research communications
Synthesis, characterization, and H-indole 1-oxide
of 2-(2-azidophenyl)-3-oxo-3aOrganic Chemistry Division, CSIR-National Chemical Laboratory, Pune, 411008, India, and bAnalytical and Environmental Sciences Division and Centralized Instrumentation Facility, CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, 364002 , India
*Correspondence e-mail: srinut@csmcri.res.in, vr.chepuri@ncl.res.in
An attempt to explore the reactivity of the nitro group in the presence of gold catalysis in comparison to the azide group yielded intriguing results. Surprisingly, only the nitro group exhibited reactivity, ultimately giving rise to the formation of the title isatogen, C14H8N4O2. In the weak C—H⋯O hydrogen bonds and π–π stacking interactions link the molecules. The structure exhibits disorder of the molecule.
Keywords: crystal structure; isatogen; reactivity; hydrogen bonding.
CCDC reference: 2303503
1. Chemical context
2,2-Disubstituted indolin-3-ones play a crucial role as fundamental structural motifs in various natural et al., 2021; Ji et al., 2019; Gu et al., 2014). Thus, substantial research efforts have been dedicated to the synthesis of these essential compounds (Dhote, Patel et al., 2021; Wang et al., 2021; Liu & McWhorter, 2003; Wetzel & Gagosz, 2011; Liu et al., 2003). These synthetic methods can be broadly sorted into three main strategies, viz. oxidative dearomatization of indoles (Wang et al., 2021; Liu et al., 2020), reactions (Dhote, Pund & Ramana, 2021; Xie et al., 2021; Fu & Song, 2018) and nucleophilic additions to 3H-indol-3-ones or indolone-N-oxides (Zhang et al., 2017; Liu et al., 2003; Berti et al., 1975). Notably, indolone-N-oxides, also known as isatogens, hold substantial importance in medicinal chemistry and serve as intermediates in the synthesis of natural and bioactive compounds (Nepveu et al., 2010). The literature contains a wide array of techniques for synthesizing isatogens, encompassing both metal-free and metal-catalyzed routes (Dhote & Ramana, 2021; Dhote, Halnor et al., 2021). These methods have been rigorously explored and well documented, underscoring the adaptability and importance of isatogens in the realms of organic synthesis and medicinal chemistry. Over the past few years, our research group has been deeply involved in this field, particularly focusing on their synthesis through nitroalkyne cycloisomerization (Dhote, Pund & Ramana, 2021; Dhote & Ramana, 2019; Kumar & Ramana, 2014, 2015; Patel et al., 2010) and we have demonstrated their utility in total synthesis endeavors (Patel et al., 2014; Reddy & Ramana, 2013; Kumar et al., 2012; Patel & Ramana, 2012).
and bioactive molecules (Dhote, PatelAs part of our efforts to demonstrate the reactivity of the nitro group compared to the azide group (Dhote & Ramana, 2022; Dhote, Halner et al., 2021), we designed a substrate that incorporates both a nitro group and an azide group positioned ortho to an alkyne functionality. Interestingly, when we subjected this substrate to treatment with either AuIII or AuI, we obtained isatogen 2 with the azide moiety intact in relatively good yield (see reaction scheme below). The structural characterization of 2-(2-azidophenyl)-3-oxo-3H-indole 1-oxide, 2, was achieved through spectral and analytical data analysis. In the 1H NMR spectra of 2, the protons were observed to be overlapping, posing challenges in confirming the precise structure. Subsequently, the 13C NMR spectrum indicated the absence of the alkyne carbon signal, suggesting a modification at the alkyne functionality (see Figs. S1 and S2 in the supporting information). Additionally, signals corresponding to the carbonyl and the newly formed quaternary center were observed at δ = 185.2 and 140.2 ppm, respectively. The molecular composition of compound 2 was further verified as C14H9N4O2 through high-resolution ([M + H]+ found as 265.0771). Moreover, the structure of 2 was conclusively confirmed through single-crystal X-ray diffraction analysis.
2. Structural commentary and supramolecular features
The title compound crystallizes in P-1 with one molecule in the (Fig. 1). Molecules are further connected via C—H⋯O (Table 1) weak hydrogen bonds (Desiraju et al., 1999) along the b-axis direction (Fig. 2). Moreover, π–π stacking [3.354 (2) Å; Chipot et al., 1996; Chen et al., 2018) is observed along the a-axis direction (Fig. 3). However, there are no classical hydrogen bonds present in the crystal packing.
|
In general, C=O bond lengths (1.22 Å) are always shorter than N+—O− (1.26 Å). However, in the current scenario, the C=O and N+—O− bond lengths are almost equal (Table 2). We therefore analyzed the bond lengths in similar structures found in the Cambridge Structural Database (Conquest 2023.3.0; CSD version 5.45, update of November 2023; Groom et al., 2016), among which seven show N/C disorder and two have similar bond lengths to those in the title compound. We analyzed the bond lengths of similar molecules in the CSD database and further modeled the disorder in the current molecule. After modeling the disorder, the R factor reduced to 4.22%. Predominantly, if the atoms of molecules are disordered, the bond distance are averaged out and shows the mean distance of bonds. The N (N1A and N17A) and C (C1B and C17) atoms of isatogen are disordered over two positions with equal (0.5) site occupancy. As the molecule exhibits disorder, the bond distances were averaged out, giving N17A—O1/C17=O1 = 1.252 (1) Å and C1B=O2/N1A—O2 = 1.248 (1) Å.
|
3. Hirshfeld surface analysis
A Hirshfeld surface analysis of compound 2 was undertaken with CrystalExplorer 21.5 (Spackman et al., 2021) to investigate the intermolecular interactions. The overall 2D fingerprint plot is shown in Fig. 4a and those delineated into H⋯H (19.4%), H⋯C/C⋯H (14.9%), H⋯N/N⋯H (22.1%), and H⋯O/O⋯H (23.1%) interactions are shown in Fig. 4b–e. Interactions such as N⋯O/O⋯N O⋯C/C⋯O and N⋯C/ C⋯N contribute very little to the overall surface and hence those contacts are not shown. The Hirshfeld surface mapped with dnorm is shown in Fig. 4f (dnorm is the normalized sum of de and di where de is the distance from the Hirshfeld surface to the nearest atom i internal to the surface and di is distance from Hirshfeld surface to the nearest atom e external to the surface).
4. Database survey
There are twenty structures of isatogen present in the Cambridge Structural Database (CSD; Conquest 2023.3.0; CSD version 5.45, update of November 2023; Groom et al., 2016), among which ten show N/C disorder. Bond lengths associated with these atoms are unusual. In most crystal structures, C=O is always less than N+—O−. In contrast, the C=O and N+—O− bond lengths in SAWYAR (Clegg, 2005) and SAZQIU (Clegg & Elsegood, 2005) are almost equal and are similar to those the title compound (Table 2).
5. Synthesis and crystallization
The reaction was carried out at room temperature and under an argon atmosphere. To a solution of the active gold complex prepared from JohnPhosAuCl (5 mol%) and AgSbF6 (10 mol%) or AuCl3 (5 mol%) in 1,2-DCE (1 ml) was added a solution of 1-azido-2-[(2 nitrophenyl)ethynyl]benzene, 1, in 1,2-DCE (0.5 ml) dropwise over 5 minutes. The resulting solution was stirred for a period of 2 h and then concentrated under reduced pressure. The resulting crude product was purified by to afford 2-(2-azidophenyl)-3-oxo-3H-indole 1-oxide, 2, as a yellow solid. Next, single crystals were grown by slow evaporation of a solution of compounds (10 mg) in acetonitrile (1 ml) [placed in a long glass vial of 2 ml volume and closed with a cotton plug] at room temperature in a dark place.
6. Refinement
Crystal data, data collection and structure . H atoms were positioned geometrically (C—H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 3Supporting information
CCDC reference: 2303503
https://doi.org/10.1107/S2056989024001440/dx2056sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024001440/dx2056Isup2.hkl
Supporting information. DOI: https://doi.org/10.1107/S2056989024001440/dx2056sup4.docx
Supporting information file. DOI: https://doi.org/10.1107/S2056989024001440/dx2056Isup4.cml
C14H8N4O2 | Z = 2 |
Mr = 264.24 | F(000) = 272 |
Triclinic, P1 | Dx = 1.513 Mg m−3 |
a = 7.166 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 7.686 (3) Å | Cell parameters from 9975 reflections |
c = 12.172 (4) Å | θ = 3.1–34.6° |
α = 95.473 (16)° | µ = 0.11 mm−1 |
β = 105.226 (12)° | T = 100 K |
γ = 113.116 (13)° | Block, colourless |
V = 579.9 (3) Å3 | 0.12 × 0.06 × 0.05 mm |
Bruker D8 VENTURE Kappa Duo PHOTON II CPAD diffractometer | 3946 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.049 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 35.2°, θmin = 3.0° |
Tmin = 0.626, Tmax = 0.745 | h = −11→11 |
45548 measured reflections | k = −12→12 |
4818 independent reflections | l = −19→19 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.042 | H-atom parameters constrained |
wR(F2) = 0.122 | w = 1/[σ2(Fo2) + (0.066P)2 + 0.1514P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
4818 reflections | Δρmax = 0.46 e Å−3 |
181 parameters | Δρmin = −0.29 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.67828 (11) | −0.03978 (9) | 0.35537 (6) | 0.01840 (14) | |
O2 | 0.33615 (11) | 0.29764 (9) | 0.15423 (6) | 0.01970 (14) | |
N4 | 1.05131 (16) | 0.87935 (13) | 0.27516 (9) | 0.02787 (19) | |
N2 | 0.81071 (12) | 0.56952 (10) | 0.28504 (6) | 0.01489 (14) | |
N3 | 0.93852 (12) | 0.73575 (11) | 0.28689 (7) | 0.01669 (14) | |
C10 | 0.77636 (12) | 0.53396 (11) | 0.39246 (7) | 0.01172 (14) | |
C9 | 0.64747 (12) | 0.34085 (11) | 0.39218 (7) | 0.01194 (14) | |
C8 | 0.54989 (12) | 0.18621 (11) | 0.28650 (7) | 0.01240 (14) | |
N1A | 0.40687 (13) | 0.17681 (11) | 0.17988 (8) | 0.01765 (16) | 0.5 |
C14 | 0.34033 (13) | −0.00926 (12) | 0.09961 (7) | 0.01469 (15) | |
C2 | 0.20365 (14) | −0.08622 (14) | −0.01379 (8) | 0.01915 (17) | |
H2 | 0.134768 | −0.017372 | −0.055149 | 0.023* | |
C3 | 0.17122 (15) | −0.27158 (15) | −0.06522 (8) | 0.02109 (18) | |
H3 | 0.077902 | −0.330058 | −0.143374 | 0.025* | |
C11 | 0.86772 (13) | 0.67870 (12) | 0.49428 (7) | 0.01393 (15) | |
H11 | 0.955317 | 0.808707 | 0.493893 | 0.017* | |
C12 | 0.83019 (14) | 0.63213 (13) | 0.59624 (7) | 0.01570 (15) | |
H12 | 0.891796 | 0.730900 | 0.665580 | 0.019* | |
C13 | 0.70271 (14) | 0.44142 (13) | 0.59774 (7) | 0.01594 (15) | |
H13 | 0.677285 | 0.410403 | 0.667753 | 0.019* | |
C15 | 0.61299 (13) | 0.29688 (12) | 0.49620 (7) | 0.01451 (15) | |
H15 | 0.527337 | 0.166823 | 0.497471 | 0.017* | |
C17 | 0.57040 (12) | 0.01171 (11) | 0.27811 (7) | 0.01585 (15) | 0.5 |
C6 | 0.44015 (13) | −0.11001 (12) | 0.16023 (7) | 0.01356 (14) | |
C5 | 0.41071 (14) | −0.29159 (12) | 0.11154 (8) | 0.01623 (15) | |
H5 | 0.479954 | −0.359268 | 0.153933 | 0.019* | |
C4 | 0.27263 (15) | −0.37139 (13) | −0.00430 (8) | 0.01966 (17) | |
H4 | 0.247984 | −0.496292 | −0.041850 | 0.024* | |
C1B | 0.40687 (13) | 0.17681 (11) | 0.17988 (8) | 0.01765 (16) | 0.5 |
N17A | 0.57040 (12) | 0.01171 (11) | 0.27811 (7) | 0.01585 (15) | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0195 (3) | 0.0149 (3) | 0.0197 (3) | 0.0079 (2) | 0.0042 (2) | 0.0036 (2) |
O2 | 0.0234 (3) | 0.0138 (3) | 0.0220 (3) | 0.0095 (2) | 0.0055 (2) | 0.0039 (2) |
N4 | 0.0328 (5) | 0.0178 (4) | 0.0343 (5) | 0.0059 (3) | 0.0205 (4) | 0.0074 (3) |
N2 | 0.0166 (3) | 0.0121 (3) | 0.0142 (3) | 0.0040 (2) | 0.0059 (2) | 0.0031 (2) |
N3 | 0.0184 (3) | 0.0153 (3) | 0.0178 (3) | 0.0072 (3) | 0.0084 (3) | 0.0037 (2) |
C10 | 0.0113 (3) | 0.0120 (3) | 0.0122 (3) | 0.0057 (2) | 0.0036 (2) | 0.0023 (2) |
C9 | 0.0112 (3) | 0.0116 (3) | 0.0128 (3) | 0.0053 (3) | 0.0033 (2) | 0.0023 (2) |
C8 | 0.0124 (3) | 0.0099 (3) | 0.0145 (3) | 0.0043 (2) | 0.0048 (3) | 0.0024 (2) |
N1A | 0.0196 (4) | 0.0103 (3) | 0.0231 (4) | 0.0038 (3) | 0.0121 (3) | 0.0015 (3) |
C14 | 0.0162 (3) | 0.0110 (3) | 0.0183 (4) | 0.0053 (3) | 0.0088 (3) | 0.0031 (3) |
C2 | 0.0170 (4) | 0.0261 (4) | 0.0194 (4) | 0.0118 (3) | 0.0078 (3) | 0.0116 (3) |
C3 | 0.0172 (4) | 0.0269 (4) | 0.0129 (3) | 0.0052 (3) | 0.0033 (3) | 0.0012 (3) |
C11 | 0.0134 (3) | 0.0120 (3) | 0.0145 (3) | 0.0053 (3) | 0.0028 (3) | 0.0004 (3) |
C12 | 0.0165 (3) | 0.0178 (4) | 0.0130 (3) | 0.0096 (3) | 0.0028 (3) | 0.0008 (3) |
C13 | 0.0175 (4) | 0.0202 (4) | 0.0130 (3) | 0.0104 (3) | 0.0056 (3) | 0.0044 (3) |
C15 | 0.0148 (3) | 0.0152 (3) | 0.0153 (3) | 0.0074 (3) | 0.0057 (3) | 0.0050 (3) |
C17 | 0.0135 (3) | 0.0138 (3) | 0.0155 (3) | 0.0015 (3) | 0.0058 (3) | −0.0005 (2) |
C6 | 0.0134 (3) | 0.0117 (3) | 0.0128 (3) | 0.0029 (3) | 0.0046 (3) | 0.0010 (2) |
C5 | 0.0187 (4) | 0.0132 (3) | 0.0191 (4) | 0.0078 (3) | 0.0077 (3) | 0.0056 (3) |
C4 | 0.0223 (4) | 0.0133 (3) | 0.0198 (4) | 0.0041 (3) | 0.0087 (3) | −0.0014 (3) |
C1B | 0.0196 (4) | 0.0103 (3) | 0.0231 (4) | 0.0038 (3) | 0.0121 (3) | 0.0015 (3) |
N17A | 0.0135 (3) | 0.0138 (3) | 0.0155 (3) | 0.0015 (3) | 0.0058 (3) | −0.0005 (2) |
O1—C17 | 1.2523 (11) | C14—C1B | 1.4767 (12) |
O1—N17A | 1.2523 (11) | C2—H2 | 0.9500 |
O2—N1A | 1.2485 (11) | C2—C3 | 1.4033 (15) |
O2—C1B | 1.2485 (11) | C3—H3 | 0.9500 |
N4—N3 | 1.1323 (12) | C3—C4 | 1.3892 (14) |
N2—N3 | 1.2396 (11) | C11—H11 | 0.9500 |
N2—C10 | 1.4245 (11) | C11—C12 | 1.3876 (12) |
C10—C9 | 1.4061 (12) | C12—H12 | 0.9500 |
C10—C11 | 1.3933 (12) | C12—C13 | 1.3950 (13) |
C9—C8 | 1.4628 (12) | C13—H13 | 0.9500 |
C9—C15 | 1.3996 (12) | C13—C15 | 1.3911 (12) |
C8—N1A | 1.4019 (13) | C15—H15 | 0.9500 |
C8—C17 | 1.4028 (12) | C17—C6 | 1.4697 (12) |
C8—C1B | 1.4019 (13) | C6—C5 | 1.3744 (12) |
C8—N17A | 1.4028 (12) | C6—N17A | 1.4697 (12) |
N1A—C14 | 1.4767 (12) | C5—H5 | 0.9500 |
C14—C2 | 1.3762 (13) | C5—C4 | 1.4033 (13) |
C14—C6 | 1.3865 (12) | C4—H4 | 0.9500 |
N3—N2—C10 | 116.77 (7) | C12—C11—H11 | 120.1 |
N4—N3—N2 | 171.89 (9) | C11—C12—H12 | 119.7 |
C9—C10—N2 | 116.31 (7) | C11—C12—C13 | 120.52 (8) |
C11—C10—N2 | 123.03 (8) | C13—C12—H12 | 119.7 |
C11—C10—C9 | 120.64 (8) | C12—C13—H13 | 120.2 |
C10—C9—C8 | 121.71 (7) | C15—C13—C12 | 119.67 (8) |
C15—C9—C10 | 118.70 (7) | C15—C13—H13 | 120.2 |
C15—C9—C8 | 119.59 (7) | C9—C15—H15 | 119.6 |
N1A—C8—C9 | 126.97 (7) | C13—C15—C9 | 120.76 (8) |
N1A—C8—C17 | 107.79 (7) | C13—C15—H15 | 119.6 |
C17—C8—C9 | 125.04 (7) | O1—C17—C8 | 127.91 (8) |
C1B—C8—C9 | 126.97 (7) | O1—C17—C6 | 123.29 (8) |
C1B—C8—N17A | 107.79 (7) | C8—C17—C6 | 108.80 (7) |
N17A—C8—C9 | 125.04 (7) | C14—C6—C17 | 107.50 (7) |
O2—N1A—C8 | 127.81 (8) | C14—C6—N17A | 107.50 (7) |
O2—N1A—C14 | 123.50 (8) | C5—C6—C14 | 122.61 (8) |
C8—N1A—C14 | 108.64 (7) | C5—C6—C17 | 129.89 (8) |
C2—C14—N1A | 131.01 (8) | C5—C6—N17A | 129.89 (8) |
C2—C14—C6 | 121.74 (8) | C6—C5—H5 | 121.9 |
C2—C14—C1B | 131.01 (8) | C6—C5—C4 | 116.25 (8) |
C6—C14—N1A | 107.23 (8) | C4—C5—H5 | 121.9 |
C6—C14—C1B | 107.23 (8) | C3—C4—C5 | 121.38 (8) |
C14—C2—H2 | 121.7 | C3—C4—H4 | 119.3 |
C14—C2—C3 | 116.59 (8) | C5—C4—H4 | 119.3 |
C3—C2—H2 | 121.7 | O2—C1B—C8 | 127.81 (8) |
C2—C3—H3 | 119.3 | O2—C1B—C14 | 123.50 (8) |
C4—C3—C2 | 121.42 (8) | C8—C1B—C14 | 108.64 (7) |
C4—C3—H3 | 119.3 | O1—N17A—C8 | 127.91 (8) |
C10—C11—H11 | 120.1 | O1—N17A—C6 | 123.29 (8) |
C12—C11—C10 | 119.71 (8) | C8—N17A—C6 | 108.80 (7) |
O1—C17—C6—C14 | 178.78 (8) | C14—C6—C5—C4 | 0.01 (12) |
O1—C17—C6—C5 | −0.58 (14) | C14—C6—N17A—O1 | 178.78 (8) |
O2—N1A—C14—C2 | 2.51 (14) | C14—C6—N17A—C8 | −0.88 (9) |
O2—N1A—C14—C6 | −176.07 (8) | C2—C14—C6—C17 | −179.07 (7) |
N2—C10—C9—C8 | −1.48 (11) | C2—C14—C6—C5 | 0.35 (13) |
N2—C10—C9—C15 | 178.39 (7) | C2—C14—C6—N17A | −179.07 (7) |
N2—C10—C11—C12 | −178.73 (7) | C2—C14—C1B—O2 | 2.51 (14) |
N3—N2—C10—C9 | −174.08 (7) | C2—C14—C1B—C8 | −179.99 (9) |
N3—N2—C10—C11 | 4.34 (12) | C2—C3—C4—C5 | 0.43 (14) |
C10—C9—C8—N1A | −59.12 (12) | C11—C10—C9—C8 | −179.94 (7) |
C10—C9—C8—C17 | 126.65 (9) | C11—C10—C9—C15 | −0.08 (11) |
C10—C9—C8—C1B | −59.12 (12) | C11—C12—C13—C15 | 0.14 (13) |
C10—C9—C8—N17A | 126.65 (9) | C12—C13—C15—C9 | −0.61 (12) |
C10—C9—C15—C13 | 0.57 (12) | C15—C9—C8—N1A | 121.02 (9) |
C10—C11—C12—C13 | 0.35 (12) | C15—C9—C8—C17 | −53.22 (11) |
C9—C10—C11—C12 | −0.38 (12) | C15—C9—C8—C1B | 121.02 (9) |
C9—C8—N1A—O2 | 0.35 (14) | C15—C9—C8—N17A | −53.22 (11) |
C9—C8—N1A—C14 | −177.02 (7) | C17—C8—N1A—O2 | 175.39 (8) |
C9—C8—C17—O1 | −2.70 (13) | C17—C8—N1A—C14 | −1.97 (9) |
C9—C8—C17—C6 | 176.94 (7) | C17—C6—C5—C4 | 179.29 (8) |
C9—C8—C1B—O2 | 0.35 (14) | C6—C14—C2—C3 | −0.31 (13) |
C9—C8—C1B—C14 | −177.02 (7) | C6—C14—C1B—O2 | −176.07 (8) |
C9—C8—N17A—O1 | −2.70 (13) | C6—C14—C1B—C8 | 1.43 (9) |
C9—C8—N17A—C6 | 176.94 (7) | C6—C5—C4—C3 | −0.39 (13) |
C8—C9—C15—C13 | −179.56 (7) | C5—C6—N17A—O1 | −0.58 (14) |
C8—N1A—C14—C2 | −179.99 (9) | C5—C6—N17A—C8 | 179.76 (8) |
C8—N1A—C14—C6 | 1.43 (9) | C1B—C8—N17A—O1 | −177.87 (8) |
C8—C17—C6—C14 | −0.88 (9) | C1B—C8—N17A—C6 | 1.78 (9) |
C8—C17—C6—C5 | 179.76 (8) | C1B—C14—C2—C3 | −178.72 (8) |
N1A—C8—C17—O1 | −177.87 (8) | C1B—C14—C6—C5 | 179.09 (7) |
N1A—C8—C17—C6 | 1.78 (9) | C1B—C14—C6—N17A | −0.32 (9) |
N1A—C14—C2—C3 | −178.72 (8) | N17A—C8—C1B—O2 | 175.39 (8) |
N1A—C14—C6—C17 | −0.32 (9) | N17A—C8—C1B—C14 | −1.97 (9) |
N1A—C14—C6—C5 | 179.09 (7) | N17A—C6—C5—C4 | 179.29 (8) |
C14—C2—C3—C4 | −0.07 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O2i | 0.95 | 2.43 | 3.1077 (16) | 128 |
C11—H11···O1ii | 0.95 | 2.57 | 3.2327 (17) | 127 |
Symmetry codes: (i) x, y−1, z; (ii) −x+2, −y+1, −z+1. |
Compound | C═O/N+—O- | N+—O-/C═O |
SAWYAR | 1.240 (4) | 1.241 (4) |
SAZQIU | 1.253 (2) | 1.243 (4) |
2 | 1.252 (1) | 1.248 (1) |
No classical hydrogen bonds found. For C—H···acceptor interactions, see: Steiner, Th., (1996), Cryst. Rev., 6, 1-57 H-Bond classification [Jeffrey, G. A., Maluszynska, H. & Mitra, J., (1985), Int J. Biol. Macromol. 7, 336-348] |
S.No | D-H···A | H···A (Å) | D···A (Å) | 〈D-H···.A (°) | |
1 | C5-H5···O2(a) | 2.43 | 3.1077 (16) | 128 | |
2 | C11-H11···O1(b) | 2.57 | 3.2327 (17) | 127 |
Symmetry codes: (i) x,-1+y,z (ii) 2-x,1-y,1-z . |
Acknowledgements
CVR acknowledges SERB (CRG/2021/005729), New Delhi, India for funding this project. PD thanks DST-Inspire for the fellowship. ST thanks SERB for the Start-up Research Grant (SRG/2023/000209) and AESD&CIF (MLP0072), CSIR-CSMCRI for the infrastructure.
Funding information
Funding for this research was provided by: Science and Engineering Research Board (grant No. CRG/2021/005729 to Chepuri V. Ramana); Science and Engineering Research Board (grant No. SRG/2023/000209 to Srinu Tothadi).
References
Berti, C., Colonna, M., Greci, L. & Marchetti, L. (1975). Tetrahedron, 31, 1745–1753. CrossRef CAS Google Scholar
Bruker (2015). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, T., Li, M. & Liu, J. (2018). Cryst. Growth Des. 18, 2765–2783. CrossRef CAS Google Scholar
Chipot, C., Jaffe, R., Maigret, B., Pearlman, D. A. & Kollman, P. A. (1996). J. Am. Chem. Soc. 118, 11217–11224. CrossRef CAS Web of Science Google Scholar
Clegg, W. (2005). CSD Communication (refcode SAWYAR). CCDC, Cambridge, England. Google Scholar
Clegg, W. & Elsegood, M. R. J. (2005). CSD Communication (refcode SAZQIU). CCDC, Cambridge, England. Google Scholar
Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc. Google Scholar
Dhote, P. S., Halnor, S. V. & Ramana, C. V. (2021). Chem. Rec. 21, 3546–3558. CrossRef CAS PubMed Google Scholar
Dhote, P. S., Patel, P., Vanka, K. & Ramana, C. V. (2021). Org. Biomol. Chem. 19, 7970–7994. CrossRef CAS PubMed Google Scholar
Dhote, P. S., Pund, K. A. & Ramana, C. V. (2021). J. Org. Chem. 86, 10874–10882. CSD CrossRef CAS PubMed Google Scholar
Dhote, P. S. & Ramana, C. V. (2019). Org. Lett. 21, 6221–6224. CrossRef CAS PubMed Google Scholar
Dhote, P. S. & Ramana, C. V. (2021). Org. Lett. 23, 2632–2637. CSD CrossRef CAS PubMed Google Scholar
Dhote, P. S. & Ramana, C. V. (2022). Adv. Synth. Catal. 364, 1122–1133. CSD CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fu, W. & Song, Q. (2018). Org. Lett. 20, 393–396. CSD CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gu, W., Zhang, Y., Hao, X.-J., Yang, F.-M., Sun, Q.-Y., Morris-Natschke, S. L., Lee, K.-H., Wang, Y.-H. & Long, C.-L. (2014). J. Nat. Prod. 77, 2590–2594. CrossRef CAS PubMed Google Scholar
Ji, Y., He, X., Peng, C. & Huang, W. (2019). Org. Biomol. Chem. 17, 2850–2864. CrossRef CAS PubMed Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Kumar, C. V. S., Puranik, V. G. & Ramana, C. V. (2012). Chem. A Eur. J. 18, 9601–9611. CSD CrossRef CAS Google Scholar
Kumar, C. V. S. & Ramana, C. V. (2014). Org. Lett. 16, 4766–4769. PubMed Google Scholar
Kumar, C. V. S. & Ramana, C. V. (2015). Org. Lett. 17, 2870–2873. PubMed Google Scholar
Liu, S., Zhao, F., Chen, X., Deng, G. & Huang, H. (2020). Adv. Synth. Catal. 362, 3795–3823. CrossRef CAS Google Scholar
Liu, Y. & McWhorter, W. W. (2003). J. Org. Chem. 68, 2618–2622. CrossRef PubMed CAS Google Scholar
Nepveu, F., Kim, S., Boyer, J., Chatriant, O., Ibrahim, H., Reybier, K., Monje, M.-C., Chevalley, S., Perio, P., Lajoie, B., Bouajila, J., Deharo, E., Sauvain, M., Tahar, R., Basco, L., Pantaleo, A., Turini, F., Arese, P., Valentin, A., Thompson, E., Vivas, L., Petit, S. & Nallet, J.-P. (2010). J. Med. Chem. 53, 699–714. CrossRef CAS PubMed Google Scholar
Patel, P., Reddy, B. N. & Ramana, C. V. (2014). Tetrahedron, 70, 510–516. CrossRef CAS Google Scholar
Patel, P. & Ramana, C. V. (2012). J. Org. Chem. 77, 10509–10515. CrossRef CAS PubMed Google Scholar
Ramana, C. V., Patel, P., Vanka, K., Miao, B. & Degterev, A. (2010). Eur. J. Org. Chem. pp. 5955–5966. CrossRef Google Scholar
Reddy, B. N. & Ramana, C. V. (2013). Chem. Commun. 49, 9767–9769. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, Z., Xu, S., Wang, K., Kong, N. & Liu, X. (2021). Asia. J. Org. Chem. 10, 1580–1594. CrossRef CAS Google Scholar
Wetzel, A. & Gagosz, F. (2011). Angew. Chem. Int. Ed. 50, 7354–7358. CrossRef CAS Google Scholar
Xie, L. H., Li, Y., Dong, S. X., Feng, X. M. & Liu, X. H. (2021). Chem. Commun. 57, 239–242. CSD CrossRef CAS Google Scholar
Zhang, X., Li, P., Lyu, C., Yong, W., Li, J., Pan, X., Zhu, X. & Rao, W. (2017). Adv. Synth. Catal. 359, 4147–4152. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.