research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures and Hirshfeld surface analyses of methyl 4-{2,2-di­chloro-1-[(E)-phenyl­diazen­yl]eth­enyl}benzoate, methyl 4-{2,2-di­chloro-1-[(E)-(4-methyl­phen­yl)diazen­yl]ethen­yl}benzoate and methyl 4-{2,2-di­chloro-1-[(E)-(3,4-di­methyl­phen­yl)diazen­yl]ethen­yl}benzoate

crossmark logo

aOrganic Chemistry Department, Baku State University, Z. Khalilov str. 23, AZ 1148 Baku, Azerbaijan, bDepartment of Analytical and Organic Chemistry, Azerbaijan State Pedagogical University, Uzeyir Hajibeyli str., 68, Baku, Azerbaijan, cPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow, 117198, Russian Federation, dN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, eDepartment of Aircraft Electrics and Electronics, School of Applied Sciences, Cappadocia University, Mustafapaşa, 50420 Ürgüp, Nevşehir, Türkiye, fDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, and gDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

Edited by M. Weil, Vienna University of Technology, Austria (Received 6 December 2023; accepted 19 January 2024; online 26 January 2024)

The crystal structures and Hirshfeld surface analyses of three similar azo compounds are reported. Methyl 4-{2,2-di­chloro-1-[(E)-phenyl­diazen­yl]ethen­yl}benzoate, C16H12Cl2N2O2, (I), and methyl 4-{2,2-di­chloro-1-[(E)-(4-methyl­phen­yl)diazen­yl]ethen­yl}benzoate, C17H14Cl2N2O2, (II), crystallize in the space group P21/c with Z = 4, and methyl 4-{2,2-di­chloro-1-[(E)-(3,4-di­methyl­phen­yl)diazen­yl]ethen­yl}benzoate, C18H16Cl2N2O2, (III), in the space group P[\overline{1}] with Z = 2. In the crystal of (I), mol­ecules are linked by C—H⋯N hydrogen bonds, forming chains with C(6) motifs parallel to the b axis. Short inter­molecular Cl⋯O contacts of 2.8421 (16) Å and weak van der Waals inter­actions between these chains stabilize the crystal structure. In (II), mol­ecules are linked by C—H⋯O hydrogen bonds and C—Cl⋯π inter­actions, forming layers parallel to (010). Weak van der Waals inter­actions between these layers consolidate the mol­ecular packing. In (III), mol­ecules are linked by C—H⋯π and C—Cl⋯π inter­actions forming chains parallel to [011]. Furthermore, these chains are connected by C—Cl⋯π inter­actions parallel to the a axis, forming (0[\overline{1}]1) layers. The stability of the mol­ecular packing is ensured by van der Waals forces between these layers.

1. Chemical context

When manufacturing new insecticides and pesticides, it is important that they are harmless to the environment and humans. This condition is fulfilled for most biopesticides. For example, methyl­benzoate is considered to be a bio-insecticide (Mostafiz et al., 2022[Mostafiz, M. M., Hassan, E. & Lee, K. Y. (2022). Agriculture, 12, 378.]; Chen et al., 2015[Chen, M., Chang, C. H., Tao, L. & Lu, C. (2015). Pediatrics, 136, 719-729.]; Damalas & Eleftherohorinos, 2011[Damalas, C. A. & Eleftherohorinos, I. G. (2011). Int. J. Environ. Res. Publ. Heal. 8, 1402-1419.]; Goulson, 2013[Goulson, D. (2013). J. Appl. Ecol. 50, 977-987.]; Naqqash et al., 2016[Naqqash, M. N., Gökçe, A., Bakhsh, A. & Salim, M. (2016). Parasitol. Res. 115, 1363-1373.]; Zikankuba et al., 2019[Zikankuba, V. L., Mwanyika, G., Ntwenya, J. E. & James, A. (2019). Cogent Food Agric. 5, 1601544.]) and is reported to be less harmful to the human body and the environment. Methyl­benzoate is also found as a metabolite in plants and has an attractive odour to insects. At the same time, methyl benzoate is very effective as a pesticide against agricultural and warehouse pests (Isman, 2015[Isman, M. B. (2015). Pest. Manag. Sci. 71, 1587-1590.], 2020[Isman, M. B. (2020). Phytochem. Rev. 19, 235-241.]; Pavela, 2016[Pavela, R. (2016). Plant Prot. Sci. 52, 229-241.]; Pavela & Benelli, 2016[Pavela, R. & Benelli, G. (2016). Trends Plant Sci. 21, 1000-1007.]). It can therefore be concluded that methyl benzoate and its derivatives might exhibit applications as pesticides and insecticides, and the synthesis of such or related biopesticides is an urgent issue. Taking this into account, we focused on phenyl­hydrazones that were obtained from the reaction of methyl 4-formyl­benzoate with the corresponding phenyl­hydrazines (Maharramov et al., 2018[Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. (2018). Dyes Pigments, 159, 135-141.]; Nenajdenko et al., 2020[Nenajdenko, V. G., Shikhaliyev, N. G., Maharramov, A. M., Bagirova, K. N., Suleymanova, G. T., Novikov, A. S., Khrustalev, V. N. & Tskhovrebov, A. G. (2020). Molecules, 25, 5013.], Shikhaliyev et al., 2018[Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377-381.], 2019a[Shikhaliyev, N. Q., Çelikesir, S. T., Akkurt, M., Bagirova, K. N., Suleymanova, G. T. & Toze, F. A. A. (2019a). Acta Cryst. E75, 465-469.],b[Shikhaliyev, N. G., Suleymanova, G. T., İsrayilova, A. A., Ganbarov, K. G., Babayeva, G. V., Garazadeh, K. A., Mammadova, G. Z. & Nenajdenko, V. G. (2019b). Org. Chem. pp. 64-73.], 2021a[Shikhaliyev, N. Q., Atioğlu, Z., Akkurt, M., Qacar, A. M., Askerov, R. K. & Bhattarai, A. (2021a). Acta Cryst. E77, 965-970.],b[Shikhaliyev, N. G., Maharramov, A. M., Bagirova, K. N., Suleymanova, G. T., Tsyrenova, B. D., Nenajdenko, V. G., Novikov, A. S., Khrustalev, V. N. & Tskhovrebov, A. G. (2021b). Mendeleev Commun. 31, 191-193.],c[Shikhaliyev, N. G., Maharramov, A. M., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Shikhaliyeva, I. M., Babazade, A. A. & Nenajdenko, V. G. (2021c). Arkivoc, pp. 67-75.]), and the synthesis of methyl (E)-4-{2,2-di­chloro-1-[(substitutedphen­yl)diazen­yl]vin­yl}benzoate derivatives was carried out from the reaction of the latter with CCl4. The here synthesized di­chlorodi­aza­diene derivatives (I), (II) and (III) and aryl­hydrazo derivatives of α-keto esters obtained from their solvolysis are intended to be studied in future research as compounds with the above-mentioned properties (Fig. 1[link]).

[Scheme 1]
[Figure 1]
Figure 1
Reaction scheme for synthesis of azo dyes with the methyl­benzoate fragment.

2. Structural commentary

The central mol­ecular fragment of (I), C1/C2/N1/N2/C3/C11/Cl1/Cl2, is almost planar (Fig. 2[link]), with a root-mean-square (r.m.s.) deviation of fitted atoms from the least-squares plane of 0.0471 Å. This plane forms dihedral angles of 23.39 (6) and 56.98 (4)°, respectively, with the planes of the phenyl (C11–C16) and methyl benzoate (C3–C8) rings. The central mol­ecular fragment of (II), C1/C2/N2/N1/C3/C11/Cl1/Cl2, is likewise planar with an r.m.s. deviation of fitted atoms of 0.0680 Å (Fig. 3[link]) and makes dihedral angles of 14.87 (8) and 70.88 (3)°, respectively, with the planes of the 4-methyl­phenyl (C11–C16) and methyl benzoate (C3–C8) rings. The central mol­ecular fragment of (III), C1/C2/N1/N2/C3/C11/Cl1/Cl2 (r.m.s. deviation of fitted atoms = 0.0261 Å; Fig. 4[link]) forms dihedral angles of 7.59 (6) and 69.58 (3)°, respectively, with the planes of the 3,4-di­methyl­phenyl (C11–C16) and methyl benzoate (C3–C8) rings.

[Figure 2]
Figure 2
The mol­ecular structure of (I), showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.
[Figure 3]
Figure 3
The mol­ecular structure of (II), showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.
[Figure 4]
Figure 4
The mol­ecular structure of (III), showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

All bond lengths and angles in (I), (II) and (III) are in agreement with those reported for the related azo compounds discussed in the Database survey section.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal of (I), mol­ecules are linked by C—H⋯N hydrogen bonds, forming chains with C(6) motifs (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) extending parallel to the b axis. Short inter­molecular Cl1⋯O1(−x, −[{1\over 2}] + y, [{1\over 2}] − z) contacts of 2.8421 (16) Å and weak van der Waals inter­actions between these chains stabilize the crystal structure (Table 1[link]; Fig. 5[link]). In the crystal of (II), mol­ecules are linked by C—H⋯O hydrogen bonds and C—Cl⋯π inter­actions [C2—Cl2⋯Cg1a: Cl2⋯Cg1a = 3.5596 (8) Å, C2—Cl2⋯Cg1a = 101.11 (6)°; symmetry code (a) x, [{3\over 2}] − y, −[{1\over 2}] + z; Cg1 is the centroid of the C3–C8 benzene ring], forming layers parallel to (010) (Table 2[link]; Fig. 6[link]). Weak van der Waals inter­actions between these layers stabilize the mol­ecular packing. In the crystal of (III), mol­ecules are linked by C—H⋯π and C—Cl⋯π inter­actions, forming chains parallel to [011]. Furthermore, these chains are connected by C—Cl⋯π inter­actions [C2—Cl1⋯Cg2a: Cl1⋯Cg2a = 3.5398 (8) Å, C2—Cl1⋯Cg2a = 92.51 (5)°; C2—Cl2⋯Cg2b: Cl2⋯Cg2b = 3.9545 (8) Å, C2—Cl2⋯Cg2b = 88.18 (5)°; symmetry codes (a) −x, −y, 1 − z; (b) 1 − x, −y, 1 − z; Cg2 is the centroid of the 3,4-di­methyl­phenyl ring (C11–C16)] parallel to the a axis, forming layers parallel to (0[\overline{1}]1) (Table 3[link]; Figs. 7[link], 8[link] and 9[link]). The stability of the mol­ecular packing is ensured by van der Waals forces between these layers.

Table 1
Hydrogen-bond geometry (Å, °) for (I[link])

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯N2i 0.95 2.54 3.191 (3) 126
Symmetry code: (i) [x, y-1, z].

Table 2
Hydrogen-bond geometry (Å, °) for (II[link])

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1i 0.95 2.43 3.268 (2) 148
C13—H13⋯O1ii 0.95 2.40 3.309 (3) 159
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title compounds

Contact   Percentage contribution  
  (I) (II) (III)
H⋯H 33.5 39.7 37.0
Cl⋯H/H⋯Cl 20.5 14.4 19.1
C⋯H/H⋯C 14.3 14.5 16.0
O⋯H/H⋯O 8.1 6.6 8.7
C⋯C 6.0 4.0 2.1
N⋯H/H⋯N 4.2 5.2 4.9
N⋯C/C⋯N 4.0 0.3 2.0
Cl⋯O/O⋯Cl 3.7 2.6 1.5
Cl⋯C/C⋯Cl 3.3 2.8 5.3
O⋯C/C⋯O 1.7 4.6 1.4
Cl⋯Cl 0.6 4.0 1.0
O⋯C/C⋯O 1.1 1.4
Cl⋯N/N.·Cl 0.8 0.4
O⋯C/C⋯O 0.2
[Figure 5]
Figure 5
A general view of the C—H⋯N hydrogen bonds in the crystal structure of (I).
[Figure 6]
Figure 6
The crystal packing of (II) viewed along the c axis with inter­molecular C—H⋯O and C—Cl⋯π inter­actions shown as dashed lines.
[Figure 7]
Figure 7
The crystal packing of (III) viewed along the a axis with C—H⋯π and C—Cl⋯π inter­actions shown as dashed lines.
[Figure 8]
Figure 8
The crystal packing of (III) viewed along the b axis with C—H⋯π and C—Cl⋯π inter­actions shown as dashed lines.
[Figure 9]
Figure 9
The crystal packing of (III) viewed along the c axis with C—H⋯π and C—Cl⋯π inter­actions.

To qu­antify inter­molecular inter­actions between the mol­ecules in the crystal structures of (I), (II) and (III), Hirshfeld surface analyses were performed, together with two-dimensional fingerprint plots by using CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The two-dimensional fingerprint plots are shown in Fig. 10[link]. Comparative inter­actions calculated for each compound are given in Table 3[link]. The dominant inter­actions in the crystal packing of the title compounds are H⋯H [(I): 33.5%, (II): 39.7% and (III): 37.0%], Cl⋯H/H⋯Cl [(I): 20.5%, (II): 14.4% and (III): 19.1%], C⋯H/H⋯C [(I): 14.3%, (II): 14.5% and (III):16.0%] and O⋯H/H⋯O [(I): 8.1%, (II): 6.6% and (III): 8.7%]. These inter­actions play a crucial role in the overall stabilization of the crystal packing. The presence of different functional groups in the compounds leads to some differences in the remaining weak inter­actions.

[Figure 10]
Figure 10
The full two-dimensional fingerprint plots for (I), (II) and (III), showing (a) all inter­actions, and delineated into (b) H⋯H, (c) Cl⋯H/H⋯Cl, (d) C⋯H/H⋯C, and (e) O⋯H/H⋯O inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.42, update of September 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the (E)-1-(2,2-di­chloro-1-phenyl­ethen­yl)-2-phenyl­diazene moiety resulted in 36 hits. Eighteen compounds are closely related to the title compound, viz. those with CSD refcodes NIKXEO (Maharramov et al., 2023[Maharramov, A., Shikhaliyev, N. Q., Qajar, A., Atakishiyeva, G. T., Niyazova, A., Khrustalev, V. N., Akkurt, M., Yıldırım, S. Ö. & Bhattarai, A. (2023). Acta Cryst. E79, 637-643.]), NIKXIS (Maharramov et al., 2023[Maharramov, A., Shikhaliyev, N. Q., Qajar, A., Atakishiyeva, G. T., Niyazova, A., Khrustalev, V. N., Akkurt, M., Yıldırım, S. Ö. & Bhattarai, A. (2023). Acta Cryst. E79, 637-643.]), NIKXOY (Maharramov et al., 2023[Maharramov, A., Shikhaliyev, N. Q., Qajar, A., Atakishiyeva, G. T., Niyazova, A., Khrustalev, V. N., Akkurt, M., Yıldırım, S. Ö. & Bhattarai, A. (2023). Acta Cryst. E79, 637-643.]), NIKXUE (Maharramov et al., 2023[Maharramov, A., Shikhaliyev, N. Q., Qajar, A., Atakishiyeva, G. T., Niyazova, A., Khrustalev, V. N., Akkurt, M., Yıldırım, S. Ö. & Bhattarai, A. (2023). Acta Cryst. E79, 637-643.]), TAZDIL (Atioğlu et al., 2022a[Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Mammadova, N. A., Babayeva, G. V., Khrustalev, V. N. & Bhattarai, A. (2022a). Acta Cryst. E78, 530-535.]), HEHKEO (Akkurt et al., 2022[Akkurt, M., Yıldırım, S. Ö., Shikhaliyev, N. Q., Mammadova, N. A., Niyazova, A. A., Khrustalev, V. N. & Bhattarai, A. (2022). Acta Cryst. E78, 732-736.]), ECUDAL (Atioğlu et al., 2022b[Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Mammadova, N. A., Babayeva, G. V., Khrustalev, V. N. & Bhattarai, A. (2022b). Acta Cryst. E78, 804-808.]), PAXDOL (Çelikesir et al., 2022[Çelikesir, S. T., Akkurt, M., Shikhaliyev, N. Q., Mammadova, N. A., Suleymanova, G. T., Khrustalev, V. N. & Bhattarai, A. (2022). Acta Cryst. E78, 404-408.]), CANVUM (Shikhaliyev et al., 2021d[Shikhaliyev, N. Q., Özkaraca, K., Akkurt, M., Bagirova, X. N., Suleymanova, G. T., Abdulov, M. S. & Mlowe, S. (2021d). Acta Cryst. E77, 1158-1163.]), EBUCUD (Shikhaliyev et al., 2021a[Shikhaliyev, N. Q., Atioğlu, Z., Akkurt, M., Qacar, A. M., Askerov, R. K. & Bhattarai, A. (2021a). Acta Cryst. E77, 965-970.]), GUPHIL (Özkaraca et al., 2020a[Özkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Mammadova, G. Z. & Shadrack, D. M. (2020a). Acta Cryst. E76, 1251-1254.]), DULTAI (Özkaraca et al., 2020b[Özkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Shikhaliyeva, I. M. & Bhattarai, A. (2020b). Acta Cryst. E76, 811-815.]), XIZREG (Atioğlu et al., 2019[Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237-241.]), HODQAV (Shikhaliyev et al., 2019a[Shikhaliyev, N. Q., Çelikesir, S. T., Akkurt, M., Bagirova, K. N., Suleymanova, G. T. & Toze, F. A. A. (2019a). Acta Cryst. E75, 465-469.]), HONBUK (Akkurt et al., 2019[Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199-1204.]), HONBOE (Akkurt et al., 2019[Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199-1204.]), LEQXOX (Shikhaliyev et al., 2018[Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377-381.]) and LEQXIR (Shikhaliyev et al., 2018[Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377-381.]).

In the crystal structures of NIKXEO and NIKXIS, mol­ecules are linked by C—H⋯π and C—Cl⋯π inter­actions, forming layers parallel to ([\overline{1}]01), while mol­ecules of NIKXOY are linked by C—H⋯O contacts, C—H⋯π and C—Cl⋯π inter­actions, forming layers parallel to ([\overline{3}]02). The stability of the mol­ecular packing is ensured by van der Waals forces between these layers. In the crystal structure of NIKXUE, mol­ecules are linked by C—H⋯π and C—Cl⋯π inter­actions, forming a tri-periodic network. The mol­ecules in TAZDIL are joined into layers parallel to (011) by C—H⋯O and C—H⋯F hydrogen bonds. C—Br⋯π and C—F⋯π contacts, as well as ππ stacking inter­actions strengthen the crystal packing. C—H⋯Br inter­actions connect the mol­ecules in the crystal of the polymorph-1 of HEHKEO, resulting in zigzag C(8) chains parallel to [100]. These chains are connected by C—Br⋯π inter­actions into layers parallel to (001). van der Waals inter­actions between the layers contribute to the crystal cohesion. In the crystals of ECUDAL, C—H⋯O hydrogen bonds link mol­ecules into chains. These chains are linked by face-to-face ππ stacking inter­actions, resulting in a layered structure. Short inter­molecular Br⋯O contacts and van der Waals inter­actions between the layers aid in the cohesion of the crystal packing. The mol­ecules in the crystal of PAXDOL are connected into chains running parallel to [001] by C—H⋯O hydrogen bonds. C—F⋯π contacts and ππ stacking inter­actions help to consolidate the crystal packing, and short Br⋯O [2.9828 (13) Å] distances are also observed. In CANVUM, the mol­ecules are linked by C—H⋯N inter­actions along [100], forming a C(6) chain. The mol­ecules are further connected by C—Cl⋯π inter­actions and face-to-face ππ stacking inter­actions, resulting in ribbons along [100]. The crystal structure of EBUCUD features short C—H⋯Cl and C—H⋯O contacts and C—H⋯π and van der Waals inter­actions. In GUPHIL, mol­ecules are associated into inversion dimers via short Cl⋯Cl contacts [3.3763 (9) Å]. In DULTAI, the crystal structure is stabilized by a short C—H⋯Cl contact, C—Cl⋯π and van der Waals inter­actions. In XIZREG, the mol­ecules are linked by C—H⋯O hydrogen bonds into zigzag chains running along [001]. The crystal packing also features C—Cl⋯π, C—F⋯π and N—O⋯π inter­actions. In HODQAV, mol­ecules are stacked in columns along [100] via weak C—H⋯Cl hydrogen bonds and face-to-face ππ stacking inter­actions. The crystal packing is further consolidated by short Cl⋯Cl contacts. In HONBUK and HONBOE, mol­ecules are linked through weak X⋯Cl contacts (X = Cl for HONBUK and Br for HONBOE), C—H⋯Cl and C—Cl⋯π inter­actions into sheets parallel to (001). Additional van der Waals inter­actions consolidate the three-dimensional packing. In the crystals of LEQXOX, C—H⋯N and short Cl⋯Cl contacts are observed and in LEQXIR, C—H⋯N and C—H⋯O hydrogen bonds and short C—Cl⋯O contacts occur.

5. Synthesis and crystallization

Dyes (I), (II) and (III) were synthesized according to a literature protocol (Maharramov et al., 2018[Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. (2018). Dyes Pigments, 159, 135-141.]).

For dye (I), a 20 ml screw-neck vial was charged with DMSO (10 ml), methyl (E)-4-[(2-phenyl­hydrazineyl­idene)meth­yl]benzoate (254 mg, 1 mmol), tetra­methyl­ethylenedi­amine (TMEDA) (295 mg, 2.5 mmol), CuCl (2 mg, 0.02 mmol) and CCl4 (1 mmol). After 1–3 h (until TLC analysis showed complete consumption of the corresponding Schiff base), the reaction mixture was poured into a ∼0.01 M solution of HCl (100 ml, pH = 2–3), and extracted with di­chloro­methane (3 × ∼20 ml). The combined organic phase was washed with water (3× ∼50 ml), brine (30 ml), dried over anhydrous Na2SO4 and concentrated in vacuo using a rotary evaporator. The residue was purified by column chromatography on silica gel using appropriate mixtures of hexane and di­chloro­methane (v/v: 5/1–3/1–1/1). A red solid was obtained (yield 72%); m.p. 375 K. 1H NMR (300 MHz, chloro­form-d) δ 8.16–8.10 (m, 2H), 7.77 (dd, J = 6.8, 3.0 Hz, 2H), 7.48–7.43 (m, 3H), 7.29 (d, J = 8.3 Hz, 2H), 3.97 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 169.2, 137.4, 132.0, 131.8, 130.1, 129.3, 129.1, 123.6, 123.2, 121.3, 120.0, 52.2.

For dye (II), the procedure was the same as that for (I) using methyl (E)-4-{[2-(p-tol­yl)hydrazineyl­idene]meth­yl}benzoate (268 mg, 1 mmol). A red solid was obtained (yield 78%); m.p. 399 K. 1H NMR (300 MHz, chloro­form-d) δ 8.13 (d, J = 8.3 Hz, 2H), 7.69 (d, J = 8.2 Hz, 2H), 7.32–7.22 (m, 4H), 3.95 (s, 3H), 2.40 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 166.6, 151.5, 150.9, 142.6, 137.6, 134.8, 130.2, 129.8, 129.3, 123.3, 52.2, 21.6.

For dye (III), the procedure was the same as that for (I) using methyl (E)-4-{[2-(3,4-di­methyl­phen­yl)hydrazineyl­idene]meth­yl}benzoate (282 mg, 1 mmol). A red solid was obtained (yield 73%); m.p. 405 K. 1H NMR (300 MHz, chloro­form-d) δ 8.14 (d, J = 8.2 Hz, 2H), 7.60–7.52 (m, 2H), 7.29 (d, J = 8.1 Hz, 2H), 7.20 (d, J = 8.0 Hz, 1H), 3.96 (s, 3H), 2.31 (s, 6H). 13C NMR (75 MHz, CDCl3) δ 151.5, 151.2, 141.4, 137.7, 137.4, 134.5, 130.3, 130.2, 129.3, 124.6, 120.7, 52.2, 20.0.

Compounds (I), (II), and (III) were dissolved in di­chloro­methane and then left at room temperature for slow evaporation; red crystals of all compounds suitable for X-rays started to form after ca 2 d.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5. In all three compounds (I), (II) and (III), all H atoms were positioned geometrically and treated as riding atoms, with C—H = 0.95–0.98 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl).

Supporting information


Computing details top

Methyl 4-{2,2-dichloro-1-[(E)-phenyldiazenyl]ethenyl}benzoate (I) top
Crystal data top
C16H12Cl2N2O2F(000) = 688
Mr = 335.18Dx = 1.510 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 15.47572 (16) ÅCell parameters from 12282 reflections
b = 4.16896 (4) Åθ = 2.9–77.0°
c = 23.2257 (2) ŵ = 4.04 mm1
β = 100.1964 (9)°T = 100 K
V = 1474.80 (2) Å3Prism, red
Z = 40.22 × 0.13 × 0.11 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
2823 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tubeRint = 0.060
φ and ω scansθmax = 77.8°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
h = 1919
Tmin = 0.404, Tmax = 0.600k = 55
23940 measured reflectionsl = 2928
3151 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0503P)2 + 1.3375P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3151 reflectionsΔρmax = 0.46 e Å3
200 parametersΔρmin = 0.32 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.13479 (3)0.05540 (11)0.40331 (2)0.02247 (13)
Cl20.27874 (3)0.32473 (12)0.48326 (2)0.02639 (14)
O10.01936 (9)0.1723 (4)0.10978 (6)0.0285 (3)
O20.14455 (9)0.0786 (4)0.10100 (6)0.0268 (3)
N10.34295 (10)0.5658 (4)0.38299 (7)0.0216 (3)
N20.38242 (10)0.6368 (4)0.34161 (7)0.0211 (3)
C10.26399 (11)0.3911 (4)0.36605 (8)0.0207 (4)
C20.22931 (12)0.2761 (5)0.41127 (8)0.0214 (4)
C30.22169 (11)0.3354 (4)0.30397 (8)0.0197 (4)
C40.26794 (11)0.1764 (5)0.26603 (8)0.0210 (4)
H40.3276490.1194110.2790230.025*
C50.22744 (12)0.1012 (5)0.20969 (8)0.0220 (4)
H50.2590870.0111300.1845140.026*
C60.14025 (11)0.1895 (4)0.18962 (8)0.0203 (4)
C70.09485 (11)0.3596 (4)0.22649 (8)0.0215 (4)
H70.0362190.4271190.2126520.026*
C80.13490 (12)0.4308 (5)0.28326 (8)0.0220 (4)
H80.1033370.5447860.3082780.026*
C90.09401 (12)0.0996 (5)0.13000 (8)0.0215 (4)
C100.10264 (14)0.1883 (6)0.04358 (8)0.0293 (4)
H10A0.0875220.0031270.0177760.044*
H10B0.0491210.3072010.0469280.044*
H10C0.1429470.3288380.0272280.044*
C110.46037 (11)0.8199 (4)0.36040 (8)0.0209 (4)
C120.51605 (12)0.8486 (5)0.31977 (8)0.0228 (4)
H120.5007230.7512520.2823640.027*
C130.59408 (13)1.0194 (5)0.33381 (9)0.0255 (4)
H130.6321901.0381160.3060980.031*
C140.61616 (12)1.1624 (5)0.38829 (9)0.0258 (4)
H140.6701571.2745950.3983270.031*
C150.55900 (13)1.1414 (5)0.42850 (8)0.0264 (4)
H150.5734401.2452820.4653610.032*
C160.48136 (12)0.9698 (5)0.41483 (8)0.0233 (4)
H160.4427430.9544050.4422800.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0167 (2)0.0264 (2)0.0244 (2)0.00357 (16)0.00406 (15)0.00043 (16)
Cl20.0217 (2)0.0355 (3)0.0213 (2)0.00499 (17)0.00171 (16)0.00103 (17)
O10.0183 (6)0.0359 (8)0.0291 (7)0.0048 (6)0.0016 (5)0.0043 (6)
O20.0193 (6)0.0382 (8)0.0220 (6)0.0047 (6)0.0016 (5)0.0046 (6)
N10.0162 (7)0.0232 (8)0.0248 (7)0.0001 (6)0.0022 (6)0.0017 (6)
N20.0153 (7)0.0216 (7)0.0260 (8)0.0007 (6)0.0025 (6)0.0023 (6)
C10.0152 (8)0.0208 (8)0.0255 (9)0.0019 (7)0.0018 (7)0.0006 (7)
C20.0163 (8)0.0233 (9)0.0241 (9)0.0006 (7)0.0023 (6)0.0014 (7)
C30.0163 (8)0.0202 (8)0.0221 (9)0.0004 (7)0.0023 (6)0.0026 (7)
C40.0142 (8)0.0244 (9)0.0241 (9)0.0035 (7)0.0029 (6)0.0038 (7)
C50.0166 (8)0.0260 (9)0.0240 (9)0.0034 (7)0.0049 (7)0.0022 (7)
C60.0159 (8)0.0220 (9)0.0224 (8)0.0002 (7)0.0021 (6)0.0025 (7)
C70.0140 (8)0.0221 (9)0.0281 (9)0.0019 (7)0.0028 (7)0.0016 (7)
C80.0153 (8)0.0248 (9)0.0261 (9)0.0004 (7)0.0044 (7)0.0011 (7)
C90.0175 (8)0.0233 (9)0.0237 (9)0.0013 (7)0.0038 (7)0.0019 (7)
C100.0264 (10)0.0391 (11)0.0214 (9)0.0002 (8)0.0018 (7)0.0053 (8)
C110.0140 (8)0.0219 (9)0.0259 (9)0.0017 (7)0.0011 (6)0.0034 (7)
C120.0205 (9)0.0238 (9)0.0246 (9)0.0002 (7)0.0053 (7)0.0005 (7)
C130.0195 (9)0.0274 (10)0.0306 (10)0.0009 (8)0.0077 (7)0.0020 (8)
C140.0155 (8)0.0291 (10)0.0319 (10)0.0030 (7)0.0014 (7)0.0046 (8)
C150.0233 (9)0.0305 (10)0.0241 (9)0.0045 (8)0.0004 (7)0.0017 (8)
C160.0189 (9)0.0282 (9)0.0227 (9)0.0010 (7)0.0037 (7)0.0035 (7)
Geometric parameters (Å, º) top
Cl1—C21.7102 (19)C7—C81.386 (3)
Cl2—C21.7231 (18)C7—H70.9500
O1—C91.206 (2)C8—H80.9500
O2—C91.343 (2)C10—H10A0.9800
O2—C101.450 (2)C10—H10B0.9800
N1—N21.262 (2)C10—H10C0.9800
N1—C11.417 (2)C11—C121.391 (3)
N2—C111.429 (2)C11—C161.396 (3)
C1—C21.349 (3)C12—C131.390 (3)
C1—C31.492 (2)C12—H120.9500
C3—C41.397 (3)C13—C141.386 (3)
C3—C81.402 (2)C13—H130.9500
C4—C51.383 (3)C14—C151.398 (3)
C4—H40.9500C14—H140.9500
C5—C61.397 (2)C15—C161.386 (3)
C5—H50.9500C15—H150.9500
C6—C71.394 (3)C16—H160.9500
C6—C91.490 (3)
C9—O2—C10115.49 (15)O1—C9—O2123.12 (17)
N2—N1—C1114.77 (15)O1—C9—C6124.62 (17)
N1—N2—C11112.90 (15)O2—C9—C6112.26 (15)
C2—C1—N1114.12 (16)O2—C10—H10A109.5
C2—C1—C3121.99 (16)O2—C10—H10B109.5
N1—C1—C3123.89 (16)H10A—C10—H10B109.5
C1—C2—Cl1123.88 (14)O2—C10—H10C109.5
C1—C2—Cl2122.96 (14)H10A—C10—H10C109.5
Cl1—C2—Cl2113.11 (11)H10B—C10—H10C109.5
C4—C3—C8119.01 (16)C12—C11—C16120.20 (17)
C4—C3—C1119.81 (16)C12—C11—N2115.44 (16)
C8—C3—C1121.15 (16)C16—C11—N2124.36 (16)
C5—C4—C3120.48 (16)C13—C12—C11120.10 (18)
C5—C4—H4119.8C13—C12—H12119.9
C3—C4—H4119.8C11—C12—H12119.9
C4—C5—C6120.35 (17)C14—C13—C12119.88 (18)
C4—C5—H5119.8C14—C13—H13120.1
C6—C5—H5119.8C12—C13—H13120.1
C7—C6—C5119.42 (17)C13—C14—C15120.01 (18)
C7—C6—C9119.19 (16)C13—C14—H14120.0
C5—C6—C9121.38 (17)C15—C14—H14120.0
C8—C7—C6120.28 (16)C16—C15—C14120.30 (18)
C8—C7—H7119.9C16—C15—H15119.8
C6—C7—H7119.9C14—C15—H15119.8
C7—C8—C3120.38 (17)C15—C16—C11119.46 (17)
C7—C8—H8119.8C15—C16—H16120.3
C3—C8—H8119.8C11—C16—H16120.3
C1—N1—N2—C11178.44 (15)C4—C3—C8—C71.9 (3)
N2—N1—C1—C2170.71 (16)C1—C3—C8—C7176.03 (17)
N2—N1—C1—C39.2 (3)C10—O2—C9—O11.8 (3)
N1—C1—C2—Cl1179.62 (13)C10—O2—C9—C6177.22 (16)
C3—C1—C2—Cl10.3 (3)C7—C6—C9—O12.5 (3)
N1—C1—C2—Cl22.2 (2)C5—C6—C9—O1178.85 (19)
C3—C1—C2—Cl2177.66 (14)C7—C6—C9—O2176.46 (17)
C2—C1—C3—C4120.9 (2)C5—C6—C9—O22.2 (3)
N1—C1—C3—C459.0 (3)N1—N2—C11—C12167.20 (16)
C2—C1—C3—C857.0 (3)N1—N2—C11—C1614.1 (3)
N1—C1—C3—C8123.1 (2)C16—C11—C12—C131.8 (3)
C8—C3—C4—C52.9 (3)N2—C11—C12—C13179.43 (17)
C1—C3—C4—C5175.04 (17)C11—C12—C13—C140.3 (3)
C3—C4—C5—C61.4 (3)C12—C13—C14—C151.6 (3)
C4—C5—C6—C71.2 (3)C13—C14—C15—C162.0 (3)
C4—C5—C6—C9177.42 (17)C14—C15—C16—C110.5 (3)
C5—C6—C7—C82.2 (3)C12—C11—C16—C151.4 (3)
C9—C6—C7—C8176.44 (17)N2—C11—C16—C15179.91 (18)
C6—C7—C8—C30.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N2i0.952.543.191 (3)126
C5—H5···O20.952.402.726 (2)100
Symmetry code: (i) x, y1, z.
Methyl 4-{2,2-dichloro-1-[(E)-(4-methylphenyl)diazenyl]ethenyl}benzoate (II) top
Crystal data top
C17H14Cl2N2O2F(000) = 720
Mr = 349.20Dx = 1.420 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 15.6177 (2) ÅCell parameters from 12932 reflections
b = 8.47502 (11) Åθ = 3.0–77.0°
c = 13.10365 (17) ŵ = 3.67 mm1
β = 109.6555 (15)°T = 100 K
V = 1633.34 (4) Å3Prism, red
Z = 40.26 × 0.19 × 0.17 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
3197 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tubeRint = 0.054
φ and ω scansθmax = 78.0°, θmin = 3.0°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
h = 1519
Tmin = 0.307, Tmax = 0.530k = 1010
28857 measured reflectionsl = 1616
3469 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0579P)2 + 0.7484P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.108(Δ/σ)max = 0.001
S = 1.13Δρmax = 0.30 e Å3
3469 reflectionsΔρmin = 0.48 e Å3
211 parametersExtinction correction: SHELXL-2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0012 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.98647 (3)0.77109 (5)0.27683 (3)0.02442 (14)
Cl20.94376 (3)0.63249 (5)0.06421 (3)0.02432 (14)
O10.69644 (8)0.59702 (16)0.60175 (10)0.0264 (3)
O20.81960 (8)0.44134 (15)0.66154 (9)0.0245 (3)
N10.78451 (9)0.49845 (18)0.10125 (11)0.0209 (3)
N20.71406 (9)0.44374 (18)0.11566 (11)0.0219 (3)
C10.84094 (11)0.5841 (2)0.19136 (13)0.0199 (3)
C20.91421 (11)0.6533 (2)0.17879 (13)0.0210 (3)
C30.82373 (11)0.5849 (2)0.29668 (13)0.0196 (3)
C40.74921 (11)0.6634 (2)0.30912 (13)0.0216 (3)
H40.7105190.7252910.2515760.026*
C50.73197 (11)0.6504 (2)0.40622 (14)0.0220 (3)
H50.6821770.7055340.4155950.026*
C60.78742 (11)0.5568 (2)0.48977 (13)0.0195 (3)
C70.86273 (11)0.4802 (2)0.47817 (13)0.0208 (3)
H70.9013890.4180740.5356320.025*
C80.88054 (11)0.4957 (2)0.38166 (13)0.0207 (3)
H80.9320790.4447240.3736100.025*
C90.76178 (11)0.5361 (2)0.58862 (13)0.0204 (3)
C100.79809 (13)0.4119 (2)0.75872 (14)0.0275 (4)
H10A0.8399750.3326190.8029760.041*
H10B0.7355180.3730250.7390450.041*
H10C0.8041670.5100440.8001060.041*
C110.65821 (11)0.3536 (2)0.02710 (13)0.0215 (3)
C120.57409 (12)0.3086 (3)0.03265 (15)0.0296 (4)
H120.5562000.3432330.0914450.036*
C130.51651 (13)0.2138 (3)0.04704 (16)0.0314 (4)
H130.4588990.1851920.0430690.038*
C140.54206 (12)0.1597 (2)0.13325 (14)0.0249 (4)
C150.62625 (12)0.2063 (2)0.13829 (14)0.0233 (4)
H150.6442260.1712150.1969140.028*
C160.68413 (11)0.3026 (2)0.05973 (13)0.0217 (3)
H160.7410000.3337960.0647850.026*
C170.48059 (13)0.0527 (3)0.21805 (16)0.0337 (4)
H17A0.5169800.0292870.2368710.050*
H17B0.4482590.1143180.2828430.050*
H17C0.4364820.0032050.1897050.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0228 (2)0.0257 (2)0.0259 (2)0.00466 (15)0.00965 (16)0.00107 (15)
Cl20.0258 (2)0.0280 (2)0.0246 (2)0.00138 (15)0.01564 (16)0.00240 (15)
O10.0245 (6)0.0358 (7)0.0220 (6)0.0048 (5)0.0119 (5)0.0007 (5)
O20.0266 (6)0.0303 (7)0.0204 (6)0.0048 (5)0.0131 (5)0.0057 (5)
N10.0212 (6)0.0230 (7)0.0204 (6)0.0009 (5)0.0094 (5)0.0002 (5)
N20.0223 (7)0.0248 (7)0.0202 (7)0.0011 (6)0.0093 (5)0.0005 (6)
C10.0209 (7)0.0203 (8)0.0200 (8)0.0022 (6)0.0087 (6)0.0015 (6)
C20.0219 (8)0.0212 (8)0.0214 (8)0.0017 (6)0.0092 (6)0.0008 (6)
C30.0206 (7)0.0205 (8)0.0197 (8)0.0039 (6)0.0095 (6)0.0019 (6)
C40.0213 (8)0.0228 (8)0.0209 (8)0.0013 (6)0.0075 (6)0.0026 (6)
C50.0209 (8)0.0231 (8)0.0246 (8)0.0008 (6)0.0112 (6)0.0010 (6)
C60.0206 (7)0.0205 (8)0.0188 (7)0.0028 (6)0.0086 (6)0.0019 (6)
C70.0199 (7)0.0228 (8)0.0206 (7)0.0001 (6)0.0079 (6)0.0009 (6)
C80.0200 (7)0.0221 (8)0.0221 (8)0.0009 (6)0.0099 (6)0.0030 (6)
C90.0199 (7)0.0223 (8)0.0201 (7)0.0026 (6)0.0081 (6)0.0032 (6)
C100.0323 (9)0.0340 (10)0.0210 (8)0.0027 (8)0.0153 (7)0.0043 (7)
C110.0227 (8)0.0230 (8)0.0196 (8)0.0004 (6)0.0081 (6)0.0001 (6)
C120.0265 (9)0.0407 (11)0.0261 (9)0.0058 (8)0.0146 (7)0.0065 (8)
C130.0238 (8)0.0438 (12)0.0302 (9)0.0093 (8)0.0138 (7)0.0067 (8)
C140.0260 (8)0.0256 (9)0.0226 (8)0.0018 (7)0.0076 (7)0.0007 (7)
C150.0273 (8)0.0244 (9)0.0206 (8)0.0019 (7)0.0112 (7)0.0008 (7)
C160.0222 (8)0.0236 (8)0.0214 (8)0.0002 (6)0.0101 (6)0.0015 (7)
C170.0319 (9)0.0391 (11)0.0300 (9)0.0093 (8)0.0105 (8)0.0090 (8)
Geometric parameters (Å, º) top
Cl1—C21.7159 (17)C7—H70.9500
Cl2—C21.7217 (16)C8—H80.9500
O1—C91.207 (2)C10—H10A0.9800
O2—C91.339 (2)C10—H10B0.9800
O2—C101.4438 (19)C10—H10C0.9800
N1—N21.265 (2)C11—C121.393 (2)
N1—C11.414 (2)C11—C161.398 (2)
N2—C111.418 (2)C12—C131.383 (3)
C1—C21.345 (2)C12—H120.9500
C1—C31.492 (2)C13—C141.396 (3)
C3—C81.391 (2)C13—H130.9500
C3—C41.397 (2)C14—C151.396 (2)
C4—C51.391 (2)C14—C171.504 (2)
C4—H40.9500C15—C161.385 (2)
C5—C61.393 (2)C15—H150.9500
C5—H50.9500C16—H160.9500
C6—C71.396 (2)C17—H17A0.9800
C6—C91.489 (2)C17—H17B0.9800
C7—C81.389 (2)C17—H17C0.9800
C9—O2—C10115.59 (13)O2—C10—H10A109.5
N2—N1—C1113.13 (13)O2—C10—H10B109.5
N1—N2—C11113.70 (13)H10A—C10—H10B109.5
C2—C1—N1116.03 (14)O2—C10—H10C109.5
C2—C1—C3122.48 (15)H10A—C10—H10C109.5
N1—C1—C3121.28 (14)H10B—C10—H10C109.5
C1—C2—Cl1122.31 (13)C12—C11—C16119.63 (16)
C1—C2—Cl2123.43 (13)C12—C11—N2115.85 (15)
Cl1—C2—Cl2114.26 (9)C16—C11—N2124.45 (15)
C8—C3—C4119.85 (15)C13—C12—C11120.30 (16)
C8—C3—C1118.23 (14)C13—C12—H12119.8
C4—C3—C1121.77 (15)C11—C12—H12119.8
C5—C4—C3119.63 (15)C12—C13—C14120.76 (16)
C5—C4—H4120.2C12—C13—H13119.6
C3—C4—H4120.2C14—C13—H13119.6
C4—C5—C6120.25 (15)C15—C14—C13118.40 (16)
C4—C5—H5119.9C15—C14—C17120.88 (16)
C6—C5—H5119.9C13—C14—C17120.72 (16)
C5—C6—C7120.22 (14)C16—C15—C14121.44 (15)
C5—C6—C9118.22 (14)C16—C15—H15119.3
C7—C6—C9121.52 (15)C14—C15—H15119.3
C8—C7—C6119.28 (15)C15—C16—C11119.45 (15)
C8—C7—H7120.4C15—C16—H16120.3
C6—C7—H7120.4C11—C16—H16120.3
C7—C8—C3120.73 (15)C14—C17—H17A109.5
C7—C8—H8119.6C14—C17—H17B109.5
C3—C8—H8119.6H17A—C17—H17B109.5
O1—C9—O2123.68 (15)C14—C17—H17C109.5
O1—C9—C6124.15 (15)H17A—C17—H17C109.5
O2—C9—C6112.17 (13)H17B—C17—H17C109.5
C1—N1—N2—C11178.24 (14)C1—C3—C8—C7173.98 (15)
N2—N1—C1—C2176.18 (15)C10—O2—C9—O11.4 (2)
N2—N1—C1—C38.9 (2)C10—O2—C9—C6178.45 (14)
N1—C1—C2—Cl1176.23 (12)C5—C6—C9—O11.0 (3)
C3—C1—C2—Cl18.9 (2)C7—C6—C9—O1178.47 (17)
N1—C1—C2—Cl23.7 (2)C5—C6—C9—O2178.82 (14)
C3—C1—C2—Cl2171.16 (13)C7—C6—C9—O21.4 (2)
C2—C1—C3—C869.6 (2)N1—N2—C11—C12171.71 (16)
N1—C1—C3—C8104.94 (19)N1—N2—C11—C1611.5 (2)
C2—C1—C3—C4114.81 (19)C16—C11—C12—C130.1 (3)
N1—C1—C3—C470.6 (2)N2—C11—C12—C13176.77 (18)
C8—C3—C4—C50.6 (2)C11—C12—C13—C141.0 (3)
C1—C3—C4—C5174.91 (16)C12—C13—C14—C151.3 (3)
C3—C4—C5—C61.5 (3)C12—C13—C14—C17178.15 (19)
C4—C5—C6—C72.4 (3)C13—C14—C15—C160.6 (3)
C4—C5—C6—C9175.06 (15)C17—C14—C15—C16178.87 (17)
C5—C6—C7—C81.3 (2)C14—C15—C16—C110.5 (3)
C9—C6—C7—C8176.06 (15)C12—C11—C16—C150.9 (3)
C6—C7—C8—C30.7 (3)N2—C11—C16—C15175.78 (16)
C4—C3—C8—C71.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.952.433.268 (2)148
C13—H13···O1ii0.952.403.309 (3)159
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y1/2, z+1/2.
Methyl 4-{2,2-dichloro-1-[(E)-(3,4-dimethylphenyl)diazenyl]ethenyl}benzoate (III) top
Crystal data top
C18H16Cl2N2O2Z = 2
Mr = 363.23F(000) = 376
Triclinic, P1Dx = 1.412 Mg m3
a = 8.22057 (10) ÅCu Kα radiation, λ = 1.54184 Å
b = 8.53211 (9) ÅCell parameters from 14210 reflections
c = 13.08729 (14) Åθ = 3.6–77.0°
α = 103.9484 (9)°µ = 3.53 mm1
β = 101.9047 (10)°T = 100 K
γ = 98.0600 (9)°Prism, red
V = 854.09 (2) Å30.20 × 0.15 × 0.09 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
3340 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tubeRint = 0.063
φ and ω scansθmax = 77.8°, θmin = 3.6°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
h = 1010
Tmin = 0.349, Tmax = 0.700k = 810
29808 measured reflectionsl = 1616
3632 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0537P)2 + 0.2636P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
3632 reflectionsΔρmax = 0.31 e Å3
220 parametersΔρmin = 0.46 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.07283 (5)0.14861 (4)0.77715 (3)0.02444 (11)
Cl20.13915 (5)0.31047 (4)0.57534 (3)0.02637 (12)
O10.30977 (14)0.68544 (14)1.04185 (9)0.0315 (3)
O20.04043 (13)0.67433 (12)0.95696 (8)0.0208 (2)
N10.21612 (15)0.01951 (15)0.54534 (10)0.0198 (2)
N20.26094 (15)0.16265 (15)0.53648 (10)0.0208 (3)
C10.17177 (17)0.02110 (17)0.64440 (11)0.0189 (3)
C20.13347 (18)0.12681 (18)0.66254 (11)0.0206 (3)
C30.17331 (18)0.17742 (17)0.72590 (11)0.0185 (3)
C40.05481 (18)0.27494 (17)0.70373 (11)0.0203 (3)
H40.0264570.2429880.6355540.024*
C50.05592 (18)0.41897 (17)0.78162 (12)0.0203 (3)
H50.0260720.4841810.7672600.024*
C60.17767 (17)0.46736 (17)0.88079 (11)0.0188 (3)
C70.29835 (18)0.37242 (17)0.90121 (11)0.0202 (3)
H70.3829300.4068720.9680320.024*
C80.29570 (18)0.22742 (17)0.82428 (12)0.0202 (3)
H80.3776510.1622760.8389000.024*
C90.18624 (18)0.61892 (17)0.96841 (12)0.0209 (3)
C100.0464 (2)0.82424 (18)1.03931 (12)0.0244 (3)
H10A0.0632700.8581601.0254270.037*
H10B0.1357200.9115181.0370930.037*
H10C0.0707720.8045281.1111500.037*
C110.31099 (18)0.16259 (18)0.43840 (11)0.0207 (3)
C120.33518 (19)0.31514 (18)0.41637 (12)0.0232 (3)
H120.3185470.4093550.4660000.028*
C130.38330 (18)0.3316 (2)0.32285 (13)0.0249 (3)
C140.40929 (18)0.1914 (2)0.25099 (12)0.0258 (3)
C150.38626 (19)0.0399 (2)0.27461 (12)0.0260 (3)
H150.4037290.0545270.2255810.031*
C160.33864 (19)0.02371 (19)0.36759 (12)0.0231 (3)
H160.3250380.0799760.3829230.028*
C170.4088 (2)0.4974 (2)0.30023 (15)0.0333 (4)
H17A0.3762390.5782060.3554580.050*
H17B0.3382630.4888340.2281490.050*
H17C0.5284070.5329260.3023860.050*
C180.4627 (2)0.2029 (3)0.14898 (14)0.0363 (4)
H18A0.3770110.2427300.1033530.055*
H18B0.4739090.0936880.1088170.055*
H18C0.5719960.2796120.1685420.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0346 (2)0.02094 (19)0.02065 (18)0.00298 (14)0.01118 (14)0.00900 (14)
Cl20.0402 (2)0.01643 (18)0.02316 (19)0.00645 (14)0.01064 (15)0.00402 (13)
O10.0278 (6)0.0277 (6)0.0306 (6)0.0074 (5)0.0038 (5)0.0053 (5)
O20.0259 (5)0.0182 (5)0.0211 (5)0.0070 (4)0.0100 (4)0.0059 (4)
N10.0231 (6)0.0194 (6)0.0185 (6)0.0034 (5)0.0077 (5)0.0066 (5)
N20.0240 (6)0.0199 (6)0.0198 (6)0.0025 (5)0.0092 (5)0.0060 (5)
C10.0214 (6)0.0188 (7)0.0171 (6)0.0034 (5)0.0071 (5)0.0044 (5)
C20.0251 (7)0.0191 (7)0.0180 (6)0.0041 (5)0.0070 (5)0.0049 (5)
C30.0234 (7)0.0164 (6)0.0187 (6)0.0017 (5)0.0108 (5)0.0069 (5)
C40.0247 (7)0.0203 (7)0.0174 (6)0.0040 (5)0.0071 (5)0.0070 (5)
C50.0242 (7)0.0190 (7)0.0216 (7)0.0063 (5)0.0097 (6)0.0088 (5)
C60.0234 (7)0.0170 (6)0.0189 (7)0.0029 (5)0.0103 (5)0.0067 (5)
C70.0216 (7)0.0204 (7)0.0186 (6)0.0020 (5)0.0063 (5)0.0056 (5)
C80.0227 (7)0.0191 (7)0.0218 (7)0.0060 (5)0.0093 (5)0.0070 (5)
C90.0248 (7)0.0194 (7)0.0219 (7)0.0050 (5)0.0105 (6)0.0079 (6)
C100.0337 (8)0.0179 (7)0.0262 (7)0.0080 (6)0.0152 (6)0.0066 (6)
C110.0212 (7)0.0231 (7)0.0190 (7)0.0025 (5)0.0085 (5)0.0063 (6)
C120.0247 (7)0.0226 (7)0.0230 (7)0.0022 (6)0.0084 (6)0.0069 (6)
C130.0214 (7)0.0299 (8)0.0252 (7)0.0006 (6)0.0064 (6)0.0129 (6)
C140.0206 (7)0.0376 (9)0.0214 (7)0.0024 (6)0.0085 (6)0.0114 (6)
C150.0245 (7)0.0313 (8)0.0235 (7)0.0052 (6)0.0119 (6)0.0049 (6)
C160.0247 (7)0.0226 (7)0.0244 (7)0.0042 (6)0.0108 (6)0.0072 (6)
C170.0366 (9)0.0343 (9)0.0335 (9)0.0011 (7)0.0109 (7)0.0192 (7)
C180.0376 (9)0.0506 (11)0.0260 (8)0.0047 (8)0.0162 (7)0.0157 (8)
Geometric parameters (Å, º) top
Cl1—C21.7176 (14)C10—H10A0.9800
Cl2—C21.7148 (14)C10—H10B0.9800
O1—C91.2041 (19)C10—H10C0.9800
O2—C91.3422 (17)C11—C161.396 (2)
O2—C101.4478 (17)C11—C121.396 (2)
N1—N21.2651 (17)C12—C131.393 (2)
N1—C11.4148 (17)C12—H120.9500
N2—C111.4263 (17)C13—C141.404 (2)
C1—C21.346 (2)C13—C171.509 (2)
C1—C31.4901 (19)C14—C151.397 (2)
C3—C81.390 (2)C14—C181.509 (2)
C3—C41.397 (2)C15—C161.384 (2)
C4—C51.392 (2)C15—H150.9500
C4—H40.9500C16—H160.9500
C5—C61.395 (2)C17—H17A0.9800
C5—H50.9500C17—H17B0.9800
C6—C71.390 (2)C17—H17C0.9800
C6—C91.4894 (19)C18—H18A0.9800
C7—C81.388 (2)C18—H18B0.9800
C7—H70.9500C18—H18C0.9800
C8—H80.9500
C9—O2—C10113.91 (11)O2—C10—H10C109.5
N2—N1—C1112.85 (11)H10A—C10—H10C109.5
N1—N2—C11113.33 (12)H10B—C10—H10C109.5
C2—C1—N1116.08 (12)C16—C11—C12120.15 (13)
C2—C1—C3121.77 (12)C16—C11—N2124.38 (13)
N1—C1—C3122.12 (12)C12—C11—N2115.46 (13)
C1—C2—Cl2124.19 (11)C13—C12—C11121.13 (14)
C1—C2—Cl1122.44 (11)C13—C12—H12119.4
Cl2—C2—Cl1113.37 (8)C11—C12—H12119.4
C8—C3—C4119.86 (13)C12—C13—C14118.70 (14)
C8—C3—C1119.43 (13)C12—C13—C17120.45 (15)
C4—C3—C1120.70 (13)C14—C13—C17120.84 (14)
C5—C4—C3119.96 (13)C15—C14—C13119.55 (13)
C5—C4—H4120.0C15—C14—C18119.66 (15)
C3—C4—H4120.0C13—C14—C18120.80 (15)
C4—C5—C6119.88 (13)C16—C15—C14121.71 (14)
C4—C5—H5120.1C16—C15—H15119.1
C6—C5—H5120.1C14—C15—H15119.1
C7—C6—C5119.93 (13)C15—C16—C11118.75 (14)
C7—C6—C9117.03 (13)C15—C16—H16120.6
C5—C6—C9123.04 (13)C11—C16—H16120.6
C8—C7—C6120.22 (13)C13—C17—H17A109.5
C8—C7—H7119.9C13—C17—H17B109.5
C6—C7—H7119.9H17A—C17—H17B109.5
C7—C8—C3120.10 (13)C13—C17—H17C109.5
C7—C8—H8119.9H17A—C17—H17C109.5
C3—C8—H8119.9H17B—C17—H17C109.5
O1—C9—O2123.20 (13)C14—C18—H18A109.5
O1—C9—C6124.17 (13)C14—C18—H18B109.5
O2—C9—C6112.64 (12)H18A—C18—H18B109.5
O2—C10—H10A109.5C14—C18—H18C109.5
O2—C10—H10B109.5H18A—C18—H18C109.5
H10A—C10—H10B109.5H18B—C18—H18C109.5
C1—N1—N2—C11178.17 (11)C10—O2—C9—O11.63 (19)
N2—N1—C1—C2175.79 (13)C10—O2—C9—C6178.38 (11)
N2—N1—C1—C32.06 (19)C7—C6—C9—O119.0 (2)
N1—C1—C2—Cl21.1 (2)C5—C6—C9—O1161.01 (14)
C3—C1—C2—Cl2176.74 (11)C7—C6—C9—O2161.04 (12)
N1—C1—C2—Cl1178.69 (10)C5—C6—C9—O219.00 (18)
C3—C1—C2—Cl13.5 (2)N1—N2—C11—C1611.1 (2)
C2—C1—C3—C867.37 (19)N1—N2—C11—C12170.08 (13)
N1—C1—C3—C8110.35 (15)C16—C11—C12—C131.5 (2)
C2—C1—C3—C4113.54 (16)N2—C11—C12—C13179.65 (13)
N1—C1—C3—C468.73 (18)C11—C12—C13—C140.7 (2)
C8—C3—C4—C52.2 (2)C11—C12—C13—C17179.96 (14)
C1—C3—C4—C5178.73 (12)C12—C13—C14—C150.1 (2)
C3—C4—C5—C61.3 (2)C17—C13—C14—C15179.40 (14)
C4—C5—C6—C70.5 (2)C12—C13—C14—C18179.55 (14)
C4—C5—C6—C9179.51 (12)C17—C13—C14—C180.2 (2)
C5—C6—C7—C81.6 (2)C13—C14—C15—C160.2 (2)
C9—C6—C7—C8178.48 (12)C18—C14—C15—C16179.48 (14)
C6—C7—C8—C30.7 (2)C14—C15—C16—C110.9 (2)
C4—C3—C8—C71.2 (2)C12—C11—C16—C151.5 (2)
C1—C3—C8—C7179.74 (12)N2—C11—C16—C15179.72 (13)
Percentage contributions of interatomic contacts to the Hirshfeld surface for the title compounds top
ContactPercentage contribution
(I)(II)(III)
H···H33.539.737.0
Cl···H/H···Cl20.514.419.1
C···H/H···C14.314.516.0
O···H/H···O8.16.68.7
C···C6.04.02.1
N···H/H···N4.25.24.9
N···C/C···N4.00.32.0
Cl···O/O···Cl3.72.61.5
Cl···C/C···Cl3.32.85.3
O···C/C···O1.74.61.4
Cl···Cl0.64.01.0
O···C/C···O1.11.4
Cl···N/N..Cl0.80.4
O···C/C···O0.2
 

Acknowledgements

The authors' contributions are as follows. Conceptualization, NQS, MA and AB; synthesis, SAİ, NEA, GTA and GVB; X-ray analysis, ZA, VNK and MA; writing (review and editing of the manuscript) ZA, MA and AB; funding acquisition, NQS, and GVB; supervision, NQS, MA and AB.

Funding information

This work was performed under the support of the Science Development Foundation under the President of the Republic of Azerbaijan (grant No. EIF-BGM-4-RFTF-1/2017–21/13/4).

References

First citationAkkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199–1204.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkkurt, M., Yıldırım, S. Ö., Shikhaliyev, N. Q., Mammadova, N. A., Niyazova, A. A., Khrustalev, V. N. & Bhattarai, A. (2022). Acta Cryst. E78, 732–736.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAtioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Mammadova, N. A., Babayeva, G. V., Khrustalev, V. N. & Bhattarai, A. (2022a). Acta Cryst. E78, 530–535.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAtioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Mammadova, N. A., Babayeva, G. V., Khrustalev, V. N. & Bhattarai, A. (2022b). Acta Cryst. E78, 804–808.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAtioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237–241.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationÇelikesir, S. T., Akkurt, M., Shikhaliyev, N. Q., Mammadova, N. A., Suleymanova, G. T., Khrustalev, V. N. & Bhattarai, A. (2022). Acta Cryst. E78, 404–408.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChen, M., Chang, C. H., Tao, L. & Lu, C. (2015). Pediatrics, 136, 719–729.  CrossRef PubMed Google Scholar
First citationDamalas, C. A. & Eleftherohorinos, I. G. (2011). Int. J. Environ. Res. Publ. Heal. 8, 1402–1419.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGoulson, D. (2013). J. Appl. Ecol. 50, 977–987.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIsman, M. B. (2015). Pest. Manag. Sci. 71, 1587–1590.  CrossRef CAS PubMed Google Scholar
First citationIsman, M. B. (2020). Phytochem. Rev. 19, 235–241.  CrossRef CAS Google Scholar
First citationMaharramov, A., Shikhaliyev, N. Q., Qajar, A., Atakishiyeva, G. T., Niyazova, A., Khrustalev, V. N., Akkurt, M., Yıldırım, S. Ö. & Bhattarai, A. (2023). Acta Cryst. E79, 637–643.  CSD CrossRef IUCr Journals Google Scholar
First citationMaharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. (2018). Dyes Pigments, 159, 135–141.  Web of Science CrossRef CAS Google Scholar
First citationMostafiz, M. M., Hassan, E. & Lee, K. Y. (2022). Agriculture, 12, 378.  CrossRef Google Scholar
First citationNaqqash, M. N., Gökçe, A., Bakhsh, A. & Salim, M. (2016). Parasitol. Res. 115, 1363–1373.  CrossRef PubMed Google Scholar
First citationNenajdenko, V. G., Shikhaliyev, N. G., Maharramov, A. M., Bagirova, K. N., Suleymanova, G. T., Novikov, A. S., Khrustalev, V. N. & Tskhovrebov, A. G. (2020). Molecules, 25, 5013.  Web of Science CSD CrossRef PubMed Google Scholar
First citationÖzkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Mammadova, G. Z. & Shadrack, D. M. (2020a). Acta Cryst. E76, 1251–1254.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖzkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Shikhaliyeva, I. M. & Bhattarai, A. (2020b). Acta Cryst. E76, 811–815.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPavela, R. (2016). Plant Prot. Sci. 52, 229–241.  CrossRef CAS Google Scholar
First citationPavela, R. & Benelli, G. (2016). Trends Plant Sci. 21, 1000–1007.  CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShikhaliyev, N. G., Maharramov, A. M., Bagirova, K. N., Suleymanova, G. T., Tsyrenova, B. D., Nenajdenko, V. G., Novikov, A. S., Khrustalev, V. N. & Tskhovrebov, A. G. (2021b). Mendeleev Commun. 31, 191–193.  CSD CrossRef CAS Google Scholar
First citationShikhaliyev, N. G., Maharramov, A. M., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Shikhaliyeva, I. M., Babazade, A. A. & Nenajdenko, V. G. (2021c). Arkivoc, pp. 67–75.  CrossRef Google Scholar
First citationShikhaliyev, N. G., Suleymanova, G. T., İsrayilova, A. A., Ganbarov, K. G., Babayeva, G. V., Garazadeh, K. A., Mammadova, G. Z. & Nenajdenko, V. G. (2019b). Org. Chem. pp. 64–73.  Google Scholar
First citationShikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381.  Web of Science CSD CrossRef CAS Google Scholar
First citationShikhaliyev, N. Q., Atioğlu, Z., Akkurt, M., Qacar, A. M., Askerov, R. K. & Bhattarai, A. (2021a). Acta Cryst. E77, 965–970.  CSD CrossRef IUCr Journals Google Scholar
First citationShikhaliyev, N. Q., Çelikesir, S. T., Akkurt, M., Bagirova, K. N., Suleymanova, G. T. & Toze, F. A. A. (2019a). Acta Cryst. E75, 465–469.  CSD CrossRef IUCr Journals Google Scholar
First citationShikhaliyev, N. Q., Özkaraca, K., Akkurt, M., Bagirova, X. N., Suleymanova, G. T., Abdulov, M. S. & Mlowe, S. (2021d). Acta Cryst. E77, 1158–1163.  CSD CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZikankuba, V. L., Mwanyika, G., Ntwenya, J. E. & James, A. (2019). Cogent Food Agric. 5, 1601544.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds