research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of five gold(I) complexes with methyl­piperidine ligands

crossmark logo

aInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-braunschweig.de

Edited by C. Schulzke, Universität Greifswald, Germany (Received 29 November 2023; accepted 21 December 2023; online 19 January 2023)

Gold complexes with amine ligands, Part 14. Part 13: Döring & Jones (2023b). Dedicated to Professor José Vicente on the occasion of his 80th birthday.

In bis­(4-methyl­piperidine-κN)gold(I) chloride, [Au(C6H13N)2]Cl (1), the methyl groups are, as expected, equatorial at the piperidine ring, but the Au atom is axial; this is the case for all five structures reported here, as is the expected linear coordination at the Au atom. Hydrogen bonding of the form N—H⋯Cl⋯H—N leads to inversion-symmetric dimers, which are further connected by C—H⋯Au contacts. Bis(4-methyl­piperidine-κN)gold(I) di­chlorido­aurate(I), [Au(C6H13N)2][AuCl2] (2), also forms inversion-symmetric dimers; these involve aurophilic inter­actions and three-centre hydrogen bonds of the form NH(⋯Cl)2. Bis(4-methyl­piperidine-κN)gold(I) di­bromido­aurate(I), [Au(C6H13N)2][AuBr2] (3), is isotypic to 2. The 1:1 adduct chlorido­(4-methyl­piperidine-κN)gold(I) bis­(4-methyl­piperidine-κN)gold(I) chloride, [Au(C6H13N)2]Cl·[AuCl(C6H13N)] (4), crystallizes as its di­chloro­methane solvate. The asymmetric unit contains two formula units, in each of which the chloride anion accepts a hydrogen bond from the cation and from the neutral mol­ecule, and the two Au atoms are linked via an aurophilic inter­action. A further hydrogen bond leads to inversion-symmetric dimers. The asymmetric unit of bis­(2-methyl­piperidine-κN)gold(I) chloride, [Au(C6H13N)2]Cl (5), contains two `half' cations, in which the Au atoms lie on twofold axes, and a chloride ion on a general position. Within each cation, the relative configurations at the atoms N and C2 (which bears the methyl substituent) are R,S. The twofold-symmetric dimer involves two N—H⋯Cl⋯H—N units and an aurophilic contact between the two Au atoms.

1. Chemical context

We have published structures of several amine complexes of gold halides and pseudohalides, many of which can be obtained in crystalline form despite the apparent unsuitability of complexes involving a hard donor atom (nitro­gen) and a soft metal centre (gold). Some, however, are only stable in the presence of excess ligand. The structures often involve aurophilic inter­actions (for AuI complexes; reviewed by Schmidbaur & Schier, 2008[Schmidbaur, H. & Schier, A. (2008). Chem. Soc. Rev. 37, 1931-1951.], 2012[Schmidbaur, H. & Schier, A. (2012). Chem. Soc. Rev. 41, 370-412.]), hydrogen bonding [see e.g. Brammer (2003[Brammer, L. (2003). Dalton Trans. pp. 3145-3157.]) for a description of hydrogen bonding to metal-bonded halogens], gold–halogen contacts or halogen–halogen contacts (see e.g. Metrangelo, 2008[Metrangelo, P. (2008). Angew. Chem. Int. Ed. 47, 6114-6127.]). Extensive background material, including a summary of product types, can be found in Part 12 of this series (Döring & Jones, 2023a[Döring, C. & Jones, P. G. (2023a). Acta Cryst. E79, 1017-1027.]), which presented complexes involving piperidine and pyrrolidine complexes, and further relevant literature is cited in Part 13 (Döring & Jones, 2023b[Döring, C. & Jones, P. G. (2023b). Acta Cryst. E79, 1161-1165.]), which dealt with the isotypic complexes bis­(morpholine)­gold(I) chloride and bis­(morph­o­line)­gold(I) bromide. The current paper extends these studies to complexes of gold(I) with the ligands 4-methyl­piperidine and 2-methyl­piperidine (abbreviated henceforth as 4-Me-pip and 2-Me-pip): bis­(4-methyl­piperidine)­gold(I) chloride, [Au(4-Me-pip)2]Cl, 1; bis­(4-methyl­piperidine)­gold(I) di­chlorido­aurate(I), [Au(4-Me-pip)2][AuCl2], 2; bis­(4-methyl­piperidine)­gold(I) di­bromido­aurate(I), [Au(4-Me-pip)2] [AuBr2], 3 (isotypic to 2); the adduct chlorido­(4-methyl­piperidine)­gold(I) bis­(4-methyl­piperidine)­gold(I) chloride, [AuCl(4-Me-pip)]·[Au(4-Me-pip)2]Cl, as its di­chloro­methane solvate 4; and bis­(2-methyl­piperidine)­gold(I) chloride, [Au(2-Me-pip)2]Cl, 5.

[Scheme 1]

2. Structural commentary

At the outset we comment, as usual: for structures that contain more than one residue in the asymmetric unit, the distinction between the categories Structural commentary (which generally refers to the asymmetric unit) and Supra­molecular features becomes blurred, especially when atoms occupy special positions (as for compound 5 here).

Selected mol­ecular dimensions are presented in Tables 1[link]–5[link][link][link][link], with hydrogen bonds in Tables 6[link]–10[link][link][link][link].

Table 1
Selected geometric parameters (Å, °) for 1[link]

Au1—N11 2.051 (3) Au1—N21 2.052 (3)
       
N11—Au1—N21 179.43 (12)    
       
Au1—N11—C12—C13 −67.1 (3) Au1—N21—C22—C23 −65.0 (3)
C12—C13—C14—C17 175.6 (3) C22—C23—C24—C27 173.6 (3)
C17—C14—C15—C16 −176.5 (3) C27—C24—C25—C26 −173.4 (3)
Au1—N11—C16—C15 67.2 (3) Au1—N21—C26—C25 64.9 (3)

Table 2
Selected geometric parameters (Å, °) for 2[link]

Au1—N21 2.062 (7) Au1—Au2i 3.2252 (4)
Au1—N11 2.064 (6) Au2—Cl1 2.282 (2)
Au1—Au2 3.2096 (5) Au2—Cl2 2.282 (2)
       
N21—Au1—N11 176.8 (2) Cl1—Au2—Cl2 173.42 (7)
N21—Au1—Au2 95.61 (17) Cl1—Au2—Au1 96.01 (5)
N11—Au1—Au2 87.59 (17) Cl2—Au2—Au1 87.38 (5)
N21—Au1—Au2i 87.50 (18) Cl1—Au2—Au1i 95.47 (5)
N11—Au1—Au2i 94.13 (17) Cl2—Au2—Au1i 88.25 (5)
Au2—Au1—Au2i 66.011 (12) Au1—Au2—Au1i 113.989 (13)
       
Au1—N11—C12—C13 −66.9 (7) Au1—N21—C22—C23 66.3 (7)
C12—C13—C14—C17 175.7 (7) C22—C23—C24—C27 −174.6 (7)
C17—C14—C15—C16 −175.9 (7) C27—C24—C25—C26 174.6 (7)
Au1—N11—C16—C15 66.4 (7) Au1—N21—C26—C25 −65.7 (7)
Symmetry code: (i) [-x+1, -y+1, -z].

Table 3
Selected geometric parameters (Å, °) for 3[link]

Au1—N11 2.062 (3) Au1—Au2i 3.3094 (2)
Au1—N21 2.064 (3) Au2—Br2 2.4006 (4)
Au1—Au2 3.2988 (3) Au2—Br1 2.4027 (4)
       
N11—Au1—N21 176.30 (13) Br2—Au2—Br1 170.628 (15)
       
Au1—N11—C12—C13 −67.5 (3) Au1—N21—C22—C23 67.3 (3)
C12—C13—C14—C17 175.4 (3) C22—C23—C24—C27 −174.6 (3)
C17—C14—C15—C16 −176.1 (3) C27—C24—C25—C26 174.0 (3)
Au1—N11—C16—C15 67.4 (3) Au1—N21—C26—C25 −66.5 (3)
Symmetry code: (i) [-x+1, -y+1, -z].

Table 4
Selected geometric parameters (Å, °) for 4[link]

Au1—N21 2.042 (8) Au3—N41 2.051 (8)
Au1—N11 2.061 (8) Au3—N51 2.060 (9)
Au1—Au2 3.3138 (6) Au3—Au4 3.2619 (5)
Au2—N31 2.078 (9) Au4—N61 2.062 (9)
Au2—Cl1 2.267 (3) Au4—Cl2 2.261 (3)
       
N21—Au1—N11 176.2 (4) N41—Au3—N51 175.4 (3)
N21—Au1—Au2 97.4 (2) N41—Au3—Au4 88.2 (3)
N11—Au1—Au2 86.2 (3) N51—Au3—Au4 96.1 (2)
N31—Au2—Cl1 178.1 (2) N61—Au4—Cl2 178.1 (3)
N31—Au2—Au1 88.0 (2) N61—Au4—Au3 87.3 (2)
Cl1—Au2—Au1 93.18 (6) Cl2—Au4—Au3 94.52 (6)
       
Au1—N11—C12—C13 −67.1 (10) Au3—N41—C42—C43 67.3 (10)
C12—C13—C14—C17 174.6 (9) C42—C43—C44—C47 −174.5 (9)
C17—C14—C15—C16 −173.3 (8) C47—C44—C45—C46 174.3 (8)
Au1—N11—C16—C15 63.9 (9) Au3—N41—C46—C45 −64.0 (10)
Au1—N21—C22—C23 67.9 (9) Au3—N51—C52—C53 −68.4 (10)
C22—C23—C24—C27 −173.0 (9) C52—C53—C54—C57 173.2 (9)
C27—C24—C25—C26 174.0 (8) C57—C54—C55—C56 −174.7 (9)
Au1—N21—C26—C25 −66.4 (9) Au3—N51—C56—C55 66.3 (10)
Au2—N31—C32—C33 −66.5 (9) Au4—N61—C62—C63 65.8 (10)
C32—C33—C34—C37 175.4 (9) C62—C63—C64—C67 −173.6 (10)
C37—C34—C35—C36 −175.3 (9) C67—C64—C65—C66 173.0 (9)
Au2—N31—C36—C35 65.4 (9)    

Table 5
Selected geometric parameters (Å, °) for 5[link]

Au1—N11 2.053 (3) Au2—N21 2.057 (3)
Au1—Au2 3.3854 (3)    
       
N11i—Au1—N11 176.9 (2) N21—Au2—Au1 91.11 (11)
N11—Au1—Au2 91.54 (10) N21i—Au2—Au1 91.11 (11)
       
C16—N11—C12—C17 176.6 (4) C26—N21—C22—C27 174.5 (4)
Au1—N11—C12—C13 70.4 (4) Au2—N21—C22—C23 69.6 (4)
Au1—N11—C16—C15 −67.9 (4) Au2—N21—C26—C25 −67.5 (4)
Symmetry code: (i) [-x+1, y, -z+{\script{1\over 2}}].

Table 6
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N21—H02⋯Cl1 0.92 (3) 2.23 (3) 3.144 (3) 171 (3)
N11—H01⋯Cl1i 0.90 (3) 2.25 (3) 3.140 (3) 170 (4)
C16—H16A⋯Cl1ii 0.99 2.85 3.623 (4) 136
C22—H22B⋯Au1ii 0.99 2.80 3.724 (4) 155
C23—H23A⋯Au1iii 0.99 2.85 3.685 (4) 143
Symmetry codes: (i) [-x, -y+1, -z+1]; (ii) [-x+1, -y+1, -z+1]; (iii) [x+1, y, z].

Table 7
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H01⋯Cl1 0.95 (6) 2.59 (7) 3.370 (6) 139 (7)
N11—H01⋯Cl2i 0.95 (6) 2.66 (8) 3.312 (7) 126 (6)
N21—H02⋯Cl2 0.95 (6) 2.61 (9) 3.316 (7) 131 (8)
N21—H02⋯Cl1i 0.95 (6) 2.66 (9) 3.360 (7) 130 (8)
Symmetry code: (i) [-x+1, -y+1, -z].

Table 8
Hydrogen-bond geometry (Å, °) for 3[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H01⋯Br2i 0.90 (3) 2.80 (4) 3.457 (3) 131 (4)
N11—H01⋯Br1 0.90 (3) 2.81 (4) 3.518 (3) 136 (4)
N21—H02⋯Br1i 0.89 (3) 2.77 (4) 3.487 (3) 138 (4)
N21—H02⋯Br2 0.89 (3) 2.84 (4) 3.462 (3) 128 (4)
Symmetry code: (i) [-x+1, -y+1, -z].

Table 9
Hydrogen-bond geometry (Å, °) for 4[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11⋯Cl3 0.82 (3) 2.38 (4) 3.195 (9) 178 (11)
N21—H21⋯Cl3i 0.81 (3) 2.45 (5) 3.229 (8) 161 (9)
N31—H31⋯Cl3 0.82 (3) 2.55 (6) 3.238 (8) 143 (8)
N41—H41⋯Cl4 0.81 (3) 2.43 (4) 3.234 (8) 172 (10)
N51—H51⋯Cl4ii 0.81 (3) 2.42 (4) 3.209 (9) 165 (10)
N61—H61⋯Cl4 0.81 (3) 2.50 (6) 3.237 (9) 151 (9)
C1—H1B⋯Cl1 0.99 2.66 3.638 (11) 169
C1—H1A⋯Cl4 0.99 2.51 3.432 (11) 155
C2—H2A⋯Cl2 0.99 2.75 3.710 (11) 162
C2—H2B⋯Cl3iii 0.99 2.59 3.431 (10) 143
C36—H36B⋯Au1i 0.99 2.87 3.770 (9) 152
C16—H16A⋯Au2 0.99 2.71 3.562 (10) 144
C66—H66A⋯Au3ii 0.99 2.91 3.778 (9) 147
C46—H46B⋯Au4 0.99 2.75 3.579 (11) 142
C34—H34⋯Cl1iv 1.00 2.86 3.801 (13) 156
C64—H64⋯Cl2v 1.00 2.81 3.755 (14) 158
Symmetry codes: (i) [-x, -y+1, -z]; (ii) [-x+1, -y+1, -z+1]; (iii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Table 10
Hydrogen-bond geometry (Å, °) for 5[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H01⋯Cl1 0.80 (3) 2.34 (3) 3.110 (4) 162 (4)
N21—H02⋯Cl1 0.80 (3) 2.36 (3) 3.149 (4) 170 (5)

Fig. 1[link] shows the asymmetric unit of compound 1, which consists of one formula unit [Au(4-Me-pip)2]Cl and contains one classical hydrogen bond N21—H02⋯Cl1 (Table 6[link]). All atoms lie on general positions. Selected geometric parameters are presented in Table 1[link]. The geometry at the Au atom is, as expected, linear (as is the case for all structures presented in this paper). The substituents of the piperidine ring occupy different position types; whereas the methyl groups are equatorial, which would be expected, the Au atoms are axial (cf. absolute Cmeth­yl—C—C—C and Au—N—C—C torsion angles of approximately 180 or 60° respectively in Table 1[link]). The axial configuration of Au atoms with respect to piperidine ligands has been noted in our previous papers (Döring & Jones, 2023a[Döring, C. & Jones, P. G. (2023a). Acta Cryst. E79, 1017-1027.],b[Döring, C. & Jones, P. G. (2023b). Acta Cryst. E79, 1161-1165.]), although it is not always observed; in the AuCl(piperidine) tetra­mer (Guy et al., 1977[Guy, J. J., Jones, P. G., Mays, M. J. & Sheldrick, G. M. (1977). J. Chem. Soc. Dalton Trans. pp. 8-10.]), for instance, the Au atoms lie equatorially with respect to the ring. The piperidine rings eclipse each other when viewed along the direction N11⋯N21, with pseudo torsion angles C26—N21⋯N11—C12 = 2.9 (3)° and C22—N21⋯N11—C16 = 2.2 (3)°. Because of the contrast with compound 5 (see below), we comment here that the 4-Me-pip complexes 14 are achiral, because of the local mirror planes through the atoms N, C-4, Cmeth­yl and Au.

[Figure 1]
Figure 1
The asymmetric unit of compound 1 in the crystal, with ellipsoids at the 50% probability level. The dashed line represents a hydrogen bond.

The structure of compound 2 is shown in Fig. 2[link]; the asymmetric unit contains one [Au(4-Me-pip)2]+ cation and one [AuCl2] anion, a composition corresponding to type III in our arbitrary classification of products (Döring & Jones, 2023a[Döring, C. & Jones, P. G. (2023a). Acta Cryst. E79, 1017-1027.]), and already observed during our studies of secondary amine complexes (Döring & Jones, 2018[Döring, C. & Jones, P. G. (2018). Z. Naturforsch. B, 73, 43-74.]) for [Au(Et2NH)2] [AuBr2]. All atoms lie on general positions. Selected geometric parameters are presented in Table 2[link]. The configurations of the methyl group and the gold substituent at the piperidine ring are the same as for 1, namely equatorial and axial, respectively. The anion and cation are connected by two N—H⋯Cl hydrogen bonds (Table 7[link]) and the aurophilic contact Au1⋯Au2, and the coordination axes are thus almost parallel, with torsion angles of ca 0 and 180° around Au1⋯Au2 [e.g. N11—Au1⋯Au2—Cl1 = −3.1 (2)°, N11—Au1⋯Au2—Cl2 = −177.5 (2)°]. As in 1, the piperidine rings eclipse each other when viewed along the direction N11⋯N21, with pseudo torsion angles C12—N11⋯N21—C22 = 2.1 (3)° and C11—N11⋯N21—C26 = 1.0 (3)°. Compound 3 is isotypic to 2; it is shown in Fig. 3[link], with mol­ecular dimensions and hydrogen bond details in Tables 3[link] and 8[link], but is not discussed further.

[Figure 2]
Figure 2
The asymmetric unit of compound 2 in the crystal, with ellipsoids at the 50% probability level. The dashed lines represent hydrogen bonds (thin) or the aurophilic inter­action (thick).
[Figure 3]
Figure 3
The asymmetric unit of compound 3 in the crystal, with ellipsoids at the 50% probability level. The dashed lines represent hydrogen bonds (thin) or the aurophilic inter­action (thick).

Compound 4 is a 1:1:1 mixture of the mol­ecular complex [AuCl(4-Me-pip)], the ionic [Au(4-Me-pip)2]Cl (thus corresponding to a mixture of types I and II, as established for the corresponding pyrrolidine derivative; Döring & Jones, 2023a[Döring, C. & Jones, P. G. (2023a). Acta Cryst. E79, 1017-1027.]) and di­chloro­methane. The di­chloro­methane is well-ordered. All atoms lie on general positions. The asymmetric unit consists of two closely similar formula units and is shown in Fig. 4[link]. Selected geometric parameters are presented in Table 4[link]. As usual in this series of compounds, all Au atoms occupy an axial position at the piperidine rings, and all methyl groups are equatorial. In each formula unit, the chloride anion accepts one hydrogen bond (Table 9[link]) each from the cation and the neutral mol­ecule, and the two Au atoms are linked via an aurophilic inter­action. The H⋯Cl⋯H angles are 83 (3)° at Cl3 and 80 (3)° at Cl4. The coordination axes at the linked Au atoms are approximately perpendicular to each other, with torsion angles e.g. N11—Au1⋯Au2—N31 = 85.3 (3)°, N11—Au1⋯Au2—Cl1 = −93.2 (2)° for the first formula unit and N41—Au3⋯Au4—N61 = −84.6 (3)°, N41—Au3⋯Au4—Cl2 = 95.0 (2)° for the second. The di­chloro­methane mol­ecules form short C—H⋯Cl hydrogen bonds to the chlorido ligands of the same formula unit and to the chloride anion of the other formula unit (for C1—H1A⋯Cl4 within the asymmetric unit but for C2—H2B⋯Cl3 via a glide plane, see section 3). The short contacts H16A⋯Au2 and H46B⋯Au4 (Table 9[link]) might be regarded as forced by the formation of the hydrogen-bonded dimer (see Section 3).

[Figure 4]
Figure 4
The asymmetric unit of compound 4 in the crystal, with ellipsoids at the 50% probability level. The dashed lines represent hydrogen bonds (thin) or aurophilic contacts (thick).

Compound 5 is the only complex of 2-Me-pip for which a structure was obtained. Selected geometric parameters are presented in Table 5[link]. The asymmetric unit contains two [Au(2-Me-pip)2]+ cations, for both of which the Au atoms lie on the twofold axis 0.5, y, 0.25, and one chloride ion on a general position. Fig. 5[link] shows the twofold-symmetric dimer, which involves two N—H⋯Cl⋯H—N units [H—Cl⋯H = 75.4 (16)°] and an aurophilic contact between the two Au atoms. Again, both Au atoms occupy an axial position at the piperidine rings, and both methyl groups are equatorial. The presence of two stereocentres in each piperidine ring, at the nitro­gen and the methyl-substituted carbon atom, means that various diastereomers of the cation of 5 are formally possible, but their number is limited (i) by the preferences of gold for an axial and of the methyl group for an equatorial position, leading to configurations of R,S at N11 and C12 respectively, and (ii) by the twofold axis through the Au atom, so that the second piperidine of each cation is also R,S (it is conceivable that a different form of 5 might be obtained in which the two ligands of the cation have opposite configurations, for instance if the Au atom lay on an inversion centre). The same relative configurations would apply to any 2-methyl­piperidine complex with an axially positioned metal, whereas an equatorially placed metal would lead to the same configuration for both centres (see Database Survey below). Of course, in the centrosymmetric space group C2/c the overall composition of 5 is a racemate. The coordination axes are inclined to each other at an angle of ca 64° [cf. torsion angle N11—Au1⋯Au2—N21 = −64.21 (14)°]. The central hydrogen-bonded ring has graph set R42(12) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). The piperidine rings at each Au atom are mutually rotated, as viewed along the direction N⋯N′, but to a different extent [cf. pseudo torsion angles C12—N11⋯N11′—C12′ = −51.28 (5), C22—N21⋯N21′—C21′ = −15.23 (6)°; the primes indicate atom positions generated by the twofold axis].

[Figure 5]
Figure 5
The hydrogen-bonded dimer of compound 5 in the crystal, with ellipsoids at the 30% probability level. The dashed lines represent hydrogen bonds (thin) or an aurophilic contact (thick).

3. Supra­molecular features

Supra­molecular features within the asymmetric units have already been discussed in the Structural commentary section.

Compound 1 forms inversion-symmetric dimers with hydrogen bonding of the form N—H⋯Cl⋯H—N (Fig. 6[link], Table 6[link]); the central hydrogen-bonded ring has graph set R42(12) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). The same applies to the [Au(pip)2]Cl dimer (Ahrens et al., 1999[Ahrens, B., Jones, P. G. & Fischer, A. K. (1999). Eur. J. Inorg. Chem. pp. 1103-1110.]), and yet, despite the topological similarity, there are major differences between these dimeric substructures. For 1, the H⋯Cl⋯H angle is wider at 135 (1)°, the Au⋯Au distance is much longer at 5.9269 (3) Å, and the piperidine rings are approximately eclipsed, whereas in [Au(pip)2]Cl (Fig. 7[link]) the H⋯Cl⋯H angle of 82° is much narrower, the Au⋯Au distance of 4.085 Å is shorter and the piperidine rings are significantly rotated around the N⋯N vector, with three absolute C—N⋯N—C pseudo torsion angles of approximately 60° and one approximately anti­periplanar (values calculated from deposited coordinates). It is tempting to suggest that the axial configuration of the Au atoms may facilitate the formation of the dimers, but detailed theoretical calculations would be necessary to provide corroborative evidence for this. Apart from the classical hydrogen bonds, three short contacts (Table 6[link]) might be regarded as `weak' hydrogen bonds. Two of these involve the gold atom as hydrogen-bond acceptor, a topic that has been reviewed by Schmidbaur et al. (2014[Schmidbaur, H., Raubenheimer, H. G. & Dobrzańska, L. (2014). Chem. Soc. Rev. 43, 345-380.]) and Schmidbaur (2019[Schmidbaur, H. (2019). Angew. Chem. Int. Ed. 58, 5806-5809.]), and lead to ribbons of cations parallel to the a axis (Fig. 8[link]).

[Figure 6]
Figure 6
The hydrogen-bonded dimer of compound 1. Dashed lines indicate hydrogen bonds.
[Figure 7]
Figure 7
The hydrogen-bonded dimer of [Au(pip)2]Cl (Ahrens et al., 1999[Ahrens, B., Jones, P. G. & Fischer, A. K. (1999). Eur. J. Inorg. Chem. pp. 1103-1110.]), drawn from deposited coordinates. Radii are arbitrary. Dashed lines indicate hydrogen bonds.
[Figure 8]
Figure 8
Compound 1: The short H⋯Au contacts (dashed lines) combine to form a ribbon of cations parallel to the a axis. Hydrogen atoms not involved in these inter­actions are omitted.

Compound 2 also forms inversion-symmetric dimers (Fig. 9[link]) with a quadrilateral of Au atoms, exactly planar by symmetry, connected via two independent aurophilic inter­actions, and two H2Cl2 quadrilaterals, above and below this plane, involving three-centre NH(⋯Cl)2 inter­actions (Table 7[link]). This motif is topologically analogous to that of the AuCl(piperidine) tetra­mer (Guy et al., 1977[Guy, J. J., Jones, P. G., Mays, M. J. & Sheldrick, G. M. (1977). J. Chem. Soc. Dalton Trans. pp. 8-10.]; for an improved Figure of this structure, see Döring & Jones, 2023a[Döring, C. & Jones, P. G. (2023a). Acta Cryst. E79, 1017-1027.]). The Au4 quadrilateral displays widely differing angles (Table 2[link]), whereby the transannular Au2⋯Au2′ distance is much smaller than Au1⋯Au1′ [3.5051 (8) and 5.3963 (6) Å, respectively]. The angles in the H2Cl2 quadrilateral are approximately equal [89 (3)° at the chlorine atoms and 91 (2)° at the hydrogen atoms]. There are no C—H⋯Cl or C—H⋯Au contacts shorter than 2.9 or 3.1 Å, respectively, so that one may loosely speak of a packing of dimers that involves only van der Waals inter­actions; the dimers lie in layers parallel to (011), whereby neighbouring dimers are related by translational symmetry parallel to [100] and [11[\overline{1}]] (approximately vertical and horizontal, respectively, in Fig. 10[link]).

[Figure 9]
Figure 9
The hydrogen-bonded dimer of compound 2. Dashed lines indicate hydrogen bonds (thin) or aurophilic inter­actions (thick). Atom labels indicate the asymmetric unit.
[Figure 10]
Figure 10
General packing of compound 2, showing a layer parallel to (011), with view direction perpendicular to the layer. This layer passes through the region at y ≃ 0.25, z ≃ 0.25; a further such layer passes through the region at y ≃ 0.75, z ≃ 0.75.

Both formula units of compound 4 form closely similar inversion-symmetric dimers via additional hydrogen bonds from H21 or H51 to the chloride ion (Table 9[link], Fig. 11[link]). The centre of the dimer is a hydrogen-bonded ring of graph set R24(12). There are many short contacts of the type H⋯Cl or H⋯Au that might be regarded as `weak' hydrogen bonds (Table 9[link]). The contacts H34⋯Cl1 and H36B⋯Au1 connect the dimers of the first formula unit to form a layer parallel to the bc plane (Fig. 12[link]), whereas H64⋯Cl2 and H66A⋯Au2 do the same for the second unit, although it is often a moot point whether short contacts to Au(I) centres are of structural significance, or whether they are simply a consequence of the sterically exposed nature of a linearly coordinated atom. A projection of the structure parallel to the b axis (Fig. 13[link]) shows that the gold complexes of the first formula unit occupy the regions x ≃ 0 and 1, whereas those of formula unit 2 lie in the region x ≃ 0.5, with the solvent mol­ecules between these broad layers.

[Figure 11]
Figure 11
The inversion-symmetric dimer of the first formula unit of compound 4. Dashed lines indicate hydrogen bonds (thin) or aurophilic inter­actions (thick). Atom labels indicate the asymmetric unit.
[Figure 12]
Figure 12
Compound 4: Connection of the dimers of the first formula unit by the `weak' hydrogen bonds of the form H⋯Au and H⋯Cl (thick dashed lines). Classical hydrogen bonds are represented by thin dashed lines. The view direction is perpendicular to the bc plane, and the region is x ≃ 0.
[Figure 13]
Figure 13
Compound 4: Projection of the structure parallel to the b axis. Hydrogen atoms (except for those of the solvent) are omitted. Dashed lines indicate hydrogen bonds. The layers of gold-containing residues at x ≃ 0, 0.5 and 1 can be clearly recognized.

The packing of the dimers of compound 5 is essentially featureless. Three of the four shortest C—H⋯Cl contacts involve methyl hydrogens (whose position is always somewhat unreliable for heavy-atom structures) and all short C—H⋯Au contacts are intra­molecular. However, the two shortest C—H⋯Cl contacts (Table 10[link]) serve to link the dimers, forming a layer structure parallel to (10[\overline{1}]) (Fig. 14[link]). The hexa­gonal packing of the dimers may nevertheless be determined more by steric or van der Waals effects.

[Figure 14]
Figure 14
Compound 5: Packing of the dimers via short Hmeth­yl⋯Cl contacts to form a hexa­gonal layer. The view direction is perpendicular to (10[\overline{1}]). Dashed lines indicate (thick) classical hydrogen bonds and aurophilic inter­actions or (thin) `weak' hydrogen bonds C—H⋯Cl. The centre of the layer is at (1/2, 1/2, 1/4).

4. Database survey

The searches employed the routine ConQuest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]), part of Version 2022.3.0 of the CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]).

Further examples of complexes with the type III stoichiometry, but involving imino ligands, were observed for the structures [Au(Ph2C=NH)2] [AuX2] (X = Cl or Br; REXRER and REXRIV; Schneider et al., 1997a[Schneider, W., Bauer, A. & Schmidbaur, H. (1997a). J. Chem. Soc. Dalton Trans. pp. 415-420.]) and [Au(Me2NC=NH)2] [AuBr2] (RIXYAY; Schneider et al., 1997b[Schneider, W., Bauer, A., Schier, A. & Schmidbaur, H. (1997b). Chem. Ber. 130, 1417-1422.]).

Few structures of transition-metal complexes involving alkyl­piperidine ligands have been reported, and most of these involved methyl substituents. For 3-Me-pip (which we did not study) there is only [Pt(malonate)(3-Me-pip)2], with inversion symmetry, in which both the metal and the methyl group are equatorial (QUBFOI; Khan et al., 2000[Khan, S. R. A., Guzman-Jimenez, I., Whitmire, K. H. & Khokhar, A. R. (2000). Polyhedron, 19, 983-989.]). For 2-Me-pip there are two structures: in the structure of enanti­omerically pure [W(CO)5(2-Me-pip)], with S,S configuration at C2 and the nitro­gen atom (CAPSOB; Korp et al., 1983[Korp, J. D., Bernal, I., Mills, J. L. & Weaver, H. T. Jr (1983). Inorg. Chim. Acta, 75, 173-178.]), the metal and the methyl group are also equatorial, and this is also the case for the cubane-type tetra­mer [CuI(2-Me-pip)]4 (ZAYYAD; Wang et al., 2022[Wang, S., Morgan, E. E., Panuganti, S., Mao, L., Vishnoi, P., Wu, G., Liu, Q., Kanatzidis, M. G., Schaller, R. D. & Seshadri, R. (2022). Chem. Mater. 34, 3206-3216.]).

Nine complexes of 4-Me-pip appear in the CSD, seven of which display the usual equatorial positions of the metal atoms and methyl groups. The exceptions, with equatorial methyl groups but axially positioned metal atoms, are provided by two silver complexes studied by us (Jones & Wölper, 1975[Jones, P. G. & Wölper, C. (2005). Dalton Trans. pp. 1762-1763.]; Wölper et al., 2010[Wölper, C., Polo Bastardés, M. D., Dix, I., Kratzert, D. & Jones, P. G. (2010). Z. Naturforsch. B, 65, 647-673.]), namely [(AgCl)5(4-Me-pip)4] (GAQLEQ) and the polymeric [(AgBr)3(4-Me-pip)2] (YUXWOE), which contain one and six independent ligands, respectively. This reinforces our observation that coinage metals have a higher tendency to be axial at piperidine ligands. In this context, the 4-benzyl­piperidine complex [(AgCN)2(4-Bz-pip)] (CITWOU; Bz = benzyl; Strey & Döring, 2018[Strey, M. & Döring, C. (2018). Z. Naturforsch. B, 73, 231-241.]) is inter­esting; the silver atom is axial at one of the two independent ligands but equatorial at the other.

5. Synthesis and crystallization

Bis(4-methyl­piperidine)­gold(I) chloride 1. 40 mg (0.125 mmol) of AuCl(tht) (tht = tetra­hydro­thio­phene) were dissolved in 2 mL of 4-methyl­piperidine. The solution was divided into five portions in small test-tubes and overlaid with various precipitants [see Döring and Jones (2023a[Döring, C. & Jones, P. G. (2023a). Acta Cryst. E79, 1017-1027.]) for details], before being stoppered and stored in a refrigerator overnight. The portion with petroleum ether as precipitant yielded crystals in the form of colourless blocks, one of which was used for the structure analysis, in approximately qu­anti­tative yield. Analysis: calculated: C 33.46, H 6.08, N 6.50; found: C 33.09, H 5.94, N 6.33%.

Bis(4-methyl­piperidine)­gold(I) di­chlorido­aurate(I) 2. 40 mg (0.093 mmol) of 1 were dissolved in 2 mL of di­chloro­methane. The solution was then treated as above for 1. The portion with n-pentane as precipitant yielded crystals in the form of colourless blocks, one of which was used for the structure analysis, in approximately 90% yield. Analysis: calculated: C 21.73, H 3.95, N 4.22; found: C 22.07, H 4.01, N 4.11%.

Bis(4-methyl­piperidine)­gold(I) di­bromido­aurate(I) 3. 90 mg (0.247 mmol) of AuBr(tht) were dissolved in 2 mL of 4-methyl­piperidine. The solution was then treated as above for 1. The portion with n-pentane as precipitant yielded crystals in the form of colourless blocks, one of which was used for the structure analysis, in approximately qu­anti­tative yield. Analysis: calculated: C 19.16, H 3.48, N 3.73; found: C 19.38, H 3.55, N 3.57%.

Chlorido­(4-methyl­piperidine)­gold(I) bis­(4-methyl­pip­eri­dine)­gold(I) chloride di­chloro­methane solvate 4. 124.4 mg (0.288 mmol) of 1 were dissolved in 2 mL of di­chloro­methane and overlayered with n-pentane in a 100 mL round-bottomed flask, which was stoppered and stored in a refrigerator, whereby colourless triangular plates were obtained (yield not measured).

Bis(2-methyl­piperidine)­gold(I) chloride 5. 40 mg (0.125 mmol) of AuCl(tht) were dissolved in 2 mL of 2-methyl­piperidine. The solution was then treated as above for 1. The portion with n-pentane as precipitant yielded crystals in the form of colourless blocks, one of which was used for the structure analysis, in approximately qu­anti­tative yield. Analysis: calculated: C 33.46, H 6.08, N 6.50; found: C 32.99, H 6.26, N 6.22%.

6. Refinement

Details of the measurements and refinements are given in Table 11[link]. Structures were refined anisotropically on F2. Methyl­ene hydrogens were included at calculated positions and refined using a riding model with C—H = 0.99 Å and H—C—H = 109.5°. Methine hydrogens were included similarly, but with C—H = 0.99 Å. Methyl groups were included as idealized rigid groups with C—H = 0.98 Å and H—C—H = 109.5°, and were allowed to rotate but not tip. U values of the hydrogen atoms were fixed at 1.5 × Ueq of the parent carbon atoms for methyl groups and 1.2 × Ueq of the parent carbon atoms for other hydrogens.

Table 11
Experimental details

  1 2 3 4 5
Crystal data
Chemical formula [Au(C6H13N)2]Cl [Au(C6H13N)2][AuCl2] [Au(C6H13N)2][AuBr2] [Au(C6H13N)2]Cl·[AuCl(C6H13N)]·CH2Cl2 [Au(C6H13N)2]Cl
Mr 430.76 663.18 752.10 847.28 430.76
Crystal system, space group Monoclinic, P21/n Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Monoclinic, P21/c Monoclinic, C2/c
Temperature (K) 100 100 100 101 100
a, b, c (Å) 6.4068 (3), 25.2542 (15), 9.3395 (4) 9.6998 (7), 9.7001 (8), 10.7194 (5) 9.8461 (6), 9.7728 (4), 10.9461 (5) 20.5785 (7), 16.0876 (4), 18.2247 (7) 17.6978 (7), 11.2748 (5), 16.5620 (6)
α, β, γ (°) 90, 103.946 (4), 90 102.218 (6), 101.893 (5), 114.695 (8) 100.136 (4), 103.685 (5), 116.287 (5) 90, 116.196 (5), 90 90, 114.013 (5), 90
V3) 1466.57 (12) 844.89 (11) 868.59 (9) 5413.7 (4) 3018.8 (2)
Z 4 2 2 8 8
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 10.19 17.65 21.46 11.23 9.90
Crystal size (mm) 0.21 × 0.03 × 0.01 0.15 × 0.03 × 0.03 0.08 × 0.06 × 0.05 0.25 × 0.1 × 0.1 0.2 × 0.2 × 0.1
 
Data collection
Diffractometer Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO, Version 1.171.41.93a (earlier versions were also used, but are not cited separately). Rigaku Oxford Diffraction, Yarnton, England (formerly Oxford Diffraction and later Agilent Technologies).]) Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO, Version 1.171.41.93a (earlier versions were also used, but are not cited separately). Rigaku Oxford Diffraction, Yarnton, England (formerly Oxford Diffraction and later Agilent Technologies).]) Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO, Version 1.171.41.93a (earlier versions were also used, but are not cited separately). Rigaku Oxford Diffraction, Yarnton, England (formerly Oxford Diffraction and later Agilent Technologies).]) Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO, Version 1.171.41.93a (earlier versions were also used, but are not cited separately). Rigaku Oxford Diffraction, Yarnton, England (formerly Oxford Diffraction and later Agilent Technologies).]) Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO, Version 1.171.41.93a (earlier versions were also used, but are not cited separately). Rigaku Oxford Diffraction, Yarnton, England (formerly Oxford Diffraction and later Agilent Technologies).])
Tmin, Tmax 0.398, 1.000 0.388, 1.000 0.576, 1.000 0.580, 1.000 0.472, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 49187, 4248, 3650 54252, 4874, 4690 48187, 5188, 4466 134776, 13423, 11445 56753, 4576, 3012
Rint 0.068 0.080 0.050 0.122 0.051
(sin θ/λ)max−1) 0.704 0.704 0.724 0.667 0.724
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.048, 1.16 0.029, 0.064, 1.13 0.023, 0.041, 1.05 0.040, 0.070, 1.09 0.029, 0.049, 1.09
No. of reflections 4248 4874 5188 13423 4576
No. of parameters 155 174 173 530 156
No. of restraints 1 1 1 15 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.13, −1.57 2.02, −2.52 1.02, −1.15 2.02, −1.92 2.19, −0.93
Computer programs: CrysAlis PRO (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO, Version 1.171.41.93a (earlier versions were also used, but are not cited separately). Rigaku Oxford Diffraction, Yarnton, England (formerly Oxford Diffraction and later Agilent Technologies).]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 and SHELXL2019/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-ray Instruments, Madison, Wisconsin, USA.]).

For all compounds, the NH hydrogen atoms were refined freely but with N—H distances restrained to be approximately equal. For compound 4, U values of the NH hydrogen atoms were fixed at 1.2 × Ueq of the parent nitro­gen atoms, because the values were otherwise too small (close to or slightly below zero).

The crystal of compound 2 was pseudo-merohedrally twinned by inter­change of the a and b axes, with the twin matrix [0[\overline{1}]0 / [\overline{1}]00 / 00[\overline{1}]]. The relative volume of the smaller component refined to 0.3023 (7). Five badly-fitting reflections were omitted from the refinement.

For compound 3, the cell is presented in a non-standard form (b > a) in order to allow a direct comparison with the isotypic chlorine analogue 2.

The crystal of compound 4 was pseudo-merohedrally twinned (via an apparently ortho­rhom­bic cell) with the twin matrix [[\overline{1}]0[\overline{1}] / 0[\overline{1}]0 / 001]. The relative volume of the smaller component refined to 0.4614 (5). Six badly-fitting reflections were omitted from the refinement.

For compound 5, the U values are rather high for a structure measured at 100 K. Accordingly, Fig. 5[link] shows ellipsoids at the 30% level.

Supporting information


Computing details top

Bis(4-methylpiperidine-κN)gold(I) chloride (1) top
Crystal data top
[Au(C6H13N)2]ClF(000) = 832
Mr = 430.76Dx = 1.951 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.4068 (3) ÅCell parameters from 8714 reflections
b = 25.2542 (15) Åθ = 2.2–30.9°
c = 9.3395 (4) ŵ = 10.19 mm1
β = 103.946 (4)°T = 100 K
V = 1466.57 (12) Å3Lath, colourless
Z = 40.21 × 0.03 × 0.01 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
4248 independent reflections
Radiation source: Enhance (Mo) X-ray Source3650 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
Detector resolution: 16.1419 pixels mm-1θmax = 30.0°, θmin = 2.4°
ω scanh = 98
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
k = 3535
Tmin = 0.398, Tmax = 1.000l = 1312
49187 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: mixed
wR(F2) = 0.048H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + (0.0141P)2 + 1.4591P]
where P = (Fo2 + 2Fc2)/3
4248 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 1.13 e Å3
1 restraintΔρmin = 1.57 e Å3
Special details top

Geometry. Additional structural data:

Distance 5.9269 (0.0003) Au1 - Au1_$1

Angle 135.26 ( 1.44) H02 - Cl1 - H01_$1

Torsion angles 2.93 ( 0.32) C26 - N21 - N11 - C12 2.19 ( 0.31) C22 - N21 - N11 - C16

Operator for generating equivalent atoms: $1 -x, -y+1, -z+1

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.27850 (2)0.58105 (2)0.41086 (2)0.01228 (4)
Cl10.07333 (15)0.42372 (4)0.25393 (10)0.01992 (19)
N110.2215 (5)0.63222 (12)0.5676 (3)0.0128 (6)
H010.139 (6)0.6124 (15)0.613 (4)0.018 (11)*
C120.0986 (6)0.68027 (15)0.5052 (4)0.0161 (8)
H12A0.0589540.7004960.5855310.019*
H12B0.0357340.6695340.4340860.019*
C130.2293 (6)0.71521 (14)0.4282 (4)0.0142 (7)
H13A0.1456890.7475150.3918480.017*
H13B0.2557720.6961260.3416290.017*
C140.4460 (6)0.73133 (13)0.5300 (4)0.0132 (7)
H140.4157020.7544490.6095090.016*
C150.5635 (6)0.68186 (14)0.6033 (4)0.0140 (7)
H15A0.6094290.6603050.5277990.017*
H15B0.6941850.6927670.6777640.017*
C160.4233 (6)0.64834 (14)0.6774 (4)0.0147 (7)
H16A0.5035180.6163580.7207150.018*
H16B0.3858480.6687750.7581540.018*
C170.5835 (7)0.76300 (15)0.4479 (4)0.0220 (8)
H17A0.7199340.7724910.5162240.033*
H17B0.5067380.7953020.4074230.033*
H17C0.6120070.7415370.3672610.033*
N210.3334 (5)0.52931 (12)0.2545 (3)0.0130 (6)
H020.263 (6)0.4985 (13)0.266 (4)0.013 (10)*
C220.5644 (6)0.51457 (15)0.2782 (4)0.0179 (8)
H22A0.5804270.4869310.2064340.021*
H22B0.6177100.4999950.3787890.021*
C230.6963 (6)0.56314 (14)0.2590 (4)0.0153 (7)
H23A0.8480960.5524540.2703660.018*
H23B0.6914740.5890110.3377430.018*
C240.6152 (6)0.58985 (13)0.1087 (4)0.0136 (7)
H240.6444920.5653940.0315840.016*
C250.3730 (6)0.59872 (14)0.0763 (4)0.0135 (7)
H25A0.3427500.6274990.1404390.016*
H25B0.3205150.6102500.0274220.016*
C260.2515 (6)0.54938 (14)0.1015 (4)0.0152 (7)
H26A0.0963960.5576730.0844660.018*
H26B0.2683890.5216270.0302280.018*
C270.7347 (7)0.64190 (15)0.0996 (5)0.0230 (9)
H27A0.6928650.6556920.0013650.035*
H27B0.8901070.6354850.1268030.035*
H27C0.6974210.6677930.1675580.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01176 (6)0.01306 (6)0.01248 (7)0.00121 (6)0.00385 (4)0.00032 (6)
Cl10.0163 (4)0.0183 (5)0.0256 (5)0.0030 (4)0.0060 (4)0.0074 (4)
N110.0093 (14)0.0160 (15)0.0139 (16)0.0032 (13)0.0042 (12)0.0016 (12)
C120.0098 (17)0.0218 (19)0.0162 (18)0.0029 (15)0.0022 (14)0.0013 (15)
C130.0143 (19)0.0125 (17)0.0146 (18)0.0033 (14)0.0009 (14)0.0003 (14)
C140.0140 (18)0.0106 (16)0.0150 (17)0.0010 (14)0.0035 (14)0.0013 (13)
C150.0134 (18)0.0145 (17)0.0141 (18)0.0020 (14)0.0033 (14)0.0013 (14)
C160.0149 (18)0.0167 (18)0.0114 (17)0.0015 (15)0.0010 (14)0.0011 (14)
C170.022 (2)0.019 (2)0.025 (2)0.0019 (17)0.0065 (17)0.0006 (16)
N210.0144 (15)0.0098 (14)0.0162 (15)0.0034 (12)0.0062 (12)0.0018 (12)
C220.020 (2)0.0163 (19)0.0183 (19)0.0056 (15)0.0064 (16)0.0030 (15)
C230.0125 (18)0.0165 (17)0.0168 (18)0.0012 (14)0.0032 (14)0.0021 (14)
C240.0188 (19)0.0071 (17)0.0167 (17)0.0019 (14)0.0077 (14)0.0024 (13)
C250.0154 (18)0.0157 (17)0.0089 (16)0.0015 (14)0.0018 (14)0.0024 (13)
C260.0126 (19)0.0157 (17)0.0162 (18)0.0006 (14)0.0016 (15)0.0011 (15)
C270.024 (2)0.0202 (19)0.026 (2)0.0067 (18)0.0080 (17)0.0010 (18)
Geometric parameters (Å, º) top
Au1—N112.051 (3)C14—H141.0000
Au1—N212.052 (3)C15—H15A0.9900
N11—C121.487 (5)C15—H15B0.9900
N11—C161.499 (5)C16—H16A0.9900
C12—C131.513 (5)C16—H16B0.9900
C13—C141.536 (5)C17—H17A0.9800
C14—C171.526 (5)C17—H17B0.9800
C14—C151.532 (5)C17—H17C0.9800
C15—C161.517 (5)N21—H020.92 (3)
N21—C261.488 (4)C22—H22A0.9900
N21—C221.490 (5)C22—H22B0.9900
C22—C231.524 (5)C23—H23A0.9900
C23—C241.531 (5)C23—H23B0.9900
C24—C251.524 (5)C24—H241.0000
C24—C271.534 (5)C25—H25A0.9900
C25—C261.517 (5)C25—H25B0.9900
N11—H010.90 (3)C26—H26A0.9900
C12—H12A0.9900C26—H26B0.9900
C12—H12B0.9900C27—H27A0.9800
C13—H13A0.9900C27—H27B0.9800
C13—H13B0.9900C27—H27C0.9800
N11—Au1—N21179.43 (12)C15—C16—H16A109.6
C12—N11—C16109.5 (3)N11—C16—H16B109.6
C12—N11—Au1113.8 (2)C15—C16—H16B109.6
C16—N11—Au1112.8 (2)H16A—C16—H16B108.1
N11—C12—C13111.2 (3)C14—C17—H17A109.5
C12—C13—C14112.4 (3)C14—C17—H17B109.5
C17—C14—C15111.8 (3)H17A—C17—H17B109.5
C17—C14—C13111.9 (3)C14—C17—H17C109.5
C15—C14—C13109.5 (3)H17A—C17—H17C109.5
C16—C15—C14112.2 (3)H17B—C17—H17C109.5
N11—C16—C15110.3 (3)C26—N21—H02109 (2)
C26—N21—C22109.6 (3)C22—N21—H02106 (3)
C26—N21—Au1112.7 (2)Au1—N21—H02106 (3)
C22—N21—Au1112.8 (2)N21—C22—H22A109.7
N21—C22—C23109.9 (3)C23—C22—H22A109.7
C22—C23—C24112.8 (3)N21—C22—H22B109.7
C25—C24—C23110.5 (3)C23—C22—H22B109.7
C25—C24—C27111.2 (3)H22A—C22—H22B108.2
C23—C24—C27111.4 (3)C22—C23—H23A109.0
C26—C25—C24112.6 (3)C24—C23—H23A109.0
N21—C26—C25110.7 (3)C22—C23—H23B109.0
C12—N11—H01109 (3)C24—C23—H23B109.0
C16—N11—H01109 (3)H23A—C23—H23B107.8
Au1—N11—H01102 (3)C25—C24—H24107.9
N11—C12—H12A109.4C23—C24—H24107.9
C13—C12—H12A109.4C27—C24—H24107.9
N11—C12—H12B109.4C26—C25—H25A109.1
C13—C12—H12B109.4C24—C25—H25A109.1
H12A—C12—H12B108.0C26—C25—H25B109.1
C12—C13—H13A109.1C24—C25—H25B109.1
C14—C13—H13A109.1H25A—C25—H25B107.8
C12—C13—H13B109.1N21—C26—H26A109.5
C14—C13—H13B109.1C25—C26—H26A109.5
H13A—C13—H13B107.9N21—C26—H26B109.5
C17—C14—H14107.8C25—C26—H26B109.5
C15—C14—H14107.8H26A—C26—H26B108.1
C13—C14—H14107.8C24—C27—H27A109.5
C16—C15—H15A109.2C24—C27—H27B109.5
C14—C15—H15A109.2H27A—C27—H27B109.5
C16—C15—H15B109.2C24—C27—H27C109.5
C14—C15—H15B109.2H27A—C27—H27C109.5
H15A—C15—H15B107.9H27B—C27—H27C109.5
N11—C16—H16A109.6
C16—N11—C12—C1360.1 (4)C26—N21—C22—C2361.4 (4)
Au1—N11—C12—C1367.1 (3)Au1—N21—C22—C2365.0 (3)
N11—C12—C13—C1456.3 (4)N21—C22—C23—C2456.1 (4)
C12—C13—C14—C17175.6 (3)C22—C23—C24—C2549.5 (4)
C12—C13—C14—C1551.1 (4)C22—C23—C24—C27173.6 (3)
C17—C14—C15—C16176.5 (3)C23—C24—C25—C2649.2 (4)
C13—C14—C15—C1652.0 (4)C27—C24—C25—C26173.4 (3)
C12—N11—C16—C1560.6 (4)C22—N21—C26—C2561.6 (4)
Au1—N11—C16—C1567.2 (3)Au1—N21—C26—C2564.9 (3)
C14—C15—C16—N1157.6 (4)C24—C25—C26—N2156.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H02···Cl10.92 (3)2.23 (3)3.144 (3)171 (3)
N11—H01···Cl1i0.90 (3)2.25 (3)3.140 (3)170 (4)
C16—H16A···Cl1ii0.992.853.623 (4)136
C22—H22B···Au1ii0.992.803.724 (4)155
C23—H23A···Au1iii0.992.853.685 (4)143
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y, z.
Bis(4-methylpiperidine-κN)gold(I) dichloridoaurate(I) (2) top
Crystal data top
[Au(C6H13N)2][AuCl2]Z = 2
Mr = 663.18F(000) = 608
Triclinic, P1Dx = 2.607 Mg m3
a = 9.6998 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.7001 (8) ÅCell parameters from 20172 reflections
c = 10.7194 (5) Åθ = 2.4–30.8°
α = 102.218 (6)°µ = 17.65 mm1
β = 101.893 (5)°T = 100 K
γ = 114.695 (8)°Block, colourless
V = 844.89 (11) Å30.15 × 0.03 × 0.03 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
4874 independent reflections
Radiation source: Enhance (Mo) X-ray Source4690 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.080
ω scanθmax = 30.0°, θmin = 2.5°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
h = 1313
Tmin = 0.388, Tmax = 1.000k = 1313
54252 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: mixed
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0107P)2 + 9.0373P]
where P = (Fo2 + 2Fc2)/3
4874 reflections(Δ/σ)max < 0.001
174 parametersΔρmax = 2.02 e Å3
1 restraintΔρmin = 2.52 e Å3
Special details top

Geometry. Additional structural data:

Torsion angles: -3.13 ( 0.18) N11 - Au1 - Au2 - Cl1 -177.48 ( 0.18) N11 - Au1 - Au2 - Cl2 176.53 ( 0.19) N21 - Au1 - Au2 - Cl1 2.18 ( 0.19) N21 - Au1 - Au2 - Cl2 0.00 ( 0.00) Au2_$1 - Au1 - Au2 - Au1_$1 0.00 ( 0.00) Au2 - Au1 - Au2_$1 - Au1_$1 0.55 ( 0.66) C12 - N11 - N21 - C22 -0.66 ( 0.65) C16 - N11 - N21 - C26

Non-bonded distance: 5.3963 (0.0006) Au1 - Au1_$1 3.5051 (0.0008) Au2 - Au2_S1

Angles in H2Cl2 ring: 88.83 ( 2.82) H01 - Cl1 - H02_$1 88.51 ( 2.89) H01_$1 - Cl2 - H02 91.43 ( 2.06) Cl1 - H01 - Cl2_$1 91.13 ( 2.23) Cl1_$1 - H02 - Cl2

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.34494 (3)0.35477 (3)0.15546 (3)0.01219 (6)
Au20.61479 (3)0.67852 (3)0.13899 (3)0.01717 (7)
Cl10.8285 (2)0.6453 (3)0.2297 (2)0.0231 (4)
Cl20.4149 (2)0.7390 (2)0.0684 (2)0.0198 (4)
N110.5267 (7)0.3046 (7)0.2280 (6)0.0112 (11)
H010.606 (9)0.357 (10)0.190 (8)0.01 (2)*
C120.4725 (9)0.1288 (9)0.1908 (8)0.0160 (14)
H12A0.5666590.1118540.2173240.019*
H12B0.4196030.0766050.0916660.019*
C130.3549 (9)0.0532 (9)0.2624 (8)0.0162 (14)
H13A0.3225620.0628070.2392180.019*
H13B0.2570950.0625020.2295610.019*
C140.4282 (10)0.1339 (10)0.4167 (8)0.0179 (15)
H140.5188670.1123700.4498310.022*
C150.4954 (9)0.3159 (9)0.4524 (7)0.0157 (14)
H15A0.4053140.3394880.4288180.019*
H15B0.5519360.3685070.5511930.019*
C160.6112 (9)0.3857 (9)0.3783 (8)0.0168 (15)
H16A0.6502340.5030040.4022170.020*
H16B0.7051640.3687710.4058360.020*
C170.3025 (11)0.0634 (11)0.4841 (9)0.0271 (19)
H17A0.3528680.1113070.5826030.041*
H17B0.2596080.0535200.4572640.041*
H17C0.2147800.0873440.4553630.041*
N210.1546 (7)0.3937 (7)0.0850 (6)0.0127 (12)
H020.182 (13)0.453 (12)0.025 (9)0.03 (3)*
C220.0007 (9)0.2393 (10)0.0106 (8)0.0196 (15)
H22A0.0159030.1712660.0624620.023*
H22B0.0843680.2625740.0313000.023*
C230.0507 (9)0.1495 (10)0.1071 (9)0.0209 (16)
H23A0.0309610.1191740.1431590.025*
H23B0.1537490.0490840.0567990.025*
C240.0713 (9)0.2496 (10)0.2247 (8)0.0194 (16)
H240.1646430.2659080.1876210.023*
C250.0786 (9)0.4153 (10)0.2927 (8)0.0184 (15)
H25A0.0570330.4839910.3597580.022*
H25B0.1684560.4026920.3418940.022*
C260.1285 (9)0.4984 (9)0.1924 (8)0.0174 (15)
H26A0.0437890.5218090.1496340.021*
H26B0.2289530.6019680.2403620.021*
C270.1075 (11)0.1642 (12)0.3275 (10)0.0276 (19)
H27A0.2071490.0612610.2832710.041*
H27B0.1198500.2318310.4015540.041*
H27C0.0186020.1445130.3636250.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01125 (12)0.01256 (13)0.01533 (12)0.00698 (9)0.00522 (9)0.00603 (10)
Au20.01947 (14)0.01454 (14)0.01872 (13)0.00773 (10)0.00946 (11)0.00583 (11)
Cl10.0200 (9)0.0265 (10)0.0237 (9)0.0100 (8)0.0095 (7)0.0102 (8)
Cl20.0241 (9)0.0173 (9)0.0241 (9)0.0119 (7)0.0132 (8)0.0091 (7)
N110.008 (2)0.012 (3)0.011 (3)0.004 (2)0.000 (2)0.001 (2)
C120.017 (3)0.014 (3)0.020 (4)0.010 (3)0.008 (3)0.005 (3)
C130.014 (3)0.014 (3)0.020 (4)0.007 (3)0.005 (3)0.005 (3)
C140.023 (4)0.020 (4)0.018 (4)0.014 (3)0.010 (3)0.010 (3)
C150.020 (3)0.018 (4)0.014 (3)0.013 (3)0.007 (3)0.007 (3)
C160.013 (3)0.015 (3)0.020 (4)0.007 (3)0.005 (3)0.004 (3)
C170.034 (5)0.027 (4)0.028 (4)0.015 (4)0.018 (4)0.016 (4)
N210.012 (3)0.010 (3)0.012 (3)0.004 (2)0.002 (2)0.003 (2)
C220.016 (3)0.022 (4)0.016 (3)0.010 (3)0.001 (3)0.001 (3)
C230.010 (3)0.022 (4)0.029 (4)0.006 (3)0.003 (3)0.013 (3)
C240.014 (3)0.024 (4)0.028 (4)0.012 (3)0.008 (3)0.014 (3)
C250.018 (3)0.024 (4)0.019 (4)0.013 (3)0.008 (3)0.010 (3)
C260.016 (3)0.018 (4)0.022 (4)0.009 (3)0.008 (3)0.008 (3)
C270.022 (4)0.035 (5)0.037 (5)0.015 (4)0.018 (4)0.023 (4)
Geometric parameters (Å, º) top
Au1—N212.062 (7)C13—H13A0.9900
Au1—N112.064 (6)C13—H13B0.9900
Au1—Au23.2096 (5)C14—H141.0000
Au1—Au2i3.2252 (4)C15—H15A0.9900
Au2—Cl12.282 (2)C15—H15B0.9900
Au2—Cl22.282 (2)C16—H16A0.9900
N11—C121.490 (9)C16—H16B0.9900
N11—C161.506 (9)C17—H17A0.9800
C12—C131.525 (10)C17—H17B0.9800
C13—C141.535 (11)C17—H17C0.9800
C14—C151.529 (10)N21—H020.95 (6)
C14—C171.533 (11)C22—H22A0.9900
C15—C161.520 (10)C22—H22B0.9900
N21—C221.498 (9)C23—H23A0.9900
N21—C261.504 (10)C23—H23B0.9900
C22—C231.520 (11)C24—H241.0000
C23—C241.523 (12)C25—H25A0.9900
C24—C271.525 (11)C25—H25B0.9900
C24—C251.531 (11)C26—H26A0.9900
C25—C261.516 (11)C26—H26B0.9900
N11—H010.95 (6)C27—H27A0.9800
C12—H12A0.9900C27—H27B0.9800
C12—H12B0.9900C27—H27C0.9800
N21—Au1—N11176.8 (2)C17—C14—H14108.5
N21—Au1—Au295.61 (17)C13—C14—H14108.5
N11—Au1—Au287.59 (17)C16—C15—H15A109.2
N21—Au1—Au2i87.50 (18)C14—C15—H15A109.2
N11—Au1—Au2i94.13 (17)C16—C15—H15B109.2
Au2—Au1—Au2i66.011 (12)C14—C15—H15B109.2
Cl1—Au2—Cl2173.42 (7)H15A—C15—H15B107.9
Cl1—Au2—Au196.01 (5)N11—C16—H16A109.8
Cl2—Au2—Au187.38 (5)C15—C16—H16A109.8
Cl1—Au2—Au1i95.47 (5)N11—C16—H16B109.8
Cl2—Au2—Au1i88.25 (5)C15—C16—H16B109.8
Au1—Au2—Au1i113.989 (13)H16A—C16—H16B108.2
Cl1—Au2—Au2i100.58 (6)C14—C17—H17A109.5
Cl2—Au2—Au2i85.99 (5)C14—C17—H17B109.5
Au1—Au2—Au2i57.208 (12)H17A—C17—H17B109.5
Au1i—Au2—Au2i56.781 (11)C14—C17—H17C109.5
C12—N11—C16110.0 (6)H17A—C17—H17C109.5
C12—N11—Au1113.2 (4)H17B—C17—H17C109.5
C16—N11—Au1113.2 (5)C22—N21—H02110 (7)
N11—C12—C13110.0 (6)C26—N21—H02105 (7)
C12—C13—C14112.1 (6)Au1—N21—H02106 (7)
C15—C14—C17111.4 (7)N21—C22—H22A109.6
C15—C14—C13109.5 (6)C23—C22—H22A109.6
C17—C14—C13110.5 (7)N21—C22—H22B109.6
C16—C15—C14112.0 (6)C23—C22—H22B109.6
N11—C16—C15109.5 (6)H22A—C22—H22B108.1
C22—N21—C26109.1 (6)C22—C23—H23A109.1
C22—N21—Au1112.1 (5)C24—C23—H23A109.1
C26—N21—Au1114.3 (5)C22—C23—H23B109.1
N21—C22—C23110.2 (6)C24—C23—H23B109.1
C22—C23—C24112.3 (7)H23A—C23—H23B107.9
C23—C24—C27111.7 (7)C23—C24—H24108.0
C23—C24—C25110.2 (6)C27—C24—H24108.0
C27—C24—C25110.7 (7)C25—C24—H24108.0
C26—C25—C24112.6 (7)C26—C25—H25A109.1
N21—C26—C25110.5 (6)C24—C25—H25A109.1
C12—N11—H01112 (5)C26—C25—H25B109.1
C16—N11—H01104 (5)C24—C25—H25B109.1
Au1—N11—H01104 (5)H25A—C25—H25B107.8
N11—C12—H12A109.7N21—C26—H26A109.6
C13—C12—H12A109.7C25—C26—H26A109.6
N11—C12—H12B109.7N21—C26—H26B109.6
C13—C12—H12B109.7C25—C26—H26B109.6
H12A—C12—H12B108.2H26A—C26—H26B108.1
C12—C13—H13A109.2C24—C27—H27A109.5
C14—C13—H13A109.2C24—C27—H27B109.5
C12—C13—H13B109.2H27A—C27—H27B109.5
C14—C13—H13B109.2C24—C27—H27C109.5
H13A—C13—H13B107.9H27A—C27—H27C109.5
C15—C14—H14108.5H27B—C27—H27C109.5
C16—N11—C12—C1360.8 (8)C26—N21—C22—C2361.3 (8)
Au1—N11—C12—C1366.9 (7)Au1—N21—C22—C2366.3 (7)
N11—C12—C13—C1457.1 (8)N21—C22—C23—C2457.5 (8)
C12—C13—C14—C1552.6 (8)C22—C23—C24—C27174.6 (7)
C12—C13—C14—C17175.7 (7)C22—C23—C24—C2551.2 (9)
C17—C14—C15—C16175.9 (7)C23—C24—C25—C2650.6 (9)
C13—C14—C15—C1653.4 (8)C27—C24—C25—C26174.6 (7)
C12—N11—C16—C1561.3 (8)C22—N21—C26—C2560.7 (8)
Au1—N11—C16—C1566.4 (7)Au1—N21—C26—C2565.7 (7)
C14—C15—C16—N1158.1 (8)C24—C25—C26—N2156.1 (9)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H01···Cl10.95 (6)2.59 (7)3.370 (6)139 (7)
N11—H01···Cl2i0.95 (6)2.66 (8)3.312 (7)126 (6)
N21—H02···Cl20.95 (6)2.61 (9)3.316 (7)131 (8)
N21—H02···Cl1i0.95 (6)2.66 (9)3.360 (7)130 (8)
C13—H13A···Cl2ii0.992.913.640 (8)131
Symmetry codes: (i) x+1, y+1, z; (ii) x, y1, z.
Bis(4-methylpiperidine-κN)gold(I) dibromidoaurate(I) (3) top
Crystal data top
[Au(C6H13N)2][AuBr2]Z = 2
Mr = 752.10F(000) = 680
Triclinic, P1Dx = 2.876 Mg m3
a = 9.8461 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.7728 (4) ÅCell parameters from 12875 reflections
c = 10.9461 (5) Åθ = 2.6–30.3°
α = 100.136 (4)°µ = 21.46 mm1
β = 103.685 (5)°T = 100 K
γ = 116.287 (5)°Block, colourless
V = 868.59 (9) Å30.08 × 0.06 × 0.05 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
5188 independent reflections
Radiation source: Enhance (Mo) X-ray Source4466 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.050
ω scanθmax = 31.0°, θmin = 2.5°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
h = 1414
Tmin = 0.576, Tmax = 1.000k = 1413
48187 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: mixed
wR(F2) = 0.041H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0127P)2 + 1.3346P]
where P = (Fo2 + 2Fc2)/3
5188 reflections(Δ/σ)max = 0.001
173 parametersΔρmax = 1.02 e Å3
1 restraintΔρmin = 1.15 e Å3
Special details top

Geometry. Additional structural data:

Non-bonded distance: 5.5563 (0.0004) Au1 - Au1_$1

Torsion angles: -3.06 ( 0.09) N11 - Au1 - Au2 - Br1 -175.21 ( 0.09) N11 - Au1 - Au2 - Br2 175.95 ( 0.08) N21 - Au1 - Au2 - Br1 3.79 ( 0.08) N21 - Au1 - Au2 - Br2 0.00 ( 0.00) Au2_$1 - Au1 - Au2 - Au1_$1 0.00 ( 0.00) Au2 - Au1 - Au2_$1 - Au1_$1 2.08 ( 0.31) C12 - N11 - N21 - C22 0.99 ( 0.32) C16 - N11 - N21 - C26

Operators for generating equivalent atoms: $1 -x+1, -y+1, -z

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.34246 (2)0.35042 (2)0.15864 (2)0.01326 (4)
Au20.62704 (2)0.68148 (2)0.13846 (2)0.01800 (4)
Br10.85675 (5)0.65879 (5)0.24231 (4)0.02139 (8)
Br20.42027 (5)0.74623 (5)0.06245 (4)0.01870 (8)
N110.5261 (4)0.3083 (4)0.2396 (3)0.0146 (6)
H010.597 (5)0.352 (5)0.199 (4)0.031 (13)*
C120.4724 (5)0.1335 (4)0.2092 (4)0.0174 (8)
H12A0.5681950.1209830.2389430.021*
H12B0.4181980.0787990.1120950.021*
C130.3569 (5)0.0555 (4)0.2781 (4)0.0172 (8)
H13A0.3267710.0590710.2593950.021*
H13B0.2567190.0588650.2416340.021*
C140.4302 (5)0.1390 (5)0.4283 (4)0.0187 (8)
H140.5229200.1225920.4650360.022*
C150.4963 (5)0.3198 (4)0.4574 (4)0.0170 (8)
H15A0.4045660.3388660.4306130.020*
H15B0.5546630.3750710.5541640.020*
C160.6104 (4)0.3918 (4)0.3849 (3)0.0158 (7)
H16A0.6477480.5081150.4046290.019*
H16B0.7066310.3803880.4160390.019*
C170.3069 (5)0.0671 (5)0.4946 (4)0.0272 (9)
H17A0.3592920.1185480.5911420.041*
H17B0.2653990.0490680.4728030.041*
H17C0.2168300.0857120.4624990.041*
N210.1493 (4)0.3816 (4)0.0822 (3)0.0151 (6)
H020.171 (6)0.430 (5)0.021 (4)0.033 (13)*
C220.0056 (5)0.2246 (5)0.0142 (4)0.0194 (8)
H22A0.0079750.1543740.0530280.023*
H22B0.0918920.2433550.0321940.023*
C230.0549 (5)0.1417 (5)0.1134 (4)0.0226 (8)
H23A0.0274520.1150190.1539040.027*
H23B0.1593620.0392960.0663070.027*
C240.0728 (5)0.2453 (5)0.2231 (4)0.0207 (8)
H240.1665010.2587620.1825470.025*
C250.0802 (5)0.4118 (5)0.2853 (4)0.0184 (8)
H25A0.0617510.4828700.3473490.022*
H25B0.1705520.4019350.3372430.022*
C260.1279 (5)0.4885 (5)0.1823 (4)0.0180 (8)
H26A0.0429930.5094160.1366560.022*
H26B0.2304770.5931300.2267700.022*
C270.1067 (5)0.1650 (6)0.3281 (5)0.0303 (10)
H27A0.2056300.0589090.2863560.045*
H27B0.1210360.2322180.3957580.045*
H27C0.0153030.1521080.3697970.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01451 (7)0.01374 (7)0.01331 (7)0.00839 (6)0.00551 (5)0.00415 (5)
Au20.02091 (8)0.01803 (8)0.01796 (8)0.01101 (7)0.00943 (6)0.00563 (6)
Br10.01983 (19)0.0256 (2)0.01905 (19)0.01164 (17)0.00751 (16)0.00668 (16)
Br20.0237 (2)0.01820 (19)0.01945 (18)0.01302 (17)0.01113 (16)0.00622 (15)
N110.0174 (16)0.0147 (16)0.0156 (15)0.0109 (14)0.0062 (13)0.0056 (13)
C120.0201 (19)0.017 (2)0.0172 (18)0.0114 (17)0.0070 (16)0.0030 (15)
C130.0181 (19)0.0107 (18)0.0208 (19)0.0073 (16)0.0052 (16)0.0029 (15)
C140.0190 (19)0.021 (2)0.0200 (19)0.0128 (17)0.0076 (16)0.0083 (16)
C150.0174 (19)0.018 (2)0.0134 (17)0.0084 (16)0.0043 (15)0.0044 (15)
C160.0159 (18)0.0138 (19)0.0117 (17)0.0056 (16)0.0016 (14)0.0010 (14)
C170.033 (2)0.029 (2)0.022 (2)0.014 (2)0.0141 (19)0.0124 (19)
N210.0174 (16)0.0162 (17)0.0123 (15)0.0092 (14)0.0055 (13)0.0038 (13)
C220.0160 (19)0.024 (2)0.0132 (18)0.0102 (17)0.0010 (15)0.0012 (15)
C230.017 (2)0.018 (2)0.026 (2)0.0055 (17)0.0049 (17)0.0050 (17)
C240.0137 (19)0.023 (2)0.025 (2)0.0086 (17)0.0069 (16)0.0090 (17)
C250.019 (2)0.021 (2)0.0171 (18)0.0115 (17)0.0081 (16)0.0043 (16)
C260.020 (2)0.019 (2)0.0216 (19)0.0137 (17)0.0107 (16)0.0084 (16)
C270.025 (2)0.038 (3)0.034 (3)0.015 (2)0.015 (2)0.021 (2)
Geometric parameters (Å, º) top
Au1—N112.062 (3)C13—H13A0.9900
Au1—N212.064 (3)C13—H13B0.9900
Au1—Au23.2988 (3)C14—H141.0000
Au1—Au2i3.3094 (2)C15—H15A0.9900
Au2—Br22.4006 (4)C15—H15B0.9900
Au2—Br12.4027 (4)C16—H16A0.9900
N11—C161.485 (5)C16—H16B0.9900
N11—C121.492 (5)C17—H17A0.9800
C12—C131.511 (5)C17—H17B0.9800
C13—C141.527 (5)C17—H17C0.9800
C14—C151.527 (5)N21—H020.89 (3)
C14—C171.529 (5)C22—H22A0.9900
C15—C161.518 (5)C22—H22B0.9900
N21—C221.491 (5)C23—H23A0.9900
N21—C261.496 (5)C23—H23B0.9900
C22—C231.511 (5)C24—H241.0000
C23—C241.526 (6)C25—H25A0.9900
C24—C271.521 (5)C25—H25B0.9900
C24—C251.528 (5)C26—H26A0.9900
C25—C261.513 (5)C26—H26B0.9900
N11—H010.90 (3)C27—H27A0.9800
C12—H12A0.9900C27—H27B0.9800
C12—H12B0.9900C27—H27C0.9800
N11—Au1—N21176.30 (13)C16—C15—H15A109.1
N11—Au1—Au286.25 (9)C14—C15—H15A109.1
N21—Au1—Au297.32 (9)C16—C15—H15B109.1
N11—Au1—Au2i96.43 (9)C14—C15—H15B109.1
N21—Au1—Au2i85.98 (8)H15A—C15—H15B107.8
Au2—Au1—Au2i65.548 (9)N11—C16—H16A109.7
Br2—Au2—Br1170.628 (15)C15—C16—H16A109.7
Br2—Au2—Au187.120 (12)N11—C16—H16B109.7
Br1—Au2—Au198.067 (12)C15—C16—H16B109.7
Br2—Au2—Au1i87.536 (11)H16A—C16—H16B108.2
Br1—Au2—Au1i97.312 (11)C14—C17—H17A109.5
Au1—Au2—Au1i114.452 (8)C14—C17—H17B109.5
C16—N11—C12109.8 (3)H17A—C17—H17B109.5
C16—N11—Au1113.2 (2)C14—C17—H17C109.5
C12—N11—Au1113.4 (2)H17A—C17—H17C109.5
N11—C12—C13110.8 (3)H17B—C17—H17C109.5
C12—C13—C14112.3 (3)C22—N21—H02108 (3)
C15—C14—C13109.3 (3)C26—N21—H02107 (3)
C15—C14—C17111.5 (3)Au1—N21—H02106 (3)
C13—C14—C17111.5 (3)N21—C22—H22A109.5
C16—C15—C14112.4 (3)C23—C22—H22A109.5
N11—C16—C15110.0 (3)N21—C22—H22B109.5
C22—N21—C26109.5 (3)C23—C22—H22B109.5
C22—N21—Au1111.9 (2)H22A—C22—H22B108.1
C26—N21—Au1114.0 (2)C22—C23—H23A109.1
N21—C22—C23110.6 (3)C24—C23—H23A109.1
C22—C23—C24112.6 (3)C22—C23—H23B109.1
C27—C24—C23111.1 (3)C24—C23—H23B109.1
C27—C24—C25110.8 (3)H23A—C23—H23B107.8
C23—C24—C25109.7 (3)C27—C24—H24108.4
C26—C25—C24112.4 (3)C23—C24—H24108.4
N21—C26—C25111.1 (3)C25—C24—H24108.4
C16—N11—H01108 (3)C26—C25—H25A109.1
C12—N11—H01109 (3)C24—C25—H25A109.1
Au1—N11—H01103 (3)C26—C25—H25B109.1
N11—C12—H12A109.5C24—C25—H25B109.1
C13—C12—H12A109.5H25A—C25—H25B107.9
N11—C12—H12B109.5N21—C26—H26A109.4
C13—C12—H12B109.5C25—C26—H26A109.4
H12A—C12—H12B108.1N21—C26—H26B109.4
C12—C13—H13A109.1C25—C26—H26B109.4
C14—C13—H13A109.1H26A—C26—H26B108.0
C12—C13—H13B109.1C24—C27—H27A109.5
C14—C13—H13B109.1C24—C27—H27B109.5
H13A—C13—H13B107.9H27A—C27—H27B109.5
C15—C14—H14108.2C24—C27—H27C109.5
C13—C14—H14108.2H27A—C27—H27C109.5
C17—C14—H14108.2H27B—C27—H27C109.5
C16—N11—C12—C1360.2 (4)C26—N21—C22—C2360.0 (4)
Au1—N11—C12—C1367.5 (3)Au1—N21—C22—C2367.3 (3)
N11—C12—C13—C1456.5 (4)N21—C22—C23—C2457.3 (4)
C12—C13—C14—C1551.7 (4)C22—C23—C24—C27174.6 (3)
C12—C13—C14—C17175.4 (3)C22—C23—C24—C2551.7 (4)
C13—C14—C15—C1652.4 (4)C27—C24—C25—C26174.0 (3)
C17—C14—C15—C16176.1 (3)C23—C24—C25—C2651.0 (4)
C12—N11—C16—C1560.4 (4)C22—N21—C26—C2559.7 (4)
Au1—N11—C16—C1567.4 (3)Au1—N21—C26—C2566.5 (3)
C14—C15—C16—N1157.7 (4)C24—C25—C26—N2156.1 (4)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H01···Br2i0.90 (3)2.80 (4)3.457 (3)131 (4)
N11—H01···Br10.90 (3)2.81 (4)3.518 (3)136 (4)
N21—H02···Br1i0.89 (3)2.77 (4)3.487 (3)138 (4)
N21—H02···Br20.89 (3)2.84 (4)3.462 (3)128 (4)
C13—H13A···Br2ii0.993.193.867 (4)127
Symmetry codes: (i) x+1, y+1, z; (ii) x, y1, z.
Chlorido(4-methylpiperidine-κN)gold(I) bis(4-methylpiperidine-κN)gold(I) chloride dichloromethane monosolvate (4) top
Crystal data top
[Au(C6H13N)2]Cl·[AuCl(C6H13N)]·CH2Cl2F(000) = 3216
Mr = 847.28Dx = 2.079 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 20.5785 (7) ÅCell parameters from 14529 reflections
b = 16.0876 (4) Åθ = 2.4–26.3°
c = 18.2247 (7) ŵ = 11.23 mm1
β = 116.196 (5)°T = 101 K
V = 5413.7 (4) Å3Block, colourless
Z = 80.25 × 0.1 × 0.1 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
13423 independent reflections
Radiation source: Enhance (Mo) X-ray Source11445 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.122
ω scanθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
h = 2727
Tmin = 0.580, Tmax = 1.000k = 2121
134776 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: mixed
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0102P)2 + 6.0221P]
where P = (Fo2 + 2Fc2)/3
13423 reflections(Δ/σ)max = 0.001
530 parametersΔρmax = 2.02 e Å3
15 restraintsΔρmin = 1.91 e Å3
Special details top

Geometry. Additional structural data:

Torsion angles:

85.28 ( 0.32) N11 - Au1 - Au2 - N31 -93.19 ( 0.24) N11 - Au1 - Au2 - Cl1 -93.64 ( 0.31) N21 - Au1 - Au2 - N31 87.89 ( 0.24) N21 - Au1 - Au2 - Cl1 -84.62 ( 0.33) N41 - Au3 - Au4 - N61 95.00 ( 0.24) N41 - Au3 - Au4 - Cl2 93.92 ( 0.33) N51 - Au3 - Au4 - N61 -86.46 ( 0.25) N51 - Au3 - Au4 - Cl2 5.18 ( 0.90) C12 - N11 - N21 - C22 -119.25 ( 0.81) C16 - N11 - N21 - C22 132.02 ( 0.84) C12 - N11 - N21 - C26 132.02 ( 0.84) C12 - N11 - N21 - C26 -4.21 ( 0.93) C42 - N41 - N51 - C52 120.72 ( 0.84) C46 - N41 - N51 - C52 -129.55 ( 0.85) C42 - N41 - N51 - C56 -129.55 ( 0.85) C42 - N41 - N51 - C56

Angles H···Cl···H:

82.86 ( 3.36) H11 - Cl3 - H31 80.32 ( 3.36) H41 - Cl4 - H61

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.00202 (2)0.49114 (2)0.16824 (2)0.01553 (10)
Au20.02294 (2)0.29093 (2)0.14623 (2)0.01759 (10)
Au30.49092 (2)0.48860 (2)0.32562 (2)0.01468 (9)
Au40.51565 (2)0.29110 (2)0.36978 (2)0.01682 (10)
Cl10.04557 (13)0.26028 (15)0.27672 (17)0.0199 (6)
Cl20.54217 (14)0.25973 (15)0.26510 (18)0.0210 (6)
Cl30.14385 (12)0.43026 (14)0.06278 (14)0.0176 (5)
Cl40.35323 (12)0.43684 (14)0.42016 (14)0.0171 (5)
N110.1105 (4)0.4626 (6)0.1235 (5)0.022 (2)
H110.120 (5)0.454 (7)0.076 (3)0.026*
C120.1544 (6)0.5345 (7)0.1302 (7)0.027 (3)
H12A0.2066370.5209660.1013320.033*
H12B0.1454640.5843590.1040400.033*
C130.1337 (5)0.5525 (6)0.2192 (7)0.022 (2)
H13A0.1647000.5979530.2224490.027*
H13B0.0829170.5721980.2456680.027*
C140.1409 (6)0.4778 (6)0.2667 (6)0.021 (2)
H140.1935960.4647580.2452350.025*
C150.1037 (5)0.4015 (6)0.2513 (6)0.019 (2)
H15A0.0505390.4089290.2800400.023*
H15B0.1162340.3514980.2740630.023*
C160.1262 (5)0.3883 (6)0.1614 (7)0.021 (2)
H16A0.0999970.3396870.1541810.025*
H16B0.1786990.3760470.1332460.025*
C170.1125 (6)0.4981 (7)0.3567 (7)0.035 (3)
H17A0.0602800.5084890.3801200.052*
H17B0.1217800.4511300.3850270.052*
H17C0.1371050.5476990.3631370.052*
N210.1035 (4)0.5275 (5)0.2110 (5)0.0165 (17)
H210.115 (5)0.526 (6)0.174 (4)0.020*
C220.1166 (6)0.6129 (6)0.2472 (6)0.023 (3)
H22A0.0819390.6524110.2076070.027*
H22B0.1662350.6310890.2593540.027*
C230.1073 (6)0.6127 (6)0.3247 (7)0.023 (2)
H23A0.0559270.6012730.3108800.028*
H23B0.1192300.6686030.3498680.028*
C240.1545 (5)0.5488 (6)0.3866 (7)0.020 (2)
H240.2060500.5671760.4077010.024*
C250.1476 (5)0.4645 (6)0.3464 (6)0.017 (2)
H25A0.1842070.4264360.3857550.021*
H25B0.0991690.4412720.3332860.021*
C260.1574 (5)0.4675 (6)0.2695 (7)0.019 (2)
H26A0.1498510.4114700.2445710.022*
H26B0.2072620.4856680.2823730.022*
C270.1364 (5)0.5440 (7)0.4586 (6)0.027 (2)
H27A0.0860380.5258840.4395230.041*
H27B0.1426500.5988810.4841360.041*
H27C0.1687040.5040230.4987170.041*
N310.0004 (4)0.3160 (5)0.0252 (5)0.0177 (19)
H310.044 (2)0.322 (6)0.001 (5)0.021*
C320.0067 (5)0.2378 (6)0.0234 (7)0.020 (2)
H32A0.0238190.2518550.0819150.024*
H32B0.0424130.1996090.0186030.024*
C330.0673 (5)0.1952 (6)0.0091 (6)0.023 (2)
H33A0.0813130.1763910.0658130.027*
H33B0.0631000.1453390.0245150.027*
C340.1270 (6)0.2507 (6)0.0086 (8)0.020 (3)
H340.1154190.2631820.0496480.024*
C350.1277 (5)0.3334 (6)0.0513 (6)0.022 (2)
H35A0.1455670.3233070.1106200.026*
H35B0.1617970.3722060.0440440.026*
C360.0532 (5)0.3737 (6)0.0181 (6)0.023 (2)
H36A0.0561250.4253000.0489310.027*
H36B0.0370440.3887300.0400520.027*
C370.2005 (6)0.2085 (7)0.0476 (7)0.032 (3)
H37A0.2094690.1872110.1015770.048*
H37B0.2382540.2487660.0534130.048*
H37C0.2012610.1623630.0128660.048*
N410.3823 (4)0.4645 (6)0.2614 (5)0.0184 (19)
H410.370 (5)0.457 (7)0.298 (4)0.022*
C420.3432 (6)0.5369 (7)0.2122 (7)0.027 (3)
H42A0.3540370.5866130.2476990.032*
H42B0.2903410.5266560.1881800.032*
C430.3652 (6)0.5527 (6)0.1447 (6)0.025 (3)
H43A0.4167650.5696280.1692280.030*
H43B0.3361100.5991710.1103320.030*
C440.3551 (5)0.4764 (6)0.0906 (6)0.020 (2)
H440.3018760.4661370.0594460.024*
C450.3880 (6)0.4011 (6)0.1415 (7)0.022 (2)
H45A0.4414450.4058760.1662720.026*
H45B0.3738810.3512960.1059440.026*
C460.3642 (6)0.3904 (7)0.2087 (7)0.030 (3)
H46A0.3112220.3809150.1840350.036*
H46B0.3883770.3411230.2421550.036*
C470.3849 (6)0.4921 (7)0.0284 (6)0.032 (3)
H47A0.4369490.5034630.0573200.048*
H47B0.3601230.5400710.0056280.048*
H47C0.3766620.4429450.0062870.048*
N510.5979 (5)0.5227 (5)0.3903 (5)0.0198 (19)
H510.607 (5)0.524 (6)0.438 (3)0.024*
C520.6127 (6)0.6070 (6)0.3682 (7)0.025 (3)
H52A0.6623210.6241900.4068800.030*
H52B0.5782690.6471710.3728470.030*
C530.6055 (5)0.6089 (6)0.2811 (7)0.023 (3)
H53A0.5544370.5980640.2421360.028*
H53B0.6183370.6650740.2694910.028*
C540.6537 (5)0.5451 (6)0.2678 (7)0.022 (2)
H540.7052850.5621580.3009230.026*
C550.6428 (5)0.4593 (6)0.2985 (6)0.018 (2)
H55A0.5941700.4379160.2613110.022*
H55B0.6791710.4199950.2969180.022*
C560.6497 (5)0.4630 (7)0.3839 (7)0.024 (3)
H56A0.6408310.4070250.4001930.029*
H56B0.6996790.4796450.4218930.029*
C570.6394 (6)0.5406 (7)0.1787 (6)0.031 (3)
H57A0.5893090.5230660.1451830.046*
H57B0.6725620.5003430.1727670.046*
H57C0.6472310.5954750.1605860.046*
N610.4912 (4)0.3156 (5)0.4659 (6)0.022 (2)
H610.449 (2)0.330 (6)0.445 (6)0.026*
C620.4842 (6)0.2387 (6)0.5079 (8)0.027 (3)
H62A0.4481810.2009330.4673910.033*
H62B0.4669380.2535850.5489940.033*
C630.5584 (6)0.1942 (6)0.5504 (7)0.029 (3)
H63A0.5537160.1447330.5800260.035*
H63B0.5734310.1750510.5085300.035*
C640.6159 (6)0.2519 (6)0.6101 (8)0.026 (3)
H640.6042300.2635810.6568950.031*
C650.6170 (5)0.3349 (6)0.5682 (6)0.019 (2)
H65A0.6502880.3741740.6095640.023*
H65B0.6354290.3251820.5271260.023*
C660.5420 (5)0.3729 (5)0.5268 (6)0.017 (2)
H66A0.5247590.3858620.5682910.020*
H66B0.5441640.4254940.4997140.020*
C670.6890 (6)0.2084 (7)0.6427 (7)0.036 (3)
H67A0.6886060.1595800.6745440.054*
H67B0.7271280.2468040.6776480.054*
H67C0.6984620.1909780.5967350.054*
C10.2418 (5)0.2663 (7)0.3577 (7)0.026 (3)
H1A0.2614040.3219970.3791470.031*
H1B0.1895960.2661900.3439260.031*
Cl50.25277 (16)0.24644 (16)0.2668 (2)0.0367 (8)
Cl60.28565 (14)0.19267 (16)0.43223 (16)0.0308 (6)
C20.7414 (6)0.2375 (6)0.3816 (8)0.024 (3)
H2A0.6909370.2471440.3402290.029*
H2B0.7533700.1784990.3778690.029*
Cl70.74773 (16)0.25645 (18)0.4784 (2)0.0346 (8)
Cl80.80057 (14)0.30207 (16)0.35950 (16)0.0285 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01286 (18)0.0209 (2)0.0121 (2)0.00020 (14)0.00482 (15)0.00123 (15)
Au20.01393 (18)0.0174 (2)0.0192 (2)0.00127 (14)0.00528 (16)0.00212 (16)
Au30.01280 (17)0.0194 (2)0.0115 (2)0.00030 (14)0.00511 (15)0.00025 (15)
Au40.01545 (19)0.0153 (2)0.0196 (2)0.00096 (14)0.00757 (15)0.00137 (15)
Cl10.0172 (12)0.0207 (12)0.0178 (15)0.0011 (9)0.0040 (11)0.0016 (10)
Cl20.0221 (13)0.0219 (13)0.0203 (15)0.0032 (9)0.0105 (12)0.0024 (10)
Cl30.0168 (12)0.0178 (11)0.0171 (12)0.0010 (9)0.0066 (10)0.0009 (10)
Cl40.0145 (12)0.0192 (12)0.0173 (12)0.0008 (9)0.0068 (10)0.0017 (9)
N110.013 (4)0.039 (5)0.010 (4)0.000 (4)0.001 (4)0.004 (4)
C120.014 (5)0.039 (7)0.023 (6)0.008 (4)0.002 (5)0.009 (5)
C130.012 (5)0.021 (6)0.031 (7)0.002 (4)0.007 (5)0.001 (5)
C140.024 (5)0.027 (6)0.012 (5)0.008 (4)0.007 (5)0.004 (4)
C150.021 (5)0.018 (5)0.019 (6)0.005 (4)0.010 (5)0.004 (4)
C160.015 (5)0.014 (5)0.037 (7)0.008 (4)0.014 (5)0.012 (5)
C170.046 (7)0.030 (6)0.028 (7)0.005 (5)0.017 (6)0.003 (5)
N210.011 (4)0.031 (5)0.009 (4)0.001 (3)0.007 (3)0.001 (4)
C220.026 (6)0.020 (6)0.012 (6)0.006 (4)0.002 (5)0.001 (4)
C230.027 (6)0.013 (5)0.027 (6)0.004 (4)0.009 (5)0.006 (4)
C240.013 (5)0.024 (6)0.023 (6)0.001 (4)0.008 (5)0.005 (5)
C250.020 (5)0.010 (5)0.021 (6)0.002 (4)0.009 (5)0.000 (4)
C260.015 (5)0.016 (5)0.022 (6)0.005 (4)0.006 (4)0.003 (4)
C270.022 (6)0.038 (6)0.016 (6)0.006 (4)0.004 (5)0.001 (5)
N310.016 (4)0.008 (4)0.018 (5)0.001 (3)0.002 (4)0.002 (4)
C320.022 (5)0.020 (5)0.018 (6)0.003 (4)0.008 (5)0.004 (5)
C330.034 (6)0.013 (5)0.018 (5)0.007 (4)0.008 (5)0.001 (4)
C340.020 (5)0.029 (7)0.013 (6)0.002 (4)0.009 (5)0.001 (4)
C350.012 (5)0.028 (6)0.021 (6)0.001 (4)0.004 (4)0.009 (5)
C360.022 (5)0.016 (5)0.019 (6)0.003 (4)0.001 (4)0.009 (4)
C370.028 (6)0.036 (7)0.034 (7)0.012 (5)0.015 (5)0.009 (5)
N410.012 (4)0.033 (5)0.009 (4)0.000 (3)0.004 (4)0.000 (4)
C420.021 (6)0.034 (7)0.024 (6)0.012 (5)0.008 (5)0.001 (5)
C430.031 (6)0.018 (6)0.020 (6)0.011 (4)0.006 (5)0.000 (5)
C440.017 (5)0.022 (5)0.013 (5)0.004 (4)0.002 (4)0.008 (4)
C450.030 (6)0.014 (5)0.016 (6)0.002 (4)0.006 (5)0.004 (4)
C460.021 (6)0.031 (6)0.029 (7)0.011 (5)0.001 (5)0.004 (5)
C470.043 (7)0.031 (6)0.013 (6)0.008 (5)0.004 (5)0.000 (5)
N510.024 (5)0.016 (4)0.020 (5)0.007 (3)0.010 (4)0.000 (4)
C520.035 (6)0.015 (5)0.029 (7)0.010 (4)0.018 (5)0.006 (5)
C530.021 (6)0.016 (5)0.035 (7)0.003 (4)0.014 (5)0.005 (5)
C540.018 (5)0.018 (5)0.028 (6)0.001 (4)0.010 (5)0.008 (5)
C550.019 (5)0.012 (5)0.028 (6)0.000 (4)0.015 (5)0.003 (4)
C560.010 (5)0.032 (6)0.028 (7)0.001 (4)0.006 (5)0.011 (5)
C570.045 (7)0.026 (6)0.025 (7)0.003 (5)0.018 (6)0.002 (5)
N610.021 (5)0.023 (5)0.023 (5)0.002 (4)0.011 (4)0.002 (4)
C620.033 (6)0.018 (6)0.048 (8)0.007 (5)0.032 (6)0.005 (5)
C630.036 (7)0.025 (6)0.032 (6)0.005 (5)0.020 (6)0.007 (5)
C640.026 (6)0.030 (7)0.026 (7)0.003 (4)0.017 (6)0.001 (5)
C650.024 (5)0.025 (5)0.015 (5)0.010 (4)0.016 (4)0.006 (4)
C660.017 (5)0.006 (4)0.025 (6)0.000 (3)0.008 (4)0.001 (4)
C670.034 (7)0.040 (7)0.029 (6)0.008 (5)0.009 (5)0.017 (6)
C10.021 (6)0.029 (6)0.026 (7)0.001 (4)0.009 (5)0.005 (5)
Cl50.046 (2)0.037 (2)0.028 (2)0.0022 (13)0.0183 (17)0.0111 (12)
Cl60.0321 (15)0.0336 (15)0.0241 (15)0.0045 (11)0.0099 (12)0.0058 (12)
C20.016 (5)0.021 (5)0.032 (7)0.001 (4)0.007 (5)0.001 (5)
Cl70.0447 (19)0.0321 (18)0.037 (2)0.0010 (12)0.0266 (17)0.0001 (14)
Cl80.0232 (14)0.0354 (15)0.0258 (14)0.0068 (11)0.0098 (11)0.0026 (12)
Geometric parameters (Å, º) top
Au1—N212.042 (8)C37—H37C0.9800
Au1—N112.061 (8)N41—C461.471 (13)
Au1—Au23.3138 (6)N41—C421.475 (13)
Au2—N312.078 (9)N41—H410.81 (3)
Au2—Cl12.267 (3)C42—C431.508 (14)
Au3—N412.051 (8)C42—H42A0.9900
Au3—N512.060 (9)C42—H42B0.9900
Au3—Au43.2619 (5)C43—C441.529 (13)
Au4—N612.062 (9)C43—H43A0.9900
Au4—Cl22.261 (3)C43—H43B0.9900
N11—C161.486 (13)C44—C451.493 (13)
N11—C121.507 (14)C44—C471.530 (14)
N11—H110.82 (3)C44—H441.0000
C12—C131.512 (14)C45—C461.519 (15)
C12—H12A0.9900C45—H45A0.9900
C12—H12B0.9900C45—H45B0.9900
C13—C141.526 (13)C46—H46A0.9900
C13—H13A0.9900C46—H46B0.9900
C13—H13B0.9900C47—H47A0.9800
C14—C171.513 (14)C47—H47B0.9800
C14—C151.536 (14)C47—H47C0.9800
C14—H141.0000N51—C561.478 (13)
C15—C161.509 (14)N51—C521.486 (12)
C15—H15A0.9900N51—H510.81 (3)
C15—H15B0.9900C52—C531.527 (15)
C16—H16A0.9900C52—H52A0.9900
C16—H16B0.9900C52—H52B0.9900
C17—H17A0.9800C53—C541.520 (14)
C17—H17B0.9800C53—H53A0.9900
C17—H17C0.9800C53—H53B0.9900
N21—C221.497 (12)C54—C571.519 (14)
N21—C261.502 (12)C54—C551.543 (13)
N21—H210.81 (3)C54—H541.0000
C22—C231.506 (14)C55—C561.500 (14)
C22—H22A0.9900C55—H55A0.9900
C22—H22B0.9900C55—H55B0.9900
C23—C241.519 (14)C56—H56A0.9900
C23—H23A0.9900C56—H56B0.9900
C23—H23B0.9900C57—H57A0.9800
C24—C271.516 (14)C57—H57B0.9800
C24—C251.518 (13)C57—H57C0.9800
C24—H241.0000N61—C661.467 (12)
C25—C261.501 (14)N61—C621.494 (13)
C25—H25A0.9900N61—H610.81 (3)
C25—H25B0.9900C62—C631.550 (14)
C26—H26A0.9900C62—H62A0.9900
C26—H26B0.9900C62—H62B0.9900
C27—H27A0.9800C63—C641.520 (15)
C27—H27B0.9800C63—H63A0.9900
C27—H27C0.9800C63—H63B0.9900
N31—C361.492 (12)C64—C671.523 (14)
N31—C321.512 (13)C64—C651.543 (13)
N31—H310.82 (3)C64—H641.0000
C32—C331.531 (13)C65—C661.515 (12)
C32—H32A0.9900C65—H65A0.9900
C32—H32B0.9900C65—H65B0.9900
C33—C341.523 (14)C66—H66A0.9900
C33—H33A0.9900C66—H66B0.9900
C33—H33B0.9900C67—H67A0.9800
C34—C371.518 (13)C67—H67B0.9800
C34—C351.538 (13)C67—H67C0.9800
C34—H341.0000C1—Cl61.726 (11)
C35—C361.522 (12)C1—Cl51.796 (13)
C35—H35A0.9900C1—H1A0.9900
C35—H35B0.9900C1—H1B0.9900
C36—H36A0.9900C2—Cl71.738 (13)
C36—H36B0.9900C2—Cl81.777 (11)
C37—H37A0.9800C2—H2A0.9900
C37—H37B0.9800C2—H2B0.9900
N21—Au1—N11176.2 (4)C46—N41—C42109.3 (8)
N21—Au1—Au297.4 (2)C46—N41—Au3115.1 (6)
N11—Au1—Au286.2 (3)C42—N41—Au3111.3 (7)
N31—Au2—Cl1178.1 (2)C46—N41—H41109 (8)
N31—Au2—Au188.0 (2)C42—N41—H41110 (8)
Cl1—Au2—Au193.18 (6)Au3—N41—H41102 (7)
N41—Au3—N51175.4 (3)N41—C42—C43110.4 (9)
N41—Au3—Au488.2 (3)N41—C42—H42A109.6
N51—Au3—Au496.1 (2)C43—C42—H42A109.6
N61—Au4—Cl2178.1 (3)N41—C42—H42B109.6
N61—Au4—Au387.3 (2)C43—C42—H42B109.6
Cl2—Au4—Au394.52 (6)H42A—C42—H42B108.1
C16—N11—C12108.6 (8)C42—C43—C44112.7 (9)
C16—N11—Au1114.5 (6)C42—C43—H43A109.1
C12—N11—Au1112.4 (7)C44—C43—H43A109.1
C16—N11—H11111 (8)C42—C43—H43B109.1
C12—N11—H11111 (8)C44—C43—H43B109.1
Au1—N11—H11100 (7)H43A—C43—H43B107.8
N11—C12—C13109.8 (8)C45—C44—C43110.8 (8)
N11—C12—H12A109.7C45—C44—C47111.9 (9)
C13—C12—H12A109.7C43—C44—C47111.1 (8)
N11—C12—H12B109.7C45—C44—H44107.6
C13—C12—H12B109.7C43—C44—H44107.6
H12A—C12—H12B108.2C47—C44—H44107.6
C12—C13—C14114.0 (9)C44—C45—C46111.9 (9)
C12—C13—H13A108.7C44—C45—H45A109.2
C14—C13—H13A108.7C46—C45—H45A109.2
C12—C13—H13B108.7C44—C45—H45B109.2
C14—C13—H13B108.7C46—C45—H45B109.2
H13A—C13—H13B107.6H45A—C45—H45B107.9
C17—C14—C13111.0 (8)N41—C46—C45110.8 (8)
C17—C14—C15112.7 (9)N41—C46—H46A109.5
C13—C14—C15110.1 (8)C45—C46—H46A109.5
C17—C14—H14107.6N41—C46—H46B109.5
C13—C14—H14107.6C45—C46—H46B109.5
C15—C14—H14107.6H46A—C46—H46B108.1
C16—C15—C14111.9 (9)C44—C47—H47A109.5
C16—C15—H15A109.2C44—C47—H47B109.5
C14—C15—H15A109.2H47A—C47—H47B109.5
C16—C15—H15B109.2C44—C47—H47C109.5
C14—C15—H15B109.2H47A—C47—H47C109.5
H15A—C15—H15B107.9H47B—C47—H47C109.5
N11—C16—C15111.5 (8)C56—N51—C52109.3 (8)
N11—C16—H16A109.3C56—N51—Au3114.1 (6)
C15—C16—H16A109.3C52—N51—Au3112.5 (7)
N11—C16—H16B109.3C56—N51—H51106 (8)
C15—C16—H16B109.3C52—N51—H51107 (8)
H16A—C16—H16B108.0Au3—N51—H51108 (8)
C14—C17—H17A109.5N51—C52—C53111.3 (9)
C14—C17—H17B109.5N51—C52—H52A109.4
H17A—C17—H17B109.5C53—C52—H52A109.4
C14—C17—H17C109.5N51—C52—H52B109.4
H17A—C17—H17C109.5C53—C52—H52B109.4
H17B—C17—H17C109.5H52A—C52—H52B108.0
C22—N21—C26110.1 (8)C54—C53—C52112.4 (9)
C22—N21—Au1112.6 (6)C54—C53—H53A109.1
C26—N21—Au1114.5 (6)C52—C53—H53A109.1
C22—N21—H21110 (7)C54—C53—H53B109.1
C26—N21—H21100 (7)C52—C53—H53B109.1
Au1—N21—H21109 (7)H53A—C53—H53B107.8
N21—C22—C23109.9 (8)C57—C54—C53111.8 (9)
N21—C22—H22A109.7C57—C54—C55110.8 (9)
C23—C22—H22A109.7C53—C54—C55109.6 (8)
N21—C22—H22B109.7C57—C54—H54108.2
C23—C22—H22B109.7C53—C54—H54108.2
H22A—C22—H22B108.2C55—C54—H54108.2
C22—C23—C24113.2 (9)C56—C55—C54112.3 (9)
C22—C23—H23A108.9C56—C55—H55A109.2
C24—C23—H23A108.9C54—C55—H55A109.2
C22—C23—H23B108.9C56—C55—H55B109.2
C24—C23—H23B108.9C54—C55—H55B109.2
H23A—C23—H23B107.8H55A—C55—H55B107.9
C27—C24—C25111.5 (9)N51—C56—C55111.5 (9)
C27—C24—C23110.9 (9)N51—C56—H56A109.3
C25—C24—C23110.7 (9)C55—C56—H56A109.3
C27—C24—H24107.9N51—C56—H56B109.3
C25—C24—H24107.9C55—C56—H56B109.3
C23—C24—H24107.9H56A—C56—H56B108.0
C26—C25—C24113.6 (9)C54—C57—H57A109.5
C26—C25—H25A108.9C54—C57—H57B109.5
C24—C25—H25A108.9H57A—C57—H57B109.5
C26—C25—H25B108.9C54—C57—H57C109.5
C24—C25—H25B108.9H57A—C57—H57C109.5
H25A—C25—H25B107.7H57B—C57—H57C109.5
C25—C26—N21108.8 (8)C66—N61—C62109.3 (8)
C25—C26—H26A109.9C66—N61—Au4113.8 (6)
N21—C26—H26A109.9C62—N61—Au4113.1 (7)
C25—C26—H26B109.9C66—N61—H61116 (7)
N21—C26—H26B109.9C62—N61—H6199 (7)
H26A—C26—H26B108.3Au4—N61—H61105 (8)
C24—C27—H27A109.5N61—C62—C63110.0 (8)
C24—C27—H27B109.5N61—C62—H62A109.7
H27A—C27—H27B109.5C63—C62—H62A109.7
C24—C27—H27C109.5N61—C62—H62B109.7
H27A—C27—H27C109.5C63—C62—H62B109.7
H27B—C27—H27C109.5H62A—C62—H62B108.2
C36—N31—C32110.0 (8)C64—C63—C62111.0 (9)
C36—N31—Au2112.3 (6)C64—C63—H63A109.4
C32—N31—Au2112.4 (6)C62—C63—H63A109.4
C36—N31—H31124 (7)C64—C63—H63B109.4
C32—N31—H3190 (7)C62—C63—H63B109.4
Au2—N31—H31106 (7)H63A—C63—H63B108.0
N31—C32—C33109.4 (8)C63—C64—C67108.7 (9)
N31—C32—H32A109.8C63—C64—C65110.6 (10)
C33—C32—H32A109.8C67—C64—C65111.2 (9)
N31—C32—H32B109.8C63—C64—H64108.8
C33—C32—H32B109.8C67—C64—H64108.8
H32A—C32—H32B108.2C65—C64—H64108.8
C34—C33—C32113.8 (8)C66—C65—C64111.2 (8)
C34—C33—H33A108.8C66—C65—H65A109.4
C32—C33—H33A108.8C64—C65—H65A109.4
C34—C33—H33B108.8C66—C65—H65B109.4
C32—C33—H33B108.8C64—C65—H65B109.4
H33A—C33—H33B107.7H65A—C65—H65B108.0
C37—C34—C33112.0 (9)N61—C66—C65110.6 (7)
C37—C34—C35111.4 (9)N61—C66—H66A109.5
C33—C34—C35109.4 (9)C65—C66—H66A109.5
C37—C34—H34108.0N61—C66—H66B109.5
C33—C34—H34108.0C65—C66—H66B109.5
C35—C34—H34108.0H66A—C66—H66B108.1
C36—C35—C34112.6 (8)C64—C67—H67A109.5
C36—C35—H35A109.1C64—C67—H67B109.5
C34—C35—H35A109.1H67A—C67—H67B109.5
C36—C35—H35B109.1C64—C67—H67C109.5
C34—C35—H35B109.1H67A—C67—H67C109.5
H35A—C35—H35B107.8H67B—C67—H67C109.5
N31—C36—C35110.8 (7)Cl6—C1—Cl5111.7 (6)
N31—C36—H36A109.5Cl6—C1—H1A109.3
C35—C36—H36A109.5Cl5—C1—H1A109.3
N31—C36—H36B109.5Cl6—C1—H1B109.3
C35—C36—H36B109.5Cl5—C1—H1B109.3
H36A—C36—H36B108.1H1A—C1—H1B107.9
C34—C37—H37A109.5Cl7—C2—Cl8112.1 (6)
C34—C37—H37B109.5Cl7—C2—H2A109.2
H37A—C37—H37B109.5Cl8—C2—H2A109.2
C34—C37—H37C109.5Cl7—C2—H2B109.2
H37A—C37—H37C109.5Cl8—C2—H2B109.2
H37B—C37—H37C109.5H2A—C2—H2B107.9
C16—N11—C12—C1360.7 (11)C46—N41—C42—C4360.9 (11)
Au1—N11—C12—C1367.1 (10)Au3—N41—C42—C4367.3 (10)
N11—C12—C13—C1455.7 (11)N41—C42—C43—C4455.2 (12)
C12—C13—C14—C17174.6 (9)C42—C43—C44—C4549.4 (12)
C12—C13—C14—C1549.1 (11)C42—C43—C44—C47174.5 (9)
C17—C14—C15—C16173.3 (8)C43—C44—C45—C4649.7 (12)
C13—C14—C15—C1648.8 (11)C47—C44—C45—C46174.3 (8)
C12—N11—C16—C1562.6 (10)C42—N41—C46—C4562.0 (11)
Au1—N11—C16—C1563.9 (9)Au3—N41—C46—C4564.0 (10)
C14—C15—C16—N1157.3 (11)C44—C45—C46—N4157.2 (11)
C26—N21—C22—C2361.3 (10)C56—N51—C52—C5359.5 (11)
Au1—N21—C22—C2367.9 (9)Au3—N51—C52—C5368.4 (10)
N21—C22—C23—C2455.0 (11)N51—C52—C53—C5455.7 (12)
C22—C23—C24—C27173.0 (9)C52—C53—C54—C57173.2 (9)
C22—C23—C24—C2548.8 (12)C52—C53—C54—C5550.0 (12)
C27—C24—C25—C26174.0 (8)C57—C54—C55—C56174.7 (9)
C23—C24—C25—C2650.1 (11)C53—C54—C55—C5650.9 (11)
C24—C25—C26—N2156.7 (11)C52—N51—C56—C5560.7 (11)
C22—N21—C26—C2561.7 (10)Au3—N51—C56—C5566.3 (10)
Au1—N21—C26—C2566.4 (9)C54—C55—C56—N5157.3 (11)
C36—N31—C32—C3359.5 (10)C66—N61—C62—C6362.0 (11)
Au2—N31—C32—C3366.5 (9)Au4—N61—C62—C6365.8 (10)
N31—C32—C33—C3456.3 (12)N61—C62—C63—C6456.7 (13)
C32—C33—C34—C37175.4 (9)C62—C63—C64—C67173.6 (10)
C32—C33—C34—C3551.4 (12)C62—C63—C64—C6551.3 (13)
C37—C34—C35—C36175.3 (9)C63—C64—C65—C6652.1 (12)
C33—C34—C35—C3650.9 (12)C67—C64—C65—C66173.0 (9)
C32—N31—C36—C3560.6 (10)C62—N61—C66—C6563.2 (10)
Au2—N31—C36—C3565.4 (9)Au4—N61—C66—C6564.3 (9)
C34—C35—C36—N3156.8 (11)C64—C65—C66—N6158.3 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···Cl30.82 (3)2.38 (4)3.195 (9)178 (11)
N21—H21···Cl3i0.81 (3)2.45 (5)3.229 (8)161 (9)
N31—H31···Cl30.82 (3)2.55 (6)3.238 (8)143 (8)
N41—H41···Cl40.81 (3)2.43 (4)3.234 (8)172 (10)
N51—H51···Cl4ii0.81 (3)2.42 (4)3.209 (9)165 (10)
N61—H61···Cl40.81 (3)2.50 (6)3.237 (9)151 (9)
C1—H1B···Cl10.992.663.638 (11)169
C1—H1A···Cl40.992.513.432 (11)155
C2—H2A···Cl20.992.753.710 (11)162
C2—H2B···Cl3iii0.992.593.431 (10)143
C36—H36B···Au1i0.992.873.770 (9)152
C16—H16A···Au20.992.713.562 (10)144
C66—H66A···Au3ii0.992.913.778 (9)147
C46—H46B···Au40.992.753.579 (11)142
C34—H34···Cl1iv1.002.863.801 (13)156
C64—H64···Cl2v1.002.813.755 (14)158
C36—H36A···Cl3i0.992.883.571 (9)127
C42—H42B···Cl3i0.992.953.828 (11)148
C37—H37A···Cl50.982.903.701 (12)140
C37—H37B···Cl6iv0.982.943.642 (12)130
C47—H47C···Cl6iv0.982.773.595 (11)142
C67—H67C···Cl70.982.953.770 (12)142
C15—H15B···Cl8vi0.992.893.709 (11)141
C17—H17B···Cl8vi0.982.803.637 (11)143
C55—H55B···Cl80.992.943.872 (10)158
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x+1, y+1/2, z+1/2; (iv) x, y+1/2, z1/2; (v) x, y+1/2, z+1/2; (vi) x1, y, z.
Bis(2-methylpiperidine-κN)gold(I) chloride (5) top
Crystal data top
[Au(C6H13N)2]ClF(000) = 1664
Mr = 430.76Dx = 1.896 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 17.6978 (7) ÅCell parameters from 10304 reflections
b = 11.2748 (5) Åθ = 2.2–30.9°
c = 16.5620 (6) ŵ = 9.90 mm1
β = 114.013 (5)°T = 100 K
V = 3018.8 (2) Å3Prism, colourless
Z = 80.2 × 0.2 × 0.1 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
4576 independent reflections
Radiation source: Enhance (Mo) X-ray Source3012 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.051
ω scanθmax = 31.0°, θmin = 2.2°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
h = 2424
Tmin = 0.472, Tmax = 1.000k = 1616
56753 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: mixed
wR(F2) = 0.049H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0126P)2 + 14.3004P]
where P = (Fo2 + 2Fc2)/3
4576 reflections(Δ/σ)max = 0.001
156 parametersΔρmax = 2.19 e Å3
1 restraintΔρmin = 0.93 e Å3
Special details top

Geometry. Additional structural data:

H bonding angle at Cl1: 75.38 ( 1.57) H01 - Cl1 - H02

Torsion angles:

-51.28 ( 0.54) C12 - N11 - N11_$1 - C12_$1 74.61 ( 0.32) C12 - N11 - N11_$1 - C16_$1 74.61 ( 0.32) C16 - N11 - N11_$1 - C12_$1 -159.50 ( 0.50) C16 - N11 - N11_$1 - C16_$1 -15.23 ( 0.57) C22 - N21 - N21_$1 - C22_$1 112.02 ( 0.33) C22 - N21 - N21_$1 - C26_$1 112.02 ( 0.33) C26 - N21 - N21_$1 - C22_$1 -120.74 ( 0.55) C26 - N21 - N21_$1 - C26_$1

Symmetry operator: $1 1-x, y, 0.5-z

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.5000000.65143 (2)0.2500000.01876 (6)
Au20.5000000.35117 (2)0.2500000.02050 (6)
Cl10.67903 (7)0.47503 (9)0.49927 (7)0.0351 (3)
N110.5458 (2)0.6563 (3)0.3855 (2)0.0230 (7)
H010.580 (2)0.605 (3)0.404 (3)0.008 (10)*
C120.5930 (3)0.7669 (4)0.4251 (3)0.0304 (10)
H120.6190050.7562940.4907060.037*
C130.5343 (4)0.8710 (4)0.4048 (3)0.0409 (12)
H13A0.5110080.8867610.3404460.049*
H13B0.5656070.9422910.4353360.049*
C140.4640 (4)0.8502 (5)0.4332 (4)0.0489 (14)
H14A0.4860690.8482060.4985210.059*
H14B0.4240280.9165940.4121790.059*
C150.4203 (3)0.7355 (5)0.3964 (3)0.0421 (12)
H15A0.3782720.7202150.4202720.050*
H15B0.3915560.7416060.3312760.050*
C160.4805 (3)0.6345 (4)0.4200 (3)0.0321 (10)
H16A0.4507500.5600460.3945450.039*
H16B0.5070200.6254430.4850980.039*
C170.6612 (3)0.7837 (5)0.3944 (3)0.0410 (13)
H17A0.6920560.7093510.4017750.062*
H17B0.6987040.8462020.4294700.062*
H17C0.6375390.8064700.3318750.062*
N210.6268 (2)0.3476 (3)0.3152 (2)0.0254 (7)
H020.635 (3)0.385 (4)0.359 (3)0.038 (15)*
C220.6615 (3)0.2274 (4)0.3441 (3)0.0323 (10)
H220.7220960.2365410.3810450.039*
C230.6517 (3)0.1515 (4)0.2636 (3)0.0385 (11)
H23A0.6797510.0743900.2838970.046*
H23B0.5922580.1357760.2282710.046*
C240.6881 (3)0.2127 (5)0.2056 (3)0.0467 (14)
H24A0.7491790.2137370.2369520.056*
H24B0.6737450.1664540.1505130.056*
C250.6573 (3)0.3380 (5)0.1823 (3)0.0428 (12)
H25A0.5976190.3367580.1430160.051*
H25B0.6870200.3765810.1500800.051*
C260.6706 (3)0.4085 (5)0.2647 (3)0.0357 (11)
H26A0.6485620.4897940.2481730.043*
H26B0.7305260.4143830.3024330.043*
C270.6239 (3)0.1748 (5)0.4001 (3)0.0410 (12)
H27A0.6250690.2325620.4447910.062*
H27B0.6550370.1039170.4293370.062*
H27C0.5664680.1528960.3634200.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01855 (13)0.01891 (12)0.01442 (13)0.0000.00220 (10)0.000
Au20.01296 (12)0.02646 (13)0.01988 (14)0.0000.00442 (11)0.000
Cl10.0340 (5)0.0342 (7)0.0243 (5)0.0089 (4)0.0014 (4)0.0024 (4)
N110.0233 (17)0.0216 (17)0.0199 (16)0.0011 (15)0.0044 (14)0.0024 (15)
C120.036 (2)0.033 (2)0.019 (2)0.012 (2)0.0077 (18)0.0035 (18)
C130.069 (4)0.022 (2)0.038 (3)0.004 (2)0.028 (3)0.0012 (19)
C140.062 (4)0.049 (3)0.047 (3)0.011 (3)0.034 (3)0.003 (3)
C150.037 (3)0.067 (4)0.025 (2)0.005 (3)0.016 (2)0.003 (2)
C160.032 (2)0.041 (3)0.021 (2)0.012 (2)0.0074 (18)0.0022 (19)
C170.032 (3)0.064 (3)0.026 (3)0.021 (2)0.011 (2)0.011 (2)
N210.0184 (16)0.034 (2)0.0215 (17)0.0005 (16)0.0061 (14)0.0041 (17)
C220.026 (2)0.038 (3)0.030 (2)0.008 (2)0.008 (2)0.005 (2)
C230.034 (3)0.035 (3)0.040 (3)0.004 (2)0.009 (2)0.000 (2)
C240.040 (3)0.072 (4)0.029 (3)0.006 (3)0.015 (2)0.002 (3)
C250.033 (3)0.066 (4)0.033 (3)0.004 (3)0.017 (2)0.005 (3)
C260.021 (2)0.054 (3)0.030 (2)0.004 (2)0.0096 (19)0.001 (2)
C270.034 (3)0.045 (3)0.043 (3)0.007 (2)0.014 (2)0.012 (2)
Geometric parameters (Å, º) top
Au1—N11i2.053 (3)C14—H14A0.9900
Au1—N112.053 (3)C14—H14B0.9900
Au1—Au23.3854 (3)C15—H15A0.9900
Au2—N212.057 (3)C15—H15B0.9900
Au2—N21i2.057 (3)C16—H16A0.9900
N11—C121.496 (5)C16—H16B0.9900
N11—C161.503 (6)C17—H17A0.9800
C12—C171.501 (6)C17—H17B0.9800
C12—C131.512 (7)C17—H17C0.9800
C13—C141.518 (7)N21—H020.80 (3)
C14—C151.503 (8)C22—H221.0000
C15—C161.498 (7)C23—H23A0.9900
N21—C221.485 (6)C23—H23B0.9900
N21—C261.517 (6)C24—H24A0.9900
C22—C271.469 (7)C24—H24B0.9900
C22—C231.534 (7)C25—H25A0.9900
C23—C241.521 (7)C25—H25B0.9900
C24—C251.507 (7)C26—H26A0.9900
C25—C261.512 (7)C26—H26B0.9900
N11—H010.80 (3)C27—H27A0.9800
C12—H121.0000C27—H27B0.9800
C13—H13A0.9900C27—H27C0.9800
C13—H13B0.9900
N11i—Au1—N11176.9 (2)C14—C15—H15B109.5
N11i—Au1—Au291.54 (10)H15A—C15—H15B108.1
N11—Au1—Au291.54 (10)C15—C16—H16A109.5
N21—Au2—N21i177.8 (2)N11—C16—H16A109.5
N21—Au2—Au191.11 (11)C15—C16—H16B109.5
N21i—Au2—Au191.11 (11)N11—C16—H16B109.5
C12—N11—C16110.4 (3)H16A—C16—H16B108.1
C12—N11—Au1113.8 (3)C12—C17—H17A109.5
C16—N11—Au1112.9 (3)C12—C17—H17B109.5
N11—C12—C17109.9 (4)H17A—C17—H17B109.5
N11—C12—C13109.8 (4)C12—C17—H17C109.5
C17—C12—C13113.7 (4)H17A—C17—H17C109.5
C12—C13—C14112.8 (4)H17B—C17—H17C109.5
C15—C14—C13111.0 (4)C22—N21—H02107 (4)
C16—C15—C14110.8 (4)C26—N21—H02109 (4)
C15—C16—N11110.5 (4)Au2—N21—H02103 (4)
C22—N21—C26110.6 (4)C27—C22—H22107.7
C22—N21—Au2114.0 (3)N21—C22—H22107.7
C26—N21—Au2113.3 (3)C23—C22—H22107.7
C27—C22—N21109.7 (4)C24—C23—H23A109.3
C27—C22—C23113.8 (4)C22—C23—H23A109.3
N21—C22—C23110.1 (4)C24—C23—H23B109.3
C24—C23—C22111.6 (4)C22—C23—H23B109.3
C25—C24—C23112.6 (4)H23A—C23—H23B108.0
C24—C25—C26110.8 (4)C25—C24—H24A109.1
C25—C26—N21109.4 (4)C23—C24—H24A109.1
C12—N11—H01104 (3)C25—C24—H24B109.1
C16—N11—H01108 (3)C23—C24—H24B109.1
Au1—N11—H01107 (3)H24A—C24—H24B107.8
N11—C12—H12107.8C24—C25—H25A109.5
C17—C12—H12107.8C26—C25—H25A109.5
C13—C12—H12107.8C24—C25—H25B109.5
C12—C13—H13A109.0C26—C25—H25B109.5
C14—C13—H13A109.0H25A—C25—H25B108.1
C12—C13—H13B109.0C25—C26—H26A109.8
C14—C13—H13B109.0N21—C26—H26A109.8
H13A—C13—H13B107.8C25—C26—H26B109.8
C15—C14—H14A109.4N21—C26—H26B109.8
C13—C14—H14A109.4H26A—C26—H26B108.2
C15—C14—H14B109.4C22—C27—H27A109.5
C13—C14—H14B109.4C22—C27—H27B109.5
H14A—C14—H14B108.0H27A—C27—H27B109.5
C16—C15—H15A109.5C22—C27—H27C109.5
C14—C15—H15A109.5H27A—C27—H27C109.5
C16—C15—H15B109.5H27B—C27—H27C109.5
N11—Au1—Au2—N21i115.79 (14)C13—C14—C15—C1653.9 (6)
N11i—Au1—Au2—N21i64.21 (14)C14—C15—C16—N1158.4 (5)
N11—Au1—Au2—N2164.21 (14)C12—N11—C16—C1560.7 (5)
N11i—Au1—Au2—N21115.79 (14)Au1—N11—C16—C1567.9 (4)
Au2—Au1—N11—C12154.1 (3)C26—N21—C22—C27174.5 (4)
Au2—Au1—N11—C1679.1 (3)Au2—N21—C22—C2756.4 (5)
Au1—Au2—N21—C22172.3 (3)C26—N21—C22—C2359.5 (5)
Au1—Au2—N21—C2660.0 (3)Au2—N21—C22—C2369.6 (4)
C16—N11—C12—C17176.6 (4)C27—C22—C23—C24177.3 (4)
Au1—N11—C12—C1755.3 (4)N21—C22—C23—C2453.7 (5)
C16—N11—C12—C1357.7 (4)C22—C23—C24—C2550.9 (6)
Au1—N11—C12—C1370.4 (4)C23—C24—C25—C2653.3 (6)
N11—C12—C13—C1454.2 (5)C24—C25—C26—N2157.8 (5)
C17—C12—C13—C14177.8 (4)C22—N21—C26—C2561.9 (5)
C12—C13—C14—C1552.5 (6)Au2—N21—C26—C2567.5 (4)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H01···Cl10.80 (3)2.34 (3)3.110 (4)162 (4)
N21—H02···Cl10.80 (3)2.36 (3)3.149 (4)170 (5)
C27—H27A···Cl10.982.923.715 (6)140
C17—H17B···Cl1ii0.982.843.800 (5)167
C25—H25B···Cl1iii0.992.963.839 (5)148
C27—H27B···Cl1iv0.982.833.615 (5)138
C13—H13A···Au10.993.013.436 (5)107
C15—H15B···Au10.992.943.398 (5)109
C17—H17C···Au10.982.853.245 (5)105
C23—H23B···Au20.993.033.440 (5)106
C25—H25A···Au20.992.943.401 (5)110
C27—H27C···Au20.982.853.241 (5)105
Symmetry codes: (ii) x+3/2, y+3/2, z+1; (iii) x, y+1, z1/2; (iv) x+3/2, y+1/2, z+1.
 

Acknowledgements

We acknowledge support by the Open Access Publication Funds of the Technical University of Braunschweig.

References

First citationAhrens, B., Jones, P. G. & Fischer, A. K. (1999). Eur. J. Inorg. Chem. pp. 1103–1110.  CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrammer, L. (2003). Dalton Trans. pp. 3145–3157.  Web of Science CrossRef Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDöring, C. & Jones, P. G. (2018). Z. Naturforsch. B, 73, 43–74.  Google Scholar
First citationDöring, C. & Jones, P. G. (2023a). Acta Cryst. E79, 1017–1027.  CSD CrossRef IUCr Journals Google Scholar
First citationDöring, C. & Jones, P. G. (2023b). Acta Cryst. E79, 1161–1165.  CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuy, J. J., Jones, P. G., Mays, M. J. & Sheldrick, G. M. (1977). J. Chem. Soc. Dalton Trans. pp. 8–10.  CSD CrossRef Web of Science Google Scholar
First citationJones, P. G. & Wölper, C. (2005). Dalton Trans. pp. 1762–1763.  CSD CrossRef Google Scholar
First citationKhan, S. R. A., Guzman-Jimenez, I., Whitmire, K. H. & Khokhar, A. R. (2000). Polyhedron, 19, 983–989.  CSD CrossRef CAS Google Scholar
First citationKorp, J. D., Bernal, I., Mills, J. L. & Weaver, H. T. Jr (1983). Inorg. Chim. Acta, 75, 173–178.  CSD CrossRef CAS Google Scholar
First citationMetrangelo, P. (2008). Angew. Chem. Int. Ed. 47, 6114–6127.  Google Scholar
First citationRigaku OD (2020). CrysAlis PRO, Version 1.171.41.93a (earlier versions were also used, but are not cited separately). Rigaku Oxford Diffraction, Yarnton, England (formerly Oxford Diffraction and later Agilent Technologies).  Google Scholar
First citationSchmidbaur, H. (2019). Angew. Chem. Int. Ed. 58, 5806–5809.  Web of Science CrossRef CAS Google Scholar
First citationSchmidbaur, H., Raubenheimer, H. G. & Dobrzańska, L. (2014). Chem. Soc. Rev. 43, 345–380.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSchmidbaur, H. & Schier, A. (2008). Chem. Soc. Rev. 37, 1931–1951.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSchmidbaur, H. & Schier, A. (2012). Chem. Soc. Rev. 41, 370–412.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSchneider, W., Bauer, A., Schier, A. & Schmidbaur, H. (1997b). Chem. Ber. 130, 1417–1422.  CSD CrossRef CAS Google Scholar
First citationSchneider, W., Bauer, A. & Schmidbaur, H. (1997a). J. Chem. Soc. Dalton Trans. pp. 415–420.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X-ray Instruments, Madison, Wisconsin, USA.  Google Scholar
First citationStrey, M. & Döring, C. (2018). Z. Naturforsch. B, 73, 231–241.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, S., Morgan, E. E., Panuganti, S., Mao, L., Vishnoi, P., Wu, G., Liu, Q., Kanatzidis, M. G., Schaller, R. D. & Seshadri, R. (2022). Chem. Mater. 34, 3206–3216.  CSD CrossRef CAS Google Scholar
First citationWölper, C., Polo Bastardés, M. D., Dix, I., Kratzert, D. & Jones, P. G. (2010). Z. Naturforsch. B, 65, 647–673.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds