research communications
Synthesis and κN)gold(I)
of [1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene](isocyanato-a1Department of Chemistry Towson University 8000 York Road Towson, MD 21252, USA
*Correspondence e-mail: abakhoda@towson.edu
The title complex, [Au(NCO)(C27H36N2)], was synthesized by ligand metathesis from [1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene]gold(I) chloride and sodium cyanate in anhydrous tetrahydrofuran and crystallized from toluene at 233 K in the orthorhombic P212121, as a neutral complex with the central Au atom di-coordinated by an N-heterocyclic carbene [Au—C = 1.963 (2) Å] and an isocyanate [Au—N 1.999 (2) Å] ligands, with a linear CAuNCO moiety. The crystal packing is consolidated by C—H⋯O hydrogen bonds.
Keywords: crystal structure; gold(I); isocyanate; N-heterocyclic carbene.
CCDC reference: 2306677
1. Chemical context
Transition-metal complexes with N-heterocyclic carbene (NHC) ligands have been frequently used as ligands in inorganic and organometallic synthesis, chemical catalysis, and medicinal chemistry (Hopkinson et al. 2014; Collado et al., 2021). NHC complexes of gold are typically linear dicoordinate AuI complexes, however, square-planar AuIII complexes are also known (Baron et al., 2017). The former, where the dicoordinate state of AuI is sterically and electronically stabilized by NHC ligands, have interesting bonding properties (Pyykkö, 2004) and are prospective as catalysts (Collado et al., 2021) and medicines (Dada et al., 2017). An important class of AuI compounds are those with pseudohalide anions, such as CN−, SCN−, N3− or NCO−. In the present work, we attempted to synthesize an AuI–cyanato complex, (IPr)AuOCN, where IPr = 1,3-bis(2,6-di-iso-propylphenyl)imidazol-2-ylidene, as no AuI–cyanato complex had been isolated and structurally characterized previously, while those of Cu and Ag are very rare (see Section 4). In the attempt, we reacted (IPr)AuCl with sodium cyanate in anhydrous THF, which yielded the title isocyanato complex (IPr)Au—N=C=O (1), as proven by X-ray crystallography.
2. Structural commentary
Crystallographic results (Fig. 1) unambiguously show the presence of an isocyanate (rather than cyanate) ligand that is N-bonded to the Au atom, with a nearly linear Au1—N3—C28 angle of 173.8 (2)° and the bond lengths N3—C28 [1.130 (3) Å] and C28—O1 [1.210 (3) Å] in the normal ranges found for metal–isocyanates (see Section 4), of 1.11–1.15 and 1.18–1.23 Å, respectively. The Au atom coordination is also linear [C1—Au—N3 178.14 (11)°], the Au—N3 and Au—C1 bond lengths of 1.999 (2) and 1.963 (2) Å, respectively, are not unusual for isocyanate and carbene ligands in previously reported AuI complexes (listed in Section 4).
The IR spectrum of 1 (ATR, Thermo Scientific Nicolet iS10 spectrometer) shows the asymmetric stretching frequency νNCO of 2234 cm−1, in good agreement with other isocyanate AuI complexes (see Section 4).
3. Supramolecular features
In the crystal, discrete molecules of 1 are oriented with their CAuNCO `rods' roughly parallel to the crystallographic b axis, with no indication of π–π stacking. While di-coordinate AuI atoms (d10 centers) often form attractive aurophilic Au⋯Au interactions, which play an important role in determining the solid-state structures of AuI complexes (Pyykkö, 1997), in the structure of 1 no such interactions occur, the closest Au⋯Au distance being 7.738 Å. This is probably due to effective shielding of the Au center by 2,6-di-iso-propylphenyl groups. The intermolecular hydrogen bond C2—H2⋯O1(x, y + 1, z) is relatively strong, with the distances C⋯O 3.127 (3), C—H 0.94 (3), H⋯O 2.25 (3) Å and C—H⋯O angle of 155 (2)° (Fig. 2). The of 1 contains only one molecule.
4. Database survey
Structurally characterized cyanate complexes of Group 11 metals with M—O—C≡N core (M = Cu, Ag, Au) are very rare. In the literature, there are only six examples of copper cyanato complexes and only one example of a silver cyanato complex is known so far (CSD version 5.43, last update November 2023; Groom et al., 2016). Thus far, there is no example of an isolated and structurally characterized AuI–cyanato complex in the literature.
A search of the CSD (version 5.43, last update November 2023; Groom et al., 2016) using CONQUEST (Bruno et al., 2002) revealed four AuI–isocyanate coordination compounds, viz. (Ph3P)AuNCO (CSD refcode DUCRIC, Bosman et al. 1986), two complexes with the composition LAuNCO, where L is an NHC ligand, viz. 1,3-di-tert-butylimidazol-2-ylidene or 1,3-dibenzyl-4,5-diphenyl-2,3-dihydro-1H-imidazol-2-ylidene (FAWZOT, Baker et al., 2005; LAMLIX, Dada et al., 2017), as well as one complex of the composition LAuNCO, where L is a cyclic(alkyl)(amino)carbene (QANMUQ; Romanov et al., 2017). The IR spectra of these show the characteristic νNCO bands at 2204, 2232, 2243 and 2229 cm−1, respectively.
5. Synthesis and crystallization
An aluminum-wrapped oven-dried 25-ml Schlenk flask was equipped with a stirring bar and charged with IPrAuCl, purchased from Strem (100 mg, 0.16 mmol) and sodium cyanate (52.6 mg, 0.81 mmol) under an anhydrous dinitrogen atmosphere inside a glovebox. Anhydrous THF (15 ml) was added, and the resulting suspension was stirred overnight at room temperature. The solvent was removed, the residue dissolved in anhydrous toluene and filtered through short pad of silica (1.5 cm). This filtration procedure proved crucial for the efficient removal of small amounts of impurities and increased the stability of the product. The colorless filtrate was concentrated and hexane was added to precipitate complex 1, the solvents were decanted off and the residue dried in vacuo. Yield: 36 mg, 36%. The product was recrystallized from a concentrated toluene solution at 233 K inside a dinitrogen-filled glovebox. 1H NMR (400 MHz, CDCl3): δ 7.51 (t, J = 8 Hz, 2H, CH aromatic), 7.31 (d, J = 8 Hz, 4H, CH aromatic), 7.20 (s, 2H, CH imidazole), 2.48 [sept, J = 7 Hz, 4H, CH(CH3)2], 1.30 [d, J = 7 Hz, 12H, CH(CH3)2], 1.21 [d, J = 7 Hz, 12H, CH(CH3)2]. 13C NMR (100 MHz, CDCl3): δ 183.4 (s, C carbene), 144.1 (s, C aromatic), 133.8 (s, C aromatic), 132.3 (s, NCO), 131.2 (s, CH imidazole), 123.9 (s, CH aromatic), 123.4 (s, CH aromatic), 29.8 [s, CH(CH3)2], 25.5 [s, CH(CH3)2], 24.0 [s, CH(CH3)2]. Analysis calculated for C28H36AuN3O: C, 53.59; H, 5.78; N, 6.70. Found: C, 53.58; H, 5.82; N, 6.52.
6. Refinement
Crystal data, data collection and structure . Atoms H2 and H3 were refined in an isotropic approximation. Other H atoms were treated as riding in idealized positions (for methyl groups, optimized by rotation about R—CH3 bonds) with Uiso(H) = 1.5Ueq for methyl H atoms, or 1.2Ueq(C) for the rest.
details are summarized in Table 1Supporting information
CCDC reference: 2306677
https://doi.org/10.1107/S205698902400046X/zv2031sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698902400046X/zv2031Isup5.hkl
[Au(NCO)(C27H36N2)] | Dx = 1.540 Mg m−3 |
Mr = 627.56 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 9267 reflections |
a = 10.3941 (7) Å | θ = 2.6–28.3° |
b = 11.1540 (7) Å | µ = 5.46 mm−1 |
c = 23.3489 (15) Å | T = 100 K |
V = 2707.0 (3) Å3 | Prism, colourless |
Z = 4 | 0.18 × 0.17 × 0.12 mm |
F(000) = 1248 |
Bruker D8 Quest/Photon 100 diffractometer | 6680 independent reflections |
Radiation source: microfocus sealed tube | 6610 reflections with I > 2σ(I) |
Multilayer mirrors monochromator | Rint = 0.029 |
profile data from φ and ω scans | θmax = 28.4°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −13→13 |
Tmin = 0.512, Tmax = 0.710 | k = −14→14 |
76237 measured reflections | l = −31→31 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.013 | w = 1/[σ2(Fo2) + (0.0022P)2 + 0.5084P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.025 | (Δ/σ)max = 0.003 |
S = 1.11 | Δρmax = 0.61 e Å−3 |
6680 reflections | Δρmin = −0.31 e Å−3 |
315 parameters | Extinction correction: SHELXL2019/1 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.00303 (9) |
Primary atom site location: dual | Absolute structure: Flack x determined using 2845 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.007 (2) |
Experimental. One distinct cell was identified using APEX3 (Bruker, 2016). Six frame series were integrated and filtered for statistical outliers using SAINT (Bruker, 2016) then corrected for absorption by integration using SAINT/SADABS v2014/2 (Bruker, 2016) to sort, merge, and scale the combined data. No decay correction was applied. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Structure was phased by intrinsic methods (Sheldrick, 2015a). Systematic conditions suggested the ambiguous space group. The space group choice was confirmed by successful convergence of the full-matrix least-squares refinement on F2. The final map had no significant features. A final analysis of variance between observed and calculated structure factors showed little dependence on amplitude and resolution. |
x | y | z | Uiso*/Ueq | ||
Au1 | 0.26753 (2) | 0.23607 (2) | 0.37741 (2) | 0.01629 (3) | |
O1 | 0.2821 (2) | −0.14249 (15) | 0.41879 (9) | 0.0378 (5) | |
N1 | 0.2343 (2) | 0.49912 (15) | 0.39199 (7) | 0.0157 (4) | |
N2 | 0.2784 (2) | 0.45853 (16) | 0.30454 (7) | 0.0151 (4) | |
N3 | 0.2667 (3) | 0.06303 (19) | 0.39972 (9) | 0.0283 (5) | |
C1 | 0.2625 (2) | 0.40636 (18) | 0.35634 (9) | 0.0148 (4) | |
C2 | 0.2332 (2) | 0.6070 (2) | 0.36284 (10) | 0.0197 (5) | |
H2 | 0.221 (2) | 0.680 (2) | 0.3819 (10) | 0.023 (7)* | |
C3 | 0.2606 (3) | 0.58160 (19) | 0.30804 (10) | 0.0190 (5) | |
H3 | 0.270 (3) | 0.629 (2) | 0.2773 (10) | 0.017 (6)* | |
C4 | 0.2132 (2) | 0.4847 (2) | 0.45287 (9) | 0.0168 (5) | |
C5 | 0.0907 (2) | 0.4478 (2) | 0.47107 (11) | 0.0193 (5) | |
C6 | 0.0742 (3) | 0.4320 (2) | 0.52988 (12) | 0.0246 (6) | |
H6 | −0.006924 | 0.406579 | 0.544201 | 0.029* | |
C7 | 0.1742 (3) | 0.4528 (2) | 0.56757 (11) | 0.0267 (6) | |
H7 | 0.161106 | 0.441254 | 0.607458 | 0.032* | |
C8 | 0.2930 (3) | 0.4900 (2) | 0.54798 (10) | 0.0259 (6) | |
H8 | 0.360466 | 0.503938 | 0.574613 | 0.031* | |
C9 | 0.3155 (2) | 0.5077 (2) | 0.48950 (10) | 0.0208 (5) | |
C10 | −0.0199 (2) | 0.4307 (2) | 0.42925 (12) | 0.0229 (6) | |
H10 | 0.017665 | 0.416710 | 0.390388 | 0.027* | |
C11 | −0.1042 (3) | 0.3230 (3) | 0.44407 (15) | 0.0394 (8) | |
H11A | −0.171818 | 0.314256 | 0.415116 | 0.059* | |
H11B | −0.143619 | 0.335255 | 0.481746 | 0.059* | |
H11C | −0.051310 | 0.250252 | 0.444865 | 0.059* | |
C12 | −0.1010 (3) | 0.5452 (3) | 0.42656 (13) | 0.0329 (7) | |
H12A | −0.046152 | 0.612932 | 0.415753 | 0.049* | |
H12B | −0.139480 | 0.560496 | 0.464170 | 0.049* | |
H12C | −0.169343 | 0.535288 | 0.398019 | 0.049* | |
C13 | 0.4476 (3) | 0.5458 (3) | 0.46822 (11) | 0.0264 (6) | |
H13 | 0.438282 | 0.567922 | 0.426931 | 0.032* | |
C14 | 0.4986 (3) | 0.6556 (3) | 0.49942 (12) | 0.0413 (8) | |
H14A | 0.581927 | 0.678645 | 0.483126 | 0.062* | |
H14B | 0.509191 | 0.637001 | 0.540165 | 0.062* | |
H14C | 0.437623 | 0.721984 | 0.495059 | 0.062* | |
C15 | 0.5423 (3) | 0.4419 (3) | 0.47129 (18) | 0.0453 (9) | |
H15A | 0.504052 | 0.370822 | 0.453394 | 0.068* | |
H15B | 0.562278 | 0.424411 | 0.511450 | 0.068* | |
H15C | 0.621502 | 0.463457 | 0.450996 | 0.068* | |
C16 | 0.3151 (2) | 0.3971 (2) | 0.25267 (10) | 0.0171 (5) | |
C17 | 0.4467 (3) | 0.3911 (2) | 0.23968 (11) | 0.0207 (6) | |
C18 | 0.4805 (3) | 0.3365 (2) | 0.18834 (11) | 0.0270 (6) | |
H18 | 0.568715 | 0.330687 | 0.177981 | 0.032* | |
C19 | 0.3877 (3) | 0.2906 (3) | 0.15223 (11) | 0.0293 (6) | |
H19 | 0.412772 | 0.254023 | 0.117211 | 0.035* | |
C20 | 0.2586 (3) | 0.2971 (2) | 0.16641 (10) | 0.0266 (5) | |
H20 | 0.196098 | 0.264555 | 0.141130 | 0.032* | |
C21 | 0.2193 (3) | 0.3511 (2) | 0.21743 (10) | 0.0205 (5) | |
C22 | 0.5492 (3) | 0.4415 (3) | 0.27965 (12) | 0.0259 (6) | |
H22 | 0.503778 | 0.484144 | 0.311436 | 0.031* | |
C23 | 0.6350 (4) | 0.5327 (4) | 0.24968 (15) | 0.0524 (10) | |
H23A | 0.681140 | 0.493551 | 0.218227 | 0.079* | |
H23B | 0.697090 | 0.565354 | 0.277140 | 0.079* | |
H23C | 0.581895 | 0.597885 | 0.234403 | 0.079* | |
C24 | 0.6274 (4) | 0.3407 (3) | 0.30637 (17) | 0.0595 (11) | |
H24A | 0.679597 | 0.301835 | 0.276762 | 0.089* | |
H24B | 0.569013 | 0.281642 | 0.323466 | 0.089* | |
H24C | 0.683788 | 0.373548 | 0.336097 | 0.089* | |
C25 | 0.0776 (3) | 0.3555 (3) | 0.23361 (12) | 0.0261 (6) | |
H25 | 0.068802 | 0.410186 | 0.267309 | 0.031* | |
C26 | 0.0316 (3) | 0.2308 (3) | 0.25208 (13) | 0.0390 (7) | |
H26A | 0.036322 | 0.175785 | 0.219407 | 0.059* | |
H26B | −0.057475 | 0.235788 | 0.265587 | 0.059* | |
H26C | 0.086646 | 0.200985 | 0.283054 | 0.059* | |
C27 | −0.0068 (3) | 0.4051 (3) | 0.18560 (13) | 0.0375 (8) | |
H27A | 0.025228 | 0.484162 | 0.174054 | 0.056* | |
H27B | −0.095587 | 0.412489 | 0.199211 | 0.056* | |
H27C | −0.004031 | 0.350569 | 0.152718 | 0.056* | |
C28 | 0.2743 (3) | −0.0363 (2) | 0.40865 (10) | 0.0218 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Au1 | 0.01867 (5) | 0.01490 (5) | 0.01529 (4) | 0.00074 (3) | −0.00236 (3) | 0.00049 (3) |
O1 | 0.0479 (13) | 0.0154 (9) | 0.0502 (12) | −0.0026 (9) | 0.0055 (11) | 0.0016 (8) |
N1 | 0.0162 (10) | 0.0178 (10) | 0.0132 (9) | 0.0007 (8) | −0.0020 (8) | −0.0020 (6) |
N2 | 0.0162 (10) | 0.0153 (9) | 0.0137 (9) | 0.0017 (9) | −0.0004 (8) | −0.0009 (7) |
N3 | 0.0358 (14) | 0.0224 (11) | 0.0268 (11) | 0.0023 (12) | −0.0081 (11) | 0.0032 (8) |
C1 | 0.0122 (11) | 0.0174 (10) | 0.0148 (10) | −0.0004 (10) | −0.0013 (9) | 0.0008 (8) |
C2 | 0.0213 (12) | 0.0143 (10) | 0.0235 (12) | 0.0016 (10) | −0.0008 (11) | −0.0022 (9) |
C3 | 0.0213 (13) | 0.0164 (11) | 0.0192 (11) | 0.0002 (11) | −0.0006 (11) | 0.0034 (9) |
C4 | 0.0198 (12) | 0.0179 (11) | 0.0125 (10) | 0.0034 (10) | 0.0006 (9) | −0.0020 (8) |
C5 | 0.0163 (12) | 0.0209 (13) | 0.0208 (13) | 0.0043 (10) | 0.0011 (10) | −0.0030 (10) |
C6 | 0.0224 (15) | 0.0298 (15) | 0.0215 (14) | 0.0038 (11) | 0.0067 (11) | −0.0012 (11) |
C7 | 0.0326 (15) | 0.0326 (16) | 0.0149 (12) | 0.0032 (12) | 0.0035 (11) | −0.0016 (11) |
C8 | 0.0252 (14) | 0.0341 (15) | 0.0184 (12) | 0.0012 (11) | −0.0049 (10) | −0.0032 (10) |
C9 | 0.0204 (12) | 0.0225 (14) | 0.0194 (13) | −0.0002 (10) | −0.0014 (10) | −0.0016 (10) |
C10 | 0.0155 (12) | 0.0300 (15) | 0.0232 (14) | 0.0001 (11) | 0.0009 (10) | −0.0024 (11) |
C11 | 0.0345 (17) | 0.0296 (16) | 0.054 (2) | −0.0079 (13) | −0.0191 (15) | 0.0070 (14) |
C12 | 0.0256 (15) | 0.0304 (16) | 0.0425 (17) | 0.0015 (12) | −0.0100 (13) | 0.0063 (13) |
C13 | 0.0205 (13) | 0.0397 (17) | 0.0190 (13) | −0.0062 (12) | −0.0051 (11) | 0.0025 (12) |
C14 | 0.046 (2) | 0.0443 (19) | 0.0339 (19) | −0.0176 (16) | −0.0041 (15) | 0.0028 (14) |
C15 | 0.0194 (17) | 0.048 (2) | 0.068 (3) | −0.0007 (15) | 0.0118 (16) | 0.0029 (18) |
C16 | 0.0225 (12) | 0.0167 (11) | 0.0121 (11) | 0.0022 (10) | 0.0013 (9) | 0.0012 (9) |
C17 | 0.0229 (13) | 0.0197 (13) | 0.0194 (13) | 0.0014 (11) | 0.0024 (10) | 0.0015 (10) |
C18 | 0.0259 (15) | 0.0301 (15) | 0.0249 (14) | 0.0052 (12) | 0.0070 (11) | 0.0020 (12) |
C19 | 0.0391 (16) | 0.0325 (16) | 0.0163 (12) | 0.0090 (12) | 0.0028 (11) | −0.0049 (11) |
C20 | 0.0339 (15) | 0.0279 (12) | 0.0180 (11) | 0.0044 (12) | −0.0064 (11) | −0.0050 (9) |
C21 | 0.0233 (13) | 0.0205 (11) | 0.0176 (11) | 0.0015 (11) | −0.0019 (10) | 0.0014 (9) |
C22 | 0.0192 (14) | 0.0299 (16) | 0.0287 (15) | −0.0010 (12) | 0.0051 (11) | −0.0059 (12) |
C23 | 0.047 (2) | 0.059 (2) | 0.051 (2) | −0.027 (2) | 0.0122 (18) | −0.0087 (19) |
C24 | 0.060 (2) | 0.047 (2) | 0.071 (3) | 0.0126 (18) | −0.045 (2) | −0.0157 (19) |
C25 | 0.0215 (14) | 0.0371 (17) | 0.0198 (14) | 0.0017 (12) | −0.0026 (11) | −0.0029 (12) |
C26 | 0.0282 (14) | 0.0491 (19) | 0.0397 (16) | −0.0129 (15) | −0.0086 (12) | 0.0063 (16) |
C27 | 0.0280 (16) | 0.054 (2) | 0.0302 (17) | 0.0101 (15) | −0.0068 (13) | −0.0018 (15) |
C28 | 0.0220 (13) | 0.0270 (14) | 0.0163 (12) | −0.0029 (12) | 0.0008 (11) | −0.0052 (9) |
Au1—N3 | 1.999 (2) | C14—H14A | 0.9800 |
Au1—C1 | 1.963 (2) | C14—H14B | 0.9800 |
O1—C28 | 1.210 (3) | C14—H14C | 0.9800 |
N1—C1 | 1.360 (3) | C15—H15A | 0.9800 |
N1—C2 | 1.382 (3) | C15—H15B | 0.9800 |
N1—C4 | 1.447 (3) | C15—H15C | 0.9800 |
N2—C1 | 1.352 (3) | C16—C17 | 1.402 (4) |
N2—C3 | 1.387 (3) | C16—C21 | 1.390 (3) |
N2—C16 | 1.443 (3) | C17—C18 | 1.390 (4) |
N3—C28 | 1.130 (3) | C17—C22 | 1.524 (4) |
C2—H2 | 0.94 (3) | C18—H18 | 0.9500 |
C2—C3 | 1.341 (3) | C18—C19 | 1.380 (4) |
C3—H3 | 0.89 (2) | C19—H19 | 0.9500 |
C4—C5 | 1.404 (3) | C19—C20 | 1.384 (4) |
C4—C9 | 1.388 (3) | C20—H20 | 0.9500 |
C5—C6 | 1.395 (4) | C20—C21 | 1.396 (3) |
C5—C10 | 1.520 (3) | C21—C25 | 1.521 (4) |
C6—H6 | 0.9500 | C22—H22 | 1.0000 |
C6—C7 | 1.382 (4) | C22—C23 | 1.523 (4) |
C7—H7 | 0.9500 | C22—C24 | 1.521 (4) |
C7—C8 | 1.381 (4) | C23—H23A | 0.9800 |
C8—H8 | 0.9500 | C23—H23B | 0.9800 |
C8—C9 | 1.399 (3) | C23—H23C | 0.9800 |
C9—C13 | 1.521 (4) | C24—H24A | 0.9800 |
C10—H10 | 1.0000 | C24—H24B | 0.9800 |
C10—C11 | 1.527 (4) | C24—H24C | 0.9800 |
C10—C12 | 1.532 (4) | C25—H25 | 1.0000 |
C11—H11A | 0.9800 | C25—C26 | 1.533 (4) |
C11—H11B | 0.9800 | C25—C27 | 1.527 (4) |
C11—H11C | 0.9800 | C26—H26A | 0.9800 |
C12—H12A | 0.9800 | C26—H26B | 0.9800 |
C12—H12B | 0.9800 | C26—H26C | 0.9800 |
C12—H12C | 0.9800 | C27—H27A | 0.9800 |
C13—H13 | 1.0000 | C27—H27B | 0.9800 |
C13—C14 | 1.521 (4) | C27—H27C | 0.9800 |
C13—C15 | 1.522 (4) | ||
C1—Au1—N3 | 178.14 (11) | H14A—C14—H14C | 109.5 |
C1—N1—C2 | 111.26 (18) | H14B—C14—H14C | 109.5 |
C1—N1—C4 | 123.35 (18) | C13—C15—H15A | 109.5 |
C2—N1—C4 | 125.36 (18) | C13—C15—H15B | 109.5 |
C1—N2—C3 | 110.91 (18) | C13—C15—H15C | 109.5 |
C1—N2—C16 | 125.33 (18) | H15A—C15—H15B | 109.5 |
C3—N2—C16 | 123.69 (18) | H15A—C15—H15C | 109.5 |
C28—N3—Au1 | 173.8 (2) | H15B—C15—H15C | 109.5 |
N1—C1—Au1 | 126.05 (16) | C17—C16—N2 | 117.5 (2) |
N2—C1—Au1 | 129.61 (16) | C21—C16—N2 | 118.8 (2) |
N2—C1—N1 | 104.26 (17) | C21—C16—C17 | 123.6 (2) |
N1—C2—H2 | 121.6 (15) | C16—C17—C22 | 122.1 (2) |
C3—C2—N1 | 106.53 (19) | C18—C17—C16 | 117.0 (2) |
C3—C2—H2 | 131.7 (15) | C18—C17—C22 | 120.8 (2) |
N2—C3—H3 | 121.3 (15) | C17—C18—H18 | 119.6 |
C2—C3—N2 | 107.05 (19) | C19—C18—C17 | 120.8 (3) |
C2—C3—H3 | 131.7 (15) | C19—C18—H18 | 119.6 |
C5—C4—N1 | 117.9 (2) | C18—C19—H19 | 119.6 |
C9—C4—N1 | 117.9 (2) | C18—C19—C20 | 120.8 (2) |
C9—C4—C5 | 124.2 (2) | C20—C19—H19 | 119.6 |
C4—C5—C10 | 121.9 (2) | C19—C20—H20 | 119.6 |
C6—C5—C4 | 116.5 (2) | C19—C20—C21 | 120.7 (2) |
C6—C5—C10 | 121.5 (2) | C21—C20—H20 | 119.6 |
C5—C6—H6 | 119.6 | C16—C21—C20 | 117.0 (2) |
C7—C6—C5 | 120.9 (3) | C16—C21—C25 | 122.3 (2) |
C7—C6—H6 | 119.6 | C20—C21—C25 | 120.6 (2) |
C6—C7—H7 | 119.6 | C17—C22—H22 | 107.4 |
C8—C7—C6 | 120.8 (2) | C23—C22—C17 | 112.0 (2) |
C8—C7—H7 | 119.6 | C23—C22—H22 | 107.4 |
C7—C8—H8 | 119.5 | C24—C22—C17 | 110.6 (2) |
C7—C8—C9 | 121.0 (2) | C24—C22—H22 | 107.4 |
C9—C8—H8 | 119.5 | C24—C22—C23 | 111.7 (3) |
C4—C9—C8 | 116.6 (2) | C22—C23—H23A | 109.5 |
C4—C9—C13 | 122.8 (2) | C22—C23—H23B | 109.5 |
C8—C9—C13 | 120.6 (2) | C22—C23—H23C | 109.5 |
C5—C10—H10 | 107.9 | H23A—C23—H23B | 109.5 |
C5—C10—C11 | 112.8 (2) | H23A—C23—H23C | 109.5 |
C5—C10—C12 | 109.8 (2) | H23B—C23—H23C | 109.5 |
C11—C10—H10 | 107.9 | C22—C24—H24A | 109.5 |
C11—C10—C12 | 110.4 (2) | C22—C24—H24B | 109.5 |
C12—C10—H10 | 107.9 | C22—C24—H24C | 109.5 |
C10—C11—H11A | 109.5 | H24A—C24—H24B | 109.5 |
C10—C11—H11B | 109.5 | H24A—C24—H24C | 109.5 |
C10—C11—H11C | 109.5 | H24B—C24—H24C | 109.5 |
H11A—C11—H11B | 109.5 | C21—C25—H25 | 107.7 |
H11A—C11—H11C | 109.5 | C21—C25—C26 | 110.0 (2) |
H11B—C11—H11C | 109.5 | C21—C25—C27 | 112.7 (2) |
C10—C12—H12A | 109.5 | C26—C25—H25 | 107.7 |
C10—C12—H12B | 109.5 | C27—C25—H25 | 107.7 |
C10—C12—H12C | 109.5 | C27—C25—C26 | 110.9 (2) |
H12A—C12—H12B | 109.5 | C25—C26—H26A | 109.5 |
H12A—C12—H12C | 109.5 | C25—C26—H26B | 109.5 |
H12B—C12—H12C | 109.5 | C25—C26—H26C | 109.5 |
C9—C13—H13 | 107.2 | H26A—C26—H26B | 109.5 |
C9—C13—C15 | 110.8 (2) | H26A—C26—H26C | 109.5 |
C14—C13—C9 | 112.6 (2) | H26B—C26—H26C | 109.5 |
C14—C13—H13 | 107.2 | C25—C27—H27A | 109.5 |
C14—C13—C15 | 111.4 (3) | C25—C27—H27B | 109.5 |
C15—C13—H13 | 107.2 | C25—C27—H27C | 109.5 |
C13—C14—H14A | 109.5 | H27A—C27—H27B | 109.5 |
C13—C14—H14B | 109.5 | H27A—C27—H27C | 109.5 |
C13—C14—H14C | 109.5 | H27B—C27—H27C | 109.5 |
H14A—C14—H14B | 109.5 | N3—C28—O1 | 179.3 (3) |
N1—C2—C3—N2 | −0.1 (3) | C5—C6—C7—C8 | 0.2 (4) |
N1—C4—C5—C6 | 178.5 (2) | C6—C5—C10—C11 | −40.7 (4) |
N1—C4—C5—C10 | −3.9 (3) | C6—C5—C10—C12 | 82.9 (3) |
N1—C4—C9—C8 | −178.4 (2) | C6—C7—C8—C9 | −0.1 (4) |
N1—C4—C9—C13 | −0.5 (4) | C7—C8—C9—C4 | −0.5 (4) |
N2—C16—C17—C18 | −177.2 (2) | C7—C8—C9—C13 | −178.5 (3) |
N2—C16—C17—C22 | 3.0 (4) | C8—C9—C13—C14 | −51.9 (3) |
N2—C16—C21—C20 | 177.1 (2) | C8—C9—C13—C15 | 73.7 (3) |
N2—C16—C21—C25 | −4.4 (3) | C9—C4—C5—C6 | −1.0 (4) |
C1—N1—C2—C3 | 0.2 (3) | C9—C4—C5—C10 | 176.5 (2) |
C1—N1—C4—C5 | −82.3 (3) | C10—C5—C6—C7 | −177.2 (2) |
C1—N1—C4—C9 | 97.3 (3) | C16—N2—C1—Au1 | −6.1 (4) |
C1—N2—C3—C2 | 0.0 (3) | C16—N2—C1—N1 | 177.3 (2) |
C1—N2—C16—C17 | −91.9 (3) | C16—N2—C3—C2 | −177.2 (2) |
C1—N2—C16—C21 | 90.3 (3) | C16—C17—C18—C19 | 0.0 (4) |
C2—N1—C1—Au1 | −177.09 (17) | C16—C17—C22—C23 | −124.0 (3) |
C2—N1—C1—N2 | −0.3 (3) | C16—C17—C22—C24 | 110.7 (3) |
C2—N1—C4—C5 | 100.1 (3) | C16—C21—C25—C26 | −105.2 (3) |
C2—N1—C4—C9 | −80.3 (3) | C16—C21—C25—C27 | 130.5 (3) |
C3—N2—C1—Au1 | 176.85 (18) | C17—C16—C21—C20 | −0.4 (4) |
C3—N2—C1—N1 | 0.2 (3) | C17—C16—C21—C25 | 178.1 (2) |
C3—N2—C16—C17 | 84.8 (3) | C17—C18—C19—C20 | −0.4 (4) |
C3—N2—C16—C21 | −92.9 (3) | C18—C17—C22—C23 | 56.1 (4) |
C4—N1—C1—Au1 | 5.0 (4) | C18—C17—C22—C24 | −69.2 (4) |
C4—N1—C1—N2 | −178.2 (2) | C18—C19—C20—C21 | 0.4 (4) |
C4—N1—C2—C3 | 178.1 (2) | C19—C20—C21—C16 | 0.0 (4) |
C4—C5—C6—C7 | 0.3 (4) | C19—C20—C21—C25 | −178.5 (2) |
C4—C5—C10—C11 | 141.9 (3) | C20—C21—C25—C26 | 73.2 (3) |
C4—C5—C10—C12 | −94.5 (3) | C20—C21—C25—C27 | −51.1 (3) |
C4—C9—C13—C14 | 130.3 (3) | C21—C16—C17—C18 | 0.4 (4) |
C4—C9—C13—C15 | −104.1 (3) | C21—C16—C17—C22 | −179.4 (2) |
C5—C4—C9—C8 | 1.1 (4) | C22—C17—C18—C19 | 179.8 (3) |
C5—C4—C9—C13 | 179.0 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O1i | 0.94 (3) | 2.25 (3) | 3.127 (3) | 155 (2) |
Symmetry code: (i) x, y+1, z. |
Acknowledgements
AB gratefully acknowledges financial support from Towson University through research grants from the Fisher College of Science and Mathematics (FCSM).
Funding information
Funding for this research was provided by: National Science Foundation (grant No. 0923051).
References
Baker, M. V., Barnard, P. J., Brayshaw, S. K., Hickey, J. L., Skelton, B. W. & White, A. H. (2005). Dalton Trans. pp. 37–43. Web of Science CSD CrossRef Google Scholar
Baron, M., Tubaro, C., Cairoli, M. L. C., Orian, L., Bogialli, S., Basato, M., Natile, M. M. & Graiff, C. (2017). Organometallics, 36, 2285–2292. CSD CrossRef CAS Google Scholar
Bosman, W. P., Bos, W., Smits, J. M. M., Beurskens, P. T., Bour, J. J. & Steggerda, J. J. (1986). Inorg. Chem. 25, 2093–2096. CSD CrossRef CAS Google Scholar
Bruker (2016). APEX3, SAINT, XCIF and XPREP. Bruker AXS, Inc., Madison, Wisconsin, USA. Google Scholar
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. Web of Science CrossRef CAS IUCr Journals Google Scholar
Collado, A., Nelson, D. J. & Nolan, S. P. (2021). Chem. Rev. 121, 8559–8612. CrossRef CAS PubMed Google Scholar
Dada, O., Curran, D., O'Beirne, C., Müller-Bunz, H., Zhu, X. & Tacke, M. (2017). J. Organomet. Chem. 840, 30–37. Web of Science CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hopkinson, M. N., Richter, C., Schedler, M. & Glorius, F. (2014). Nature, 510, 485–496. Web of Science CrossRef CAS PubMed Google Scholar
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. Web of Science CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Pyykkö, P. (1997). Chem. Rev. 97, 597–636. CrossRef PubMed Web of Science Google Scholar
Pyykkö, P. (2004). Angew. Chem. Int. Ed. 43, 4412–4456. Google Scholar
Romanov, A. S., Becker, C. R., James, C. E., Di, D., Credgington, D., Linnolahti, M. & Bochmann, M. (2017). Chem. Eur. J. 23, 4625–4637. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.