research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, characterization, and crystal structure of 2-(2-azido­phen­yl)-3-oxo-3H-indole 1-oxide

crossmark logo

aOrganic Chemistry Division, CSIR-National Chemical Laboratory, Pune, 411008, India, and bAnalytical and Environmental Sciences Division and Centralized Instrumentation Facility, CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, 364002 , India
*Correspondence e-mail: srinut@csmcri.res.in, vr.chepuri@ncl.res.in

Edited by D. Chopra, Indian Institute of Science Education and Research Bhopal, India (Received 26 October 2023; accepted 13 February 2024; online 20 February 2024)

An attempt to explore the reactivity of the nitro group in the presence of gold catalysis in comparison to the azide group yielded intriguing results. Surprisingly, only the nitro group exhibited reactivity, ultimately giving rise to the formation of the title isatogen, C14H8N4O2. In the crystal structure, weak C—H⋯O hydrogen bonds and ππ stacking inter­actions link the mol­ecules. The structure exhibits disorder of the mol­ecule.

1. Chemical context

2,2-Disubstituted indolin-3-ones play a crucial role as fundamental structural motifs in various natural alkaloids and bioactive mol­ecules (Dhote, Patel et al., 2021[Dhote, P. S., Patel, P., Vanka, K. & Ramana, C. V. (2021). Org. Biomol. Chem. 19, 7970-7994.]; Ji et al., 2019[Ji, Y., He, X., Peng, C. & Huang, W. (2019). Org. Biomol. Chem. 17, 2850-2864.]; Gu et al., 2014[Gu, W., Zhang, Y., Hao, X.-J., Yang, F.-M., Sun, Q.-Y., Morris-Natschke, S. L., Lee, K.-H., Wang, Y.-H. & Long, C.-L. (2014). J. Nat. Prod. 77, 2590-2594.]). Thus, substantial research efforts have been dedicated to the synthesis of these essential compounds (Dhote, Patel et al., 2021[Dhote, P. S., Patel, P., Vanka, K. & Ramana, C. V. (2021). Org. Biomol. Chem. 19, 7970-7994.]; Wang et al., 2021[Wang, Z., Xu, S., Wang, K., Kong, N. & Liu, X. (2021). Asia. J. Org. Chem. 10, 1580-1594.]; Liu & McWhorter, 2003[Liu, Y. & McWhorter, W. W. (2003). J. Org. Chem. 68, 2618-2622.]; Wetzel & Gagosz, 2011[Wetzel, A. & Gagosz, F. (2011). Angew. Chem. Int. Ed. 50, 7354-7358.]; Liu et al., 2003[Liu, Y. & McWhorter, W. W. (2003). J. Org. Chem. 68, 2618-2622.]). These synthetic methods can be broadly sorted into three main strategies, viz. oxidative dearomatization of indoles (Wang et al., 2021[Wang, Z., Xu, S., Wang, K., Kong, N. & Liu, X. (2021). Asia. J. Org. Chem. 10, 1580-1594.]; Liu et al., 2020[Liu, S., Zhao, F., Chen, X., Deng, G. & Huang, H. (2020). Adv. Synth. Catal. 362, 3795-3823.]), cyclization reactions (Dhote, Pund & Ramana, 2021[Dhote, P. S., Pund, K. A. & Ramana, C. V. (2021). J. Org. Chem. 86, 10874-10882.]; Xie et al., 2021[Xie, L. H., Li, Y., Dong, S. X., Feng, X. M. & Liu, X. H. (2021). Chem. Commun. 57, 239-242.]; Fu & Song, 2018[Fu, W. & Song, Q. (2018). Org. Lett. 20, 393-396.]) and nucleophilic additions to 3H-indol-3-ones or indolone-N-oxides (Zhang et al., 2017[Zhang, X., Li, P., Lyu, C., Yong, W., Li, J., Pan, X., Zhu, X. & Rao, W. (2017). Adv. Synth. Catal. 359, 4147-4152.]; Liu et al., 2003[Liu, Y. & McWhorter, W. W. (2003). J. Org. Chem. 68, 2618-2622.]; Berti et al., 1975[Berti, C., Colonna, M., Greci, L. & Marchetti, L. (1975). Tetrahedron, 31, 1745-1753.]). Notably, indolone-N-oxides, also known as isatogens, hold substantial importance in medicinal chemistry and serve as inter­mediates in the synthesis of natural alkaloids and bioactive compounds (Nepveu et al., 2010[Nepveu, F., Kim, S., Boyer, J., Chatriant, O., Ibrahim, H., Reybier, K., Monje, M.-C., Chevalley, S., Perio, P., Lajoie, B., Bouajila, J., Deharo, E., Sauvain, M., Tahar, R., Basco, L., Pantaleo, A., Turini, F., Arese, P., Valentin, A., Thompson, E., Vivas, L., Petit, S. & Nallet, J.-P. (2010). J. Med. Chem. 53, 699-714.]). The literature contains a wide array of techniques for synthesizing isatogens, encompassing both metal-free and metal-catalyzed routes (Dhote & Ramana, 2021[Dhote, P. S. & Ramana, C. V. (2021). Org. Lett. 23, 2632-2637.]; Dhote, Halnor et al., 2021[Dhote, P. S., Halnor, S. V. & Ramana, C. V. (2021). Chem. Rec. 21, 3546-3558.]). These methods have been rigorously explored and well documented, underscoring the adaptability and importance of isatogens in the realms of organic synthesis and medicinal chemistry. Over the past few years, our research group has been deeply involved in this field, particularly focusing on their synthesis through nitro­alkyne cyclo­isomerization (Dhote, Pund & Ramana, 2021[Dhote, P. S., Pund, K. A. & Ramana, C. V. (2021). J. Org. Chem. 86, 10874-10882.]; Dhote & Ramana, 2019[Dhote, P. S. & Ramana, C. V. (2019). Org. Lett. 21, 6221-6224.]; Kumar & Ramana, 2014[Kumar, C. V. S. & Ramana, C. V. (2014). Org. Lett. 16, 4766-4769.], 2015[Kumar, C. V. S. & Ramana, C. V. (2015). Org. Lett. 17, 2870-2873.]; Patel et al., 2010[Ramana, C. V., Patel, P., Vanka, K., Miao, B. & Degterev, A. (2010). Eur. J. Org. Chem. pp. 5955-5966.]) and we have demonstrated their utility in total synthesis endeavors (Patel et al., 2014[Patel, P., Reddy, B. N. & Ramana, C. V. (2014). Tetrahedron, 70, 510-516.]; Reddy & Ramana, 2013[Reddy, B. N. & Ramana, C. V. (2013). Chem. Commun. 49, 9767-9769.]; Kumar et al., 2012[Kumar, C. V. S., Puranik, V. G. & Ramana, C. V. (2012). Chem. A Eur. J. 18, 9601-9611.]; Patel & Ramana, 2012[Patel, P. & Ramana, C. V. (2012). J. Org. Chem. 77, 10509-10515.]).

As part of our efforts to demonstrate the reactivity of the nitro group compared to the azide group (Dhote & Ramana, 2022[Dhote, P. S. & Ramana, C. V. (2022). Adv. Synth. Catal. 364, 1122-1133.]; Dhote, Halner et al., 2021[Dhote, P. S., Halnor, S. V. & Ramana, C. V. (2021). Chem. Rec. 21, 3546-3558.]), we designed a substrate that incorporates both a nitro group and an azide group positioned ortho to an alkyne functionality. Inter­estingly, when we subjected this substrate to treatment with either AuIII or AuI, we obtained isatogen 2 with the azide moiety intact in relatively good yield (see reaction scheme[link] below). The structural characterization of 2-(2-azido­phen­yl)-3-oxo-3H-indole 1-oxide, 2, was achieved through spectral and analytical data analysis. In the 1H NMR spectra of 2, the protons were observed to be overlapping, posing challenges in confirming the precise structure. Subsequently, the 13C NMR spectrum indicated the absence of the alkyne carbon signal, suggesting a modification at the alkyne functionality (see Figs. S1 and S2 in the supporting information). Additionally, signals corresponding to the carbonyl and the newly formed quaternary center were observed at δ = 185.2 and 140.2 ppm, respectively. The mol­ecular composition of compound 2 was further verified as C14H9N4O2 through high-resolution mass spectrometry ([M + H]+ found as 265.0771). Moreover, the structure of 2 was conclusively confirmed through single-crystal X-ray diffraction analysis.

[Scheme 1]

2. Structural commentary and supra­molecular features

The title compound crystallizes in space group P-1 with one mol­ecule in the asymmetric unit (Fig. 1[link]). Mol­ecules are further connected via C—H⋯O (Table 1[link]) weak hydrogen bonds (Desiraju et al., 1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.]) along the b-axis direction (Fig. 2[link]). Moreover, ππ stacking [3.354 (2) Å; Chipot et al., 1996[Chipot, C., Jaffe, R., Maigret, B., Pearlman, D. A. & Kollman, P. A. (1996). J. Am. Chem. Soc. 118, 11217-11224.]; Chen et al., 2018[Chen, T., Li, M. & Liu, J. (2018). Cryst. Growth Des. 18, 2765-2783.]) is observed along the a-axis direction (Fig. 3[link]). However, there are no classical hydrogen bonds present in the crystal packing.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O2i 0.95 2.43 3.1077 (16) 128
C11—H11⋯O1ii 0.95 2.57 3.2327 (17) 127
Symmetry codes: (i) [x, y-1, z]; (ii) [-x+2, -y+1, -z+1].
[Figure 1]
Figure 1
ORTEP diagram of 2 with 50% probability displacement ellipsoids. Only one mol­ecule is present in the asymmetric unit.
[Figure 2]
Figure 2
The packing of mol­ecules via C—H⋯O hydrogen bonds along the b-axis direction. The blue lines depict the inter­molecular inter­actions.
[Figure 3]
Figure 3
The single-crystal structure of 2. ππ stacking [centroid–centroid distance = 3.354 (2) Å] can be seen along the a-axis direction.

In general, C=O bond lengths (1.22 Å) are always shorter than N+—O (1.26 Å). However, in the current scenario, the C=O and N+—O bond lengths are almost equal (Table 2[link]). We therefore analyzed the bond lengths in similar structures found in the Cambridge Structural Database (Conquest 2023.3.0; CSD version 5.45, update of November 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), among which seven show N/C disorder and two have similar bond lengths to those in the title compound. We analyzed the bond lengths of similar mol­ecules in the CSD database and further modeled the disorder in the current mol­ecule. After modeling the disorder, the R factor reduced to 4.22%. Predominantly, if the atoms of mol­ecules are disordered, the bond distance are averaged out and shows the mean distance of bonds. The N (N1A and N17A) and C (C1B and C17) atoms of isatogen are disordered over two positions with equal (0.5) site occupancy. As the mol­ecule exhibits disorder, the bond distances were averaged out, giving N17A—O1/C17=O1 = 1.252 (1) Å and C1B=O2/N1A—O2 = 1.248 (1) Å.

Table 2
Covalent C=O/N+—O bond lengths (Å) in 2 and related structures

Compound C=O/N+—O N+—O/C=O
SAWYAR 1.240 (4) 1.241 (4)
SAZQIU 1.253 (2) 1.243 (4)
2 1.252 (1) 1.248 (1)

3. Hirshfeld surface analysis

A Hirshfeld surface analysis of compound 2 was undertaken with CrystalExplorer 21.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) to investigate the inter­molecular inter­actions. The overall 2D fingerprint plot is shown in Fig. 4[link]a and those delineated into H⋯H (19.4%), H⋯C/C⋯H (14.9%), H⋯N/N⋯H (22.1%), and H⋯O/O⋯H (23.1%) inter­actions are shown in Fig. 4[link]be. Inter­actions such as N⋯O/O⋯N O⋯C/C⋯O and N⋯C/ C⋯N contribute very little to the overall surface and hence those contacts are not shown. The Hirshfeld surface mapped with dnorm is shown in Fig. 4[link]f (dnorm is the normalized sum of de and di where de is the distance from the Hirshfeld surface to the nearest atom i inter­nal to the surface and di is distance from Hirshfeld surface to the nearest atom e external to the surface).

[Figure 4]
Figure 4
The two-dimensional fingerprint plots for 2, showing inter­actions: (a) all inter­actions and delineated into (b) H⋯H contacts; (c) H⋯C/C⋯H contacts; (d) H⋯N/N⋯H contacts and (e) H⋯O/O⋯H contacts; (f) Hirshfeld surface mapped with dnorm.

4. Database survey

There are twenty structures of isatogen present in the Cambridge Structural Database (CSD; Conquest 2023.3.0; CSD version 5.45, update of November 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), among which ten show N/C disorder. Bond lengths associated with these atoms are unusual. In most crystal structures, C=O is always less than N+—O. In contrast, the C=O and N+—O bond lengths in SAWYAR (Clegg, 2005[Clegg, W. (2005). CSD Communication (refcode SAWYAR). CCDC, Cambridge, England.]) and SAZQIU (Clegg & Elsegood, 2005[Clegg, W. & Elsegood, M. R. J. (2005). CSD Communication (refcode SAZQIU). CCDC, Cambridge, England.]) are almost equal and are similar to those the title compound (Table 2[link]).

5. Synthesis and crystallization

The reaction was carried out at room temperature and under an argon atmosphere. To a solution of the active gold complex prepared from JohnPhosAuCl (5 mol%) and AgSbF6 (10 mol%) or AuCl3 (5 mol%) in 1,2-DCE (1 ml) was added a solution of 1-azido-2-[(2 nitro­phen­yl)ethyn­yl]benzene, 1, in 1,2-DCE (0.5 ml) dropwise over 5 minutes. The resulting solution was stirred for a period of 2 h and then concentrated under reduced pressure. The resulting crude product was purified by column chromatography to afford 2-(2-azido­phen­yl)-3-oxo-3H-indole 1-oxide, 2, as a yellow solid. Next, single crystals were grown by slow evaporation of a solution of compounds (10 mg) in aceto­nitrile (1 ml) [placed in a long glass vial of 2 ml volume and closed with a cotton plug] at room temperature in a dark place.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were positioned geometrically (C—H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula C14H8N4O2
Mr 264.24
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 7.166 (2), 7.686 (3), 12.172 (4)
α, β, γ (°) 95.473 (16), 105.226 (12), 113.116 (13)
V3) 579.9 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.12 × 0.06 × 0.05
 
Data collection
Diffractometer Bruker D8 VENTURE Kappa Duo PHOTON II CPAD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.626, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 45548, 4818, 3946
Rint 0.049
(sin θ/λ)max−1) 0.811
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.122, 1.05
No. of reflections 4818
No. of parameters 181
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.46, −0.29
Computer programs: APEX2 and SAINT (Bruker, 2015[Bruker (2015). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

2-(2-Azidophenyl)-3-oxo-3H-indole 1-oxide top
Crystal data top
C14H8N4O2Z = 2
Mr = 264.24F(000) = 272
Triclinic, P1Dx = 1.513 Mg m3
a = 7.166 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.686 (3) ÅCell parameters from 9975 reflections
c = 12.172 (4) Åθ = 3.1–34.6°
α = 95.473 (16)°µ = 0.11 mm1
β = 105.226 (12)°T = 100 K
γ = 113.116 (13)°Block, colourless
V = 579.9 (3) Å30.12 × 0.06 × 0.05 mm
Data collection top
Bruker D8 VENTURE Kappa Duo PHOTON II CPAD
diffractometer
3946 reflections with I > 2σ(I)
φ and ω scansRint = 0.049
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 35.2°, θmin = 3.0°
Tmin = 0.626, Tmax = 0.745h = 1111
45548 measured reflectionsk = 1212
4818 independent reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.066P)2 + 0.1514P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4818 reflectionsΔρmax = 0.46 e Å3
181 parametersΔρmin = 0.29 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.67828 (11)0.03978 (9)0.35537 (6)0.01840 (14)
O20.33615 (11)0.29764 (9)0.15423 (6)0.01970 (14)
N41.05131 (16)0.87935 (13)0.27516 (9)0.02787 (19)
N20.81071 (12)0.56952 (10)0.28504 (6)0.01489 (14)
N30.93852 (12)0.73575 (11)0.28689 (7)0.01669 (14)
C100.77636 (12)0.53396 (11)0.39246 (7)0.01172 (14)
C90.64747 (12)0.34085 (11)0.39218 (7)0.01194 (14)
C80.54989 (12)0.18621 (11)0.28650 (7)0.01240 (14)
N1A0.40687 (13)0.17681 (11)0.17988 (8)0.01765 (16)0.5
C140.34033 (13)0.00926 (12)0.09961 (7)0.01469 (15)
C20.20365 (14)0.08622 (14)0.01379 (8)0.01915 (17)
H20.1347680.0173720.0551490.023*
C30.17122 (15)0.27158 (15)0.06522 (8)0.02109 (18)
H30.0779020.3300580.1433740.025*
C110.86772 (13)0.67870 (12)0.49428 (7)0.01393 (15)
H110.9553170.8087070.4938930.017*
C120.83019 (14)0.63213 (13)0.59624 (7)0.01570 (15)
H120.8917960.7309000.6655800.019*
C130.70271 (14)0.44142 (13)0.59774 (7)0.01594 (15)
H130.6772850.4104030.6677530.019*
C150.61299 (13)0.29688 (12)0.49620 (7)0.01451 (15)
H150.5273370.1668230.4974710.017*
C170.57040 (12)0.01171 (11)0.27811 (7)0.01585 (15)0.5
C60.44015 (13)0.11001 (12)0.16023 (7)0.01356 (14)
C50.41071 (14)0.29159 (12)0.11154 (8)0.01623 (15)
H50.4799540.3592680.1539330.019*
C40.27263 (15)0.37139 (13)0.00430 (8)0.01966 (17)
H40.2479840.4962920.0418500.024*
C1B0.40687 (13)0.17681 (11)0.17988 (8)0.01765 (16)0.5
N17A0.57040 (12)0.01171 (11)0.27811 (7)0.01585 (15)0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0195 (3)0.0149 (3)0.0197 (3)0.0079 (2)0.0042 (2)0.0036 (2)
O20.0234 (3)0.0138 (3)0.0220 (3)0.0095 (2)0.0055 (2)0.0039 (2)
N40.0328 (5)0.0178 (4)0.0343 (5)0.0059 (3)0.0205 (4)0.0074 (3)
N20.0166 (3)0.0121 (3)0.0142 (3)0.0040 (2)0.0059 (2)0.0031 (2)
N30.0184 (3)0.0153 (3)0.0178 (3)0.0072 (3)0.0084 (3)0.0037 (2)
C100.0113 (3)0.0120 (3)0.0122 (3)0.0057 (2)0.0036 (2)0.0023 (2)
C90.0112 (3)0.0116 (3)0.0128 (3)0.0053 (3)0.0033 (2)0.0023 (2)
C80.0124 (3)0.0099 (3)0.0145 (3)0.0043 (2)0.0048 (3)0.0024 (2)
N1A0.0196 (4)0.0103 (3)0.0231 (4)0.0038 (3)0.0121 (3)0.0015 (3)
C140.0162 (3)0.0110 (3)0.0183 (4)0.0053 (3)0.0088 (3)0.0031 (3)
C20.0170 (4)0.0261 (4)0.0194 (4)0.0118 (3)0.0078 (3)0.0116 (3)
C30.0172 (4)0.0269 (4)0.0129 (3)0.0052 (3)0.0033 (3)0.0012 (3)
C110.0134 (3)0.0120 (3)0.0145 (3)0.0053 (3)0.0028 (3)0.0004 (3)
C120.0165 (3)0.0178 (4)0.0130 (3)0.0096 (3)0.0028 (3)0.0008 (3)
C130.0175 (4)0.0202 (4)0.0130 (3)0.0104 (3)0.0056 (3)0.0044 (3)
C150.0148 (3)0.0152 (3)0.0153 (3)0.0074 (3)0.0057 (3)0.0050 (3)
C170.0135 (3)0.0138 (3)0.0155 (3)0.0015 (3)0.0058 (3)0.0005 (2)
C60.0134 (3)0.0117 (3)0.0128 (3)0.0029 (3)0.0046 (3)0.0010 (2)
C50.0187 (4)0.0132 (3)0.0191 (4)0.0078 (3)0.0077 (3)0.0056 (3)
C40.0223 (4)0.0133 (3)0.0198 (4)0.0041 (3)0.0087 (3)0.0014 (3)
C1B0.0196 (4)0.0103 (3)0.0231 (4)0.0038 (3)0.0121 (3)0.0015 (3)
N17A0.0135 (3)0.0138 (3)0.0155 (3)0.0015 (3)0.0058 (3)0.0005 (2)
Geometric parameters (Å, º) top
O1—C171.2523 (11)C14—C1B1.4767 (12)
O1—N17A1.2523 (11)C2—H20.9500
O2—N1A1.2485 (11)C2—C31.4033 (15)
O2—C1B1.2485 (11)C3—H30.9500
N4—N31.1323 (12)C3—C41.3892 (14)
N2—N31.2396 (11)C11—H110.9500
N2—C101.4245 (11)C11—C121.3876 (12)
C10—C91.4061 (12)C12—H120.9500
C10—C111.3933 (12)C12—C131.3950 (13)
C9—C81.4628 (12)C13—H130.9500
C9—C151.3996 (12)C13—C151.3911 (12)
C8—N1A1.4019 (13)C15—H150.9500
C8—C171.4028 (12)C17—C61.4697 (12)
C8—C1B1.4019 (13)C6—C51.3744 (12)
C8—N17A1.4028 (12)C6—N17A1.4697 (12)
N1A—C141.4767 (12)C5—H50.9500
C14—C21.3762 (13)C5—C41.4033 (13)
C14—C61.3865 (12)C4—H40.9500
N3—N2—C10116.77 (7)C12—C11—H11120.1
N4—N3—N2171.89 (9)C11—C12—H12119.7
C9—C10—N2116.31 (7)C11—C12—C13120.52 (8)
C11—C10—N2123.03 (8)C13—C12—H12119.7
C11—C10—C9120.64 (8)C12—C13—H13120.2
C10—C9—C8121.71 (7)C15—C13—C12119.67 (8)
C15—C9—C10118.70 (7)C15—C13—H13120.2
C15—C9—C8119.59 (7)C9—C15—H15119.6
N1A—C8—C9126.97 (7)C13—C15—C9120.76 (8)
N1A—C8—C17107.79 (7)C13—C15—H15119.6
C17—C8—C9125.04 (7)O1—C17—C8127.91 (8)
C1B—C8—C9126.97 (7)O1—C17—C6123.29 (8)
C1B—C8—N17A107.79 (7)C8—C17—C6108.80 (7)
N17A—C8—C9125.04 (7)C14—C6—C17107.50 (7)
O2—N1A—C8127.81 (8)C14—C6—N17A107.50 (7)
O2—N1A—C14123.50 (8)C5—C6—C14122.61 (8)
C8—N1A—C14108.64 (7)C5—C6—C17129.89 (8)
C2—C14—N1A131.01 (8)C5—C6—N17A129.89 (8)
C2—C14—C6121.74 (8)C6—C5—H5121.9
C2—C14—C1B131.01 (8)C6—C5—C4116.25 (8)
C6—C14—N1A107.23 (8)C4—C5—H5121.9
C6—C14—C1B107.23 (8)C3—C4—C5121.38 (8)
C14—C2—H2121.7C3—C4—H4119.3
C14—C2—C3116.59 (8)C5—C4—H4119.3
C3—C2—H2121.7O2—C1B—C8127.81 (8)
C2—C3—H3119.3O2—C1B—C14123.50 (8)
C4—C3—C2121.42 (8)C8—C1B—C14108.64 (7)
C4—C3—H3119.3O1—N17A—C8127.91 (8)
C10—C11—H11120.1O1—N17A—C6123.29 (8)
C12—C11—C10119.71 (8)C8—N17A—C6108.80 (7)
O1—C17—C6—C14178.78 (8)C14—C6—C5—C40.01 (12)
O1—C17—C6—C50.58 (14)C14—C6—N17A—O1178.78 (8)
O2—N1A—C14—C22.51 (14)C14—C6—N17A—C80.88 (9)
O2—N1A—C14—C6176.07 (8)C2—C14—C6—C17179.07 (7)
N2—C10—C9—C81.48 (11)C2—C14—C6—C50.35 (13)
N2—C10—C9—C15178.39 (7)C2—C14—C6—N17A179.07 (7)
N2—C10—C11—C12178.73 (7)C2—C14—C1B—O22.51 (14)
N3—N2—C10—C9174.08 (7)C2—C14—C1B—C8179.99 (9)
N3—N2—C10—C114.34 (12)C2—C3—C4—C50.43 (14)
C10—C9—C8—N1A59.12 (12)C11—C10—C9—C8179.94 (7)
C10—C9—C8—C17126.65 (9)C11—C10—C9—C150.08 (11)
C10—C9—C8—C1B59.12 (12)C11—C12—C13—C150.14 (13)
C10—C9—C8—N17A126.65 (9)C12—C13—C15—C90.61 (12)
C10—C9—C15—C130.57 (12)C15—C9—C8—N1A121.02 (9)
C10—C11—C12—C130.35 (12)C15—C9—C8—C1753.22 (11)
C9—C10—C11—C120.38 (12)C15—C9—C8—C1B121.02 (9)
C9—C8—N1A—O20.35 (14)C15—C9—C8—N17A53.22 (11)
C9—C8—N1A—C14177.02 (7)C17—C8—N1A—O2175.39 (8)
C9—C8—C17—O12.70 (13)C17—C8—N1A—C141.97 (9)
C9—C8—C17—C6176.94 (7)C17—C6—C5—C4179.29 (8)
C9—C8—C1B—O20.35 (14)C6—C14—C2—C30.31 (13)
C9—C8—C1B—C14177.02 (7)C6—C14—C1B—O2176.07 (8)
C9—C8—N17A—O12.70 (13)C6—C14—C1B—C81.43 (9)
C9—C8—N17A—C6176.94 (7)C6—C5—C4—C30.39 (13)
C8—C9—C15—C13179.56 (7)C5—C6—N17A—O10.58 (14)
C8—N1A—C14—C2179.99 (9)C5—C6—N17A—C8179.76 (8)
C8—N1A—C14—C61.43 (9)C1B—C8—N17A—O1177.87 (8)
C8—C17—C6—C140.88 (9)C1B—C8—N17A—C61.78 (9)
C8—C17—C6—C5179.76 (8)C1B—C14—C2—C3178.72 (8)
N1A—C8—C17—O1177.87 (8)C1B—C14—C6—C5179.09 (7)
N1A—C8—C17—C61.78 (9)C1B—C14—C6—N17A0.32 (9)
N1A—C14—C2—C3178.72 (8)N17A—C8—C1B—O2175.39 (8)
N1A—C14—C6—C170.32 (9)N17A—C8—C1B—C141.97 (9)
N1A—C14—C6—C5179.09 (7)N17A—C6—C5—C4179.29 (8)
C14—C2—C3—C40.07 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.952.433.1077 (16)128
C11—H11···O1ii0.952.573.2327 (17)127
Symmetry codes: (i) x, y1, z; (ii) x+2, y+1, z+1.
Covalent C=O/N+-O- bond lengths (Å) in 2 and related structures top
CompoundCO/N+—O-N+—O-/CO
SAWYAR1.240 (4)1.241 (4)
SAZQIU1.253 (2)1.243 (4)
21.252 (1)1.248 (1)
Table 2. Weak hydrogen bond table of compound 2 top
No classical hydrogen bonds found. For C—H···acceptor interactions, see: Steiner, Th., (1996), Cryst. Rev., 6, 1-57 H-Bond classification [Jeffrey, G. A., Maluszynska, H. & Mitra, J., (1985), Int J. Biol. Macromol. 7, 336-348]
S.NoD-H···AH···A (Å)D···A (Å)D-H···.A (°)
1C5-H5···O2(a)2.433.1077 (16)128
2C11-H11···O1(b)2.573.2327 (17)127
Symmetry codes: (i) x,-1+y,z (ii) 2-x,1-y,1-z .

Acknowledgements

CVR acknowledges SERB (CRG/2021/005729), New Delhi, India for funding this project. PD thanks DST-Inspire for the fellowship. ST thanks SERB for the Start-up Research Grant (SRG/2023/000209) and AESD&CIF (MLP0072), CSIR-CSMCRI for the infrastructure.

Funding information

Funding for this research was provided by: Science and Engineering Research Board (grant No. CRG/2021/005729 to Chepuri V. Ramana); Science and Engineering Research Board (grant No. SRG/2023/000209 to Srinu Tothadi).

References

First citationBerti, C., Colonna, M., Greci, L. & Marchetti, L. (1975). Tetrahedron, 31, 1745–1753.  CrossRef CAS Google Scholar
First citationBruker (2015). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, T., Li, M. & Liu, J. (2018). Cryst. Growth Des. 18, 2765–2783.  CrossRef CAS Google Scholar
First citationChipot, C., Jaffe, R., Maigret, B., Pearlman, D. A. & Kollman, P. A. (1996). J. Am. Chem. Soc. 118, 11217–11224.  CrossRef CAS Web of Science Google Scholar
First citationClegg, W. (2005). CSD Communication (refcode SAWYAR). CCDC, Cambridge, England.  Google Scholar
First citationClegg, W. & Elsegood, M. R. J. (2005). CSD Communication (refcode SAZQIU). CCDC, Cambridge, England.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.  Google Scholar
First citationDhote, P. S., Halnor, S. V. & Ramana, C. V. (2021). Chem. Rec. 21, 3546–3558.  CrossRef CAS PubMed Google Scholar
First citationDhote, P. S., Patel, P., Vanka, K. & Ramana, C. V. (2021). Org. Biomol. Chem. 19, 7970–7994.  CrossRef CAS PubMed Google Scholar
First citationDhote, P. S., Pund, K. A. & Ramana, C. V. (2021). J. Org. Chem. 86, 10874–10882.  CSD CrossRef CAS PubMed Google Scholar
First citationDhote, P. S. & Ramana, C. V. (2019). Org. Lett. 21, 6221–6224.  CrossRef CAS PubMed Google Scholar
First citationDhote, P. S. & Ramana, C. V. (2021). Org. Lett. 23, 2632–2637.  CSD CrossRef CAS PubMed Google Scholar
First citationDhote, P. S. & Ramana, C. V. (2022). Adv. Synth. Catal. 364, 1122–1133.  CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFu, W. & Song, Q. (2018). Org. Lett. 20, 393–396.  CSD CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGu, W., Zhang, Y., Hao, X.-J., Yang, F.-M., Sun, Q.-Y., Morris-Natschke, S. L., Lee, K.-H., Wang, Y.-H. & Long, C.-L. (2014). J. Nat. Prod. 77, 2590–2594.  CrossRef CAS PubMed Google Scholar
First citationJi, Y., He, X., Peng, C. & Huang, W. (2019). Org. Biomol. Chem. 17, 2850–2864.  CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKumar, C. V. S., Puranik, V. G. & Ramana, C. V. (2012). Chem. A Eur. J. 18, 9601–9611.  CSD CrossRef CAS Google Scholar
First citationKumar, C. V. S. & Ramana, C. V. (2014). Org. Lett. 16, 4766–4769.  PubMed Google Scholar
First citationKumar, C. V. S. & Ramana, C. V. (2015). Org. Lett. 17, 2870–2873.  PubMed Google Scholar
First citationLiu, S., Zhao, F., Chen, X., Deng, G. & Huang, H. (2020). Adv. Synth. Catal. 362, 3795–3823.  CrossRef CAS Google Scholar
First citationLiu, Y. & McWhorter, W. W. (2003). J. Org. Chem. 68, 2618–2622.  CrossRef PubMed CAS Google Scholar
First citationNepveu, F., Kim, S., Boyer, J., Chatriant, O., Ibrahim, H., Reybier, K., Monje, M.-C., Chevalley, S., Perio, P., Lajoie, B., Bouajila, J., Deharo, E., Sauvain, M., Tahar, R., Basco, L., Pantaleo, A., Turini, F., Arese, P., Valentin, A., Thompson, E., Vivas, L., Petit, S. & Nallet, J.-P. (2010). J. Med. Chem. 53, 699–714.  CrossRef CAS PubMed Google Scholar
First citationPatel, P., Reddy, B. N. & Ramana, C. V. (2014). Tetrahedron, 70, 510–516.  CrossRef CAS Google Scholar
First citationPatel, P. & Ramana, C. V. (2012). J. Org. Chem. 77, 10509–10515.  CrossRef CAS PubMed Google Scholar
First citationRamana, C. V., Patel, P., Vanka, K., Miao, B. & Degterev, A. (2010). Eur. J. Org. Chem. pp. 5955–5966.  CrossRef Google Scholar
First citationReddy, B. N. & Ramana, C. V. (2013). Chem. Commun. 49, 9767–9769.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z., Xu, S., Wang, K., Kong, N. & Liu, X. (2021). Asia. J. Org. Chem. 10, 1580–1594.  CrossRef CAS Google Scholar
First citationWetzel, A. & Gagosz, F. (2011). Angew. Chem. Int. Ed. 50, 7354–7358.  CrossRef CAS Google Scholar
First citationXie, L. H., Li, Y., Dong, S. X., Feng, X. M. & Liu, X. H. (2021). Chem. Commun. 57, 239–242.  CSD CrossRef CAS Google Scholar
First citationZhang, X., Li, P., Lyu, C., Yong, W., Li, J., Pan, X., Zhu, X. & Rao, W. (2017). Adv. Synth. Catal. 359, 4147–4152.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds