research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

An unexpected tautomer: synthesis and crystal structure of N-[6-amino-4-(methyl­sulfan­yl)-1,2-di­hydro-1,3,5-triazin-2-yl­­idene]benzenesulfonamide

crossmark logo

aChemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, Egypt, bChemistry Department, Faculty of Science, Helwan University, Cairo, Egypt, and cInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-braunschweig.de

Edited by C. Schulzke, Universität Greifswald, Germany (Received 6 December 2023; accepted 26 December 2023; online 9 January 2024)

The title compound, C10H11N5O2S2, consists of an unexpected tautomer with a protonated nitro­gen atom in the triazine ring and a formal exocyclic double bond C=N to the sulfonamide moiety. The ring angles at the unsubstituted nitro­gen atoms are narrow, at 115.57 (12) and 115.19 (12)°, respectively, whereas the angle at the carbon atom between these N atoms is very wide, 127.97 (13)°. The inter­planar angle between the two rings is 79.56 (5)°. The mol­ecules are linked by three classical hydrogen bonds, forming a ribbon structure. There are also unusual linkages involving three short contacts (< 3 Å) from a sulfonamide oxygen atom to the C—NH—C part of a triazine ring.

1. Chemical context

Sulfonamides constitute a significant category of bioactive mol­ecules with remarkable pharmacological activities (Wan et al., 2021[Wan, Y., Fang, G., Chen, H., Deng, X. & Tang, Z. (2021). Eur. J. Med. Chem. 226, 113837.]; Elgemeie et al., 2022[Elgemeie, G. H., Azzam, R. A., Zaghary, W. A., Aly, A. A., Metwally, N. H. M., Sarhan, M. O., Abdelhafez, E. M. & Elsayed, R. E. (2022). N-Sulfonated-N-heterocycles: synthesis, chemistry, and biological applications, pp. 447-496. Amsterdam: Elsevier. ISBN: 978-0-12-822179-2.]). They are clinically utilized as anti­cancer (Owa & Nagasu, 2000[Owa, T. & Nagasu, T. (2000). Expert Opin. Ther. Pat. 10, 1725-1740.]), anti­bacterial, anti­thyroid, hypoglycaemic and anti­viral drugs; among many other effective mol­ecules one may cite the anti-cancer agent indisulam (Supuran, 2003[Supuran, C. T. (2003). Expert Opin. Investig. Drugs, 12, 283-287.]). The presence of a moiety with a triazine core (as an aza-pyrimidine analogue) would represent a new structure of significant importance. Continuing with our project of developing synthetic strategies for the design and synthesis of efficient anti­metabolites (Elgemeie & Mohamed-Ezzat, 2022[Elgemeie, G. H. & Mohamed-Ezzat, R. A. (2022). New Strategies Targeting Cancer Metabolism, pp. 547-611. Amsterdam: Elsevier. ISBN: 978-0-12-821783-2.]), focussing on derivatives of sulfonamides, we describe here a new approach (Fig. 1[link]) that generates novel substituted triazine sulfonamides starting from the highly reactive compound dimethyl cyano­carboimidodi­thio­ate (2), which has shown its effectiveness in synthesizing various heterocycles (Elgemeie & Mohamed, 2014[Elgemeie, G. H. & Mohamed, R. A. (2014). Heterocycl. Commun. 20, 257-269.]; Mohamed-Ezzat et al., 2021[Mohamed-Ezzat, R. A., Elgemeie, G. H. & Jones, P. G. (2021). Acta Cryst. E77, 547-550.]), in particular nucleoside and non-nucleoside pyrimidine analogues (Elgemeie et al., 2015[Elgemeie, G. H., Mohamed, R. A., Hussein, H. A. & Jones, P. G. (2015). Acta Cryst. E71, 1322-1324.], 2017[Elgemeie, G. H., Salah, A. M., Abbas, N. S., Hussein, H. A. & Mohamed, R. A. (2017). Nucleosides Nucleotides Nucleic Acids, 36, 139-150.], 2019[Elgemeie, G. H. & Mohamed, R. A. (2019). J. Carbohydr. Chem. 38, 20-66.]).

[Figure 1]
Figure 1
Synthesis of the novel triazine sulfonamide derivative 3a.

Thus, the reaction of benzene­sulfonyl­guanidine 1 with the N-cyano­dithio­imino­carbonate derivative 2 in refluxing dioxane containing potassium hydroxide for 1 h provided an adduct for which two possible tautomeric structures 3a or 3b (derivatives of 1,3,5-triazine, also known as s-triazine, with a benzene­sulfonamide substituent) might be assigned (Fig. 1[link]). Investigation by TLC and NMR revealed the presence of only one product in solution. The 1H NMR spectrum of the product showed three singlet signals at δ = 2.29, 7.35 and 11.83 ppm, assigned to SCH3, NH2 and NH protons, in addition to signals from the aromatic protons; it is, however, inconclusive in differentiating between the two tautomers. An X-ray structure determination, described in this paper, indicated unambiguously the formation of the di­hydro-1,3,5-triazine-benzene­sulfonamide derivative, the title compound 3a, as the isolated product in the solid state. This compound consists of two important substructures (the sulfonamide and the triazine moieties) and this may prove to have a significant impact in developing the medicinal chemistry of sulfonamides.

[Scheme 1]

2. Structural commentary

The structure of 3a is shown in Fig. 2[link], with selected mol­ecular dimensions in Table 1[link]. Surprisingly, the alternative tautomer 3b, N-[6-amino-4-(methyl­sulfan­yl)-1,3,5-triazin-2-yl]benzene­sulfonamide, in which the hydrogen atom at N1 is shifted to N2 (using the numbering of Fig. 2[link]) was not formed, at least not in significant amounts. It should be stressed that the three hydrogen atoms bonded to nitro­gen were identified in a difference synthesis and refined freely.

Table 1
Selected geometric parameters (Å, °)

N1—C6 1.3637 (18) C4—N5 1.3379 (19)
N1—C2 1.3725 (18) C4—S1 1.7451 (15)
C2—N2 1.3326 (18) N5—C6 1.3398 (19)
C2—N3 1.3410 (19) C6—N4 1.3144 (19)
N3—C4 1.3270 (18) N2—S2 1.6279 (13)
       
C6—N1—C2 119.71 (13) C4—N5—C6 115.19 (12)
N3—C2—N1 120.15 (13) N5—C6—N1 120.59 (13)
C4—N3—C2 115.57 (12) C2—N2—S2 117.22 (10)
N3—C4—N5 127.97 (13)    
       
N3—C2—N2—S2 −0.3 (2) O1—S2—C8—C13 7.00 (14)
N3—C4—S1—C7 −6.77 (14)    
[Figure 2]
Figure 2
The mol­ecule of 3a in the crystal. Ellipsoids represent 50% probability levels.

The inter­planar angle between the two rings is 79.56 (5)°; the phenyl ring, which is almost ideally planar (r.m.s. deviation = 0.0015 Å), is oriented such that C13 is approximately synperiplanar to O1, with an O1—S2—C8—C13 torsion angle of 7.00 (14)° and a short intra­molecular contact O1⋯H13 2.48 Å. The modified triazine ring, with formal single bonds at N1 and a formal exocyclic double bond C2=N2, has a higher r.m.s. deviation from planarity of 0.03 Å. This is associated with a significant deviation at the nitro­gen atom N1, which lies 0.112 (2) Å out of the plane of the other five atoms, although it retains its planarity (angle sum of 359.3°). Accordingly, the ring torsion angles involving N1 differ appreciably from zero, at ca ±10°. The substituents at the triazine ring are also somewhat displaced from the ring plane, N2 by 0.171 (2), N4 by 0.141 (2) and S1 by −0.134 (2) Å. The NH2 group is essentially planar (angle sum of 358.2°) and almost coplanar with the triazine ring (its hydrogen atoms lie less than 0.1 Å out of the ring plane).

The modified s-triazine ring departs considerably from the threefold local symmetry of unmodified s-triazine. The bond lengths are approximately equal [range 1.327–1.373 Å, with the formal single bonds at N1 being the longest], but the angles are markedly different; whereas the angles at C2, N1 and C6 are within 1° of 120°, those at N3 and N5 are appreciably narrower at 115.57 (12) and 115.19 (12)° respectively, and N3—C4—N5 is very wide at 127.97 (13)°. These latter values are reminiscent of the structure of the parent ring system s-triazine, which was determined by Wheatley (1955[Wheatley, P. J. (1955). Acta Cryst. 8, 224-226.]), with impressive precision for that time; the ring was shown to have crystallographic threefold symmetry, with angles of 126.8 (4)° at carbon and of 113.2 (4)° at nitro­gen. Later investigations by Coppens (1967[Coppens, P. (1967). Science, 158, 1577-1579.]) gave values of 126.6° and 113.4° (no e.s.d.'s quoted). Furthermore, the formally double C—N bonds of the ring, C6—N5 [1.3398 (19) Å] and C4—N3 [1.3270 (18) Å], and the exocyclic bond C2—N2 [1.3326 (18) Å], are actually longer than the formal single bond C6—N4 of 1.3144 (19) Å. This shows that the single `resonance' form shown for 3a is, unsurprisingly, too simple, and that other forms with three formal double bonds in the ring and a single bond for S2—N2 [bond length = 1.6279 (13) Å] should be considered. This view is supported by the value of 1.633 Å for the `standard' N—S bond length in the moiety C—SO2—NH—C (Allen et al., 1987[Allen, F., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]).

3. Supra­molecular features

The mol­ecules of 3a are linked by a series of classical hydrogen bonds (Table 2[link]), forming a ribbon structure (Fig. 3[link]). One set of such ribbons, in the region z ≃ 0.5, is parallel to [1[\overline{1}]0]; further sets at z ≃ 0 and 1 are parallel to [110]. All three potential donor hydrogen atoms (H01, H04A, H04B) are involved; the respective acceptors are the exocyclic nitro­gen atom N2, the ring nitro­gen atom N5, and the sulfonyl oxygen O2. The hydrogen-bonded rings all have graph set R22(8) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). In the fused set of three rings, formed via the inversion operator 1 − x, −y, 1 − z, the outer rings are anti­dromic whereas the central ring is homodromic. The single ring based on the H04A⋯N5 inter­action is also formed by inversion (−x, 1 − y, 1 − z) and is homodromic.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H01⋯N2i 0.86 (2) 2.11 (2) 2.9701 (18) 178 (2)
N4—H04A⋯N5ii 0.87 (2) 2.06 (2) 2.9245 (18) 177 (2)
N4—H04B⋯O2i 0.83 (2) 1.97 (2) 2.7912 (18) 166 (2)
C7—H7C⋯O2iii 0.98 2.63 3.445 (2) 140
Symmetry codes: (i) [-x+1, -y, -z+1]; (ii) [-x, -y+1, -z+1]; (iii) [x, y+1, z].
[Figure 3]
Figure 3
Packing diagram of 3a, viewed perpendicular to (110), showing the formation of a ribbon of mol­ecules linked by classical hydrogen bonds (dashed lines). Labelled atoms indicate the asymmetric unit. Hydrogen atoms not involved in hydrogen bonding are omitted.

There are no short H⋯centroid or centroid⋯centroid contacts. However, the sulfonyl oxygen atom O1 makes short contacts to three atoms of the triazine ring of a neighbouring mol­ecule related by translation (operator 1 + x, y, z), namely O1⋯C2 = 2.9684 (17), O1⋯N1 = 2.9119 (16) and O1⋯C6 = 2.8883 (18) Å. The resulting chains of mol­ecules are shown in Fig. 4[link], in which the borderline contact S1⋯C6 = 3.4846 (15) Å (operator 1 − x, 1 − y, 1 − z) is also included.

[Figure 4]
Figure 4
Formation of chains of mol­ecules 3a parallel to the a axis, showing the short contacts between O1 and the triazine ring of a neighbouring mol­ecule (thick dashed bonds). The view direction is approximately parallel to the b axis, and the a axis runs horizontally. Two such chains, running mutually anti­parallel, are connected by the borderline contacts S1⋯C6 (thin dashed lines). Hydrogen atoms are omitted.

4. Database survey

The search employed the routine ConQuest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]), part of Version 2022.3.0 of the CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]).

Some adducts of unsubstituted s-triazine have been determined and confirm its usual geometry, with angles at nitro­gen of around 114° and at carbon of around 126°: the 1:1 1,2,3-tri­hydroxy­benzene adduct (JAXSOR; Dobrzańska, 2005[Dobrzańska, L. (2005). Acta Cryst. E61, o3416-o3418.]); the 1:2 N-iodo­succinimide adduct, involving very short N⋯I contacts (IBIZEA; Raatikainen & Rissanen, 2011[Raatikainen, K. & Rissanen, K. (2011). CrystEngComm, 13, 6972-6977.]) and the 1:1 adduct with thio­cyanuric acid (FOSDUP; Argent et al., 2019[Argent, S. P., Golden, E., Ring, D. J., Blake, A. J. & Champness, N. R. (2019). Cryst. Growth Des. 19, 5945-5954.]).

We wished to determine how unusual the protonation at the s-triazine ring was, in comparison to protonation at an N-substituent of this ring. Accordingly, the following searches were carried out: (i) s-triazine ring framework; `organic' structures only; substituent —NH—AA at one carbon atom (AA = any `acyclic' atom), AA at the other C atoms; any bond order for the ring and the exocyclic N—AA; three binding partners for the carbon atoms and the exocyclic nitro­gen, two for the ring nitro­gen atoms. This gave 345 hits; restraining the search to the substituent —NH—S reduced this to just four hits, two involving benzene­sulfonamide derivatives of diethyl-s-triazine (LOCHUH and LOCJAP; Haddow et al., 2008[Haddow, M. F., Gelbrich, T. & Griesser, U. J. (2008). Acta Cryst. C64, o309-o312.]) and two with bis-alkanesulfinimide derivatives of phenyl- (PIMHOL; Zuo et al., 2018b[Zuo, Z., Lei, F., Dai, Y. & Wang, U. (2018b). Z. Krist. New Cryst. Struct, 233, 555-557.]) or thio­phen-2-yl-s-triazine (QOCCET; Zuo et al., 2018a[Zuo, Z., Hao, Y., Song, X. & Song, X. (2018a). Z. Krist. New Cryst. Struct, 234, 351-353.]). (ii): as for (i) but with one ring nitro­gen atom protonated and with three binding partners in total, and the exocyclic nitro­gen unprotonated and with two binding partners. This gave only five hits for any N—AA and no hits for N—S, in both cases with unrestricted bond order at this nitro­gen. Four of the hits involved salts of the monoprotonated tri­cyano­melaminate anion (melamine = 1,3,5-triazine-2,4,6-tri­amine) (CEKGUV, CEKHAC, KIFQAS, KIFQEW; Lotsch & Schnick, 2006[Lotsch, B. V. & Schnick, W. (2006). Chem. Mater. 18, 1891-1900.], 2007[Lotsch, B. V. & Schnick, W. (2007). Z. Anorg. Allg. Chem. 633, 1435-1441.]) and the other, also a melamine derivative, contained a cation with two N=PPh3 and one NH2 substituent (PUYQUW; Saplinova et al., 2010[Saplinova, T., Lehnert, C., Böhme, U., Wagler, J. & Kroke, E. (2010). New J. Chem. 34, 1893-1908.]). It thus seems that tautomers of s-triazine derivatives resembling 3a may reasonably be described as unusual, especially for uncharged species. The first search however (correctly) failed to find the related zwitterionic species [(6-ethyl­amino)-4-meth­oxy-1,3,5-triazin-1-ium-2-yl](di­nitro)­methanide (YOW­LUS; Bakharev & Gidaspov, 2007[Bakharev, V. V. & Gidaspov, A. A. (2007). Russ. J. Org. Chem. 43, 1238-1242.]), because this has a protonated ring nitro­gen as well as an NH—AA substituent.

Finally, we searched for short inter­molecular contacts from sulfonyl­amide oxygen atoms to three consecutive atoms of any six-membered ring. There were 49 hits with all contacts shorter than the sum of the CCDC van der Waals radii, but only one structure had all three contacts shorter than 3 Å; a high-pressure study of the drug chloro­thia­zide (6-chloro-4H-1,2,4-benzo­thia­diazine-7-sulfonamide 1,1-dioxide, QQQAUG14; Oswald et al., 2010[Oswald, I. D. H., Lennie, A. R., Pulham, C. R. & Shankland, K. (2010). CrystEngComm, 12, 2533-2540.]). Three structures (GEKNAO, GEKNES, PSULTZ) had impossibly short contacts (as low as 2.14 Å), and we suspect serious errors in these structures. The first two (Goyal et al., 2018[Goyal, P., Rani, D. & Chadha, R. (2018). Cryst. Growth Des. 18, 105-118.]) are powder determinations with R values of 0.139 and 0.169 respectively, whereas the third (Rivero et al., 1978[Rivero, B. E., Apreda, M. C., Castellano, E. E., Orazi, O. O. & Corral, R. A. (1978). Tetrahedron, 34, 3413-3418.]) may involve an incorrect space group (as commented in the CCDC entry) or wrongly permuted axes. The structures IGISOH {dimethyl 2,2′-[(3-oxo-3H-phenoxazine-1,9-di­yl)bis­(sulfonyl­imino)]di­acetate; Bruyneel et al., 2009[Bruyneel, F., Payen, O., Rescigno, A., Tinant, B. & Marchand-Brynaert, J. (2009). Chem. Eur. J. 15, 8283-8295.]} and HINVOS (1,1′-bis­[4-(dec­yloxy)phen­yl]-4,4′-bipyridin-1-ium bis­{bis­[(tri­fluoro­meth­yl)sulfon­yl]amide}; Ahumada, 2018[Ahumada, G. (2018). CSD Communication (refcode HINVOS). CCDC, Cambridge, England. https://dx.doi.org/10.5517/ccdc.csd.cc213gzm.]) have contacts in the range 2.87–3.03 Å. The contacts in 3a may thus be described as unusually short but not unprecedented.

5. Synthesis and crystallization

A mixture of benzene­sulfonyl­guanidine (1) (0.01 mol) and dimethyl cyano­carboimidodi­thio­ate 2 (0.01 mol) in dry dioxane (20 mL) containing potassium hydroxide (0.01 mol) was refluxed for 1 h. The reaction mixture was poured into ice–water and the resulting mixture neutralized with hydro­chloric acid. The precipitate thus formed was filtered off, washed thoroughly with water, dried and crystallized from di­methyl­sulfoxide to obtain compound 3 as pale-yellow crystals in 87% yield. M.p. 520–522 K; IR (KBr, cm−1): ν 3261, 3202 (NH), 3065 (Ar—CH), 2931, 2813 (methyl CH), 1555 (C=C), 1358, 1141 (SO2); 1H NMR (400 MHz, DMSO-d6): δ 2.29 (s, 3H, CH3), 7.35 (s, 2H, NH2), 7.54–7.64 (m, 3H, Ar-H), 7.96–7.98 (d, 2H, Ar—H), 11.83 (s, 1H, NH); 13C NMR (400 MHz, DMSO-d6) δ (ppm): 125.30, 127.75, 128.75, 132.79, 140.85, 159.76, 163.42, 180.34. Analysis calculated for C10H11N5O2S2 (297.36): C 40.39, H 3.73, N 23.55, S 21.57. Found: C 40.38, H 3.72, N 23.55, S 21.56%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms bonded to nitro­gen were refined freely. The methyl group was included as an idealized rigid group allowed to rotate but not tip (command `AFIX 137'). Other hydrogen atoms were included using a riding model starting from calculated positions (C—H = 0.95 Å). The U(H) values were fixed at 1.5 × Ueq of the parent carbon atoms for the methyl group and 1.2 × Ueq for other hydrogens.

Table 3
Experimental details

Crystal data
Chemical formula C10H11N5O2S2
Mr 297.36
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 5.44832 (9), 9.03714 (14), 26.1141 (4)
β (°) 92.9914 (14)
V3) 1284.03 (4)
Z 4
Radiation type Cu Kα
μ (mm−1) 3.84
Crystal size (mm) 0.15 × 0.12 × 0.02
 
Data collection
Diffractometer XtaLAB Synergy
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO, Version 1.171.42.96a. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.625, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 49520, 2789, 2713
Rint 0.038
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.085, 1.05
No. of reflections 2789
No. of parameters 185
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.41, −0.38
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO, Version 1.171.42.96a. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and XP (Bruker, 1998[Bruker (1998). XP. Bruker Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]).

Supporting information


Computing details top

N-[6-Amino-4-(methylsulfanyl)-1,2-dihydro-1,3,5-triazin-2-ylidene]benzenesulfonamide top
Crystal data top
C10H11N5O2S2F(000) = 616
Mr = 297.36Dx = 1.538 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 5.44832 (9) ÅCell parameters from 32085 reflections
b = 9.03714 (14) Åθ = 3.4–79.7°
c = 26.1141 (4) ŵ = 3.84 mm1
β = 92.9914 (14)°T = 100 K
V = 1284.03 (4) Å3Plate, colourless
Z = 40.15 × 0.12 × 0.02 mm
Data collection top
XtaLAB Synergy
diffractometer
2789 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source2713 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.038
Detector resolution: 10.0000 pixels mm-1θmax = 80.3°, θmin = 3.4°
ω scansh = 66
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2023)
k = 1111
Tmin = 0.625, Tmax = 1.000l = 3333
49520 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0457P)2 + 0.9076P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2789 reflectionsΔρmax = 0.41 e Å3
185 parametersΔρmin = 0.38 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3855 (2)0.19499 (14)0.48875 (5)0.0195 (3)
H010.372 (4)0.118 (3)0.5077 (8)0.032 (5)*
C20.5437 (3)0.19268 (16)0.44955 (5)0.0192 (3)
N30.5680 (2)0.31253 (13)0.41996 (5)0.0191 (2)
C40.4203 (3)0.42490 (16)0.42942 (5)0.0192 (3)
N50.2456 (2)0.43104 (13)0.46351 (5)0.0201 (3)
C60.2256 (3)0.31003 (16)0.49263 (5)0.0196 (3)
N20.6629 (2)0.06574 (14)0.44327 (5)0.0214 (3)
N40.0509 (2)0.30223 (15)0.52541 (5)0.0237 (3)
H04A0.033 (4)0.382 (3)0.5295 (8)0.032 (5)*
H04B0.050 (4)0.231 (2)0.5456 (8)0.030 (5)*
S10.44381 (7)0.58924 (4)0.39493 (2)0.02499 (11)
C70.7117 (3)0.55651 (19)0.35892 (7)0.0323 (4)
H7A0.6634760.5044040.3270510.048*
H7B0.8296410.4960060.3793430.048*
H7C0.7878210.6513090.3507610.048*
S20.84801 (6)0.05740 (4)0.39640 (2)0.02013 (11)
O11.04319 (19)0.16344 (13)0.40001 (4)0.0258 (2)
O20.9209 (2)0.09690 (12)0.39465 (4)0.0290 (3)
C80.6737 (3)0.09070 (17)0.33828 (6)0.0226 (3)
C90.4618 (3)0.0090 (2)0.32667 (7)0.0312 (4)
H90.4040450.0611910.3503050.037*
C100.3369 (3)0.0325 (2)0.27967 (8)0.0396 (4)
H100.1920980.0224690.2708910.047*
C110.4215 (4)0.1354 (3)0.24549 (7)0.0416 (5)
H110.3344220.1503680.2134370.050*
C120.6317 (4)0.2166 (2)0.25758 (7)0.0361 (4)
H120.6881910.2873120.2339940.043*
C130.7600 (3)0.19439 (19)0.30433 (6)0.0272 (3)
H130.9048910.2494080.3129620.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0203 (6)0.0178 (6)0.0208 (6)0.0047 (5)0.0039 (5)0.0021 (5)
C20.0166 (6)0.0197 (7)0.0211 (6)0.0013 (5)0.0003 (5)0.0005 (5)
N30.0187 (6)0.0170 (6)0.0218 (6)0.0018 (4)0.0018 (4)0.0003 (5)
C40.0188 (7)0.0181 (7)0.0204 (7)0.0002 (5)0.0008 (5)0.0014 (5)
N50.0206 (6)0.0167 (6)0.0231 (6)0.0031 (4)0.0028 (5)0.0001 (5)
C60.0196 (7)0.0182 (7)0.0210 (6)0.0029 (5)0.0001 (5)0.0008 (5)
N20.0220 (6)0.0191 (6)0.0235 (6)0.0047 (5)0.0058 (5)0.0019 (5)
N40.0247 (7)0.0193 (6)0.0278 (6)0.0077 (5)0.0081 (5)0.0049 (5)
S10.0290 (2)0.01943 (19)0.0270 (2)0.00336 (14)0.00611 (15)0.00326 (13)
C70.0398 (10)0.0247 (8)0.0337 (9)0.0005 (7)0.0147 (7)0.0017 (7)
S20.01881 (19)0.01887 (18)0.02305 (18)0.00429 (12)0.00438 (13)0.00141 (13)
O10.0183 (5)0.0310 (6)0.0280 (5)0.0006 (4)0.0017 (4)0.0004 (4)
O20.0339 (6)0.0215 (6)0.0327 (6)0.0113 (5)0.0126 (5)0.0041 (4)
C80.0204 (7)0.0241 (7)0.0235 (7)0.0046 (6)0.0023 (5)0.0051 (6)
C90.0252 (8)0.0308 (8)0.0379 (9)0.0001 (7)0.0046 (6)0.0084 (7)
C100.0253 (8)0.0486 (11)0.0444 (10)0.0002 (8)0.0028 (7)0.0176 (9)
C110.0375 (10)0.0596 (13)0.0271 (8)0.0123 (9)0.0045 (7)0.0106 (8)
C120.0401 (10)0.0437 (10)0.0248 (8)0.0089 (8)0.0044 (7)0.0003 (7)
C130.0282 (8)0.0290 (8)0.0246 (7)0.0035 (6)0.0042 (6)0.0018 (6)
Geometric parameters (Å, º) top
N1—C61.3637 (18)C9—C101.389 (3)
N1—C21.3725 (18)C10—C111.385 (3)
C2—N21.3326 (18)C11—C121.382 (3)
C2—N31.3410 (19)C12—C131.389 (2)
N3—C41.3270 (18)N1—H010.86 (2)
C4—N51.3379 (19)N4—H04A0.87 (2)
C4—S11.7451 (15)N4—H04B0.83 (2)
N5—C61.3398 (19)C7—H7A0.9800
C6—N41.3144 (19)C7—H7B0.9800
N2—S21.6279 (13)C7—H7C0.9800
S1—C71.8017 (17)C9—H90.9500
S2—O11.4309 (12)C10—H100.9500
S2—O21.4512 (11)C11—H110.9500
S2—C81.7737 (16)C12—H120.9500
C8—C131.389 (2)C13—H130.9500
C8—C91.390 (2)
C6—N1—C2119.71 (13)C12—C11—C10120.59 (17)
N2—C2—N3124.13 (13)C11—C12—C13119.80 (18)
N2—C2—N1115.72 (13)C8—C13—C12119.11 (16)
N3—C2—N1120.15 (13)C6—N1—H01119.8 (14)
C4—N3—C2115.57 (12)C2—N1—H01119.8 (14)
N3—C4—N5127.97 (13)C6—N4—H04A116.2 (14)
N3—C4—S1119.57 (11)C6—N4—H04B118.6 (14)
N5—C4—S1112.46 (10)H04A—N4—H04B123 (2)
C4—N5—C6115.19 (12)S1—C7—H7A109.5
N4—C6—N5119.77 (13)S1—C7—H7B109.5
N4—C6—N1119.64 (13)H7A—C7—H7B109.5
N5—C6—N1120.59 (13)S1—C7—H7C109.5
C2—N2—S2117.22 (10)H7A—C7—H7C109.5
C4—S1—C7102.30 (8)H7B—C7—H7C109.5
O1—S2—O2116.23 (7)C10—C9—H9120.8
O1—S2—N2114.00 (7)C8—C9—H9120.8
O2—S2—N2104.44 (6)C11—C10—H10119.7
O1—S2—C8107.80 (7)C9—C10—H10119.7
O2—S2—C8105.75 (7)C12—C11—H11119.7
N2—S2—C8108.09 (7)C10—C11—H11119.7
C13—C8—C9121.62 (15)C11—C12—H12120.1
C13—C8—S2118.46 (12)C13—C12—H12120.1
C9—C8—S2119.86 (13)C8—C13—H13120.4
C10—C9—C8118.34 (17)C12—C13—H13120.4
C11—C10—C9120.54 (17)
C6—N1—C2—N2168.87 (13)C2—N2—S2—O2172.04 (11)
C6—N1—C2—N310.2 (2)C2—N2—S2—C859.77 (13)
N2—C2—N3—C4174.90 (14)O1—S2—C8—C137.00 (14)
N1—C2—N3—C44.1 (2)O2—S2—C8—C13117.95 (13)
C2—N3—C4—N52.5 (2)N2—S2—C8—C13130.67 (12)
C2—N3—C4—S1177.57 (10)O1—S2—C8—C9175.82 (12)
N3—C4—N5—C62.6 (2)O2—S2—C8—C959.23 (14)
S1—C4—N5—C6177.41 (11)N2—S2—C8—C952.15 (14)
C4—N5—C6—N4176.47 (13)C13—C8—C9—C100.4 (2)
C4—N5—C6—N13.8 (2)S2—C8—C9—C10176.69 (13)
C2—N1—C6—N4170.22 (14)C8—C9—C10—C110.3 (3)
C2—N1—C6—N510.1 (2)C9—C10—C11—C120.1 (3)
N3—C2—N2—S20.3 (2)C10—C11—C12—C130.3 (3)
N1—C2—N2—S2178.74 (10)C9—C8—C13—C120.2 (2)
N3—C4—S1—C76.77 (14)S2—C8—C13—C12176.96 (13)
N5—C4—S1—C7173.26 (12)C11—C12—C13—C80.2 (3)
C2—N2—S2—O160.06 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H01···N2i0.86 (2)2.11 (2)2.9701 (18)178 (2)
N4—H04A···N5ii0.87 (2)2.06 (2)2.9245 (18)177 (2)
N4—H04B···O2i0.83 (2)1.97 (2)2.7912 (18)166 (2)
C7—H7C···O2iii0.982.633.445 (2)140
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z+1; (iii) x, y+1, z.
 

Acknowledgements

The authors acknowledge support by the Open Access Publication Funds of the Technical University of Braunschweig.

References

First citationAhumada, G. (2018). CSD Communication (refcode HINVOS). CCDC, Cambridge, England. https://dx.doi.org/10.5517/ccdc.csd.cc213gzm.  Google Scholar
First citationAllen, F., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationArgent, S. P., Golden, E., Ring, D. J., Blake, A. J. & Champness, N. R. (2019). Cryst. Growth Des. 19, 5945–5954.  Web of Science CSD CrossRef CAS Google Scholar
First citationBakharev, V. V. & Gidaspov, A. A. (2007). Russ. J. Org. Chem. 43, 1238–1242.  Web of Science CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1998). XP. Bruker Analytical X–ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruyneel, F., Payen, O., Rescigno, A., Tinant, B. & Marchand–Brynaert, J. (2009). Chem. Eur. J. 15, 8283–8295.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCoppens, P. (1967). Science, 158, 1577–1579.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationDobrzańska, L. (2005). Acta Cryst. E61, o3416–o3418.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationElgemeie, G. H., Azzam, R. A., Zaghary, W. A., Aly, A. A., Metwally, N. H. M., Sarhan, M. O., Abdelhafez, E. M. & Elsayed, R. E. (2022). N-Sulfonated-N-heterocycles: synthesis, chemistry, and biological applications, pp. 447–496. Amsterdam: Elsevier. ISBN: 978-0-12-822179-2.  Google Scholar
First citationElgemeie, G. H. & Mohamed, R. A. (2014). Heterocycl. Commun. 20, 257–269.  Web of Science CrossRef CAS Google Scholar
First citationElgemeie, G. H. & Mohamed, R. A. (2019). J. Carbohydr. Chem. 38, 20–66.  Web of Science CrossRef CAS Google Scholar
First citationElgemeie, G. H., Mohamed, R. A., Hussein, H. A. & Jones, P. G. (2015). Acta Cryst. E71, 1322–1324.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationElgemeie, G. H. & Mohamed-Ezzat, R. A. (2022). New Strategies Targeting Cancer Metabolism, pp. 547–611. Amsterdam: Elsevier. ISBN: 978-0-12-821783-2.  Google Scholar
First citationElgemeie, G. H., Salah, A. M., Abbas, N. S., Hussein, H. A. & Mohamed, R. A. (2017). Nucleosides Nucleotides Nucleic Acids, 36, 139–150.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGoyal, P., Rani, D. & Chadha, R. (2018). Cryst. Growth Des. 18, 105–118.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHaddow, M. F., Gelbrich, T. & Griesser, U. J. (2008). Acta Cryst. C64, o309–o312.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLotsch, B. V. & Schnick, W. (2006). Chem. Mater. 18, 1891–1900.  Web of Science CSD CrossRef CAS Google Scholar
First citationLotsch, B. V. & Schnick, W. (2007). Z. Anorg. Allg. Chem. 633, 1435–1441.  Web of Science CSD CrossRef CAS Google Scholar
First citationMohamed-Ezzat, R. A., Elgemeie, G. H. & Jones, P. G. (2021). Acta Cryst. E77, 547–550.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOswald, I. D. H., Lennie, A. R., Pulham, C. R. & Shankland, K. (2010). CrystEngComm, 12, 2533–2540.  Web of Science CSD CrossRef CAS Google Scholar
First citationOwa, T. & Nagasu, T. (2000). Expert Opin. Ther. Pat. 10, 1725–1740.  Web of Science CrossRef CAS Google Scholar
First citationRaatikainen, K. & Rissanen, K. (2011). CrystEngComm, 13, 6972–6977.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku OD (2023). CrysAlis PRO, Version 1.171.42.96a. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRivero, B. E., Apreda, M. C., Castellano, E. E., Orazi, O. O. & Corral, R. A. (1978). Tetrahedron, 34, 3413–3418.  CSD CrossRef CAS Web of Science Google Scholar
First citationSaplinova, T., Lehnert, C., Böhme, U., Wagler, J. & Kroke, E. (2010). New J. Chem. 34, 1893–1908.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSupuran, C. T. (2003). Expert Opin. Investig. Drugs, 12, 283–287.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWan, Y., Fang, G., Chen, H., Deng, X. & Tang, Z. (2021). Eur. J. Med. Chem. 226, 113837.  Web of Science CrossRef PubMed Google Scholar
First citationWheatley, P. J. (1955). Acta Cryst. 8, 224–226.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationZuo, Z., Hao, Y., Song, X. & Song, X. (2018a). Z. Krist. New Cryst. Struct, 234, 351–353.  Google Scholar
First citationZuo, Z., Lei, F., Dai, Y. & Wang, U. (2018b). Z. Krist. New Cryst. Struct, 233, 555–557.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds