research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of 2-({5-[(naphthalen-1-yl)meth­yl]-4-phenyl-4H-1,2,4-triazol-3-yl}sulfan­yl)-1-(4-nitro­phen­yl)ethanone

crossmark logo

aGraduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi, Vietnam, bInstitute of Chemical Technology, Vietnam Academy of Science and Technology, 1A Thanh Loc 29 Street, District 12, Ho Chi Minh City, Vietnam, cFaculty of Chemistry, Ho Chi Minh City University of Education, 280 An Duong Vuong Street, District No. 5, Ho Chi Minh City, Vietnam, dHau Nghia High School, 825 Street Section A, Duc Hoa District, Long An Province, Vietnam, and eDepartment of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium
*Correspondence e-mail: congnt@hcmue.edu.vn, Luc.VanMeervelt@kuleuven.be

Edited by A. S. Batsanov, University of Durham, United Kingdom (Received 29 November 2023; accepted 23 January 2024; online 26 January 2024)

The title compound, C27H20N4O3S, crystallizes in the monoclinic system, space group P21/n, with Z = 4. The global shape of the mol­ecule is determined by the orientation of the substituents on the central 4H-1,2,4-triazole ring. The nitro­phenyl ring, phenyl ring, and naphthalene ring system are oriented at dihedral angles of 82.95 (17), 77.14 (18) and 89.46 (15)°, respectively, with respect to the triazole ring. The crystal packing features chain formation in the b-axis direction by S⋯O inter­actions. A Hirshfeld surface analysis indicates that the highest contributions to surface contacts arise from contacts in which H atoms are involved.

1. Chemical context

Heterocyclic compounds featuring triazole ring systems, particularly 1,2,4-triazole, have gained significant attention in synthetic chemistry due to their versatile applications in medicinal, bioorganic, and industrial contexts. The unique 1,2,4-triazole structure is evident in modern drugs such as fluconazole, voriconazole, itraconazole (anti­fungals), alprazolam (anti-convulsant), and ribavirin (anti­viral) (Amjad et al., 2023[Amjad, H., Abbasi, M. A., Siddiqui, S. Z., Iqbal, J., Rasool, S., Ashraf, M., Hussain, S., Shah, S. A. A., Imran, S., Shahid, M., Rasool, A., Rehman, M. T. & Rehman, A. U. (2023). J. Mol. Struct. 1275, 134720.]). Furthermore, derivatives incorporating the 1,2,4-triazole moiety are acknowledged for a range of biological activities, including anti­bacterial (Chen et al., 2000[Chen, M., Lu, S., Yuan, G., Yang, S. & Du, X. (2000). Heterocycl. Commun. 6, 421-426.]), anti­spasmodic (Balabadra et al., 2017[Balabadra, S., Kotni, M. K., Manga, V., Allanki, A. D., Prasad, R. & Sijwali, P. S. (2017). Bioorg. Med. Chem. 25, 221-232.]), anti­diabetic (Wang et al., 2017[Wang, G., Peng, Z., Wang, J., Li, X. & Li, J. (2017). Eur. J. Med. Chem. 125, 423-429.]; Jabeen et al., 2014[Jabeen, F., Oliferenko, P. V., Oliferenko, A. A., Pillai, G. G., Ansari, F. L., Hall, C. D. & Katritzky, A. R. (2014). Eur. J. Med. Chem. 80, 228-242.]), anti­malarial (Gujjar et al., 2009[Gujjar, R., Marwaha, A., El Mazouni, F., White, J., White, K. L., Creason, S., Shackleford, D. M., Baldwin, J., Charman, W. N., Buckner, F. S., Charman, S., Rathod, P. K. & Phillips, M. A. (2009). J. Med. Chem. 52, 1864-1872.]), anti­viral (Al-Soud et al., 2004[Al-Soud, Y. A., Al-Dweri, M. N. & Al-Masoudi, N. A. (2004). Farmaco, 59, 775-783.]), and anti­fungal (Lass-Flörl, 2011[Lass-Flörl, C. (2011). Drugs, 71, 2405-2419.]) properties. Some compounds derived from 1,2,4-triazole also demonstrate moderate to substantial effects as anti­proliferative (Masood-ur-Rahman et al., 2017[Masood-ur-Rahman, Mohammad, Y., Fazili, K. M., Bhat, K. A. & Ara, T. (2017). Steroids, 118, 1-8.]), anti­oxidant (Karrouchi et al., 2016[Karrouchi, K., Chemlal, L., Taoufik, J., Cherrah, Y., Radi, S., El Abbes Faouzi, M. & Ansar, M. (2016). Ann. Pharm. Fr. 74, 431-438.]), and anti­cancer agents (Huang et al., 2017[Huang, M., Deng, Z., Tian, J. & Liu, T. (2017). Eur. J. Med. Chem. 127, 900-908.]).

In addition to their bioactivities, naphthalene derivatives are recognized for their anti­microbial, anti­cancer (Salahuddin et al., 2014[Salahuddin, Shaharyar, M., Mazumder, A. & Ahsan, M. J. (2014). Arab. J. Chem. 7, 418-424.]), anti-inflammatory (Kaushik et al., 2012[Kaushik, D., Kumar, R., Khan, S. A. & Chawla, G. (2012). Med. Chem. Res. 21, 3646-3655.]), and anti-depressant (Kumar et al., 2018[Kumar, J. K., Narala, S. G. & Narsaiah, A. V. (2018). Org. Med. Chem. Int. J. 7, 555715.]) properties. Given the diverse bioactivities associated with both 1,2,4-triazole and naphthalene, we embarked on synthesizing a compound containing both moieties through the SN2 reaction. Herein we report the crystal structure and Hirshfeld surface analysis of the title compound, C27H20N4O3S, obtained during our efforts to synthesize new compounds that contain a 4-phenyl-4H-1,2,4-triazole unit.

[Scheme 1]

2. Structural commentary

The title compound crystallizes in the monoclinic space group P21/n with one mol­ecule in the asymmetric unit (Fig. 1[link]). The central 1,2,4-triazole ring is planar (r.m.s. deviation = 0.002 Å). The three other aromatic rings are oriented almost perpendicular to the plane of the central 1,2,4-triazole ring. The dihedral angles between the 1,2,4-triazole ring and phenyl ring C19–C24, naphthalene moiety C26–C35, and phenyl ring C10–C15 are 77.14 (18), 89.46 (15) and 82.95 (17)°, respectively. The substituent at C3, –SCH2C(=O)-nitro­phenyl, is almost planar [r.m.s. deviation = 0.117 Å, largest deviation is 0.301 (1) Å for S6].

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, with atom labels and displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small circles of arbitrary radii.

3. Supra­molecular features

The crystal packing of the title compound is characterized by S⋯O inter­actions between neighboring mol­ecules [O9⋯S6i = 3.115 (3) Å; S6⋯O9ii = 3.115 (3) Å; symmetry codes: (i) −x + [{3\over 2}], y + [{1\over 2}], −z + [{3\over 2}]; (ii) −x + [{3\over 2}], y − [{1\over 2}], −z + [{3\over 2}]], resulting in the formation of chains with a C(4) graph-set motif running in the b-axis direction (Fig. 2[link]). No classical hydrogen bonds are observed. Despite the presence of multiple aromatic rings, the packing shows no strong ππ or C—H⋯π inter­actions. The shortest distance between aromatic rings is observed for rings C10–C15 and C27–C32, resulting in the formation of inversion dimers. The centroid–centroid distance is 4.105 (2) Å, the dihedral angle between the planes is 6.39 (18)°, and the slippage is 1.708 Å (Fig. 3[link]).

[Figure 2]
Figure 2
Partial crystal packing of the title compound, showing the chain formation in the b-axis direction. S⋯O inter­actions are shown as orange dashed lines. Symmetry codes: (i) −x + [{3\over 2}], y + [{1\over 2}], −z + [{3\over 2}]; (ii) −x + [{3\over 2}], y − [{1\over 2}], −z + [{3\over 2}]; (iii) x, y − 1, z; (iv) −x + [{3\over 2}], y − [{3\over 2}], −z + [{3\over 2}].
[Figure 3]
Figure 3
Partial crystal packing of the title compound, showing the ππ stacking. Cg1 and Cg2 are the centroids of rings C10–C15 and C27–C32, respectively. Symmetry code: (i) −x + 1, −y + 1, −z + 1.

To visualize the inter­molecular inter­actions in the crystal packing in more detail, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]) was carried out with Crystal Explorer 21.3 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). In the HS plotted over dnorm (Fig. 4[link]), a number of short contacts (shorter than the sum of the van der Waals' radii) are visible as red spots. Further details are given in Table 1[link].

Table 1
Selected interatomic distances (Å)

N2⋯H15i 2.69 O9⋯H7Aiv 2.61
S6⋯H24ii 2.91 O17⋯H23v 2.61
S6⋯O9iii 3.155 (3) O18⋯H22vi 2.61
Symmetry codes: (i) [x, y+1, z]; (ii) [x, y-1, z]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (vi) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 4]
Figure 4
Views of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range −0.1286 to 1.6073 a.u.

The overall two-dimensional fingerprint plot, Fig. 5[link]a, and those delineated into H⋯H, H⋯O/ O⋯H, H⋯C/C⋯H, H⋯N/N⋯H and C⋯C contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814-3816.]) are illustrated in Fig. 5[link]bf, respectively, together with their relative contributions to the Hirshfeld surface. The pairs of spikes with tips at de + di = 2.55 Å in Fig. 5[link]c and Fig. 5[link]e indicate weak hydrogen-bonding inter­actions. The most significant contributions to the Hirshfeld surface are H⋯H (39.7%), H⋯O/O⋯H (18.6%), H⋯C/C⋯H (18.2%), and H⋯N/N⋯H (9.4%), indicating that the highest contributions arise from contacts in which H atoms are involved. Except for C⋯C (4.5%), the other contributions are less than 2.0%.

[Figure 5]
Figure 5
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯O/O⋯H, (d) H⋯C/ C⋯H, (e) H⋯N/N⋯H, and (f) C⋯C inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.44, update of September 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 4-phenyl-4H-1,2,4-triazol-3-yl­thio fragment resulted in 70 hits (for refcodes, see supporting information). All 1,2,4-triazole rings are planar (maximum deviation from planarity is 0.010 Å), with the sulfur atom being nearly in the same plane (maximum deviation of 0.163 Å). The dihedral angle between the best planes through the triazole and phenyl ring shows a roughly uniform distribution between 52 and 90°. For the title compound this angle is 77.14 (18)°.

YIBXIU, YIBXEQ and YIBXAM (Le et al., 2023[Le, T. D., Nguyen, T. C., Bui, T. M. N., Hoang, T. K. D., Vu, Q. T., Pham, C. T., Dinh, C. P., Alhaji, J. A. & Van Meervelt, L. (2023). J. Mol. Struct. 1284, 135321.]) are the closest analogues of the title compound, instead of the nitro­phenyl group containing C(=O)NHR, where R = Ph, p-C6H4-NO2 and p-tolyl, respectively. The dihedral angles between the triazole ring and its phenyl substituent are 79.96 (15)° for YIBXIU, 66.63 (16), 64.66 (15) and 69.64 (17)° for YIBXEQ (Z′ = 3), and 58.29 (9)° for YIBXAM. The packing here is determined by N—H⋯N hydrogen bonds between the amide N—H and one of the triazole nitro­gen atoms.

5. Synthesis and crystallization

The reaction scheme for the synthesis of the title compound is illustrated in Fig. 6[link].

[Figure 6]
Figure 6
Reaction scheme for the synthesis of the title compound. Compound 1 was identified as the thione by X-ray crystallography, although IR spectra indicate coexistence of the thione and thiol forms in solution (Le et al., 2023[Le, T. D., Nguyen, T. C., Bui, T. M. N., Hoang, T. K. D., Vu, Q. T., Pham, C. T., Dinh, C. P., Alhaji, J. A. & Van Meervelt, L. (2023). J. Mol. Struct. 1284, 135321.]).

5-(Naphthalen-1-ylmeth­yl)-4-phenyl-4H-1,2,4-triazole-3-thiol/thione 1 was synthesized through a three-step process as described by Le et al. (2023[Le, T. D., Nguyen, T. C., Bui, T. M. N., Hoang, T. K. D., Vu, Q. T., Pham, C. T., Dinh, C. P., Alhaji, J. A. & Van Meervelt, L. (2023). J. Mol. Struct. 1284, 135321.]). 1.0 mmol of compound 1 (0.317 g) was dissolved in ethanol along with 1.0 mmol of 2-bromo-1-(4-nitro­phen­yl)ethanone 2 (0.243 g) and 1.0 mmol of sodium acetate (0.082 g). The reaction mixture was refluxed for 5 h, and upon cooling, it was poured into ice–water. The resulting solid was filtered off and recrystallized from a 1:1 mixture of ethanol and water to give the title compound 3 as plate-like yellow crystals (yield: 76.8%, m.p: 454.5 K).

The IR spectrum for the title compound was recorded using a Shimadzu FT-IR Affinity-1S spectrometer. 1H-NMR (500 MHz) and 13C-NMR (125 MHz) spectra were obtained utilizing a Bruker Advance spectrometer, with DMSO-d6 serving as the inter­nal standard and solvent. Mass spectra were generated using a Bruker microTOF-Q 10187 instrument. IR (ν, cm−1): 3111, 3048 (C-H aromatic), 2962, 2911 (C—H aliphatic), 1697 (C=O), 1599, 1518 (C=C, C=N). 1H-NMR (δ, ppm): 8.35 (2H, d, J = 9.0 Hz, Ar-H), 8.21 (2H, d, J = 9.0 Hz, Ar-H), 7.99 (1H, m, Ar-H), 7.89 (1H, m, Ar-H), 7.76 (1H, d, J = 8.5 Hz, Ar-H), 7.48 (5H, m, Ar-H), 7.32 (2H, dd, J1 = 7.5 Hz, J2 = 1.5 Hz, Ar-H), 7.25 (1H, t, J1 = J2 = 7.5 Hz, Ar-H), 6.85 (1H, d, J = 7.0 Hz, Ar-H), 4.88 (2H, s, CH2), 4.43 (2H, s, –S—CH2—CO–). 13C-NMR (δ, ppm): 193.2 (C=O), 154.8, 150.6 (C=N), 150.0, 140.5, 133.7, 133.3, 132.0, 131.7, 130.5, 130.4, 130.3, 128.9, 127.9, 127.7, 127.4, 126.6, 126.2, 125.7, 124.3, 124.3 (CAr), 39.4, 29.1 (–CH2–). HR-ESI-MS m/z 481.1325 (M + H)+ calculated for (C27H20N4O3S+H)+ 481.1334.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms bound to carbon were placed at idealized positions and refined in riding mode, with Uiso(H) values assigned as 1.2Ueq of the parent atoms, with C—H distances of 0.93 (aromatic) and 0.97 Å (CH2).

Table 2
Experimental details

Crystal data
Chemical formula C27H20N4O3S
Mr 480.53
Crystal system, space group Monoclinic, P21/n
Temperature (K) 294
a, b, c (Å) 18.1825 (8), 5.6191 (3), 23.0548 (12)
β (°) 94.760 (4)
V3) 2347.4 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.18
Crystal size (mm) 0.5 × 0.3 × 0.05
 
Data collection
Diffractometer SuperNova, Single source at offset/far, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.683, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 24984, 4768, 2795
Rint 0.049
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.153, 1.02
No. of reflections 4768
No. of parameters 316
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.20, −0.20
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/4 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

2-({5-[(Naphthalen-1-yl)methyl]-4-phenyl-4H-1,2,4-triazol-3-yl}sulfanyl)-1-(4-nitrophenyl)ethanone top
Crystal data top
C27H20N4O3SF(000) = 1000
Mr = 480.53Dx = 1.360 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 18.1825 (8) ÅCell parameters from 4787 reflections
b = 5.6191 (3) Åθ = 3.0–23.2°
c = 23.0548 (12) ŵ = 0.18 mm1
β = 94.760 (4)°T = 294 K
V = 2347.4 (2) Å3Plate, yellow
Z = 40.5 × 0.3 × 0.05 mm
Data collection top
SuperNova, Single source at offset/far, Eos
diffractometer
4768 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source2795 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.049
Detector resolution: 15.9631 pixels mm-1θmax = 26.4°, θmin = 2.8°
ω scansh = 2222
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
k = 77
Tmin = 0.683, Tmax = 1.000l = 2828
24984 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.153 w = 1/[σ2(Fo2) + (0.0399P)2 + 1.5719P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
4768 reflectionsΔρmax = 0.20 e Å3
316 parametersΔρmin = 0.20 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.57186 (16)0.9491 (5)0.59782 (12)0.0701 (8)
N20.62360 (14)0.7920 (5)0.62483 (11)0.0651 (7)
C30.60265 (15)0.7508 (5)0.67682 (13)0.0534 (7)
N40.53984 (13)0.8750 (4)0.68568 (10)0.0527 (6)
C50.52295 (17)0.9964 (6)0.63464 (14)0.0605 (8)
S60.64414 (4)0.55907 (15)0.72948 (3)0.0593 (3)
C70.69380 (15)0.3774 (5)0.68159 (13)0.0571 (8)
H7A0.7060460.2275220.7009060.068*
H7B0.6615050.3424710.6470240.068*
C80.76415 (16)0.4880 (6)0.66303 (13)0.0555 (8)
O90.79194 (12)0.6603 (5)0.68704 (10)0.0818 (7)
C100.79924 (15)0.3730 (5)0.61390 (12)0.0531 (7)
C110.85963 (17)0.4841 (7)0.59308 (15)0.0765 (11)
H110.8769880.6259640.6098820.092*
C120.89440 (19)0.3871 (7)0.54770 (16)0.0820 (11)
H120.9351300.4617870.5339130.098*
C130.86830 (18)0.1820 (6)0.52371 (14)0.0663 (9)
C140.8089 (2)0.0679 (7)0.54266 (17)0.0886 (12)
H140.7917350.0728740.5251790.106*
C150.77436 (19)0.1651 (6)0.58847 (16)0.0764 (10)
H150.7338780.0882440.6020560.092*
N160.9043 (2)0.0796 (7)0.47416 (14)0.0916 (10)
O170.95542 (19)0.1861 (6)0.45607 (13)0.1240 (12)
O180.8816 (2)0.1084 (7)0.45487 (16)0.1493 (15)
C190.50227 (15)0.8822 (5)0.73849 (13)0.0550 (8)
C200.4582 (2)0.6984 (7)0.75256 (19)0.0946 (13)
H200.4517600.5666550.7282470.113*
C210.4229 (2)0.7105 (8)0.8039 (2)0.1094 (16)
H210.3928740.5857000.8140410.131*
C220.4320 (2)0.9020 (9)0.83889 (19)0.0945 (14)
H220.4079070.9093480.8728990.113*
C230.4757 (2)1.0827 (8)0.82495 (16)0.0903 (12)
H230.4815571.2147690.8492150.108*
C240.51190 (18)1.0725 (6)0.77459 (14)0.0699 (9)
H240.5428981.1962050.7654340.084*
C250.45516 (19)1.1441 (6)0.62194 (16)0.0765 (10)
H25A0.4551591.2084740.5829030.092*
H25B0.4564911.2769130.6488840.092*
C260.38421 (19)1.0048 (7)0.62678 (17)0.0763 (10)
C270.36527 (18)0.8164 (7)0.58735 (16)0.0713 (10)
C280.4067 (2)0.7616 (7)0.53924 (15)0.0756 (10)
H280.4476000.8536100.5324650.091*
C290.3874 (2)0.5778 (8)0.50327 (18)0.0909 (12)
H290.4150210.5467660.4719550.109*
C300.3276 (3)0.4357 (9)0.5121 (2)0.1076 (15)
H300.3159730.3082410.4872310.129*
C310.2858 (2)0.4807 (9)0.5566 (2)0.1062 (15)
H310.2456280.3831580.5620480.127*
C320.3021 (2)0.6746 (8)0.59533 (19)0.0860 (12)
C330.2589 (2)0.7287 (11)0.6415 (2)0.1214 (18)
H330.2176500.6364140.6470930.146*
C340.2766 (3)0.9150 (12)0.6784 (2)0.1254 (19)
H340.2470570.9503570.7082630.150*
C350.3398 (2)1.0526 (8)0.67080 (19)0.1007 (14)
H350.3517041.1783440.6960660.121*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0745 (18)0.0761 (19)0.0607 (17)0.0024 (16)0.0113 (15)0.0115 (15)
N20.0626 (16)0.0795 (19)0.0553 (16)0.0031 (15)0.0165 (13)0.0046 (14)
C30.0494 (17)0.0586 (19)0.0535 (18)0.0085 (15)0.0127 (14)0.0001 (14)
N40.0521 (14)0.0531 (15)0.0542 (15)0.0036 (12)0.0125 (12)0.0019 (12)
C50.062 (2)0.0560 (19)0.064 (2)0.0067 (16)0.0062 (17)0.0055 (16)
S60.0525 (5)0.0748 (6)0.0526 (5)0.0014 (4)0.0157 (4)0.0037 (4)
C70.0510 (17)0.0607 (19)0.0610 (19)0.0017 (15)0.0143 (14)0.0013 (15)
C80.0481 (17)0.065 (2)0.0541 (18)0.0066 (15)0.0090 (14)0.0035 (15)
O90.0672 (15)0.0969 (18)0.0843 (17)0.0281 (14)0.0252 (13)0.0330 (15)
C100.0468 (16)0.065 (2)0.0482 (17)0.0035 (15)0.0080 (13)0.0002 (14)
C110.059 (2)0.097 (3)0.076 (2)0.0258 (19)0.0246 (18)0.023 (2)
C120.063 (2)0.109 (3)0.077 (2)0.022 (2)0.0311 (19)0.011 (2)
C130.070 (2)0.078 (2)0.0533 (19)0.0016 (19)0.0205 (17)0.0011 (17)
C140.095 (3)0.084 (3)0.093 (3)0.023 (2)0.043 (2)0.032 (2)
C150.075 (2)0.072 (2)0.088 (3)0.0183 (19)0.038 (2)0.013 (2)
N160.100 (3)0.107 (3)0.074 (2)0.000 (2)0.0394 (19)0.011 (2)
O170.143 (3)0.138 (3)0.101 (2)0.012 (2)0.078 (2)0.0025 (19)
O180.163 (3)0.155 (3)0.142 (3)0.033 (3)0.081 (3)0.077 (3)
C190.0457 (16)0.0598 (19)0.0614 (19)0.0028 (15)0.0159 (14)0.0072 (15)
C200.093 (3)0.068 (2)0.132 (4)0.020 (2)0.058 (3)0.008 (2)
C210.096 (3)0.091 (3)0.151 (4)0.011 (3)0.071 (3)0.022 (3)
C220.082 (3)0.116 (4)0.091 (3)0.031 (3)0.043 (2)0.034 (3)
C230.096 (3)0.113 (3)0.065 (2)0.007 (3)0.027 (2)0.009 (2)
C240.070 (2)0.079 (2)0.063 (2)0.0109 (18)0.0183 (17)0.0015 (18)
C250.082 (2)0.064 (2)0.082 (3)0.007 (2)0.002 (2)0.0082 (19)
C260.064 (2)0.083 (3)0.081 (3)0.015 (2)0.000 (2)0.013 (2)
C270.061 (2)0.080 (3)0.070 (2)0.0061 (19)0.0075 (18)0.022 (2)
C280.075 (2)0.089 (3)0.062 (2)0.006 (2)0.0051 (19)0.015 (2)
C290.091 (3)0.107 (3)0.072 (3)0.016 (3)0.008 (2)0.011 (2)
C300.110 (4)0.120 (4)0.088 (3)0.019 (3)0.021 (3)0.007 (3)
C310.082 (3)0.123 (4)0.109 (4)0.033 (3)0.024 (3)0.025 (3)
C320.057 (2)0.115 (3)0.084 (3)0.004 (2)0.005 (2)0.026 (3)
C330.061 (3)0.179 (6)0.124 (4)0.008 (3)0.006 (3)0.029 (4)
C340.066 (3)0.195 (6)0.118 (4)0.021 (3)0.021 (3)0.002 (4)
C350.076 (3)0.124 (4)0.104 (3)0.029 (3)0.015 (2)0.009 (3)
Geometric parameters (Å, º) top
N1—N21.398 (4)C20—C211.394 (5)
N1—C51.307 (4)C21—H210.9300
N2—C31.308 (3)C21—C221.347 (6)
C3—N41.368 (3)C22—H220.9300
C3—S61.747 (3)C22—C231.345 (5)
N4—C51.373 (4)C23—H230.9300
N4—C191.445 (3)C23—C241.383 (4)
C5—C251.495 (4)C24—H240.9300
S6—C71.800 (3)C25—H25A0.9700
C7—H7A0.9700C25—H25B0.9700
C7—H7B0.9700C25—C261.521 (5)
C7—C81.515 (4)C26—C271.419 (5)
C8—O91.205 (3)C26—C351.375 (5)
C8—C101.492 (4)C27—C281.425 (5)
C10—C111.383 (4)C27—C321.423 (5)
C10—C151.367 (4)C28—H280.9300
C11—H110.9300C28—C291.352 (5)
C11—C121.379 (4)C29—H290.9300
C12—H120.9300C29—C301.377 (5)
C12—C131.347 (5)C30—H300.9300
C13—C141.359 (4)C30—C311.351 (6)
C13—N161.480 (4)C31—H310.9300
C14—H140.9300C31—C321.424 (6)
C14—C151.385 (4)C32—C331.407 (6)
C15—H150.9300C33—H330.9300
N16—O171.208 (4)C33—C341.370 (7)
N16—O181.206 (4)C34—H340.9300
C19—C201.363 (4)C34—C351.407 (6)
C19—C241.358 (4)C35—H350.9300
C20—H200.9300
N2···H15i2.69O9···H7Aiv2.61
S6···H24ii2.91O17···H23v2.61
S6···O9iii3.155 (3)O18···H22vi2.61
C5—N1—N2108.0 (3)C20—C21—H21119.8
C3—N2—N1106.5 (2)C22—C21—C20120.3 (4)
N2—C3—N4110.9 (3)C22—C21—H21119.8
N2—C3—S6127.2 (2)C21—C22—H22119.8
N4—C3—S6121.9 (2)C23—C22—C21120.4 (4)
C3—N4—C5104.8 (2)C23—C22—H22119.8
C3—N4—C19126.8 (2)C22—C23—H23120.0
C5—N4—C19128.3 (3)C22—C23—C24120.1 (4)
N1—C5—N4109.9 (3)C24—C23—H23120.0
N1—C5—C25125.5 (3)C19—C24—C23120.1 (3)
N4—C5—C25124.5 (3)C19—C24—H24120.0
C3—S6—C797.64 (14)C23—C24—H24120.0
S6—C7—H7A108.6C5—C25—H25A109.0
S6—C7—H7B108.6C5—C25—H25B109.0
H7A—C7—H7B107.6C5—C25—C26113.0 (3)
C8—C7—S6114.8 (2)H25A—C25—H25B107.8
C8—C7—H7A108.6C26—C25—H25A109.0
C8—C7—H7B108.6C26—C25—H25B109.0
O9—C8—C7122.1 (3)C27—C26—C25119.9 (3)
O9—C8—C10120.4 (3)C35—C26—C25120.5 (4)
C10—C8—C7117.5 (3)C35—C26—C27119.5 (4)
C11—C10—C8118.0 (3)C26—C27—C28123.0 (3)
C15—C10—C8123.2 (3)C26—C27—C32119.4 (4)
C15—C10—C11118.7 (3)C32—C27—C28117.7 (4)
C10—C11—H11119.6C27—C28—H28119.5
C12—C11—C10120.8 (3)C29—C28—C27121.0 (4)
C12—C11—H11119.6C29—C28—H28119.5
C11—C12—H12120.6C28—C29—H29119.3
C13—C12—C11118.8 (3)C28—C29—C30121.4 (4)
C13—C12—H12120.6C30—C29—H29119.3
C12—C13—C14122.3 (3)C29—C30—H30119.9
C12—C13—N16119.1 (3)C31—C30—C29120.3 (5)
C14—C13—N16118.6 (3)C31—C30—H30119.9
C13—C14—H14120.6C30—C31—H31119.4
C13—C14—C15118.8 (3)C30—C31—C32121.3 (4)
C15—C14—H14120.6C32—C31—H31119.4
C10—C15—C14120.6 (3)C27—C32—C31118.4 (4)
C10—C15—H15119.7C33—C32—C27118.9 (5)
C14—C15—H15119.7C33—C32—C31122.7 (5)
O17—N16—C13118.4 (4)C32—C33—H33119.4
O18—N16—C13117.7 (3)C34—C33—C32121.2 (5)
O18—N16—O17123.8 (4)C34—C33—H33119.4
C20—C19—N4120.5 (3)C33—C34—H34120.2
C24—C19—N4119.5 (3)C33—C34—C35119.7 (5)
C24—C19—C20120.0 (3)C35—C34—H34120.2
C19—C20—H20120.4C26—C35—C34121.3 (5)
C19—C20—C21119.1 (4)C26—C35—H35119.3
C21—C20—H20120.4C34—C35—H35119.3
N1—N2—C3—N40.6 (3)C12—C13—N16—O171.3 (6)
N1—N2—C3—S6177.5 (2)C12—C13—N16—O18177.3 (4)
N1—C5—C25—C26117.2 (4)C13—C14—C15—C100.5 (6)
N2—N1—C5—N40.3 (4)C14—C13—N16—O17177.3 (4)
N2—N1—C5—C25175.6 (3)C14—C13—N16—O184.0 (6)
N2—C3—N4—C50.4 (3)C15—C10—C11—C120.3 (5)
N2—C3—N4—C19177.2 (3)N16—C13—C14—C15179.0 (4)
N2—C3—S6—C720.3 (3)C19—N4—C5—N1177.5 (3)
C3—N4—C5—N10.0 (3)C19—N4—C5—C257.1 (5)
C3—N4—C5—C25175.3 (3)C19—C20—C21—C220.3 (7)
C3—N4—C19—C2078.3 (4)C20—C19—C24—C231.5 (5)
C3—N4—C19—C24100.9 (4)C20—C21—C22—C230.5 (7)
C3—S6—C7—C878.5 (2)C21—C22—C23—C240.3 (7)
N4—C3—S6—C7157.6 (2)C22—C23—C24—C191.3 (6)
N4—C5—C25—C2657.4 (4)C24—C19—C20—C210.7 (6)
N4—C19—C20—C21179.8 (4)C25—C26—C27—C285.6 (5)
N4—C19—C24—C23179.3 (3)C25—C26—C27—C32174.7 (3)
C5—N1—N2—C30.5 (3)C25—C26—C35—C34175.6 (4)
C5—N4—C19—C20104.7 (4)C26—C27—C28—C29178.9 (3)
C5—N4—C19—C2476.1 (4)C26—C27—C32—C31177.6 (3)
C5—C25—C26—C2765.5 (4)C26—C27—C32—C331.5 (5)
C5—C25—C26—C35111.5 (4)C27—C26—C35—C341.4 (6)
S6—C3—N4—C5177.8 (2)C27—C28—C29—C300.6 (6)
S6—C3—N4—C194.6 (4)C27—C32—C33—C340.3 (7)
S6—C7—C8—O913.8 (4)C28—C27—C32—C312.7 (5)
S6—C7—C8—C10167.1 (2)C28—C27—C32—C33178.2 (4)
C7—C8—C10—C11174.3 (3)C28—C29—C30—C311.3 (7)
C7—C8—C10—C155.3 (5)C29—C30—C31—C320.1 (7)
C8—C10—C11—C12179.9 (3)C30—C31—C32—C272.1 (6)
C8—C10—C15—C14179.5 (3)C30—C31—C32—C33178.9 (4)
O9—C8—C10—C116.6 (5)C31—C32—C33—C34179.3 (4)
O9—C8—C10—C15173.8 (3)C32—C27—C28—C291.4 (5)
C10—C11—C12—C130.3 (6)C32—C33—C34—C351.2 (8)
C11—C10—C15—C140.1 (5)C33—C34—C35—C260.3 (7)
C11—C12—C13—C140.1 (6)C35—C26—C27—C28177.4 (3)
C11—C12—C13—N16178.6 (3)C35—C26—C27—C322.3 (5)
C12—C13—C14—C150.5 (6)
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x+3/2, y1/2, z+3/2; (iv) x+3/2, y+1/2, z+3/2; (v) x+1/2, y+3/2, z1/2; (vi) x+1/2, y+1/2, z1/2.
 

Funding information

LVM thanks the Hercules Foundation for supporting the purchase of the diffractometer through project AKUL/09/0035.

References

First citationAl-Soud, Y. A., Al-Dweri, M. N. & Al-Masoudi, N. A. (2004). Farmaco, 59, 775–783.  CrossRef PubMed CAS Google Scholar
First citationAmjad, H., Abbasi, M. A., Siddiqui, S. Z., Iqbal, J., Rasool, S., Ashraf, M., Hussain, S., Shah, S. A. A., Imran, S., Shahid, M., Rasool, A., Rehman, M. T. & Rehman, A. U. (2023). J. Mol. Struct. 1275, 134720.  CrossRef Google Scholar
First citationBalabadra, S., Kotni, M. K., Manga, V., Allanki, A. D., Prasad, R. & Sijwali, P. S. (2017). Bioorg. Med. Chem. 25, 221–232.  CSD CrossRef CAS PubMed Google Scholar
First citationChen, M., Lu, S., Yuan, G., Yang, S. & Du, X. (2000). Heterocycl. Commun. 6, 421–426.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGujjar, R., Marwaha, A., El Mazouni, F., White, J., White, K. L., Creason, S., Shackleford, D. M., Baldwin, J., Charman, W. N., Buckner, F. S., Charman, S., Rathod, P. K. & Phillips, M. A. (2009). J. Med. Chem. 52, 1864–1872.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationHuang, M., Deng, Z., Tian, J. & Liu, T. (2017). Eur. J. Med. Chem. 127, 900–908.  CrossRef CAS PubMed Google Scholar
First citationJabeen, F., Oliferenko, P. V., Oliferenko, A. A., Pillai, G. G., Ansari, F. L., Hall, C. D. & Katritzky, A. R. (2014). Eur. J. Med. Chem. 80, 228–242.  CrossRef CAS PubMed Google Scholar
First citationKarrouchi, K., Chemlal, L., Taoufik, J., Cherrah, Y., Radi, S., El Abbes Faouzi, M. & Ansar, M. (2016). Ann. Pharm. Fr. 74, 431–438.  CrossRef CAS PubMed Google Scholar
First citationKaushik, D., Kumar, R., Khan, S. A. & Chawla, G. (2012). Med. Chem. Res. 21, 3646–3655.  CrossRef CAS Google Scholar
First citationKumar, J. K., Narala, S. G. & Narsaiah, A. V. (2018). Org. Med. Chem. Int. J. 7, 555715.  Google Scholar
First citationLass-Flörl, C. (2011). Drugs, 71, 2405–2419.  PubMed Google Scholar
First citationLe, T. D., Nguyen, T. C., Bui, T. M. N., Hoang, T. K. D., Vu, Q. T., Pham, C. T., Dinh, C. P., Alhaji, J. A. & Van Meervelt, L. (2023). J. Mol. Struct. 1284, 135321.  CSD CrossRef Google Scholar
First citationMasood-ur-Rahman, Mohammad, Y., Fazili, K. M., Bhat, K. A. & Ara, T. (2017). Steroids, 118, 1–8.  CAS PubMed Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816.  Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSalahuddin, Shaharyar, M., Mazumder, A. & Ahsan, M. J. (2014). Arab. J. Chem. 7, 418–424.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, G., Peng, Z., Wang, J., Li, X. & Li, J. (2017). Eur. J. Med. Chem. 125, 423–429.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds