research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of sulfonamide protected bicyclic guanidines: (S)-8-{[(tert-butyl­di­methyl­sil­yl)­­oxy]meth­yl}-1-[(2,2,4,6,7-penta­methyl-2,3-di­hydro­benzo­furan-5-yl)sulfon­yl]-1,3,4,6,7,8-hexa­hydro-2H-pyrimido[1,2-a]pyrimidin-1-ium tri­fluoro­methane­sulfonate and (S)-8-(iodo­meth­yl)-1-tosyl-1,3,4,6,7,8-hexa­hydro-2H-pyrimido[1,2-a]pyrimidin-1-ium iodide

crossmark logo

aSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
*Correspondence e-mail: redmanje@cardiff.ac.uk

Edited by G. Diaz de Delgado, Universidad de Los Andes Mérida, Venezuela (Received 11 August 2023; accepted 1 February 2024; online 20 February 2024)

Two compounds, (S)-8-{[(tert-butyl­dimethyl­sil­yl)­oxy]meth­yl}-1-[(2,2,4,6,7-penta­methyl-2,3-di­hydro­benzo­furan-5-yl)sulfon­yl]-1,3,4,6,7,8-hexa­hydro-2H-pyrimido[1,2-a]pyrimidin-1-ium tri­fluoro­methane­sulfonate, C27H46N3O4SSi+·CF3O3S, (1) and (S)-8-(iodo­meth­yl)-1-tosyl-1,3,4,6,7,8-hexa­hydro-2H-pyrimido[1,2-a]pyrimidin-1-ium iodide, C15H21IN3O2S+·I, (2), have been synthesized and characterized. They are bicyclic guanidinium salts and were synthesized from N-(tert-but­oxy­carbon­yl)-L-me­thio­nine (Boc-L-Met-OH). The guanidine is protected by a 2,2,4,6,7-penta­methyl­dihydro­benzo­furan-5-sulfonyl (Pbf, 1) or a tosyl (2) group. In the crystals of both compounds, the guanidinium group is almost planar and the N–H forms an intra­molecular hydrogen bond in a six-membered ring to the oxygen atom of the sulfonamide protecting group.

1. Chemical context

Cyclic guanidines have been observed as a structural motif in alkaloid natural products and been extensively explored as organocatalysts, ligands and receptors, among other applications (Chou et al., 2019[Chou, H.-C., Leow, D. & Tan, C.-H. (2019). Chem. Asian J. 14, 3803-3822.]; Dong et al., 2018[Dong, S., Feng, X. & Liu, X. (2018). Chem. Soc. Rev. 47, 8525-8540.]; Lemrová & Soural, 2015[Lemrová, B. & Soural, M. (2015). Eur. J. Org. Chem. pp. 1869-1886.]; Selig, 2013[Selig, P. (2013). Synthesis, 45, 0703-0718.]; Fu & Tan, 2011[Fu, X. & Tan, C.-H. (2011). Chem. Commun. 47, 8210-8222.]; Coles, 2009[Coles, M. P. (2009). Chem. Commun. 3659-3676.]; Leow & Tan, 2009[Leow, D. & Tan, C.-H. (2009). Chem. Asian J. 4, 488-507.]; Best et al., 2003[Best, M. D., Tobey, S. L. & Anslyn, E. V. (2003). Coord. Chem. Rev. 240, 3-15.]). We have prepared sulfonamide-protected bicyclic guanidine derivatives 1 and 2 with a view towards incorporating the bicyclic guanidine moiety into synthetic peptides as torsionally constrained mimics of arginine.

[Scheme 1]

2. Structural commentary

The mol­ecular structures of 1 and 2 are shown in Figs. 1[link] and 2[link], respectively. The guanidine group is protonated in both cases and the central carbon (C1) adopts an essentially planar geometry with N—C—N bond angles close to 120°. The C1—N1 bond lengths of 1.323 (4) and 1.328 (6) Å (in 1 and 2, respectively) are slightly shorter than the C1—N3 bond lengths of 1.380 (4) and 1.400 (7) Å. The sulfonamide group adopts a conformation that allows the formation of an intra­molecular NH⋯OS hydrogen bond (Figs. 1[link] and 2[link], Tables 1[link] and 2[link]). A second less optimal intra­molecular N—H⋯O contact to the oxygen of the sil­oxy group is observed in compound 1. The alkyl substituent on the six-membered ring lies in an equatorial-like conformation where the chiral centre originates from the starting material (Boc-L-Met-OH) used in the synthesis.

Table 1
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.88 2.36 2.712 (4) 104
N1—H1⋯O2 0.88 2.07 2.700 (4) 127
C3—H3B⋯O7i 0.99 2.36 3.229 (5) 146
C5—H5B⋯F1ii 0.99 2.43 3.239 (6) 139
C24—H24A⋯O4 0.98 2.42 2.877 (4) 108
C25—H25B⋯O2 0.98 2.21 3.022 (5) 139
C7—H7A⋯O5iii 0.99 2.60 3.433 (5) 142
C24—H24B⋯O6ii 0.98 2.53 3.462 (5) 159
Symmetry codes: (i) [x-1, y, z]; (ii) [-x+1, y-{\script{1\over 2}}, -z]; (iii) [-x+2, y-{\script{1\over 2}}, -z].

Table 2
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯I1 0.88 2.87 3.3359 (4) 115
N1—H1⋯O1 0.88 2.00 2.737 (5) 141
C7—H7A⋯O2 0.99 2.29 2.807 (8) 112
C14—H14⋯O1 0.95 2.57 2.934 (8) 103
C6—H6B⋯O1i 0.99 2.58 3.425 (8) 143
C7—H7A⋯O2ii 0.99 2.56 3.391 (8) 141
C10—H10⋯O2ii 0.95 2.49 3.441 (7) 174
Symmetry codes: (i) [x-1, y, z]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].
[Figure 1]
Figure 1
The mol­ecular structure of 1 with ellipsoids at the 50% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of 2 with ellipsoids at the 50% probability level.

3. Supra­molecular features

Compound 1 packs with the guanidinium groups and triflate counter-ions arranged in layers perpendicular to the c axis (Fig. 3[link]). These are inter­leaved with layers composed of the tert-butyl­dimethyl­silyl and 2,2,4,6,7-penta­methyl­dihydro­benzo­furan-5-sulfonyl (Pbf) protecting groups. Each triflate anion is surrounded by four cations, forming inter­actions with the C—H groups of the guanidinium as depicted in Fig. 4[link]. Additionally, weak C–H⋯F and C—H⋯O inter­actions also consolidate the structure (Table 1[link]).

[Figure 3]
Figure 3
View of the packing of 1 along the a axis.
[Figure 4]
Figure 4
View of the packing of 1 around the tri­fluoro­methane­sulfonate anion. The penta­methyl-2,3-di­hydro­benzo­furan groups have been hidden for clarity.

The mol­ecular packing of 2 is illustrated in Fig. 5[link]. The tosyl groups of adjacent mol­ecules pack against each other placing the centroids of the aromatic rings 5.301 (4) Å apart. The methyl group forms a C—H⋯π inter­action such that the methyl carbon C15 lies 3.597 (9) Å from the centroid of the adjacent aromatic ring. The other face of the ring forms an inter­molecular inter­action with the iodine atom I1 that lies 3.600 (3) Å from the ring centroid. Weak C—H⋯O inter­actions also help to hold the structure together (Table 2[link]).

[Figure 5]
Figure 5
View of the packing of 2 along the a axis.

4. Database survey

A search of the Cambridge Structural Database for sulfonyl guanidines revealed four related compounds. N,3-Diisopropyl-4-mesityl-1-[(4-methyl­phen­yl)sulfon­yl]imidazolidin-2-iminium tri­bromo­(methanol)zinc(II) methanol solvate (CSD refcode: FOFJIV; Craig II et al., 2014[Craig, R. A. II, O'Connor, N. R., Goldberg, A. F. G. & Stoltz, B. M. (2014). Chem. Eur. J. 20, 4806-4813.]) is a monocyclic guanidine bearing a tosyl group. This structure displays the same intra­molecular SO—HN hydrogen bond that is observed in 1 and 2. 3,4,6,7,8,9-Hexa­hydro-2H-pyrimido[1,2-a]pyrimidin-1-ium-1-sulfinate (CSD refcode: SOWPOM; Adenot et al., 2019[Adenot, A., von Wolff, N., Lefèvre, G., Berthet, J.-C., Thuéry, P. & Cantat, T. (2019). Chem. Eur. J. 25, 8118-8126.]) is a bicyclic guanidine–sulfur dioxide adduct that features a similar hydrogen bond. The guanidinium N to sulfonamide O distances in 1 and 2 are significantly shorter at 2.700 (4) and 2.737 (5) Å than the corresponding distances in related compounds that lack this intra­molecular inter­action. A neutral bicyclic tosyl­guanidine reported (CSD Refcode: WEWGAK) by Watanabe et al. (2023[Watanabe, T., Pisano, J., Mangione, C. & Madalengoitia, J. S. (2023). J. Org. Chem. 88, 2851-2868.]) places the sulfonamide oxygen 3.173 (5) Å from the guanidine nitro­gen. The hydrogen bond is also absent in N-(1,3-dibenzyl-1,3,4,4a,5,7a-hexa­hydro-2H-cyclo­penta­[d]pyrimidin-2-yl­idene)-2,2,5,7,8-penta­methyl­chro­mane-6-sulfonamide (CSD refcode: SIMSIS; Aranha Potter et al., 2013[Aranha Potter, R., Bowser, A. M., Yang, Y., Madalengoitia, J. S. & Ziller, J. W. (2013). J. Org. Chem. 78, 11772-11782.]) as the guanidinium group is fully alkyl­ated resulting in an N—O distance of 2.926 (3) Å.

5. Synthesis and crystallization

Compounds 1 and 2 were synthesized from Boc-L-Met-OH according to Figs. 6[link] and 7[link], respectively. Full synthetic procedures have been reported elsewhere (Alaboosh, 2017[Alaboosh, J. M. H. (2017). PhD thesis, Cardiff University, Cardiff, UK.]; Hill, 2012[Hill, S. (2012). PhD thesis, Cardiff University, Cardiff, UK.]). Single crystals of 1 were grown by vapour diffusion from an EtOH/H2O solution. Single crystals of 2 were grown by vapour diffusion from a MeCN/Et2O solution.

[Figure 6]
Figure 6
Synthetic scheme for 1.
[Figure 7]
Figure 7
Synthetic scheme for 2.

Spectroscopic data for compound 1:

1H NMR (400 MHz, CDCl3) δ 3.92–3.79 (m, 2H, SO2NCH2), 3.62–3.60 (m, 1H, OCHH), 3.33–3.28 (m, 1H, NCH), 3.12–2.99 (m, 4H, NCHCH2CH2, SO2NCH2CH2CH2), 2.83–2.80 (m, 1H, OCHH), 3.00 (s, 2H, furan-CH2), 2.52 (s, 3H, ArCH3), 2.48 (s, 3H, ArCH3), 2.13 (s, 3H, ArCH3), 2.06–1.93 (m, 3H, SO2NCH2CH2, NCHCH2), 1.46 [s, 6H, (CH3)2], 1.37–1.29 (m, 1H, NCHCHH), 0.85 (s, 9H, t-Bu), 0.01 [s, 6H, Si(CH3)2]. 13C NMR (100 MHz, CDCl3) δ 159.1 (ArC), 143.2 (ArC), 137.7 (ArC), 132.7 (ArC), 124.3 (ArC), 117.1 (ArC), 86.4 (C(CH3)2), 60.3 (CH2), 50.3 (CH), 48.3 (CH2), 47.7 (CH2), 43.2 (CH2), 42.1 (CH2), 40.3 (CH2), 28.5 (CH3), 28.5 (CH3), 27.7 (CH2), 25.9 (t-Bu), 23.3 (CH2), 19.1 (CH3), 18.1 [C(CH3)3], 17.2 (CH3), 12.5 (CH3), −5.3 [Si(CH3)2]. HRMS-ES+ (m/z): calculated for C27H46N3O4SSi [M + H]+: 536.2973, found 536.2999.

Spectroscopic data for compound 2:

1H NMR (400 MHz, CD3OD) δ 7.99 (d, 2H, 3JHH = 8.4 Hz, ArCH), 7.56 (d, 2H, 3JHH = 8.4 Hz, ArCH), 4.03–3.96 (m, 1H, SO2NCHH), 3.93–3.85 (m, 2H, SO2NCHH, NCH), 3.60–3.38 (m, 6H, ICH2, SO2NCH2CH2CH2, NCHCH2CH2), 2.49 (s, 3H, ArCH3), 2.24–2.17 (m, 1H, SO2NCH2CH2), 2.11–2.02 (m, 1H, SO2NCH2CH2), 1.92–1.83 (m, 1H, NCHCH2), 1.81–1.73 (m, 1H, NCHCH2). 13C NMR (125 MHz, CD3OD) δ 150.9 (ArC), 148.7 (ArC), 135.0 (ArCH), 129.2 (ArCH), 52.7 (CH), 49.9 (CH2), 47.9 (CH2), 45.8 (CH2), 26.3 (CH2), 21.8 (CH2) 21.8 (CH3), 7.1 (CH2I). HRMS-ESI+ (m/z): calculated for C15H21IN3O2S [M + H]+: 434.0394, found: 434.0404.

6. Refinement

Crystallographic data for 1 were collected on an Agilent SuperNova Dual Atlas diffractometer with a mirror monochromator using Cu Kα (λ = 1.5418 Å) radiation, equipped with an Oxford cryosystems cooling apparatus. Crystallographic data for 2 were collected at 150 K on a Nonius Kappa CCD diffractometer using graphite monochromated Mo Kα radiation (λ = 0.71073 Å) equipped with an Oxford Cryosystems cooling apparatus.

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The structures were solved using direct methods with SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and refined with SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]). All non-hydrogen atoms were refined anisotropically, while the hydrogen atoms were inserted in idealized positions with Uiso set at 1.2 or 1.5 times the Ueq of the parent atom. The absolute structures were determined based on the anomalous dispersion effects in the diffraction data. The Flack parameter for 1 indicated possible racemic twinning, which was confirmed by TWIN/BASF refinement to give x = 0.39. The value for 2 is consistent with an untwinned structure.

Table 3
Experimental details

  1 2
Crystal data
Chemical formula C27H46N3O4SSi+·CF3O3S C15H21IN3O2S+·I
Mr 685.89 561.21
Crystal system, space group Monoclinic, P21 Orthorhombic, P212121
Temperature (K) 150 150
a, b, c (Å) 8.5784 (3), 14.4797 (5), 13.6961 (5) 6.6117 (2), 10.1482 (2), 28.1444 (9)
α, β, γ (°) 90, 96.052 (4), 90 90, 90, 90
V3) 1691.75 (10) 1888.40 (9)
Z 2 4
Radiation type Cu Kα Mo Kα
μ (mm−1) 2.32 3.45
Crystal size (mm) 0.33 × 0.06 × 0.04 0.41 × 0.20 × 0.20
 
Data collection
Diffractometer Agilent SuperNova, Dual, Cu at zero, Atlas Nonius KappaCCD
Absorption correction Gaussian (CrysAlis PRO; Agilent,2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Empirical (using intensity measurements) (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])
Tmin, Tmax 0.943, 0.988 0.339, 0.545
No. of measured, independent and observed [I > 2σ(I)] reflections 10136, 5593, 5350 4087, 4087, 3858
Rint 0.027 0.030
(sin θ/λ)max−1) 0.623 0.648
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.097, 1.02 0.031, 0.072, 1.04
No. of reflections 5593 4087
No. of parameters 408 207
No. of restraints 1 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.63, −0.48 0.77, −0.79
Absolute structure Refined as an inversion twin Flack x determined using 1475 quotients [(I+)−(I[(I+)−(I-)]/[(I+)+(I)] )]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.39 (2) −0.002 (19)
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), COLLECT (Bruker, 2004[Bruker (2004). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.]), HKL DENZO and SCALEPACK (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/1 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Images were produced using Olex2-1.5 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Discovery Studio Visualizer (v21.1.0.20298; BIOVIA, 2024[BIOVIA (2024). Discovery Studio Visualizer. Dassault Systèmes, San Diego.]). Hydrogen bonds and other inter­molecular contacts were identified with PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and Discovery Studio Visualizer.

Supporting information


Computing details top

(S)-8-{[(tert-Butyldimethylsilyl)oxy]methyl}-1-[(2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl]-1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidin-1-ium trifluoromethanesulfonate (1) top
Crystal data top
C27H46N3O4SSi+·CF3O3SF(000) = 728
Mr = 685.89Dx = 1.346 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
a = 8.5784 (3) ÅCell parameters from 3508 reflections
b = 14.4797 (5) Åθ = 4.4–73.8°
c = 13.6961 (5) ŵ = 2.32 mm1
β = 96.052 (4)°T = 150 K
V = 1691.75 (10) Å3Block, colourless
Z = 20.33 × 0.06 × 0.04 mm
Data collection top
Agilent SuperNova, Dual, Cu at zero, Atlas
diffractometer
5350 reflections with I > 2σ(I)
ω scansRint = 0.027
Absorption correction: gaussian
(CrysAlisPro; Agilent,2014)
θmax = 73.8°, θmin = 4.5°
Tmin = 0.943, Tmax = 0.988h = 1010
10136 measured reflectionsk = 1717
5593 independent reflectionsl = 1616
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0537P)2 + 0.493P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.097(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.63 e Å3
5593 reflectionsΔρmin = 0.47 e Å3
408 parametersAbsolute structure: Refined as an inversion twin
1 restraintAbsolute structure parameter: 0.39 (2)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6033 (3)0.0629 (2)0.0845 (2)0.0240 (6)
C20.3643 (4)0.1575 (2)0.0936 (2)0.0284 (7)
H20.3739940.2180730.0595590.034*
C30.2893 (4)0.0884 (3)0.0195 (3)0.0332 (7)
H3A0.2628170.0309390.0533640.040*
H3B0.1916460.1143200.0146900.040*
C40.4044 (4)0.0677 (3)0.0534 (3)0.0350 (7)
H4A0.3578540.0228870.1026330.042*
H4B0.4283210.1251300.0881460.042*
C50.6408 (5)0.0298 (3)0.0615 (3)0.0458 (10)
H5A0.6899760.0085220.1097030.055*
H5B0.5699350.0745340.0984130.055*
C60.7667 (5)0.0816 (3)0.0015 (4)0.0502 (10)
H6A0.7189120.1291450.0409600.060*
H6B0.8381640.1127410.0402880.060*
C70.8560 (4)0.0128 (3)0.0679 (3)0.0403 (8)
H7A0.9398290.0445240.1104250.048*
H7B0.9053400.0338500.0281380.048*
C80.2761 (4)0.1728 (3)0.1813 (3)0.0333 (7)
H8A0.1709910.1986600.1605650.040*
H8B0.2629030.1136200.2157260.040*
C90.3773 (6)0.1475 (3)0.4330 (3)0.0469 (9)
H9A0.2980180.1013750.4104580.070*
H9B0.3716890.1603470.5028470.070*
H9C0.4816730.1238990.4236490.070*
C100.1355 (5)0.2941 (3)0.3702 (4)0.0518 (11)
H10A0.1121090.3482060.3282460.078*
H10B0.1231410.3101320.4384530.078*
H10C0.0631910.2438920.3487360.078*
C110.4901 (4)0.3470 (3)0.3994 (3)0.0329 (7)
C120.4700 (7)0.3821 (4)0.5020 (4)0.0589 (12)
H12A0.4844430.3307920.5488140.088*
H12B0.3645840.4078520.5029180.088*
H12C0.5481500.4300700.5204300.088*
C130.4753 (8)0.4294 (4)0.3298 (4)0.0747 (18)
H13A0.3692610.4550090.3273930.112*
H13B0.4953580.4093580.2639200.112*
H13C0.5518440.4767370.3533290.112*
C140.6544 (6)0.3066 (4)0.4006 (5)0.0684 (15)
H14A0.7322490.3543540.4204250.103*
H14B0.6700840.2841930.3347610.103*
H14C0.6665270.2551180.4472350.103*
C150.8052 (4)0.0894 (2)0.2787 (2)0.0250 (6)
C160.9498 (3)0.1338 (2)0.3094 (2)0.0266 (6)
C170.9419 (4)0.2285 (3)0.3241 (2)0.0299 (7)
C180.8017 (4)0.2756 (2)0.3106 (3)0.0293 (7)
C190.6591 (4)0.2337 (2)0.2825 (2)0.0274 (6)
C200.6615 (3)0.1383 (2)0.2653 (2)0.0251 (6)
C211.0691 (4)0.2967 (3)0.3563 (4)0.0446 (9)
H21A1.1116840.2859260.4254020.053*
H21B1.1556470.2932560.3140500.053*
C220.9847 (4)0.3900 (3)0.3449 (3)0.0383 (8)
C231.1083 (4)0.0882 (3)0.3296 (3)0.0348 (7)
H23A1.1848200.1334060.3584730.052*
H23B1.1011590.0368150.3755260.052*
H23C1.1417920.0647920.2680380.052*
C240.5107 (4)0.2903 (3)0.2726 (3)0.0340 (7)
H24A0.5369820.3557740.2824120.051*
H24B0.4554930.2815620.2068790.051*
H24C0.4431140.2704730.3220620.051*
C250.5054 (4)0.0929 (3)0.2334 (3)0.0334 (7)
H25A0.4818140.0987840.1620680.050*
H25B0.5105250.0273480.2513110.050*
H25C0.4229300.1231270.2660950.050*
C261.0218 (5)0.4408 (3)0.2530 (3)0.0518 (10)
H26A0.9580620.4970130.2448390.078*
H26B1.1331830.4574750.2593510.078*
H26C0.9982210.4008190.1956750.078*
C271.0088 (5)0.4488 (3)0.4357 (3)0.0486 (10)
H27A0.9816480.4131490.4923460.073*
H27B1.1187500.4680250.4466730.073*
H27C0.9415450.5035780.4273340.073*
C280.8065 (5)0.3074 (3)0.0768 (4)0.0524 (11)
N10.5220 (3)0.12491 (19)0.1289 (2)0.0263 (5)
H10.5663030.1484990.1842300.032*
N20.5494 (3)0.0295 (2)0.00255 (19)0.0291 (5)
N30.7461 (3)0.0332 (2)0.1294 (2)0.0300 (6)
O10.3655 (3)0.23600 (18)0.24468 (18)0.0356 (6)
O20.6885 (3)0.07815 (18)0.30011 (17)0.0330 (5)
O30.9590 (3)0.06521 (18)0.2604 (2)0.0377 (6)
O40.8158 (3)0.36761 (18)0.3294 (2)0.0407 (6)
O50.8248 (4)0.3436 (3)0.1041 (3)0.0778 (13)
O60.7409 (5)0.1900 (3)0.0587 (3)0.0731 (11)
O71.0094 (4)0.2368 (3)0.0229 (3)0.0648 (10)
Si10.33991 (10)0.25617 (7)0.36096 (7)0.0305 (2)
S10.80381 (8)0.03078 (5)0.25091 (5)0.02638 (16)
S20.84970 (11)0.26548 (7)0.04097 (7)0.0423 (2)
F10.6552 (4)0.3303 (3)0.0731 (4)0.1025 (16)
F20.8335 (4)0.2457 (2)0.1485 (2)0.0695 (8)
F30.8890 (5)0.3835 (2)0.1023 (3)0.0914 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0235 (14)0.0214 (14)0.0286 (14)0.0013 (11)0.0101 (11)0.0019 (11)
C20.0252 (15)0.0261 (16)0.0332 (16)0.0028 (12)0.0006 (12)0.0008 (13)
C30.0277 (16)0.0345 (18)0.0357 (17)0.0004 (14)0.0040 (13)0.0014 (14)
C40.0370 (18)0.0371 (18)0.0301 (16)0.0033 (15)0.0007 (13)0.0007 (14)
C50.041 (2)0.059 (3)0.039 (2)0.0010 (19)0.0118 (16)0.0197 (18)
C60.050 (2)0.044 (2)0.059 (3)0.0054 (19)0.022 (2)0.012 (2)
C70.0326 (18)0.053 (2)0.0379 (18)0.0119 (17)0.0142 (14)0.0007 (17)
C80.0246 (15)0.0392 (18)0.0353 (17)0.0030 (14)0.0002 (13)0.0051 (15)
C90.057 (2)0.0314 (19)0.053 (2)0.0008 (17)0.0131 (19)0.0044 (17)
C100.038 (2)0.052 (3)0.067 (3)0.0096 (19)0.0119 (19)0.014 (2)
C110.0388 (18)0.0284 (17)0.0310 (16)0.0004 (14)0.0012 (13)0.0007 (14)
C120.082 (3)0.052 (3)0.044 (2)0.016 (2)0.014 (2)0.014 (2)
C130.105 (5)0.052 (3)0.060 (3)0.026 (3)0.026 (3)0.024 (2)
C140.040 (2)0.064 (3)0.100 (4)0.004 (2)0.001 (2)0.035 (3)
C150.0213 (14)0.0279 (15)0.0264 (14)0.0009 (12)0.0058 (11)0.0007 (12)
C160.0192 (14)0.0317 (17)0.0291 (15)0.0006 (12)0.0039 (11)0.0043 (13)
C170.0204 (14)0.0327 (17)0.0367 (16)0.0035 (13)0.0046 (12)0.0001 (14)
C180.0268 (16)0.0246 (15)0.0370 (17)0.0025 (12)0.0063 (13)0.0020 (13)
C190.0215 (14)0.0315 (16)0.0298 (14)0.0033 (13)0.0056 (11)0.0024 (13)
C200.0164 (13)0.0314 (16)0.0281 (14)0.0012 (12)0.0049 (11)0.0000 (12)
C210.0267 (17)0.0324 (19)0.074 (3)0.0048 (15)0.0039 (17)0.0027 (18)
C220.0313 (17)0.0317 (18)0.053 (2)0.0074 (14)0.0080 (15)0.0009 (16)
C230.0190 (15)0.0342 (18)0.050 (2)0.0001 (13)0.0020 (13)0.0014 (15)
C240.0251 (16)0.0357 (19)0.0411 (18)0.0060 (14)0.0034 (13)0.0011 (15)
C250.0152 (13)0.0419 (19)0.0429 (19)0.0020 (13)0.0028 (12)0.0093 (16)
C260.047 (2)0.054 (3)0.056 (2)0.0102 (19)0.0099 (19)0.004 (2)
C270.045 (2)0.049 (3)0.052 (2)0.0091 (18)0.0093 (17)0.0053 (19)
C280.050 (2)0.0266 (18)0.085 (3)0.0061 (18)0.029 (2)0.004 (2)
N10.0231 (13)0.0224 (13)0.0328 (13)0.0037 (10)0.0005 (10)0.0051 (10)
N20.0317 (13)0.0289 (13)0.0275 (12)0.0013 (12)0.0065 (10)0.0021 (12)
N30.0235 (12)0.0345 (14)0.0334 (13)0.0062 (12)0.0087 (10)0.0008 (13)
O10.0331 (12)0.0372 (14)0.0368 (13)0.0004 (10)0.0046 (10)0.0081 (11)
O20.0307 (12)0.0371 (13)0.0309 (12)0.0100 (10)0.0022 (9)0.0083 (10)
O30.0244 (12)0.0284 (12)0.0587 (16)0.0032 (9)0.0027 (10)0.0003 (11)
O40.0294 (13)0.0270 (12)0.0664 (18)0.0031 (10)0.0083 (12)0.0015 (12)
O50.0482 (19)0.088 (3)0.094 (3)0.0116 (18)0.0053 (18)0.059 (2)
O60.092 (3)0.073 (2)0.0518 (19)0.040 (2)0.0033 (18)0.0070 (18)
O70.0530 (19)0.069 (2)0.073 (2)0.0229 (17)0.0087 (16)0.0075 (19)
Si10.0291 (4)0.0282 (4)0.0349 (4)0.0042 (4)0.0066 (3)0.0028 (4)
S10.0200 (3)0.0256 (4)0.0333 (4)0.0017 (3)0.0019 (3)0.0027 (3)
S20.0404 (5)0.0408 (5)0.0434 (5)0.0072 (4)0.0063 (3)0.0111 (4)
F10.058 (2)0.075 (2)0.185 (5)0.0069 (16)0.063 (3)0.003 (3)
F20.089 (2)0.074 (2)0.0463 (14)0.0234 (17)0.0077 (13)0.0024 (14)
F30.106 (3)0.0572 (19)0.120 (3)0.0416 (19)0.052 (2)0.047 (2)
Geometric parameters (Å, º) top
C1—N11.323 (4)C14—H14C0.9800
C1—N21.324 (4)C15—C201.416 (4)
C1—N31.380 (4)C15—C161.421 (4)
C2—N11.466 (4)C15—S11.781 (3)
C2—C81.503 (5)C16—C171.388 (5)
C2—C31.519 (5)C16—C231.511 (4)
C2—H21.0000C17—C181.378 (5)
C3—C41.506 (5)C17—C211.503 (5)
C3—H3A0.9900C18—O41.361 (4)
C3—H3B0.9900C18—C191.383 (5)
C4—N21.468 (5)C19—C201.402 (5)
C4—H4A0.9900C19—C241.508 (4)
C4—H4B0.9900C20—C251.514 (4)
C5—N21.462 (4)C21—C221.533 (6)
C5—C61.510 (7)C21—H21A0.9900
C5—H5A0.9900C21—H21B0.9900
C5—H5B0.9900C22—O41.478 (4)
C6—C71.503 (6)C22—C271.504 (6)
C6—H6A0.9900C22—C261.520 (6)
C6—H6B0.9900C23—H23A0.9800
C7—N31.486 (4)C23—H23B0.9800
C7—H7A0.9900C23—H23C0.9800
C7—H7B0.9900C24—H24A0.9800
C8—O11.428 (4)C24—H24B0.9800
C8—H8A0.9900C24—H24C0.9800
C8—H8B0.9900C25—H25A0.9800
C9—Si11.867 (4)C25—H25B0.9800
C9—H9A0.9800C25—H25C0.9800
C9—H9B0.9800C26—H26A0.9800
C9—H9C0.9800C26—H26B0.9800
C10—Si11.854 (4)C26—H26C0.9800
C10—H10A0.9800C27—H27A0.9800
C10—H10B0.9800C27—H27B0.9800
C10—H10C0.9800C27—H27C0.9800
C11—C121.521 (6)C28—F21.330 (6)
C11—C131.523 (6)C28—F11.335 (6)
C11—C141.525 (6)C28—F31.336 (5)
C11—Si11.878 (4)C28—S21.798 (5)
C12—H12A0.9800N1—H10.8800
C12—H12B0.9800N3—S11.686 (3)
C12—H12C0.9800O1—Si11.656 (3)
C13—H13A0.9800O2—S11.429 (2)
C13—H13B0.9800O3—S11.415 (2)
C13—H13C0.9800O5—S21.426 (4)
C14—H14A0.9800O6—S21.441 (4)
C14—H14B0.9800O7—S21.428 (4)
N1—C1—N2120.7 (3)C18—C17—C21108.1 (3)
N1—C1—N3119.5 (3)C16—C17—C21130.3 (3)
N2—C1—N3119.8 (3)O4—C18—C17113.6 (3)
N1—C2—C8107.9 (3)O4—C18—C19122.7 (3)
N1—C2—C3108.6 (3)C17—C18—C19123.7 (3)
C8—C2—C3114.7 (3)C18—C19—C20116.7 (3)
N1—C2—H2108.5C18—C19—C24120.0 (3)
C8—C2—H2108.5C20—C19—C24123.2 (3)
C3—C2—H2108.5C19—C20—C15119.9 (3)
C4—C3—C2108.2 (3)C19—C20—C25116.6 (3)
C4—C3—H3A110.1C15—C20—C25123.5 (3)
C2—C3—H3A110.1C17—C21—C22103.2 (3)
C4—C3—H3B110.1C17—C21—H21A111.1
C2—C3—H3B110.1C22—C21—H21A111.1
H3A—C3—H3B108.4C17—C21—H21B111.1
N2—C4—C3110.0 (3)C22—C21—H21B111.1
N2—C4—H4A109.7H21A—C21—H21B109.1
C3—C4—H4A109.7O4—C22—C27106.8 (3)
N2—C4—H4B109.7O4—C22—C26106.0 (3)
C3—C4—H4B109.7C27—C22—C26112.8 (3)
H4A—C4—H4B108.2O4—C22—C21105.4 (3)
N2—C5—C6111.7 (3)C27—C22—C21113.1 (4)
N2—C5—H5A109.3C26—C22—C21111.9 (4)
C6—C5—H5A109.3C16—C23—H23A109.5
N2—C5—H5B109.3C16—C23—H23B109.5
C6—C5—H5B109.3H23A—C23—H23B109.5
H5A—C5—H5B107.9C16—C23—H23C109.5
C7—C6—C5107.7 (4)H23A—C23—H23C109.5
C7—C6—H6A110.2H23B—C23—H23C109.5
C5—C6—H6A110.2C19—C24—H24A109.5
C7—C6—H6B110.2C19—C24—H24B109.5
C5—C6—H6B110.2H24A—C24—H24B109.5
H6A—C6—H6B108.5C19—C24—H24C109.5
N3—C7—C6109.1 (3)H24A—C24—H24C109.5
N3—C7—H7A109.9H24B—C24—H24C109.5
C6—C7—H7A109.9C20—C25—H25A109.5
N3—C7—H7B109.9C20—C25—H25B109.5
C6—C7—H7B109.9H25A—C25—H25B109.5
H7A—C7—H7B108.3C20—C25—H25C109.5
O1—C8—C2107.3 (3)H25A—C25—H25C109.5
O1—C8—H8A110.3H25B—C25—H25C109.5
C2—C8—H8A110.3C22—C26—H26A109.5
O1—C8—H8B110.3C22—C26—H26B109.5
C2—C8—H8B110.3H26A—C26—H26B109.5
H8A—C8—H8B108.5C22—C26—H26C109.5
Si1—C9—H9A109.5H26A—C26—H26C109.5
Si1—C9—H9B109.5H26B—C26—H26C109.5
H9A—C9—H9B109.5C22—C27—H27A109.5
Si1—C9—H9C109.5C22—C27—H27B109.5
H9A—C9—H9C109.5H27A—C27—H27B109.5
H9B—C9—H9C109.5C22—C27—H27C109.5
Si1—C10—H10A109.5H27A—C27—H27C109.5
Si1—C10—H10B109.5H27B—C27—H27C109.5
H10A—C10—H10B109.5F2—C28—F1106.7 (4)
Si1—C10—H10C109.5F2—C28—F3108.3 (5)
H10A—C10—H10C109.5F1—C28—F3106.9 (4)
H10B—C10—H10C109.5F2—C28—S2113.6 (3)
C12—C11—C13107.9 (4)F1—C28—S2110.0 (4)
C12—C11—C14108.2 (4)F3—C28—S2111.1 (3)
C13—C11—C14108.9 (5)C1—N1—C2125.4 (3)
C12—C11—Si1110.6 (3)C1—N1—H1117.3
C13—C11—Si1111.3 (3)C2—N1—H1117.3
C14—C11—Si1109.9 (3)C1—N2—C5123.7 (3)
C11—C12—H12A109.5C1—N2—C4119.1 (3)
C11—C12—H12B109.5C5—N2—C4115.9 (3)
H12A—C12—H12B109.5C1—N3—C7118.3 (3)
C11—C12—H12C109.5C1—N3—S1126.9 (2)
H12A—C12—H12C109.5C7—N3—S1114.3 (2)
H12B—C12—H12C109.5C8—O1—Si1125.5 (2)
C11—C13—H13A109.5C18—O4—C22108.0 (3)
C11—C13—H13B109.5O1—Si1—C10109.86 (19)
H13A—C13—H13B109.5O1—Si1—C9109.10 (17)
C11—C13—H13C109.5C10—Si1—C9108.9 (2)
H13A—C13—H13C109.5O1—Si1—C11103.67 (15)
H13B—C13—H13C109.5C10—Si1—C11113.55 (19)
C11—C14—H14A109.5C9—Si1—C11111.59 (19)
C11—C14—H14B109.5O3—S1—O2118.63 (16)
H14A—C14—H14B109.5O3—S1—N3104.99 (15)
C11—C14—H14C109.5O2—S1—N3108.02 (14)
H14A—C14—H14C109.5O3—S1—C15109.86 (15)
H14B—C14—H14C109.5O2—S1—C15110.96 (15)
C20—C15—C16122.2 (3)N3—S1—C15103.06 (15)
C20—C15—S1118.3 (2)O5—S2—O7114.6 (2)
C16—C15—S1119.4 (2)O5—S2—O6116.5 (2)
C17—C16—C15115.8 (3)O7—S2—O6113.6 (3)
C17—C16—C23117.5 (3)O5—S2—C28104.1 (3)
C15—C16—C23126.7 (3)O7—S2—C28103.2 (2)
C18—C17—C16121.6 (3)O6—S2—C28102.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.882.362.712 (4)104
N1—H1···O20.882.072.700 (4)127
C3—H3B···O7i0.992.363.229 (5)146
C5—H5B···F1ii0.992.433.239 (6)139
C24—H24A···O40.982.422.877 (4)108
C25—H25B···O20.982.213.022 (5)139
C7—H7A···O5iii0.992.603.433 (5)142
C24—H24B···O6ii0.982.533.462 (5)159
Symmetry codes: (i) x1, y, z; (ii) x+1, y1/2, z; (iii) x+2, y1/2, z.
(S)-8-(Iodomethyl)-1-4-(methylbenzenesulfonyl)-1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidin-1-ium iodide (2) top
Crystal data top
C15H21IN3O2S+·IDx = 1.974 Mg m3
Mr = 561.21Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 3858 reflections
a = 6.6117 (2) Åθ = 3.0–27.4°
b = 10.1482 (2) ŵ = 3.45 mm1
c = 28.1444 (9) ÅT = 150 K
V = 1888.40 (9) Å3Needle, colourless
Z = 40.41 × 0.20 × 0.20 mm
F(000) = 1080
Data collection top
Nonius KappaCCD
diffractometer
3858 reflections with I > 2σ(I)
CCD scansRint = 0.030
Absorption correction: empirical (using intensity measurements)
Denzo/Scalepack
θmax = 27.4°, θmin = 2.1°
Tmin = 0.339, Tmax = 0.545h = 88
4087 measured reflectionsk = 1313
4087 independent reflectionsl = 3636
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0251P)2 + 5.6778P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.031(Δ/σ)max = 0.001
wR(F2) = 0.072Δρmax = 0.77 e Å3
S = 1.04Δρmin = 0.79 e Å3
4087 reflectionsExtinction correction: SHELXL-2018/1 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
207 parametersExtinction coefficient: 0.0068 (4)
0 restraintsAbsolute structure: Flack x determined using 1475 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
Hydrogen site location: inferred from neighbouring sitesAbsolute structure parameter: 0.002 (19)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6440 (9)0.2979 (6)0.3545 (2)0.0176 (12)
C20.8412 (10)0.4145 (6)0.2919 (2)0.0200 (12)
H20.9490930.3573000.2779600.024*
C30.6515 (10)0.4008 (6)0.2620 (2)0.0224 (13)
H3A0.5575220.4740610.2692120.027*
H3B0.6872440.4055780.2278910.027*
C40.5492 (11)0.2707 (7)0.2723 (2)0.0263 (15)
H4A0.4212530.2648380.2541810.032*
H4B0.6379110.1973830.2620820.032*
C50.3238 (11)0.1838 (6)0.3364 (2)0.0272 (13)
H5A0.3406050.0909340.3263240.033*
H5B0.2064080.2206870.3190500.033*
C60.2819 (9)0.1881 (7)0.3890 (2)0.0245 (14)
H6A0.1785090.1215900.3974490.029*
H6B0.2305430.2761780.3980780.029*
C70.4773 (10)0.1594 (6)0.4148 (2)0.0231 (14)
H7A0.4537760.1581560.4494870.028*
H7B0.5301220.0721160.4050910.028*
C80.9149 (9)0.5559 (7)0.2918 (2)0.0227 (13)
H8A0.8064410.6135630.3042330.027*
H8B0.9428610.5829570.2586020.027*
C90.5690 (9)0.5036 (6)0.4450 (2)0.0187 (13)
C100.3777 (9)0.4989 (6)0.4664 (2)0.0195 (13)
H100.3291940.4201390.4806540.023*
C110.2610 (10)0.6127 (7)0.4662 (2)0.0241 (14)
H110.1326770.6119670.4813720.029*
C120.3273 (11)0.7277 (6)0.4442 (2)0.0219 (12)
C130.5197 (10)0.7297 (7)0.4230 (3)0.0259 (15)
H130.5671250.8079970.4082470.031*
C140.6406 (10)0.6182 (6)0.4236 (2)0.0223 (14)
H140.7711470.6199260.4094920.027*
C150.1948 (13)0.8482 (7)0.4420 (3)0.0351 (17)
H15A0.0688470.8315230.4593930.053*
H15B0.1635840.8686580.4088100.053*
H15C0.2656500.9229760.4565040.053*
I11.18349 (7)0.58374 (4)0.33364 (2)0.02686 (13)
I20.17276 (7)0.45181 (4)0.17516 (2)0.02671 (13)
N10.8012130.3701670.3409300.0209 (10)
H10.8885330.3935100.3629750.025*
N20.5063 (7)0.2585 (5)0.3237 (2)0.0218 (11)
N30.6254 (8)0.2639 (5)0.40248 (18)0.0176 (11)
O10.9203 (6)0.3955 (5)0.43363 (16)0.0234 (10)
O20.6798 (7)0.2891 (4)0.48886 (14)0.0233 (9)
S10.7169 (2)0.36092 (16)0.44604 (6)0.0184 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.021 (3)0.015 (3)0.017 (3)0.003 (2)0.000 (2)0.002 (2)
C20.023 (3)0.020 (3)0.017 (3)0.001 (3)0.001 (2)0.002 (2)
C30.030 (3)0.024 (3)0.014 (3)0.002 (3)0.003 (3)0.002 (2)
C40.033 (4)0.033 (4)0.013 (3)0.000 (3)0.001 (3)0.000 (3)
C50.024 (3)0.025 (3)0.032 (4)0.004 (3)0.002 (3)0.001 (3)
C60.019 (3)0.025 (3)0.029 (4)0.004 (3)0.001 (3)0.002 (3)
C70.023 (3)0.021 (3)0.025 (3)0.004 (3)0.002 (3)0.000 (3)
C80.021 (3)0.028 (4)0.020 (3)0.002 (3)0.005 (2)0.002 (3)
C90.017 (3)0.022 (3)0.018 (3)0.003 (2)0.002 (2)0.003 (2)
C100.021 (3)0.018 (3)0.020 (3)0.003 (2)0.000 (2)0.003 (2)
C110.023 (3)0.023 (3)0.026 (3)0.000 (2)0.001 (2)0.004 (3)
C120.027 (3)0.019 (3)0.020 (3)0.002 (3)0.001 (3)0.001 (2)
C130.031 (4)0.022 (3)0.025 (4)0.002 (3)0.003 (3)0.001 (3)
C140.025 (4)0.022 (3)0.020 (3)0.008 (3)0.000 (2)0.001 (2)
C150.045 (4)0.029 (4)0.032 (4)0.011 (4)0.001 (4)0.002 (3)
I10.0253 (2)0.0316 (2)0.0236 (2)0.00409 (18)0.00070 (18)0.00262 (17)
I20.0248 (2)0.0301 (2)0.0253 (2)0.00338 (18)0.00167 (18)0.00130 (17)
N10.019 (2)0.025 (3)0.019 (2)0.001 (2)0.001 (2)0.001 (2)
N20.020 (3)0.028 (3)0.017 (3)0.002 (2)0.003 (2)0.001 (2)
N30.022 (3)0.018 (3)0.013 (2)0.002 (2)0.0020 (19)0.003 (2)
O10.015 (2)0.036 (3)0.020 (2)0.0010 (19)0.0012 (17)0.002 (2)
O20.029 (2)0.027 (2)0.0144 (19)0.002 (2)0.001 (2)0.0046 (17)
S10.0193 (8)0.0210 (7)0.0149 (7)0.0010 (6)0.0015 (5)0.0006 (6)
Geometric parameters (Å, º) top
C1—N21.318 (8)C8—I12.150 (6)
C1—N11.328 (6)C8—H8A0.9900
C1—N31.400 (7)C8—H8B0.9900
C2—N11.475 (6)C9—C141.394 (9)
C2—C81.516 (9)C9—C101.402 (8)
C2—C31.517 (9)C9—S11.747 (6)
C2—H21.0000C10—C111.389 (9)
C3—C41.511 (10)C10—H100.9500
C3—H3A0.9900C11—C121.391 (9)
C3—H3B0.9900C11—H110.9500
C4—N21.479 (8)C12—C131.405 (10)
C4—H4A0.9900C12—C151.506 (9)
C4—H4B0.9900C13—C141.386 (10)
C5—N21.469 (8)C13—H130.9500
C5—C61.507 (9)C14—H140.9500
C5—H5A0.9900C15—H15A0.9800
C5—H5B0.9900C15—H15B0.9800
C6—C71.510 (9)C15—H15C0.9800
C6—H6A0.9900N1—H10.8800
C6—H6B0.9900N3—S11.685 (5)
C7—N31.484 (8)O1—S11.433 (4)
C7—H7A0.9900O2—S11.429 (4)
C7—H7B0.9900
N2—C1—N1121.3 (5)C2—C8—H8B109.0
N2—C1—N3119.9 (6)I1—C8—H8B109.0
N1—C1—N3118.8 (5)H8A—C8—H8B107.8
N1—C2—C8110.4 (5)C14—C9—C10121.4 (6)
N1—C2—C3110.1 (5)C14—C9—S1120.6 (5)
C8—C2—C3110.5 (5)C10—C9—S1118.0 (5)
N1—C2—H2108.6C11—C10—C9118.1 (6)
C8—C2—H2108.6C11—C10—H10120.9
C3—C2—H2108.6C9—C10—H10120.9
C4—C3—C2110.1 (5)C10—C11—C12121.6 (6)
C4—C3—H3A109.6C10—C11—H11119.2
C2—C3—H3A109.6C12—C11—H11119.2
C4—C3—H3B109.6C11—C12—C13119.1 (6)
C2—C3—H3B109.6C11—C12—C15121.1 (7)
H3A—C3—H3B108.2C13—C12—C15119.8 (6)
N2—C4—C3110.3 (5)C14—C13—C12120.4 (6)
N2—C4—H4A109.6C14—C13—H13119.8
C3—C4—H4A109.6C12—C13—H13119.8
N2—C4—H4B109.6C13—C14—C9119.4 (6)
C3—C4—H4B109.6C13—C14—H14120.3
H4A—C4—H4B108.1C9—C14—H14120.3
N2—C5—C6112.0 (5)C12—C15—H15A109.5
N2—C5—H5A109.2C12—C15—H15B109.5
C6—C5—H5A109.2H15A—C15—H15B109.5
N2—C5—H5B109.2C12—C15—H15C109.5
C6—C5—H5B109.2H15A—C15—H15C109.5
H5A—C5—H5B107.9H15B—C15—H15C109.5
C5—C6—C7108.0 (5)C1—N1—C2125.2 (4)
C5—C6—H6A110.1C1—N1—H1117.4
C7—C6—H6A110.1C2—N1—H1117.4
C5—C6—H6B110.1C1—N2—C5124.4 (6)
C7—C6—H6B110.1C1—N2—C4119.0 (5)
H6A—C6—H6B108.4C5—N2—C4116.0 (5)
N3—C7—C6108.3 (5)C1—N3—C7117.3 (5)
N3—C7—H7A110.0C1—N3—S1121.8 (4)
C6—C7—H7A110.0C7—N3—S1119.0 (4)
N3—C7—H7B110.0O2—S1—O1119.4 (3)
C6—C7—H7B110.0O2—S1—N3104.7 (3)
H7A—C7—H7B108.4O1—S1—N3107.6 (3)
C2—C8—I1112.8 (4)O2—S1—C9109.9 (3)
C2—C8—H8A109.0O1—S1—C9108.6 (3)
I1—C8—H8A109.0N3—S1—C9105.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···I10.882.873.3359 (4)115
N1—H1···O10.882.002.737 (5)141
C7—H7A···O20.992.292.807 (8)112
C14—H14···O10.952.572.934 (8)103
C6—H6B···O1i0.992.583.425 (8)143
C7—H7A···O2ii0.992.563.391 (8)141
C10—H10···O2ii0.952.493.441 (7)174
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+1/2, z+1.
 

Acknowledgements

We wish to acknowledge the use of the EPSRC funded Physical Sciences Data-science Service hosted by the University of Southampton and STFC under grant No. EP/S020357/1.

Funding information

Funding for this research was provided by: Engineering and Physical Sciences Research Council (studentship to Steven Hill); Ministry of Higher Education and Scientific Research, Iraq (studentship No. S733 to Jamal Alaboosh).

References

First citationAdenot, A., von Wolff, N., Lefèvre, G., Berthet, J.-C., Thuéry, P. & Cantat, T. (2019). Chem. Eur. J. 25, 8118–8126.  CSD CrossRef CAS PubMed Google Scholar
First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAlaboosh, J. M. H. (2017). PhD thesis, Cardiff University, Cardiff, UK.  Google Scholar
First citationAranha Potter, R., Bowser, A. M., Yang, Y., Madalengoitia, J. S. & Ziller, J. W. (2013). J. Org. Chem. 78, 11772–11782.  CSD CrossRef CAS PubMed Google Scholar
First citationBest, M. D., Tobey, S. L. & Anslyn, E. V. (2003). Coord. Chem. Rev. 240, 3–15.  Web of Science CrossRef CAS Google Scholar
First citationBIOVIA (2024). Discovery Studio Visualizer. Dassault Systèmes, San Diego.  Google Scholar
First citationBruker (2004). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChou, H.-C., Leow, D. & Tan, C.-H. (2019). Chem. Asian J. 14, 3803–3822.  CrossRef CAS PubMed Google Scholar
First citationColes, M. P. (2009). Chem. Commun. 3659–3676.  Google Scholar
First citationCraig, R. A. II, O'Connor, N. R., Goldberg, A. F. G. & Stoltz, B. M. (2014). Chem. Eur. J. 20, 4806–4813.  CSD CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDong, S., Feng, X. & Liu, X. (2018). Chem. Soc. Rev. 47, 8525–8540.  CrossRef CAS PubMed Google Scholar
First citationFu, X. & Tan, C.-H. (2011). Chem. Commun. 47, 8210–8222.  CrossRef CAS Google Scholar
First citationHill, S. (2012). PhD thesis, Cardiff University, Cardiff, UK.  Google Scholar
First citationLemrová, B. & Soural, M. (2015). Eur. J. Org. Chem. pp. 1869–1886.  Google Scholar
First citationLeow, D. & Tan, C.-H. (2009). Chem. Asian J. 4, 488–507.  CrossRef PubMed CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSelig, P. (2013). Synthesis, 45, 0703–0718.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWatanabe, T., Pisano, J., Mangione, C. & Madalengoitia, J. S. (2023). J. Org. Chem. 88, 2851–2868.  CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds