research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of [1,3-bis­­(2,6-diiso­propyl­phen­yl)imidazol-2-yl­­idene](iso­cyanato-κN)gold(I)

crossmark logo

a1Department of Chemistry Towson University 8000 York Road Towson, MD 21252, USA
*Correspondence e-mail: abakhoda@towson.edu

Edited by A. S. Batsanov, University of Durham, United Kingdom (Received 6 November 2023; accepted 11 January 2024; online 19 January 2024)

The title complex, [Au(NCO)(C27H36N2)], was synthesized by ligand metathesis from [1,3-bis­(2,6-diiso­propyl­phen­yl)imidazol-2-yl­idene]gold(I) chloride and sodium cyanate in anhydrous tetra­hydro­furan and crystallized from toluene at 233 K in the ortho­rhom­bic space group P212121, as a neutral complex with the central Au atom di-coordinated by an N-heterocyclic carbene [Au—C = 1.963 (2) Å] and an iso­cyanate [Au—N 1.999 (2) Å] ligands, with a linear CAuNCO moiety. The crystal packing is consolidated by C—H⋯O hydrogen bonds.

1. Chemical context

Transition-metal complexes with N-heterocyclic carbene (NHC) ligands have been frequently used as ligands in inorganic and organometallic synthesis, chemical catalysis, and medicinal chemistry (Hopkinson et al. 2014[Hopkinson, M. N., Richter, C., Schedler, M. & Glorius, F. (2014). Nature, 510, 485-496.]; Collado et al., 2021[Collado, A., Nelson, D. J. & Nolan, S. P. (2021). Chem. Rev. 121, 8559-8612.]). NHC complexes of gold are typically linear dicoord­inate AuI complexes, however, square-planar AuIII complexes are also known (Baron et al., 2017[Baron, M., Tubaro, C., Cairoli, M. L. C., Orian, L., Bogialli, S., Basato, M., Natile, M. M. & Graiff, C. (2017). Organometallics, 36, 2285-2292.]). The former, where the dicoordinate state of AuI is sterically and electronically stabilized by NHC ligands, have inter­esting bonding properties (Pyykkö, 2004[Pyykkö, P. (2004). Angew. Chem. Int. Ed. 43, 4412-4456.]) and are prospective as catalysts (Collado et al., 2021[Collado, A., Nelson, D. J. & Nolan, S. P. (2021). Chem. Rev. 121, 8559-8612.]) and medicines (Dada et al., 2017[Dada, O., Curran, D., O'Beirne, C., Müller-Bunz, H., Zhu, X. & Tacke, M. (2017). J. Organomet. Chem. 840, 30-37.]). An important class of AuI compounds are those with pseudohalide anions, such as CN, SCN, N3 or NCO. In the present work, we attempted to synthesize an AuI–cyanato complex, (IPr)AuOCN, where IPr = 1,3-bis­(2,6-di-iso-propyl­phen­yl)imidazol-2-yl­idene, as no AuI–cyanato complex had been isolated and structurally characterized previously, while those of Cu and Ag are very rare (see Section 4). In the attempt, we reacted (IPr)AuCl with sodium cyanate in anhydrous THF, which yielded the title isocyanato complex (IPr)Au—N=C=O (1), as proven by X-ray crystallography.

[Scheme 1]

2. Structural commentary

Crystallographic results (Fig. 1[link]) unambiguously show the presence of an iso­cyanate (rather than cyanate) ligand that is N-bonded to the Au atom, with a nearly linear Au1—N3—C28 angle of 173.8 (2)° and the bond lengths N3—C28 [1.130 (3) Å] and C28—O1 [1.210 (3) Å] in the normal ranges found for metal–iso­cyanates (see Section 4), of 1.11–1.15 and 1.18–1.23 Å, respectively. The Au atom coordination is also linear [C1—Au—N3 178.14 (11)°], the Au—N3 and Au—C1 bond lengths of 1.999 (2) and 1.963 (2) Å, respectively, are not unusual for iso­cyanate and carbene ligands in previously reported AuI complexes (listed in Section 4).

[Figure 1]
Figure 1
The mol­ecular structure of (IPr)Au—N=C=O (1), showing atomic displacement ellipsoids at 50% probability.

The IR spectrum of 1 (ATR, Thermo Scientific Nicolet iS10 spectrometer) shows the asymmetric stretching frequency νNCO of 2234 cm−1, in good agreement with other iso­cyanate AuI complexes (see Section 4).

3. Supra­molecular features

In the crystal, discrete mol­ecules of 1 are oriented with their CAuNCO `rods' roughly parallel to the crystallographic b axis, with no indication of ππ stacking. While di-coordinate AuI atoms (d10 centers) often form attractive aurophilic Au⋯Au inter­actions, which play an important role in determining the solid-state structures of AuI complexes (Pyykkö, 1997[Pyykkö, P. (1997). Chem. Rev. 97, 597-636.]), in the structure of 1 no such inter­actions occur, the closest Au⋯Au distance being 7.738 Å. This is probably due to effective shielding of the Au center by 2,6-di-iso-propyl­phenyl groups. The inter­molecular hydrogen bond C2—H2⋯O1(x, y + 1, z) is relatively strong, with the distances C⋯O 3.127 (3), C—H 0.94 (3), H⋯O 2.25 (3) Å and C—H⋯O angle of 155 (2)° (Fig. 2[link]). The asymmetric unit of 1 contains only one mol­ecule.

[Figure 2]
Figure 2
Crystal packing of 1 with hydrogen bonds shown as red dotted lines. Au atoms are shown in yellow, N in blue and O in red. H atoms except H2 and H3 are omitted for clarity.

4. Database survey

Structurally characterized cyanate complexes of Group 11 metals with M—O—C≡N core (M = Cu, Ag, Au) are very rare. In the literature, there are only six examples of copper cyanato complexes and only one example of a silver cyanato complex is known so far (CSD version 5.43, last update November 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). Thus far, there is no example of an isolated and structurally characterized AuI–cyanato complex in the literature.

A search of the CSD (version 5.43, last update November 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using CONQUEST (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]) revealed four AuI–iso­cyanate coordination compounds, viz. (Ph3P)AuNCO (CSD refcode DUCRIC, Bosman et al. 1986[Bosman, W. P., Bos, W., Smits, J. M. M., Beurskens, P. T., Bour, J. J. & Steggerda, J. J. (1986). Inorg. Chem. 25, 2093-2096.]), two complexes with the composition LAuNCO, where L is an NHC ligand, viz. 1,3-di-tert-butyl­imidazol-2-yl­idene or 1,3-dibenzyl-4,5-diphenyl-2,3-di­hydro-1H-imidazol-2-yl­idene (FAWZOT, Baker et al., 2005[Baker, M. V., Barnard, P. J., Brayshaw, S. K., Hickey, J. L., Skelton, B. W. & White, A. H. (2005). Dalton Trans. pp. 37-43.]; LAMLIX, Dada et al., 2017[Dada, O., Curran, D., O'Beirne, C., Müller-Bunz, H., Zhu, X. & Tacke, M. (2017). J. Organomet. Chem. 840, 30-37.]), as well as one complex of the composition LAuNCO, where L is a cyclic(alk­yl)(amino)­carbene (QANMUQ; Romanov et al., 2017[Romanov, A. S., Becker, C. R., James, C. E., Di, D., Credgington, D., Linnolahti, M. & Bochmann, M. (2017). Chem. Eur. J. 23, 4625-4637.]). The IR spectra of these show the characteristic νNCO bands at 2204, 2232, 2243 and 2229 cm−1, respectively.

5. Synthesis and crystallization

An aluminum-wrapped oven-dried 25-ml Schlenk flask was equipped with a stirring bar and charged with IPrAuCl, purchased from Strem (100 mg, 0.16 mmol) and sodium cyanate (52.6 mg, 0.81 mmol) under an anhydrous di­nitro­gen atmosphere inside a glovebox. Anhydrous THF (15 ml) was added, and the resulting suspension was stirred overnight at room temperature. The solvent was removed, the residue dissolved in anhydrous toluene and filtered through short pad of silica (1.5 cm). This filtration procedure proved crucial for the efficient removal of small amounts of impurities and increased the stability of the product. The colorless filtrate was concentrated and hexane was added to precipitate complex 1, the solvents were deca­nted off and the residue dried in vacuo. Yield: 36 mg, 36%. The product was recrystallized from a concentrated toluene solution at 233 K inside a di­nitro­gen-filled glovebox. 1H NMR (400 MHz, CDCl3): δ 7.51 (t, J = 8 Hz, 2H, CH aromatic), 7.31 (d, J = 8 Hz, 4H, CH aromatic), 7.20 (s, 2H, CH imidazole), 2.48 [sept, J = 7 Hz, 4H, CH(CH3)2], 1.30 [d, J = 7 Hz, 12H, CH(CH3)2], 1.21 [d, J = 7 Hz, 12H, CH(CH3)2]. 13C NMR (100 MHz, CDCl3): δ 183.4 (s, C carbene), 144.1 (s, C aromatic), 133.8 (s, C aromatic), 132.3 (s, NCO), 131.2 (s, CH imidazole), 123.9 (s, CH aromatic), 123.4 (s, CH aromatic), 29.8 [s, CH(CH3)2], 25.5 [s, CH(CH3)2], 24.0 [s, CH(CH3)2]. Analysis calculated for C28H36AuN3O: C, 53.59; H, 5.78; N, 6.70. Found: C, 53.58; H, 5.82; N, 6.52.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. Atoms H2 and H3 were refined in an isotropic approximation. Other H atoms were treated as riding in idealized positions (for methyl groups, optimized by rotation about R—CH3 bonds) with Uiso(H) = 1.5Ueq for methyl H atoms, or 1.2Ueq(C) for the rest.

Table 1
Experimental details

Crystal data
Chemical formula [Au(NCO)(C27H36N2)]
Mr 627.56
Crystal system, space group Orthorhombic, P212121
Temperature (K) 100
a, b, c (Å) 10.3941 (7), 11.1540 (7), 23.3489 (15)
V3) 2707.0 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 5.46
Crystal size (mm) 0.18 × 0.17 × 0.12
 
Data collection
Diffractometer Bruker D8 Quest/Photon 100
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.512, 0.710
No. of measured, independent and observed [I > 2σ(I)] reflections 76237, 6680, 6610
Rint 0.029
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.013, 0.025, 1.11
No. of reflections 6680
No. of parameters 315
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.61, −0.31
Absolute structure Flack x determined using 2845 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.007 (2)
Computer programs: APEX3, SAINT, XPREP and XCIF (Bruker, 2016[Bruker (2016). APEX3, SAINT, XCIF and XPREP. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and ShelXle v932 (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]).

Supporting information


Computing details top

[1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene](isocyanato-κN)gold(I) top
Crystal data top
[Au(NCO)(C27H36N2)]Dx = 1.540 Mg m3
Mr = 627.56Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 9267 reflections
a = 10.3941 (7) Åθ = 2.6–28.3°
b = 11.1540 (7) ŵ = 5.46 mm1
c = 23.3489 (15) ÅT = 100 K
V = 2707.0 (3) Å3Prism, colourless
Z = 40.18 × 0.17 × 0.12 mm
F(000) = 1248
Data collection top
Bruker D8 Quest/Photon 100
diffractometer
6680 independent reflections
Radiation source: microfocus sealed tube6610 reflections with I > 2σ(I)
Multilayer mirrors monochromatorRint = 0.029
profile data from φ and ω scansθmax = 28.4°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1313
Tmin = 0.512, Tmax = 0.710k = 1414
76237 measured reflectionsl = 3131
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.013 w = 1/[σ2(Fo2) + (0.0022P)2 + 0.5084P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.025(Δ/σ)max = 0.003
S = 1.11Δρmax = 0.61 e Å3
6680 reflectionsΔρmin = 0.31 e Å3
315 parametersExtinction correction: SHELXL2019/1 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00303 (9)
Primary atom site location: dualAbsolute structure: Flack x determined using 2845 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.007 (2)
Special details top

Experimental. One distinct cell was identified using APEX3 (Bruker, 2016). Six frame series were integrated and filtered for statistical outliers using SAINT (Bruker, 2016) then corrected for absorption by integration using SAINT/SADABS v2014/2 (Bruker, 2016) to sort, merge, and scale the combined data. No decay correction was applied.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Structure was phased by intrinsic methods (Sheldrick, 2015a). Systematic conditions suggested the ambiguous space group. The space group choice was confirmed by successful convergence of the full-matrix least-squares refinement on F2. The final map had no significant features. A final analysis of variance between observed and calculated structure factors showed little dependence on amplitude and resolution.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.26753 (2)0.23607 (2)0.37741 (2)0.01629 (3)
O10.2821 (2)0.14249 (15)0.41879 (9)0.0378 (5)
N10.2343 (2)0.49912 (15)0.39199 (7)0.0157 (4)
N20.2784 (2)0.45853 (16)0.30454 (7)0.0151 (4)
N30.2667 (3)0.06303 (19)0.39972 (9)0.0283 (5)
C10.2625 (2)0.40636 (18)0.35634 (9)0.0148 (4)
C20.2332 (2)0.6070 (2)0.36284 (10)0.0197 (5)
H20.221 (2)0.680 (2)0.3819 (10)0.023 (7)*
C30.2606 (3)0.58160 (19)0.30804 (10)0.0190 (5)
H30.270 (3)0.629 (2)0.2773 (10)0.017 (6)*
C40.2132 (2)0.4847 (2)0.45287 (9)0.0168 (5)
C50.0907 (2)0.4478 (2)0.47107 (11)0.0193 (5)
C60.0742 (3)0.4320 (2)0.52988 (12)0.0246 (6)
H60.0069240.4065790.5442010.029*
C70.1742 (3)0.4528 (2)0.56757 (11)0.0267 (6)
H70.1611060.4412540.6074580.032*
C80.2930 (3)0.4900 (2)0.54798 (10)0.0259 (6)
H80.3604660.5039380.5746130.031*
C90.3155 (2)0.5077 (2)0.48950 (10)0.0208 (5)
C100.0199 (2)0.4307 (2)0.42925 (12)0.0229 (6)
H100.0176650.4167100.3903880.027*
C110.1042 (3)0.3230 (3)0.44407 (15)0.0394 (8)
H11A0.1718180.3142560.4151160.059*
H11B0.1436190.3352550.4817460.059*
H11C0.0513100.2502520.4448650.059*
C120.1010 (3)0.5452 (3)0.42656 (13)0.0329 (7)
H12A0.0461520.6129320.4157530.049*
H12B0.1394800.5604960.4641700.049*
H12C0.1693430.5352880.3980190.049*
C130.4476 (3)0.5458 (3)0.46822 (11)0.0264 (6)
H130.4382820.5679220.4269310.032*
C140.4986 (3)0.6556 (3)0.49942 (12)0.0413 (8)
H14A0.5819270.6786450.4831260.062*
H14B0.5091910.6370010.5401650.062*
H14C0.4376230.7219840.4950590.062*
C150.5423 (3)0.4419 (3)0.47129 (18)0.0453 (9)
H15A0.5040520.3708220.4533940.068*
H15B0.5622780.4244110.5114500.068*
H15C0.6215020.4634570.4509960.068*
C160.3151 (2)0.3971 (2)0.25267 (10)0.0171 (5)
C170.4467 (3)0.3911 (2)0.23968 (11)0.0207 (6)
C180.4805 (3)0.3365 (2)0.18834 (11)0.0270 (6)
H180.5687150.3306870.1779810.032*
C190.3877 (3)0.2906 (3)0.15223 (11)0.0293 (6)
H190.4127720.2540230.1172110.035*
C200.2586 (3)0.2971 (2)0.16641 (10)0.0266 (5)
H200.1960980.2645550.1411300.032*
C210.2193 (3)0.3511 (2)0.21743 (10)0.0205 (5)
C220.5492 (3)0.4415 (3)0.27965 (12)0.0259 (6)
H220.5037780.4841440.3114360.031*
C230.6350 (4)0.5327 (4)0.24968 (15)0.0524 (10)
H23A0.6811400.4935510.2182270.079*
H23B0.6970900.5653540.2771400.079*
H23C0.5818950.5978850.2344030.079*
C240.6274 (4)0.3407 (3)0.30637 (17)0.0595 (11)
H24A0.6795970.3018350.2767620.089*
H24B0.5690130.2816420.3234660.089*
H24C0.6837880.3735480.3360970.089*
C250.0776 (3)0.3555 (3)0.23361 (12)0.0261 (6)
H250.0688020.4101860.2673090.031*
C260.0316 (3)0.2308 (3)0.25208 (13)0.0390 (7)
H26A0.0363220.1757850.2194070.059*
H26B0.0574750.2357880.2655870.059*
H26C0.0866460.2009850.2830540.059*
C270.0068 (3)0.4051 (3)0.18560 (13)0.0375 (8)
H27A0.0252280.4841620.1740540.056*
H27B0.0955870.4124890.1992110.056*
H27C0.0040310.3505690.1527180.056*
C280.2743 (3)0.0363 (2)0.40865 (10)0.0218 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01867 (5)0.01490 (5)0.01529 (4)0.00074 (3)0.00236 (3)0.00049 (3)
O10.0479 (13)0.0154 (9)0.0502 (12)0.0026 (9)0.0055 (11)0.0016 (8)
N10.0162 (10)0.0178 (10)0.0132 (9)0.0007 (8)0.0020 (8)0.0020 (6)
N20.0162 (10)0.0153 (9)0.0137 (9)0.0017 (9)0.0004 (8)0.0009 (7)
N30.0358 (14)0.0224 (11)0.0268 (11)0.0023 (12)0.0081 (11)0.0032 (8)
C10.0122 (11)0.0174 (10)0.0148 (10)0.0004 (10)0.0013 (9)0.0008 (8)
C20.0213 (12)0.0143 (10)0.0235 (12)0.0016 (10)0.0008 (11)0.0022 (9)
C30.0213 (13)0.0164 (11)0.0192 (11)0.0002 (11)0.0006 (11)0.0034 (9)
C40.0198 (12)0.0179 (11)0.0125 (10)0.0034 (10)0.0006 (9)0.0020 (8)
C50.0163 (12)0.0209 (13)0.0208 (13)0.0043 (10)0.0011 (10)0.0030 (10)
C60.0224 (15)0.0298 (15)0.0215 (14)0.0038 (11)0.0067 (11)0.0012 (11)
C70.0326 (15)0.0326 (16)0.0149 (12)0.0032 (12)0.0035 (11)0.0016 (11)
C80.0252 (14)0.0341 (15)0.0184 (12)0.0012 (11)0.0049 (10)0.0032 (10)
C90.0204 (12)0.0225 (14)0.0194 (13)0.0002 (10)0.0014 (10)0.0016 (10)
C100.0155 (12)0.0300 (15)0.0232 (14)0.0001 (11)0.0009 (10)0.0024 (11)
C110.0345 (17)0.0296 (16)0.054 (2)0.0079 (13)0.0191 (15)0.0070 (14)
C120.0256 (15)0.0304 (16)0.0425 (17)0.0015 (12)0.0100 (13)0.0063 (13)
C130.0205 (13)0.0397 (17)0.0190 (13)0.0062 (12)0.0051 (11)0.0025 (12)
C140.046 (2)0.0443 (19)0.0339 (19)0.0176 (16)0.0041 (15)0.0028 (14)
C150.0194 (17)0.048 (2)0.068 (3)0.0007 (15)0.0118 (16)0.0029 (18)
C160.0225 (12)0.0167 (11)0.0121 (11)0.0022 (10)0.0013 (9)0.0012 (9)
C170.0229 (13)0.0197 (13)0.0194 (13)0.0014 (11)0.0024 (10)0.0015 (10)
C180.0259 (15)0.0301 (15)0.0249 (14)0.0052 (12)0.0070 (11)0.0020 (12)
C190.0391 (16)0.0325 (16)0.0163 (12)0.0090 (12)0.0028 (11)0.0049 (11)
C200.0339 (15)0.0279 (12)0.0180 (11)0.0044 (12)0.0064 (11)0.0050 (9)
C210.0233 (13)0.0205 (11)0.0176 (11)0.0015 (11)0.0019 (10)0.0014 (9)
C220.0192 (14)0.0299 (16)0.0287 (15)0.0010 (12)0.0051 (11)0.0059 (12)
C230.047 (2)0.059 (2)0.051 (2)0.027 (2)0.0122 (18)0.0087 (19)
C240.060 (2)0.047 (2)0.071 (3)0.0126 (18)0.045 (2)0.0157 (19)
C250.0215 (14)0.0371 (17)0.0198 (14)0.0017 (12)0.0026 (11)0.0029 (12)
C260.0282 (14)0.0491 (19)0.0397 (16)0.0129 (15)0.0086 (12)0.0063 (16)
C270.0280 (16)0.054 (2)0.0302 (17)0.0101 (15)0.0068 (13)0.0018 (15)
C280.0220 (13)0.0270 (14)0.0163 (12)0.0029 (12)0.0008 (11)0.0052 (9)
Geometric parameters (Å, º) top
Au1—N31.999 (2)C14—H14A0.9800
Au1—C11.963 (2)C14—H14B0.9800
O1—C281.210 (3)C14—H14C0.9800
N1—C11.360 (3)C15—H15A0.9800
N1—C21.382 (3)C15—H15B0.9800
N1—C41.447 (3)C15—H15C0.9800
N2—C11.352 (3)C16—C171.402 (4)
N2—C31.387 (3)C16—C211.390 (3)
N2—C161.443 (3)C17—C181.390 (4)
N3—C281.130 (3)C17—C221.524 (4)
C2—H20.94 (3)C18—H180.9500
C2—C31.341 (3)C18—C191.380 (4)
C3—H30.89 (2)C19—H190.9500
C4—C51.404 (3)C19—C201.384 (4)
C4—C91.388 (3)C20—H200.9500
C5—C61.395 (4)C20—C211.396 (3)
C5—C101.520 (3)C21—C251.521 (4)
C6—H60.9500C22—H221.0000
C6—C71.382 (4)C22—C231.523 (4)
C7—H70.9500C22—C241.521 (4)
C7—C81.381 (4)C23—H23A0.9800
C8—H80.9500C23—H23B0.9800
C8—C91.399 (3)C23—H23C0.9800
C9—C131.521 (4)C24—H24A0.9800
C10—H101.0000C24—H24B0.9800
C10—C111.527 (4)C24—H24C0.9800
C10—C121.532 (4)C25—H251.0000
C11—H11A0.9800C25—C261.533 (4)
C11—H11B0.9800C25—C271.527 (4)
C11—H11C0.9800C26—H26A0.9800
C12—H12A0.9800C26—H26B0.9800
C12—H12B0.9800C26—H26C0.9800
C12—H12C0.9800C27—H27A0.9800
C13—H131.0000C27—H27B0.9800
C13—C141.521 (4)C27—H27C0.9800
C13—C151.522 (4)
C1—Au1—N3178.14 (11)H14A—C14—H14C109.5
C1—N1—C2111.26 (18)H14B—C14—H14C109.5
C1—N1—C4123.35 (18)C13—C15—H15A109.5
C2—N1—C4125.36 (18)C13—C15—H15B109.5
C1—N2—C3110.91 (18)C13—C15—H15C109.5
C1—N2—C16125.33 (18)H15A—C15—H15B109.5
C3—N2—C16123.69 (18)H15A—C15—H15C109.5
C28—N3—Au1173.8 (2)H15B—C15—H15C109.5
N1—C1—Au1126.05 (16)C17—C16—N2117.5 (2)
N2—C1—Au1129.61 (16)C21—C16—N2118.8 (2)
N2—C1—N1104.26 (17)C21—C16—C17123.6 (2)
N1—C2—H2121.6 (15)C16—C17—C22122.1 (2)
C3—C2—N1106.53 (19)C18—C17—C16117.0 (2)
C3—C2—H2131.7 (15)C18—C17—C22120.8 (2)
N2—C3—H3121.3 (15)C17—C18—H18119.6
C2—C3—N2107.05 (19)C19—C18—C17120.8 (3)
C2—C3—H3131.7 (15)C19—C18—H18119.6
C5—C4—N1117.9 (2)C18—C19—H19119.6
C9—C4—N1117.9 (2)C18—C19—C20120.8 (2)
C9—C4—C5124.2 (2)C20—C19—H19119.6
C4—C5—C10121.9 (2)C19—C20—H20119.6
C6—C5—C4116.5 (2)C19—C20—C21120.7 (2)
C6—C5—C10121.5 (2)C21—C20—H20119.6
C5—C6—H6119.6C16—C21—C20117.0 (2)
C7—C6—C5120.9 (3)C16—C21—C25122.3 (2)
C7—C6—H6119.6C20—C21—C25120.6 (2)
C6—C7—H7119.6C17—C22—H22107.4
C8—C7—C6120.8 (2)C23—C22—C17112.0 (2)
C8—C7—H7119.6C23—C22—H22107.4
C7—C8—H8119.5C24—C22—C17110.6 (2)
C7—C8—C9121.0 (2)C24—C22—H22107.4
C9—C8—H8119.5C24—C22—C23111.7 (3)
C4—C9—C8116.6 (2)C22—C23—H23A109.5
C4—C9—C13122.8 (2)C22—C23—H23B109.5
C8—C9—C13120.6 (2)C22—C23—H23C109.5
C5—C10—H10107.9H23A—C23—H23B109.5
C5—C10—C11112.8 (2)H23A—C23—H23C109.5
C5—C10—C12109.8 (2)H23B—C23—H23C109.5
C11—C10—H10107.9C22—C24—H24A109.5
C11—C10—C12110.4 (2)C22—C24—H24B109.5
C12—C10—H10107.9C22—C24—H24C109.5
C10—C11—H11A109.5H24A—C24—H24B109.5
C10—C11—H11B109.5H24A—C24—H24C109.5
C10—C11—H11C109.5H24B—C24—H24C109.5
H11A—C11—H11B109.5C21—C25—H25107.7
H11A—C11—H11C109.5C21—C25—C26110.0 (2)
H11B—C11—H11C109.5C21—C25—C27112.7 (2)
C10—C12—H12A109.5C26—C25—H25107.7
C10—C12—H12B109.5C27—C25—H25107.7
C10—C12—H12C109.5C27—C25—C26110.9 (2)
H12A—C12—H12B109.5C25—C26—H26A109.5
H12A—C12—H12C109.5C25—C26—H26B109.5
H12B—C12—H12C109.5C25—C26—H26C109.5
C9—C13—H13107.2H26A—C26—H26B109.5
C9—C13—C15110.8 (2)H26A—C26—H26C109.5
C14—C13—C9112.6 (2)H26B—C26—H26C109.5
C14—C13—H13107.2C25—C27—H27A109.5
C14—C13—C15111.4 (3)C25—C27—H27B109.5
C15—C13—H13107.2C25—C27—H27C109.5
C13—C14—H14A109.5H27A—C27—H27B109.5
C13—C14—H14B109.5H27A—C27—H27C109.5
C13—C14—H14C109.5H27B—C27—H27C109.5
H14A—C14—H14B109.5N3—C28—O1179.3 (3)
N1—C2—C3—N20.1 (3)C5—C6—C7—C80.2 (4)
N1—C4—C5—C6178.5 (2)C6—C5—C10—C1140.7 (4)
N1—C4—C5—C103.9 (3)C6—C5—C10—C1282.9 (3)
N1—C4—C9—C8178.4 (2)C6—C7—C8—C90.1 (4)
N1—C4—C9—C130.5 (4)C7—C8—C9—C40.5 (4)
N2—C16—C17—C18177.2 (2)C7—C8—C9—C13178.5 (3)
N2—C16—C17—C223.0 (4)C8—C9—C13—C1451.9 (3)
N2—C16—C21—C20177.1 (2)C8—C9—C13—C1573.7 (3)
N2—C16—C21—C254.4 (3)C9—C4—C5—C61.0 (4)
C1—N1—C2—C30.2 (3)C9—C4—C5—C10176.5 (2)
C1—N1—C4—C582.3 (3)C10—C5—C6—C7177.2 (2)
C1—N1—C4—C997.3 (3)C16—N2—C1—Au16.1 (4)
C1—N2—C3—C20.0 (3)C16—N2—C1—N1177.3 (2)
C1—N2—C16—C1791.9 (3)C16—N2—C3—C2177.2 (2)
C1—N2—C16—C2190.3 (3)C16—C17—C18—C190.0 (4)
C2—N1—C1—Au1177.09 (17)C16—C17—C22—C23124.0 (3)
C2—N1—C1—N20.3 (3)C16—C17—C22—C24110.7 (3)
C2—N1—C4—C5100.1 (3)C16—C21—C25—C26105.2 (3)
C2—N1—C4—C980.3 (3)C16—C21—C25—C27130.5 (3)
C3—N2—C1—Au1176.85 (18)C17—C16—C21—C200.4 (4)
C3—N2—C1—N10.2 (3)C17—C16—C21—C25178.1 (2)
C3—N2—C16—C1784.8 (3)C17—C18—C19—C200.4 (4)
C3—N2—C16—C2192.9 (3)C18—C17—C22—C2356.1 (4)
C4—N1—C1—Au15.0 (4)C18—C17—C22—C2469.2 (4)
C4—N1—C1—N2178.2 (2)C18—C19—C20—C210.4 (4)
C4—N1—C2—C3178.1 (2)C19—C20—C21—C160.0 (4)
C4—C5—C6—C70.3 (4)C19—C20—C21—C25178.5 (2)
C4—C5—C10—C11141.9 (3)C20—C21—C25—C2673.2 (3)
C4—C5—C10—C1294.5 (3)C20—C21—C25—C2751.1 (3)
C4—C9—C13—C14130.3 (3)C21—C16—C17—C180.4 (4)
C4—C9—C13—C15104.1 (3)C21—C16—C17—C22179.4 (2)
C5—C4—C9—C81.1 (4)C22—C17—C18—C19179.8 (3)
C5—C4—C9—C13179.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.94 (3)2.25 (3)3.127 (3)155 (2)
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

AB gratefully acknowledges financial support from Towson University through research grants from the Fisher College of Science and Mathematics (FCSM).

Funding information

Funding for this research was provided by: National Science Foundation (grant No. 0923051).

References

First citationBaker, M. V., Barnard, P. J., Brayshaw, S. K., Hickey, J. L., Skelton, B. W. & White, A. H. (2005). Dalton Trans. pp. 37–43.  Web of Science CSD CrossRef Google Scholar
First citationBaron, M., Tubaro, C., Cairoli, M. L. C., Orian, L., Bogialli, S., Basato, M., Natile, M. M. & Graiff, C. (2017). Organometallics, 36, 2285–2292.  CSD CrossRef CAS Google Scholar
First citationBosman, W. P., Bos, W., Smits, J. M. M., Beurskens, P. T., Bour, J. J. & Steggerda, J. J. (1986). Inorg. Chem. 25, 2093–2096.  CSD CrossRef CAS Google Scholar
First citationBruker (2016). APEX3, SAINT, XCIF and XPREP. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCollado, A., Nelson, D. J. & Nolan, S. P. (2021). Chem. Rev. 121, 8559–8612.  CrossRef CAS PubMed Google Scholar
First citationDada, O., Curran, D., O'Beirne, C., Müller-Bunz, H., Zhu, X. & Tacke, M. (2017). J. Organomet. Chem. 840, 30–37.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHopkinson, M. N., Richter, C., Schedler, M. & Glorius, F. (2014). Nature, 510, 485–496.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPyykkö, P. (1997). Chem. Rev. 97, 597–636.  CrossRef PubMed Web of Science Google Scholar
First citationPyykkö, P. (2004). Angew. Chem. Int. Ed. 43, 4412–4456.  Google Scholar
First citationRomanov, A. S., Becker, C. R., James, C. E., Di, D., Credgington, D., Linnolahti, M. & Bochmann, M. (2017). Chem. Eur. J. 23, 4625–4637.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds