactions forming chains parallel to [011]. Furthermore, these chains are connected by C—Cl⋯π interactions parallel to the a axis, forming (01) layers. The stability of the molecular packing is ensured by between these layers.
are reported. Methyl 4-{2,2-dichloro-1-[(1. Chemical context
When manufacturing new insecticides and pesticides, it is important that they are harmless to the environment and humans. This condition is fulfilled for most biopesticides. For example, methylbenzoate is considered to be a bio-insecticide (Mostafiz et al., 2022; Chen et al., 2015; Damalas & Eleftherohorinos, 2011; Goulson, 2013; Naqqash et al., 2016; Zikankuba et al., 2019) and is reported to be less harmful to the human body and the environment. Methylbenzoate is also found as a metabolite in plants and has an attractive odour to insects. At the same time, methyl benzoate is very effective as a pesticide against agricultural and warehouse pests (Isman, 2015, 2020; Pavela, 2016; Pavela & Benelli, 2016). It can therefore be concluded that methyl benzoate and its derivatives might exhibit applications as pesticides and insecticides, and the synthesis of such or related biopesticides is an urgent issue. Taking this into account, we focused on phenylhydrazones that were obtained from the reaction of methyl 4-formylbenzoate with the corresponding phenylhydrazines (Maharramov et al., 2018; Nenajdenko et al., 2020, Shikhaliyev et al., 2018, 2019a,b, 2021a,b,c), and the synthesis of methyl (E)-4-{2,2-dichloro-1-[(substitutedphenyl)diazenyl]vinyl}benzoate derivatives was carried out from the reaction of the latter with CCl4. The here synthesized dichlorodiazadiene derivatives (I), (II) and (III) and arylhydrazo derivatives of α-keto obtained from their solvolysis are intended to be studied in future research as compounds with the above-mentioned properties (Fig. 1).
2. Structural commentary
The central molecular fragment of (I), C1/C2/N1/N2/C3/C11/Cl1/Cl2, is almost planar (Fig. 2), with a root-mean-square (r.m.s.) deviation of fitted atoms from the least-squares plane of 0.0471 Å. This plane forms dihedral angles of 23.39 (6) and 56.98 (4)°, respectively, with the planes of the phenyl (C11–C16) and methyl benzoate (C3–C8) rings. The central molecular fragment of (II), C1/C2/N2/N1/C3/C11/Cl1/Cl2, is likewise planar with an r.m.s. deviation of fitted atoms of 0.0680 Å (Fig. 3) and makes dihedral angles of 14.87 (8) and 70.88 (3)°, respectively, with the planes of the 4-methylphenyl (C11–C16) and methyl benzoate (C3–C8) rings. The central molecular fragment of (III), C1/C2/N1/N2/C3/C11/Cl1/Cl2 (r.m.s. deviation of fitted atoms = 0.0261 Å; Fig. 4) forms dihedral angles of 7.59 (6) and 69.58 (3)°, respectively, with the planes of the 3,4-dimethylphenyl (C11–C16) and methyl benzoate (C3–C8) rings.
All bond lengths and angles in (I), (II) and (III) are in agreement with those reported for the related discussed in the Database survey section.
3. Supramolecular features and Hirshfeld surface analysis
In the crystal of (I), molecules are linked by C—H⋯N hydrogen bonds, forming chains with C(6) motifs (Bernstein et al., 1995) extending parallel to the b axis. Short intermolecular Cl1⋯O1(−x, − + y, − z) contacts of 2.8421 (16) Å and weak van der Waals interactions between these chains stabilize the (Table 1; Fig. 5). In the crystal of (II), molecules are linked by C—H⋯O hydrogen bonds and C—Cl⋯π interactions [C2—Cl2⋯Cg1a: Cl2⋯Cg1a = 3.5596 (8) Å, C2—Cl2⋯Cg1a = 101.11 (6)°; symmetry code (a) x, − y, − + z; Cg1 is the centroid of the C3–C8 benzene ring], forming layers parallel to (010) (Table 2; Fig. 6). Weak van der Waals interactions between these layers stabilize the molecular packing. In the crystal of (III), molecules are linked by C—H⋯π and C—Cl⋯π interactions, forming chains parallel to [011]. Furthermore, these chains are connected by C—Cl⋯π interactions [C2—Cl1⋯Cg2a: Cl1⋯Cg2a = 3.5398 (8) Å, C2—Cl1⋯Cg2a = 92.51 (5)°; C2—Cl2⋯Cg2b: Cl2⋯Cg2b = 3.9545 (8) Å, C2—Cl2⋯Cg2b = 88.18 (5)°; symmetry codes (a) −x, −y, 1 − z; (b) 1 − x, −y, 1 − z; Cg2 is the centroid of the 3,4-dimethylphenyl ring (C11–C16)] parallel to the a axis, forming layers parallel to (01) (Table 3; Figs. 7, 8 and 9). The stability of the molecular packing is ensured by between these layers.
|
|
To quantify intermolecular interactions between the molecules in the crystal structures of (I), (II) and (III), Hirshfeld surface analyses were performed, together with two-dimensional fingerprint plots by using CrystalExplorer (Spackman et al., 2021). The two-dimensional fingerprint plots are shown in Fig. 10. Comparative interactions calculated for each compound are given in Table 3. The dominant interactions in the crystal packing of the title compounds are H⋯H [(I): 33.5%, (II): 39.7% and (III): 37.0%], Cl⋯H/H⋯Cl [(I): 20.5%, (II): 14.4% and (III): 19.1%], C⋯H/H⋯C [(I): 14.3%, (II): 14.5% and (III):16.0%] and O⋯H/H⋯O [(I): 8.1%, (II): 6.6% and (III): 8.7%]. These interactions play a crucial role in the overall stabilization of the crystal packing. The presence of different functional groups in the compounds leads to some differences in the remaining weak interactions.
4. Database survey
A search of the Cambridge Structural Database (CSD, version 5.42, update of September 2021; Groom et al., 2016) for the (E)-1-(2,2-dichloro-1-phenylethenyl)-2-phenyldiazene moiety resulted in 36 hits. Eighteen compounds are closely related to the title compound, viz. those with CSD refcodes NIKXEO (Maharramov et al., 2023), NIKXIS (Maharramov et al., 2023), NIKXOY (Maharramov et al., 2023), NIKXUE (Maharramov et al., 2023), TAZDIL (Atioğlu et al., 2022a), HEHKEO (Akkurt et al., 2022), ECUDAL (Atioğlu et al., 2022b), PAXDOL (Çelikesir et al., 2022), CANVUM (Shikhaliyev et al., 2021d), EBUCUD (Shikhaliyev et al., 2021a), GUPHIL (Özkaraca et al., 2020a), DULTAI (Özkaraca et al., 2020b), XIZREG (Atioğlu et al., 2019), HODQAV (Shikhaliyev et al., 2019a), HONBUK (Akkurt et al., 2019), HONBOE (Akkurt et al., 2019), LEQXOX (Shikhaliyev et al., 2018) and LEQXIR (Shikhaliyev et al., 2018).
In the crystal structures of NIKXEO and NIKXIS, molecules are linked by C—H⋯π and C—Cl⋯π interactions, forming layers parallel to (01), while molecules of NIKXOY are linked by C—H⋯O contacts, C—H⋯π and C—Cl⋯π interactions, forming layers parallel to (02). The stability of the molecular packing is ensured by between these layers. In the of NIKXUE, molecules are linked by C—H⋯π and C—Cl⋯π interactions, forming a tri-periodic network. The molecules in TAZDIL are joined into layers parallel to (011) by C—H⋯O and C—H⋯F hydrogen bonds. C—Br⋯π and C—F⋯π contacts, as well as π—π stacking interactions strengthen the crystal packing. C—H⋯Br interactions connect the molecules in the crystal of the polymorph-1 of HEHKEO, resulting in zigzag C(8) chains parallel to [100]. These chains are connected by C—Br⋯π interactions into layers parallel to (001). van der Waals interactions between the layers contribute to the crystal cohesion. In the crystals of ECUDAL, C—H⋯O hydrogen bonds link molecules into chains. These chains are linked by face-to-face π–π stacking interactions, resulting in a layered structure. Short intermolecular Br⋯O contacts and van der Waals interactions between the layers aid in the cohesion of the crystal packing. The molecules in the crystal of PAXDOL are connected into chains running parallel to [001] by C—H⋯O hydrogen bonds. C—F⋯π contacts and π–π stacking interactions help to consolidate the crystal packing, and short Br⋯O [2.9828 (13) Å] distances are also observed. In CANVUM, the molecules are linked by C—H⋯N interactions along [100], forming a C(6) chain. The molecules are further connected by C—Cl⋯π interactions and face-to-face π–π stacking interactions, resulting in ribbons along [100]. The of EBUCUD features short C—H⋯Cl and C—H⋯O contacts and C—H⋯π and van der Waals interactions. In GUPHIL, molecules are associated into inversion dimers via short Cl⋯Cl contacts [3.3763 (9) Å]. In DULTAI, the is stabilized by a short C—H⋯Cl contact, C—Cl⋯π and van der Waals interactions. In XIZREG, the molecules are linked by C—H⋯O hydrogen bonds into zigzag chains running along [001]. The crystal packing also features C—Cl⋯π, C—F⋯π and N—O⋯π interactions. In HODQAV, molecules are stacked in columns along [100] via weak C—H⋯Cl hydrogen bonds and face-to-face π—π stacking interactions. The crystal packing is further consolidated by short Cl⋯Cl contacts. In HONBUK and HONBOE, molecules are linked through weak X⋯Cl contacts (X = Cl for HONBUK and Br for HONBOE), C—H⋯Cl and C—Cl⋯π interactions into sheets parallel to (001). Additional van der Waals interactions consolidate the three-dimensional packing. In the crystals of LEQXOX, C—H⋯N and short Cl⋯Cl contacts are observed and in LEQXIR, C—H⋯N and C—H⋯O hydrogen bonds and short C—Cl⋯O contacts occur.
5. Synthesis and crystallization
Dyes (I), (II) and (III) were synthesized according to a literature protocol (Maharramov et al., 2018).
For dye (I), a 20 ml screw-neck vial was charged with DMSO (10 ml), methyl (E)-4-[(2-phenylhydrazineylidene)methyl]benzoate (254 mg, 1 mmol), tetramethylethylenediamine (TMEDA) (295 mg, 2.5 mmol), CuCl (2 mg, 0.02 mmol) and CCl4 (1 mmol). After 1–3 h (until TLC analysis showed complete consumption of the corresponding Schiff base), the reaction mixture was poured into a ∼0.01 M solution of HCl (100 ml, pH = 2–3), and extracted with dichloromethane (3 × ∼20 ml). The combined organic phase was washed with water (3× ∼50 ml), brine (30 ml), dried over anhydrous Na2SO4 and concentrated in vacuo using a rotary evaporator. The residue was purified by on silica gel using appropriate mixtures of hexane and dichloromethane (v/v: 5/1–3/1–1/1). A red solid was obtained (yield 72%); m.p. 375 K. 1H NMR (300 MHz, chloroform-d) δ 8.16–8.10 (m, 2H), 7.77 (dd, J = 6.8, 3.0 Hz, 2H), 7.48–7.43 (m, 3H), 7.29 (d, J = 8.3 Hz, 2H), 3.97 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 169.2, 137.4, 132.0, 131.8, 130.1, 129.3, 129.1, 123.6, 123.2, 121.3, 120.0, 52.2.
For dye (II), the procedure was the same as that for (I) using methyl (E)-4-{[2-(p-tolyl)hydrazineylidene]methyl}benzoate (268 mg, 1 mmol). A red solid was obtained (yield 78%); m.p. 399 K. 1H NMR (300 MHz, chloroform-d) δ 8.13 (d, J = 8.3 Hz, 2H), 7.69 (d, J = 8.2 Hz, 2H), 7.32–7.22 (m, 4H), 3.95 (s, 3H), 2.40 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 166.6, 151.5, 150.9, 142.6, 137.6, 134.8, 130.2, 129.8, 129.3, 123.3, 52.2, 21.6.
For dye (III), the procedure was the same as that for (I) using methyl (E)-4-{[2-(3,4-dimethylphenyl)hydrazineylidene]methyl}benzoate (282 mg, 1 mmol). A red solid was obtained (yield 73%); m.p. 405 K. 1H NMR (300 MHz, chloroform-d) δ 8.14 (d, J = 8.2 Hz, 2H), 7.60–7.52 (m, 2H), 7.29 (d, J = 8.1 Hz, 2H), 7.20 (d, J = 8.0 Hz, 1H), 3.96 (s, 3H), 2.31 (s, 6H). 13C NMR (75 MHz, CDCl3) δ 151.5, 151.2, 141.4, 137.7, 137.4, 134.5, 130.3, 130.2, 129.3, 124.6, 120.7, 52.2, 20.0.
Compounds (I), (II), and (III) were dissolved in dichloromethane and then left at room temperature for slow evaporation; red crystals of all compounds suitable for X-rays started to form after ca 2 d.
6. Refinement
Crystal data, data collection and structure I), (II) and (III), all H atoms were positioned geometrically and treated as riding atoms, with C—H = 0.95–0.98 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-methyl).
details are summarized in Table 5. In all three compounds (Supporting information
https://doi.org/10.1107/S2056989024000732/wm5708sup1.cif
contains datablocks I, II, III, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024000732/wm5708Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989024000732/wm5708IIsup3.hkl
Structure factors: contains datablock III. DOI: https://doi.org/10.1107/S2056989024000732/wm5708IIIsup4.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989024000732/wm5708Isup5.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989024000732/wm5708IIsup6.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989024000732/wm5708IIIsup7.cml
C16H12Cl2N2O2 | F(000) = 688 |
Mr = 335.18 | Dx = 1.510 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
a = 15.47572 (16) Å | Cell parameters from 12282 reflections |
b = 4.16896 (4) Å | θ = 2.9–77.0° |
c = 23.2257 (2) Å | µ = 4.04 mm−1 |
β = 100.1964 (9)° | T = 100 K |
V = 1474.80 (2) Å3 | Prism, red |
Z = 4 | 0.22 × 0.13 × 0.11 mm |
XtaLAB Synergy, Dualflex, HyPix diffractometer | 2823 reflections with I > 2σ(I) |
Radiation source: micro-focus sealed X-ray tube | Rint = 0.060 |
φ and ω scans | θmax = 77.8°, θmin = 2.9° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) | h = −19→19 |
Tmin = 0.404, Tmax = 0.600 | k = −5→5 |
23940 measured reflections | l = −29→28 |
3151 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.038 | H-atom parameters constrained |
wR(F2) = 0.103 | w = 1/[σ2(Fo2) + (0.0503P)2 + 1.3375P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
3151 reflections | Δρmax = 0.46 e Å−3 |
200 parameters | Δρmin = −0.32 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.13479 (3) | 0.05540 (11) | 0.40331 (2) | 0.02247 (13) | |
Cl2 | 0.27874 (3) | 0.32473 (12) | 0.48326 (2) | 0.02639 (14) | |
O1 | 0.01936 (9) | 0.1723 (4) | 0.10978 (6) | 0.0285 (3) | |
O2 | 0.14455 (9) | −0.0786 (4) | 0.10100 (6) | 0.0268 (3) | |
N1 | 0.34295 (10) | 0.5658 (4) | 0.38299 (7) | 0.0216 (3) | |
N2 | 0.38242 (10) | 0.6368 (4) | 0.34161 (7) | 0.0211 (3) | |
C1 | 0.26399 (11) | 0.3911 (4) | 0.36605 (8) | 0.0207 (4) | |
C2 | 0.22931 (12) | 0.2761 (5) | 0.41127 (8) | 0.0214 (4) | |
C3 | 0.22169 (11) | 0.3354 (4) | 0.30397 (8) | 0.0197 (4) | |
C4 | 0.26794 (11) | 0.1764 (5) | 0.26603 (8) | 0.0210 (4) | |
H4 | 0.327649 | 0.119411 | 0.279023 | 0.025* | |
C5 | 0.22744 (12) | 0.1012 (5) | 0.20969 (8) | 0.0220 (4) | |
H5 | 0.259087 | −0.011130 | 0.184514 | 0.026* | |
C6 | 0.14025 (11) | 0.1895 (4) | 0.18962 (8) | 0.0203 (4) | |
C7 | 0.09485 (11) | 0.3596 (4) | 0.22649 (8) | 0.0215 (4) | |
H7 | 0.036219 | 0.427119 | 0.212652 | 0.026* | |
C8 | 0.13490 (12) | 0.4308 (5) | 0.28326 (8) | 0.0220 (4) | |
H8 | 0.103337 | 0.544786 | 0.308278 | 0.026* | |
C9 | 0.09401 (12) | 0.0996 (5) | 0.13000 (8) | 0.0215 (4) | |
C10 | 0.10264 (14) | −0.1883 (6) | 0.04358 (8) | 0.0293 (4) | |
H10A | 0.087522 | −0.003127 | 0.017776 | 0.044* | |
H10B | 0.049121 | −0.307201 | 0.046928 | 0.044* | |
H10C | 0.142947 | −0.328838 | 0.027228 | 0.044* | |
C11 | 0.46037 (11) | 0.8199 (4) | 0.36040 (8) | 0.0209 (4) | |
C12 | 0.51605 (12) | 0.8486 (5) | 0.31977 (8) | 0.0228 (4) | |
H12 | 0.500723 | 0.751252 | 0.282364 | 0.027* | |
C13 | 0.59408 (13) | 1.0194 (5) | 0.33381 (9) | 0.0255 (4) | |
H13 | 0.632190 | 1.038116 | 0.306098 | 0.031* | |
C14 | 0.61616 (12) | 1.1624 (5) | 0.38829 (9) | 0.0258 (4) | |
H14 | 0.670157 | 1.274595 | 0.398327 | 0.031* | |
C15 | 0.55900 (13) | 1.1414 (5) | 0.42850 (8) | 0.0264 (4) | |
H15 | 0.573440 | 1.245282 | 0.465361 | 0.032* | |
C16 | 0.48136 (12) | 0.9698 (5) | 0.41483 (8) | 0.0233 (4) | |
H16 | 0.442743 | 0.954405 | 0.442280 | 0.028* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0167 (2) | 0.0264 (2) | 0.0244 (2) | −0.00357 (16) | 0.00406 (15) | −0.00043 (16) |
Cl2 | 0.0217 (2) | 0.0355 (3) | 0.0213 (2) | −0.00499 (17) | 0.00171 (16) | −0.00103 (17) |
O1 | 0.0183 (6) | 0.0359 (8) | 0.0291 (7) | 0.0048 (6) | −0.0016 (5) | −0.0043 (6) |
O2 | 0.0193 (6) | 0.0382 (8) | 0.0220 (6) | 0.0047 (6) | 0.0016 (5) | −0.0046 (6) |
N1 | 0.0162 (7) | 0.0232 (8) | 0.0248 (7) | 0.0001 (6) | 0.0022 (6) | 0.0017 (6) |
N2 | 0.0153 (7) | 0.0216 (7) | 0.0260 (8) | 0.0007 (6) | 0.0025 (6) | 0.0023 (6) |
C1 | 0.0152 (8) | 0.0208 (8) | 0.0255 (9) | 0.0019 (7) | 0.0018 (7) | −0.0006 (7) |
C2 | 0.0163 (8) | 0.0233 (9) | 0.0241 (9) | 0.0006 (7) | 0.0023 (6) | −0.0014 (7) |
C3 | 0.0163 (8) | 0.0202 (8) | 0.0221 (9) | −0.0004 (7) | 0.0023 (6) | 0.0026 (7) |
C4 | 0.0142 (8) | 0.0244 (9) | 0.0241 (9) | 0.0035 (7) | 0.0029 (6) | 0.0038 (7) |
C5 | 0.0166 (8) | 0.0260 (9) | 0.0240 (9) | 0.0034 (7) | 0.0049 (7) | 0.0022 (7) |
C6 | 0.0159 (8) | 0.0220 (9) | 0.0224 (8) | −0.0002 (7) | 0.0021 (6) | 0.0025 (7) |
C7 | 0.0140 (8) | 0.0221 (9) | 0.0281 (9) | 0.0019 (7) | 0.0028 (7) | 0.0016 (7) |
C8 | 0.0153 (8) | 0.0248 (9) | 0.0261 (9) | 0.0004 (7) | 0.0044 (7) | −0.0011 (7) |
C9 | 0.0175 (8) | 0.0233 (9) | 0.0237 (9) | 0.0013 (7) | 0.0038 (7) | 0.0019 (7) |
C10 | 0.0264 (10) | 0.0391 (11) | 0.0214 (9) | 0.0002 (8) | 0.0018 (7) | −0.0053 (8) |
C11 | 0.0140 (8) | 0.0219 (9) | 0.0259 (9) | 0.0017 (7) | 0.0011 (6) | 0.0034 (7) |
C12 | 0.0205 (9) | 0.0238 (9) | 0.0246 (9) | 0.0002 (7) | 0.0053 (7) | 0.0005 (7) |
C13 | 0.0195 (9) | 0.0274 (10) | 0.0306 (10) | 0.0009 (8) | 0.0077 (7) | 0.0020 (8) |
C14 | 0.0155 (8) | 0.0291 (10) | 0.0319 (10) | −0.0030 (7) | 0.0014 (7) | 0.0046 (8) |
C15 | 0.0233 (9) | 0.0305 (10) | 0.0241 (9) | −0.0045 (8) | 0.0004 (7) | 0.0017 (8) |
C16 | 0.0189 (9) | 0.0282 (9) | 0.0227 (9) | −0.0010 (7) | 0.0037 (7) | 0.0035 (7) |
Cl1—C2 | 1.7102 (19) | C7—C8 | 1.386 (3) |
Cl2—C2 | 1.7231 (18) | C7—H7 | 0.9500 |
O1—C9 | 1.206 (2) | C8—H8 | 0.9500 |
O2—C9 | 1.343 (2) | C10—H10A | 0.9800 |
O2—C10 | 1.450 (2) | C10—H10B | 0.9800 |
N1—N2 | 1.262 (2) | C10—H10C | 0.9800 |
N1—C1 | 1.417 (2) | C11—C12 | 1.391 (3) |
N2—C11 | 1.429 (2) | C11—C16 | 1.396 (3) |
C1—C2 | 1.349 (3) | C12—C13 | 1.390 (3) |
C1—C3 | 1.492 (2) | C12—H12 | 0.9500 |
C3—C4 | 1.397 (3) | C13—C14 | 1.386 (3) |
C3—C8 | 1.402 (2) | C13—H13 | 0.9500 |
C4—C5 | 1.383 (3) | C14—C15 | 1.398 (3) |
C4—H4 | 0.9500 | C14—H14 | 0.9500 |
C5—C6 | 1.397 (2) | C15—C16 | 1.386 (3) |
C5—H5 | 0.9500 | C15—H15 | 0.9500 |
C6—C7 | 1.394 (3) | C16—H16 | 0.9500 |
C6—C9 | 1.490 (3) | ||
C9—O2—C10 | 115.49 (15) | O1—C9—O2 | 123.12 (17) |
N2—N1—C1 | 114.77 (15) | O1—C9—C6 | 124.62 (17) |
N1—N2—C11 | 112.90 (15) | O2—C9—C6 | 112.26 (15) |
C2—C1—N1 | 114.12 (16) | O2—C10—H10A | 109.5 |
C2—C1—C3 | 121.99 (16) | O2—C10—H10B | 109.5 |
N1—C1—C3 | 123.89 (16) | H10A—C10—H10B | 109.5 |
C1—C2—Cl1 | 123.88 (14) | O2—C10—H10C | 109.5 |
C1—C2—Cl2 | 122.96 (14) | H10A—C10—H10C | 109.5 |
Cl1—C2—Cl2 | 113.11 (11) | H10B—C10—H10C | 109.5 |
C4—C3—C8 | 119.01 (16) | C12—C11—C16 | 120.20 (17) |
C4—C3—C1 | 119.81 (16) | C12—C11—N2 | 115.44 (16) |
C8—C3—C1 | 121.15 (16) | C16—C11—N2 | 124.36 (16) |
C5—C4—C3 | 120.48 (16) | C13—C12—C11 | 120.10 (18) |
C5—C4—H4 | 119.8 | C13—C12—H12 | 119.9 |
C3—C4—H4 | 119.8 | C11—C12—H12 | 119.9 |
C4—C5—C6 | 120.35 (17) | C14—C13—C12 | 119.88 (18) |
C4—C5—H5 | 119.8 | C14—C13—H13 | 120.1 |
C6—C5—H5 | 119.8 | C12—C13—H13 | 120.1 |
C7—C6—C5 | 119.42 (17) | C13—C14—C15 | 120.01 (18) |
C7—C6—C9 | 119.19 (16) | C13—C14—H14 | 120.0 |
C5—C6—C9 | 121.38 (17) | C15—C14—H14 | 120.0 |
C8—C7—C6 | 120.28 (16) | C16—C15—C14 | 120.30 (18) |
C8—C7—H7 | 119.9 | C16—C15—H15 | 119.8 |
C6—C7—H7 | 119.9 | C14—C15—H15 | 119.8 |
C7—C8—C3 | 120.38 (17) | C15—C16—C11 | 119.46 (17) |
C7—C8—H8 | 119.8 | C15—C16—H16 | 120.3 |
C3—C8—H8 | 119.8 | C11—C16—H16 | 120.3 |
C1—N1—N2—C11 | 178.44 (15) | C4—C3—C8—C7 | 1.9 (3) |
N2—N1—C1—C2 | 170.71 (16) | C1—C3—C8—C7 | −176.03 (17) |
N2—N1—C1—C3 | −9.2 (3) | C10—O2—C9—O1 | −1.8 (3) |
N1—C1—C2—Cl1 | −179.62 (13) | C10—O2—C9—C6 | 177.22 (16) |
C3—C1—C2—Cl1 | 0.3 (3) | C7—C6—C9—O1 | 2.5 (3) |
N1—C1—C2—Cl2 | −2.2 (2) | C5—C6—C9—O1 | −178.85 (19) |
C3—C1—C2—Cl2 | 177.66 (14) | C7—C6—C9—O2 | −176.46 (17) |
C2—C1—C3—C4 | −120.9 (2) | C5—C6—C9—O2 | 2.2 (3) |
N1—C1—C3—C4 | 59.0 (3) | N1—N2—C11—C12 | 167.20 (16) |
C2—C1—C3—C8 | 57.0 (3) | N1—N2—C11—C16 | −14.1 (3) |
N1—C1—C3—C8 | −123.1 (2) | C16—C11—C12—C13 | 1.8 (3) |
C8—C3—C4—C5 | −2.9 (3) | N2—C11—C12—C13 | −179.43 (17) |
C1—C3—C4—C5 | 175.04 (17) | C11—C12—C13—C14 | −0.3 (3) |
C3—C4—C5—C6 | 1.4 (3) | C12—C13—C14—C15 | −1.6 (3) |
C4—C5—C6—C7 | 1.2 (3) | C13—C14—C15—C16 | 2.0 (3) |
C4—C5—C6—C9 | −177.42 (17) | C14—C15—C16—C11 | −0.5 (3) |
C5—C6—C7—C8 | −2.2 (3) | C12—C11—C16—C15 | −1.4 (3) |
C9—C6—C7—C8 | 176.44 (17) | N2—C11—C16—C15 | 179.91 (18) |
C6—C7—C8—C3 | 0.7 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···N2i | 0.95 | 2.54 | 3.191 (3) | 126 |
C5—H5···O2 | 0.95 | 2.40 | 2.726 (2) | 100 |
Symmetry code: (i) x, y−1, z. |
C17H14Cl2N2O2 | F(000) = 720 |
Mr = 349.20 | Dx = 1.420 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
a = 15.6177 (2) Å | Cell parameters from 12932 reflections |
b = 8.47502 (11) Å | θ = 3.0–77.0° |
c = 13.10365 (17) Å | µ = 3.67 mm−1 |
β = 109.6555 (15)° | T = 100 K |
V = 1633.34 (4) Å3 | Prism, red |
Z = 4 | 0.26 × 0.19 × 0.17 mm |
XtaLAB Synergy, Dualflex, HyPix diffractometer | 3197 reflections with I > 2σ(I) |
Radiation source: micro-focus sealed X-ray tube | Rint = 0.054 |
φ and ω scans | θmax = 78.0°, θmin = 3.0° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) | h = −15→19 |
Tmin = 0.307, Tmax = 0.530 | k = −10→10 |
28857 measured reflections | l = −16→16 |
3469 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.038 | w = 1/[σ2(Fo2) + (0.0579P)2 + 0.7484P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.108 | (Δ/σ)max = 0.001 |
S = 1.13 | Δρmax = 0.30 e Å−3 |
3469 reflections | Δρmin = −0.48 e Å−3 |
211 parameters | Extinction correction: SHELXL-2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0012 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.98647 (3) | 0.77109 (5) | 0.27683 (3) | 0.02442 (14) | |
Cl2 | 0.94376 (3) | 0.63249 (5) | 0.06421 (3) | 0.02432 (14) | |
O1 | 0.69644 (8) | 0.59702 (16) | 0.60175 (10) | 0.0264 (3) | |
O2 | 0.81960 (8) | 0.44134 (15) | 0.66154 (9) | 0.0245 (3) | |
N1 | 0.78451 (9) | 0.49845 (18) | 0.10125 (11) | 0.0209 (3) | |
N2 | 0.71406 (9) | 0.44374 (18) | 0.11566 (11) | 0.0219 (3) | |
C1 | 0.84094 (11) | 0.5841 (2) | 0.19136 (13) | 0.0199 (3) | |
C2 | 0.91421 (11) | 0.6533 (2) | 0.17879 (13) | 0.0210 (3) | |
C3 | 0.82373 (11) | 0.5849 (2) | 0.29668 (13) | 0.0196 (3) | |
C4 | 0.74921 (11) | 0.6634 (2) | 0.30912 (13) | 0.0216 (3) | |
H4 | 0.710519 | 0.725291 | 0.251576 | 0.026* | |
C5 | 0.73197 (11) | 0.6504 (2) | 0.40622 (14) | 0.0220 (3) | |
H5 | 0.682177 | 0.705534 | 0.415595 | 0.026* | |
C6 | 0.78742 (11) | 0.5568 (2) | 0.48977 (13) | 0.0195 (3) | |
C7 | 0.86273 (11) | 0.4802 (2) | 0.47817 (13) | 0.0208 (3) | |
H7 | 0.901389 | 0.418074 | 0.535632 | 0.025* | |
C8 | 0.88054 (11) | 0.4957 (2) | 0.38166 (13) | 0.0207 (3) | |
H8 | 0.932079 | 0.444724 | 0.373610 | 0.025* | |
C9 | 0.76178 (11) | 0.5361 (2) | 0.58862 (13) | 0.0204 (3) | |
C10 | 0.79809 (13) | 0.4119 (2) | 0.75872 (14) | 0.0275 (4) | |
H10A | 0.839975 | 0.332619 | 0.802976 | 0.041* | |
H10B | 0.735518 | 0.373025 | 0.739045 | 0.041* | |
H10C | 0.804167 | 0.510044 | 0.800106 | 0.041* | |
C11 | 0.65821 (11) | 0.3536 (2) | 0.02710 (13) | 0.0215 (3) | |
C12 | 0.57409 (12) | 0.3086 (3) | 0.03265 (15) | 0.0296 (4) | |
H12 | 0.556200 | 0.343233 | 0.091445 | 0.036* | |
C13 | 0.51651 (13) | 0.2138 (3) | −0.04704 (16) | 0.0314 (4) | |
H13 | 0.458899 | 0.185192 | −0.043069 | 0.038* | |
C14 | 0.54206 (12) | 0.1597 (2) | −0.13325 (14) | 0.0249 (4) | |
C15 | 0.62625 (12) | 0.2063 (2) | −0.13829 (14) | 0.0233 (4) | |
H15 | 0.644226 | 0.171215 | −0.196914 | 0.028* | |
C16 | 0.68413 (11) | 0.3026 (2) | −0.05973 (13) | 0.0217 (3) | |
H16 | 0.741000 | 0.333796 | −0.064785 | 0.026* | |
C17 | 0.48059 (13) | 0.0527 (3) | −0.21805 (16) | 0.0337 (4) | |
H17A | 0.516980 | −0.029287 | −0.236871 | 0.050* | |
H17B | 0.448259 | 0.114318 | −0.282843 | 0.050* | |
H17C | 0.436482 | 0.003205 | −0.189705 | 0.050* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0228 (2) | 0.0257 (2) | 0.0259 (2) | −0.00466 (15) | 0.00965 (16) | −0.00107 (15) |
Cl2 | 0.0258 (2) | 0.0280 (2) | 0.0246 (2) | 0.00138 (15) | 0.01564 (16) | 0.00240 (15) |
O1 | 0.0245 (6) | 0.0358 (7) | 0.0220 (6) | 0.0048 (5) | 0.0119 (5) | −0.0007 (5) |
O2 | 0.0266 (6) | 0.0303 (7) | 0.0204 (6) | 0.0048 (5) | 0.0131 (5) | 0.0057 (5) |
N1 | 0.0212 (6) | 0.0230 (7) | 0.0204 (6) | −0.0009 (5) | 0.0094 (5) | 0.0002 (5) |
N2 | 0.0223 (7) | 0.0248 (7) | 0.0202 (7) | −0.0011 (6) | 0.0093 (5) | −0.0005 (6) |
C1 | 0.0209 (7) | 0.0203 (8) | 0.0200 (8) | 0.0022 (6) | 0.0087 (6) | 0.0015 (6) |
C2 | 0.0219 (8) | 0.0212 (8) | 0.0214 (8) | 0.0017 (6) | 0.0092 (6) | 0.0008 (6) |
C3 | 0.0206 (7) | 0.0205 (8) | 0.0197 (8) | −0.0039 (6) | 0.0095 (6) | −0.0019 (6) |
C4 | 0.0213 (8) | 0.0228 (8) | 0.0209 (8) | 0.0013 (6) | 0.0075 (6) | 0.0026 (6) |
C5 | 0.0209 (8) | 0.0231 (8) | 0.0246 (8) | 0.0008 (6) | 0.0112 (6) | −0.0010 (6) |
C6 | 0.0206 (7) | 0.0205 (8) | 0.0188 (7) | −0.0028 (6) | 0.0086 (6) | −0.0019 (6) |
C7 | 0.0199 (7) | 0.0228 (8) | 0.0206 (7) | −0.0001 (6) | 0.0079 (6) | −0.0009 (6) |
C8 | 0.0200 (7) | 0.0221 (8) | 0.0221 (8) | −0.0009 (6) | 0.0099 (6) | −0.0030 (6) |
C9 | 0.0199 (7) | 0.0223 (8) | 0.0201 (7) | −0.0026 (6) | 0.0081 (6) | −0.0032 (6) |
C10 | 0.0323 (9) | 0.0340 (10) | 0.0210 (8) | 0.0027 (8) | 0.0153 (7) | 0.0043 (7) |
C11 | 0.0227 (8) | 0.0230 (8) | 0.0196 (8) | −0.0004 (6) | 0.0081 (6) | 0.0001 (6) |
C12 | 0.0265 (9) | 0.0407 (11) | 0.0261 (9) | −0.0058 (8) | 0.0146 (7) | −0.0065 (8) |
C13 | 0.0238 (8) | 0.0438 (12) | 0.0302 (9) | −0.0093 (8) | 0.0138 (7) | −0.0067 (8) |
C14 | 0.0260 (8) | 0.0256 (9) | 0.0226 (8) | −0.0018 (7) | 0.0076 (7) | −0.0007 (7) |
C15 | 0.0273 (8) | 0.0244 (9) | 0.0206 (8) | 0.0019 (7) | 0.0112 (7) | 0.0008 (7) |
C16 | 0.0222 (8) | 0.0236 (8) | 0.0214 (8) | 0.0002 (6) | 0.0101 (6) | 0.0015 (7) |
C17 | 0.0319 (9) | 0.0391 (11) | 0.0300 (9) | −0.0093 (8) | 0.0105 (8) | −0.0090 (8) |
Cl1—C2 | 1.7159 (17) | C7—H7 | 0.9500 |
Cl2—C2 | 1.7217 (16) | C8—H8 | 0.9500 |
O1—C9 | 1.207 (2) | C10—H10A | 0.9800 |
O2—C9 | 1.339 (2) | C10—H10B | 0.9800 |
O2—C10 | 1.4438 (19) | C10—H10C | 0.9800 |
N1—N2 | 1.265 (2) | C11—C12 | 1.393 (2) |
N1—C1 | 1.414 (2) | C11—C16 | 1.398 (2) |
N2—C11 | 1.418 (2) | C12—C13 | 1.383 (3) |
C1—C2 | 1.345 (2) | C12—H12 | 0.9500 |
C1—C3 | 1.492 (2) | C13—C14 | 1.396 (3) |
C3—C8 | 1.391 (2) | C13—H13 | 0.9500 |
C3—C4 | 1.397 (2) | C14—C15 | 1.396 (2) |
C4—C5 | 1.391 (2) | C14—C17 | 1.504 (2) |
C4—H4 | 0.9500 | C15—C16 | 1.385 (2) |
C5—C6 | 1.393 (2) | C15—H15 | 0.9500 |
C5—H5 | 0.9500 | C16—H16 | 0.9500 |
C6—C7 | 1.396 (2) | C17—H17A | 0.9800 |
C6—C9 | 1.489 (2) | C17—H17B | 0.9800 |
C7—C8 | 1.389 (2) | C17—H17C | 0.9800 |
C9—O2—C10 | 115.59 (13) | O2—C10—H10A | 109.5 |
N2—N1—C1 | 113.13 (13) | O2—C10—H10B | 109.5 |
N1—N2—C11 | 113.70 (13) | H10A—C10—H10B | 109.5 |
C2—C1—N1 | 116.03 (14) | O2—C10—H10C | 109.5 |
C2—C1—C3 | 122.48 (15) | H10A—C10—H10C | 109.5 |
N1—C1—C3 | 121.28 (14) | H10B—C10—H10C | 109.5 |
C1—C2—Cl1 | 122.31 (13) | C12—C11—C16 | 119.63 (16) |
C1—C2—Cl2 | 123.43 (13) | C12—C11—N2 | 115.85 (15) |
Cl1—C2—Cl2 | 114.26 (9) | C16—C11—N2 | 124.45 (15) |
C8—C3—C4 | 119.85 (15) | C13—C12—C11 | 120.30 (16) |
C8—C3—C1 | 118.23 (14) | C13—C12—H12 | 119.8 |
C4—C3—C1 | 121.77 (15) | C11—C12—H12 | 119.8 |
C5—C4—C3 | 119.63 (15) | C12—C13—C14 | 120.76 (16) |
C5—C4—H4 | 120.2 | C12—C13—H13 | 119.6 |
C3—C4—H4 | 120.2 | C14—C13—H13 | 119.6 |
C4—C5—C6 | 120.25 (15) | C15—C14—C13 | 118.40 (16) |
C4—C5—H5 | 119.9 | C15—C14—C17 | 120.88 (16) |
C6—C5—H5 | 119.9 | C13—C14—C17 | 120.72 (16) |
C5—C6—C7 | 120.22 (14) | C16—C15—C14 | 121.44 (15) |
C5—C6—C9 | 118.22 (14) | C16—C15—H15 | 119.3 |
C7—C6—C9 | 121.52 (15) | C14—C15—H15 | 119.3 |
C8—C7—C6 | 119.28 (15) | C15—C16—C11 | 119.45 (15) |
C8—C7—H7 | 120.4 | C15—C16—H16 | 120.3 |
C6—C7—H7 | 120.4 | C11—C16—H16 | 120.3 |
C7—C8—C3 | 120.73 (15) | C14—C17—H17A | 109.5 |
C7—C8—H8 | 119.6 | C14—C17—H17B | 109.5 |
C3—C8—H8 | 119.6 | H17A—C17—H17B | 109.5 |
O1—C9—O2 | 123.68 (15) | C14—C17—H17C | 109.5 |
O1—C9—C6 | 124.15 (15) | H17A—C17—H17C | 109.5 |
O2—C9—C6 | 112.17 (13) | H17B—C17—H17C | 109.5 |
C1—N1—N2—C11 | −178.24 (14) | C1—C3—C8—C7 | −173.98 (15) |
N2—N1—C1—C2 | −176.18 (15) | C10—O2—C9—O1 | 1.4 (2) |
N2—N1—C1—C3 | 8.9 (2) | C10—O2—C9—C6 | −178.45 (14) |
N1—C1—C2—Cl1 | 176.23 (12) | C5—C6—C9—O1 | −1.0 (3) |
C3—C1—C2—Cl1 | −8.9 (2) | C7—C6—C9—O1 | −178.47 (17) |
N1—C1—C2—Cl2 | −3.7 (2) | C5—C6—C9—O2 | 178.82 (14) |
C3—C1—C2—Cl2 | 171.16 (13) | C7—C6—C9—O2 | 1.4 (2) |
C2—C1—C3—C8 | −69.6 (2) | N1—N2—C11—C12 | −171.71 (16) |
N1—C1—C3—C8 | 104.94 (19) | N1—N2—C11—C16 | 11.5 (2) |
C2—C1—C3—C4 | 114.81 (19) | C16—C11—C12—C13 | 0.1 (3) |
N1—C1—C3—C4 | −70.6 (2) | N2—C11—C12—C13 | −176.77 (18) |
C8—C3—C4—C5 | −0.6 (2) | C11—C12—C13—C14 | 1.0 (3) |
C1—C3—C4—C5 | 174.91 (16) | C12—C13—C14—C15 | −1.3 (3) |
C3—C4—C5—C6 | −1.5 (3) | C12—C13—C14—C17 | 178.15 (19) |
C4—C5—C6—C7 | 2.4 (3) | C13—C14—C15—C16 | 0.6 (3) |
C4—C5—C6—C9 | −175.06 (15) | C17—C14—C15—C16 | −178.87 (17) |
C5—C6—C7—C8 | −1.3 (2) | C14—C15—C16—C11 | 0.5 (3) |
C9—C6—C7—C8 | 176.06 (15) | C12—C11—C16—C15 | −0.9 (3) |
C6—C7—C8—C3 | −0.7 (3) | N2—C11—C16—C15 | 175.78 (16) |
C4—C3—C8—C7 | 1.7 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O1i | 0.95 | 2.43 | 3.268 (2) | 148 |
C13—H13···O1ii | 0.95 | 2.40 | 3.309 (3) | 159 |
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x+1, y−1/2, −z+1/2. |
C18H16Cl2N2O2 | Z = 2 |
Mr = 363.23 | F(000) = 376 |
Triclinic, P1 | Dx = 1.412 Mg m−3 |
a = 8.22057 (10) Å | Cu Kα radiation, λ = 1.54184 Å |
b = 8.53211 (9) Å | Cell parameters from 14210 reflections |
c = 13.08729 (14) Å | θ = 3.6–77.0° |
α = 103.9484 (9)° | µ = 3.53 mm−1 |
β = 101.9047 (10)° | T = 100 K |
γ = 98.0600 (9)° | Prism, red |
V = 854.09 (2) Å3 | 0.20 × 0.15 × 0.09 mm |
XtaLAB Synergy, Dualflex, HyPix diffractometer | 3340 reflections with I > 2σ(I) |
Radiation source: micro-focus sealed X-ray tube | Rint = 0.063 |
φ and ω scans | θmax = 77.8°, θmin = 3.6° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) | h = −10→10 |
Tmin = 0.349, Tmax = 0.700 | k = −8→10 |
29808 measured reflections | l = −16→16 |
3632 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
wR(F2) = 0.097 | w = 1/[σ2(Fo2) + (0.0537P)2 + 0.2636P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.001 |
3632 reflections | Δρmax = 0.31 e Å−3 |
220 parameters | Δρmin = −0.46 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.07283 (5) | −0.14861 (4) | 0.77715 (3) | 0.02444 (11) | |
Cl2 | 0.13915 (5) | −0.31047 (4) | 0.57534 (3) | 0.02637 (12) | |
O1 | 0.30977 (14) | 0.68544 (14) | 1.04185 (9) | 0.0315 (3) | |
O2 | 0.04043 (13) | 0.67433 (12) | 0.95696 (8) | 0.0208 (2) | |
N1 | 0.21612 (15) | 0.01951 (15) | 0.54534 (10) | 0.0198 (2) | |
N2 | 0.26094 (15) | 0.16265 (15) | 0.53648 (10) | 0.0208 (3) | |
C1 | 0.17177 (17) | 0.02110 (17) | 0.64440 (11) | 0.0189 (3) | |
C2 | 0.13347 (18) | −0.12681 (18) | 0.66254 (11) | 0.0206 (3) | |
C3 | 0.17331 (18) | 0.17742 (17) | 0.72590 (11) | 0.0185 (3) | |
C4 | 0.05481 (18) | 0.27494 (17) | 0.70373 (11) | 0.0203 (3) | |
H4 | −0.026457 | 0.242988 | 0.635554 | 0.024* | |
C5 | 0.05592 (18) | 0.41897 (17) | 0.78162 (12) | 0.0203 (3) | |
H5 | −0.026072 | 0.484181 | 0.767260 | 0.024* | |
C6 | 0.17767 (17) | 0.46736 (17) | 0.88079 (11) | 0.0188 (3) | |
C7 | 0.29835 (18) | 0.37242 (17) | 0.90121 (11) | 0.0202 (3) | |
H7 | 0.382930 | 0.406872 | 0.968032 | 0.024* | |
C8 | 0.29570 (18) | 0.22742 (17) | 0.82428 (12) | 0.0202 (3) | |
H8 | 0.377651 | 0.162276 | 0.838900 | 0.024* | |
C9 | 0.18624 (18) | 0.61892 (17) | 0.96841 (12) | 0.0209 (3) | |
C10 | 0.0464 (2) | 0.82424 (18) | 1.03931 (12) | 0.0244 (3) | |
H10A | −0.063270 | 0.858160 | 1.025427 | 0.037* | |
H10B | 0.135720 | 0.911518 | 1.037093 | 0.037* | |
H10C | 0.070772 | 0.804528 | 1.111150 | 0.037* | |
C11 | 0.31099 (18) | 0.16259 (18) | 0.43840 (11) | 0.0207 (3) | |
C12 | 0.33518 (19) | 0.31514 (18) | 0.41637 (12) | 0.0232 (3) | |
H12 | 0.318547 | 0.409355 | 0.466000 | 0.028* | |
C13 | 0.38330 (18) | 0.3316 (2) | 0.32285 (13) | 0.0249 (3) | |
C14 | 0.40929 (18) | 0.1914 (2) | 0.25099 (12) | 0.0258 (3) | |
C15 | 0.38626 (19) | 0.0399 (2) | 0.27461 (12) | 0.0260 (3) | |
H15 | 0.403729 | −0.054527 | 0.225581 | 0.031* | |
C16 | 0.33864 (19) | 0.02371 (19) | 0.36759 (12) | 0.0231 (3) | |
H16 | 0.325038 | −0.079976 | 0.382923 | 0.028* | |
C17 | 0.4088 (2) | 0.4974 (2) | 0.30023 (15) | 0.0333 (4) | |
H17A | 0.376239 | 0.578206 | 0.355458 | 0.050* | |
H17B | 0.338263 | 0.488834 | 0.228149 | 0.050* | |
H17C | 0.528407 | 0.532926 | 0.302386 | 0.050* | |
C18 | 0.4627 (2) | 0.2029 (3) | 0.14898 (14) | 0.0363 (4) | |
H18A | 0.377011 | 0.242730 | 0.103353 | 0.055* | |
H18B | 0.473909 | 0.093688 | 0.108817 | 0.055* | |
H18C | 0.571996 | 0.279612 | 0.168542 | 0.055* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0346 (2) | 0.02094 (19) | 0.02065 (18) | 0.00298 (14) | 0.01118 (14) | 0.00900 (14) |
Cl2 | 0.0402 (2) | 0.01643 (18) | 0.02316 (19) | 0.00645 (14) | 0.01064 (15) | 0.00402 (13) |
O1 | 0.0278 (6) | 0.0277 (6) | 0.0306 (6) | 0.0074 (5) | 0.0038 (5) | −0.0053 (5) |
O2 | 0.0259 (5) | 0.0182 (5) | 0.0211 (5) | 0.0070 (4) | 0.0100 (4) | 0.0059 (4) |
N1 | 0.0231 (6) | 0.0194 (6) | 0.0185 (6) | 0.0034 (5) | 0.0077 (5) | 0.0066 (5) |
N2 | 0.0240 (6) | 0.0199 (6) | 0.0198 (6) | 0.0025 (5) | 0.0092 (5) | 0.0060 (5) |
C1 | 0.0214 (6) | 0.0188 (7) | 0.0171 (6) | 0.0034 (5) | 0.0071 (5) | 0.0044 (5) |
C2 | 0.0251 (7) | 0.0191 (7) | 0.0180 (6) | 0.0041 (5) | 0.0070 (5) | 0.0049 (5) |
C3 | 0.0234 (7) | 0.0164 (6) | 0.0187 (6) | 0.0017 (5) | 0.0108 (5) | 0.0069 (5) |
C4 | 0.0247 (7) | 0.0203 (7) | 0.0174 (6) | 0.0040 (5) | 0.0071 (5) | 0.0070 (5) |
C5 | 0.0242 (7) | 0.0190 (7) | 0.0216 (7) | 0.0063 (5) | 0.0097 (6) | 0.0088 (5) |
C6 | 0.0234 (7) | 0.0170 (6) | 0.0189 (7) | 0.0029 (5) | 0.0103 (5) | 0.0067 (5) |
C7 | 0.0216 (7) | 0.0204 (7) | 0.0186 (6) | 0.0020 (5) | 0.0063 (5) | 0.0056 (5) |
C8 | 0.0227 (7) | 0.0191 (7) | 0.0218 (7) | 0.0060 (5) | 0.0093 (5) | 0.0070 (5) |
C9 | 0.0248 (7) | 0.0194 (7) | 0.0219 (7) | 0.0050 (5) | 0.0105 (6) | 0.0079 (6) |
C10 | 0.0337 (8) | 0.0179 (7) | 0.0262 (7) | 0.0080 (6) | 0.0152 (6) | 0.0066 (6) |
C11 | 0.0212 (7) | 0.0231 (7) | 0.0190 (7) | 0.0025 (5) | 0.0085 (5) | 0.0063 (6) |
C12 | 0.0247 (7) | 0.0226 (7) | 0.0230 (7) | 0.0022 (6) | 0.0084 (6) | 0.0069 (6) |
C13 | 0.0214 (7) | 0.0299 (8) | 0.0252 (7) | 0.0006 (6) | 0.0064 (6) | 0.0129 (6) |
C14 | 0.0206 (7) | 0.0376 (9) | 0.0214 (7) | 0.0024 (6) | 0.0085 (6) | 0.0114 (6) |
C15 | 0.0245 (7) | 0.0313 (8) | 0.0235 (7) | 0.0052 (6) | 0.0119 (6) | 0.0049 (6) |
C16 | 0.0247 (7) | 0.0226 (7) | 0.0244 (7) | 0.0042 (6) | 0.0108 (6) | 0.0072 (6) |
C17 | 0.0366 (9) | 0.0343 (9) | 0.0335 (9) | 0.0011 (7) | 0.0109 (7) | 0.0192 (7) |
C18 | 0.0376 (9) | 0.0506 (11) | 0.0260 (8) | 0.0047 (8) | 0.0162 (7) | 0.0157 (8) |
Cl1—C2 | 1.7176 (14) | C10—H10A | 0.9800 |
Cl2—C2 | 1.7148 (14) | C10—H10B | 0.9800 |
O1—C9 | 1.2041 (19) | C10—H10C | 0.9800 |
O2—C9 | 1.3422 (17) | C11—C16 | 1.396 (2) |
O2—C10 | 1.4478 (17) | C11—C12 | 1.396 (2) |
N1—N2 | 1.2651 (17) | C12—C13 | 1.393 (2) |
N1—C1 | 1.4148 (17) | C12—H12 | 0.9500 |
N2—C11 | 1.4263 (17) | C13—C14 | 1.404 (2) |
C1—C2 | 1.346 (2) | C13—C17 | 1.509 (2) |
C1—C3 | 1.4901 (19) | C14—C15 | 1.397 (2) |
C3—C8 | 1.390 (2) | C14—C18 | 1.509 (2) |
C3—C4 | 1.397 (2) | C15—C16 | 1.384 (2) |
C4—C5 | 1.392 (2) | C15—H15 | 0.9500 |
C4—H4 | 0.9500 | C16—H16 | 0.9500 |
C5—C6 | 1.395 (2) | C17—H17A | 0.9800 |
C5—H5 | 0.9500 | C17—H17B | 0.9800 |
C6—C7 | 1.390 (2) | C17—H17C | 0.9800 |
C6—C9 | 1.4894 (19) | C18—H18A | 0.9800 |
C7—C8 | 1.388 (2) | C18—H18B | 0.9800 |
C7—H7 | 0.9500 | C18—H18C | 0.9800 |
C8—H8 | 0.9500 | ||
C9—O2—C10 | 113.91 (11) | O2—C10—H10C | 109.5 |
N2—N1—C1 | 112.85 (11) | H10A—C10—H10C | 109.5 |
N1—N2—C11 | 113.33 (12) | H10B—C10—H10C | 109.5 |
C2—C1—N1 | 116.08 (12) | C16—C11—C12 | 120.15 (13) |
C2—C1—C3 | 121.77 (12) | C16—C11—N2 | 124.38 (13) |
N1—C1—C3 | 122.12 (12) | C12—C11—N2 | 115.46 (13) |
C1—C2—Cl2 | 124.19 (11) | C13—C12—C11 | 121.13 (14) |
C1—C2—Cl1 | 122.44 (11) | C13—C12—H12 | 119.4 |
Cl2—C2—Cl1 | 113.37 (8) | C11—C12—H12 | 119.4 |
C8—C3—C4 | 119.86 (13) | C12—C13—C14 | 118.70 (14) |
C8—C3—C1 | 119.43 (13) | C12—C13—C17 | 120.45 (15) |
C4—C3—C1 | 120.70 (13) | C14—C13—C17 | 120.84 (14) |
C5—C4—C3 | 119.96 (13) | C15—C14—C13 | 119.55 (13) |
C5—C4—H4 | 120.0 | C15—C14—C18 | 119.66 (15) |
C3—C4—H4 | 120.0 | C13—C14—C18 | 120.80 (15) |
C4—C5—C6 | 119.88 (13) | C16—C15—C14 | 121.71 (14) |
C4—C5—H5 | 120.1 | C16—C15—H15 | 119.1 |
C6—C5—H5 | 120.1 | C14—C15—H15 | 119.1 |
C7—C6—C5 | 119.93 (13) | C15—C16—C11 | 118.75 (14) |
C7—C6—C9 | 117.03 (13) | C15—C16—H16 | 120.6 |
C5—C6—C9 | 123.04 (13) | C11—C16—H16 | 120.6 |
C8—C7—C6 | 120.22 (13) | C13—C17—H17A | 109.5 |
C8—C7—H7 | 119.9 | C13—C17—H17B | 109.5 |
C6—C7—H7 | 119.9 | H17A—C17—H17B | 109.5 |
C7—C8—C3 | 120.10 (13) | C13—C17—H17C | 109.5 |
C7—C8—H8 | 119.9 | H17A—C17—H17C | 109.5 |
C3—C8—H8 | 119.9 | H17B—C17—H17C | 109.5 |
O1—C9—O2 | 123.20 (13) | C14—C18—H18A | 109.5 |
O1—C9—C6 | 124.17 (13) | C14—C18—H18B | 109.5 |
O2—C9—C6 | 112.64 (12) | H18A—C18—H18B | 109.5 |
O2—C10—H10A | 109.5 | C14—C18—H18C | 109.5 |
O2—C10—H10B | 109.5 | H18A—C18—H18C | 109.5 |
H10A—C10—H10B | 109.5 | H18B—C18—H18C | 109.5 |
C1—N1—N2—C11 | 178.17 (11) | C10—O2—C9—O1 | 1.63 (19) |
N2—N1—C1—C2 | −175.79 (13) | C10—O2—C9—C6 | −178.38 (11) |
N2—N1—C1—C3 | 2.06 (19) | C7—C6—C9—O1 | 19.0 (2) |
N1—C1—C2—Cl2 | 1.1 (2) | C5—C6—C9—O1 | −161.01 (14) |
C3—C1—C2—Cl2 | −176.74 (11) | C7—C6—C9—O2 | −161.04 (12) |
N1—C1—C2—Cl1 | −178.69 (10) | C5—C6—C9—O2 | 19.00 (18) |
C3—C1—C2—Cl1 | 3.5 (2) | N1—N2—C11—C16 | −11.1 (2) |
C2—C1—C3—C8 | 67.37 (19) | N1—N2—C11—C12 | 170.08 (13) |
N1—C1—C3—C8 | −110.35 (15) | C16—C11—C12—C13 | 1.5 (2) |
C2—C1—C3—C4 | −113.54 (16) | N2—C11—C12—C13 | −179.65 (13) |
N1—C1—C3—C4 | 68.73 (18) | C11—C12—C13—C14 | −0.7 (2) |
C8—C3—C4—C5 | −2.2 (2) | C11—C12—C13—C17 | 179.96 (14) |
C1—C3—C4—C5 | 178.73 (12) | C12—C13—C14—C15 | 0.1 (2) |
C3—C4—C5—C6 | 1.3 (2) | C17—C13—C14—C15 | 179.40 (14) |
C4—C5—C6—C7 | 0.5 (2) | C12—C13—C14—C18 | −179.55 (14) |
C4—C5—C6—C9 | −179.51 (12) | C17—C13—C14—C18 | −0.2 (2) |
C5—C6—C7—C8 | −1.6 (2) | C13—C14—C15—C16 | −0.2 (2) |
C9—C6—C7—C8 | 178.48 (12) | C18—C14—C15—C16 | 179.48 (14) |
C6—C7—C8—C3 | 0.7 (2) | C14—C15—C16—C11 | 0.9 (2) |
C4—C3—C8—C7 | 1.2 (2) | C12—C11—C16—C15 | −1.5 (2) |
C1—C3—C8—C7 | −179.74 (12) | N2—C11—C16—C15 | 179.72 (13) |
Contact | Percentage contribution | ||
(I) | (II) | (III) | |
H···H | 33.5 | 39.7 | 37.0 |
Cl···H/H···Cl | 20.5 | 14.4 | 19.1 |
C···H/H···C | 14.3 | 14.5 | 16.0 |
O···H/H···O | 8.1 | 6.6 | 8.7 |
C···C | 6.0 | 4.0 | 2.1 |
N···H/H···N | 4.2 | 5.2 | 4.9 |
N···C/C···N | 4.0 | 0.3 | 2.0 |
Cl···O/O···Cl | 3.7 | 2.6 | 1.5 |
Cl···C/C···Cl | 3.3 | 2.8 | 5.3 |
O···C/C···O | 1.7 | 4.6 | 1.4 |
Cl···Cl | 0.6 | 4.0 | 1.0 |
O···C/C···O | – | 1.1 | 1.4 |
Cl···N/N..Cl | – | 0.8 | 0.4 |
O···C/C···O | – | – | 0.2 |
Acknowledgements
The authors' contributions are as follows. Conceptualization, NQS, MA and AB; synthesis, SAİ, NEA, GTA and GVB; X-ray analysis, ZA, VNK and MA; writing (review and editing of the manuscript) ZA, MA and AB; funding acquisition, NQS, and GVB; supervision, NQS, MA and AB.
Funding information
This work was performed under the support of the Science Development Foundation under the President of the Republic of Azerbaijan (grant No. EIF-BGM-4-RFTF-1/2017–21/13/4).
References
Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199–1204. Web of Science CSD CrossRef IUCr Journals Google Scholar
Akkurt, M., Yıldırım, S. Ö., Shikhaliyev, N. Q., Mammadova, N. A., Niyazova, A. A., Khrustalev, V. N. & Bhattarai, A. (2022). Acta Cryst. E78, 732–736. Web of Science CSD CrossRef IUCr Journals Google Scholar
Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Mammadova, N. A., Babayeva, G. V., Khrustalev, V. N. & Bhattarai, A. (2022a). Acta Cryst. E78, 530–535. Web of Science CSD CrossRef IUCr Journals Google Scholar
Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Mammadova, N. A., Babayeva, G. V., Khrustalev, V. N. & Bhattarai, A. (2022b). Acta Cryst. E78, 804–808. Web of Science CSD CrossRef IUCr Journals Google Scholar
Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237–241. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Çelikesir, S. T., Akkurt, M., Shikhaliyev, N. Q., Mammadova, N. A., Suleymanova, G. T., Khrustalev, V. N. & Bhattarai, A. (2022). Acta Cryst. E78, 404–408. Web of Science CSD CrossRef IUCr Journals Google Scholar
Chen, M., Chang, C. H., Tao, L. & Lu, C. (2015). Pediatrics, 136, 719–729. CrossRef PubMed Google Scholar
Damalas, C. A. & Eleftherohorinos, I. G. (2011). Int. J. Environ. Res. Publ. Heal. 8, 1402–1419. CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Goulson, D. (2013). J. Appl. Ecol. 50, 977–987. CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Isman, M. B. (2015). Pest. Manag. Sci. 71, 1587–1590. CrossRef CAS PubMed Google Scholar
Isman, M. B. (2020). Phytochem. Rev. 19, 235–241. CrossRef CAS Google Scholar
Maharramov, A., Shikhaliyev, N. Q., Qajar, A., Atakishiyeva, G. T., Niyazova, A., Khrustalev, V. N., Akkurt, M., Yıldırım, S. Ö. & Bhattarai, A. (2023). Acta Cryst. E79, 637–643. CSD CrossRef IUCr Journals Google Scholar
Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. (2018). Dyes Pigments, 159, 135–141. Web of Science CrossRef CAS Google Scholar
Mostafiz, M. M., Hassan, E. & Lee, K. Y. (2022). Agriculture, 12, 378. CrossRef Google Scholar
Naqqash, M. N., Gökçe, A., Bakhsh, A. & Salim, M. (2016). Parasitol. Res. 115, 1363–1373. CrossRef PubMed Google Scholar
Nenajdenko, V. G., Shikhaliyev, N. G., Maharramov, A. M., Bagirova, K. N., Suleymanova, G. T., Novikov, A. S., Khrustalev, V. N. & Tskhovrebov, A. G. (2020). Molecules, 25, 5013. Web of Science CSD CrossRef PubMed Google Scholar
Özkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Mammadova, G. Z. & Shadrack, D. M. (2020a). Acta Cryst. E76, 1251–1254. Web of Science CSD CrossRef IUCr Journals Google Scholar
Özkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Shikhaliyeva, I. M. & Bhattarai, A. (2020b). Acta Cryst. E76, 811–815. Web of Science CSD CrossRef IUCr Journals Google Scholar
Pavela, R. (2016). Plant Prot. Sci. 52, 229–241. CrossRef CAS Google Scholar
Pavela, R. & Benelli, G. (2016). Trends Plant Sci. 21, 1000–1007. CrossRef CAS PubMed Google Scholar
Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shikhaliyev, N. G., Maharramov, A. M., Bagirova, K. N., Suleymanova, G. T., Tsyrenova, B. D., Nenajdenko, V. G., Novikov, A. S., Khrustalev, V. N. & Tskhovrebov, A. G. (2021b). Mendeleev Commun. 31, 191–193. CSD CrossRef CAS Google Scholar
Shikhaliyev, N. G., Maharramov, A. M., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Shikhaliyeva, I. M., Babazade, A. A. & Nenajdenko, V. G. (2021c). Arkivoc, pp. 67–75. CrossRef Google Scholar
Shikhaliyev, N. G., Suleymanova, G. T., İsrayilova, A. A., Ganbarov, K. G., Babayeva, G. V., Garazadeh, K. A., Mammadova, G. Z. & Nenajdenko, V. G. (2019b). Org. Chem. pp. 64–73. Google Scholar
Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381. Web of Science CSD CrossRef CAS Google Scholar
Shikhaliyev, N. Q., Atioğlu, Z., Akkurt, M., Qacar, A. M., Askerov, R. K. & Bhattarai, A. (2021a). Acta Cryst. E77, 965–970. CSD CrossRef IUCr Journals Google Scholar
Shikhaliyev, N. Q., Çelikesir, S. T., Akkurt, M., Bagirova, K. N., Suleymanova, G. T. & Toze, F. A. A. (2019a). Acta Cryst. E75, 465–469. CSD CrossRef IUCr Journals Google Scholar
Shikhaliyev, N. Q., Özkaraca, K., Akkurt, M., Bagirova, X. N., Suleymanova, G. T., Abdulov, M. S. & Mlowe, S. (2021d). Acta Cryst. E77, 1158–1163. CSD CrossRef IUCr Journals Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Zikankuba, V. L., Mwanyika, G., Ntwenya, J. E. & James, A. (2019). Cogent Food Agric. 5, 1601544. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.