research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of the tetra­ethyl­ammonium salt of the non-steroidal anti-inflammatory drug nimesulide (polymorph II)

crossmark logo

aFaculty of Chemistry, University of Gdańsk, W. Stwosza 63, 80-308 Gdańsk, Poland
*Correspondence e-mail: artur.sikorski@ug.edu.pl

Edited by D. Chopra, Indian Institute of Science Education and Research Bhopal, India (Received 16 January 2024; accepted 8 February 2024; online 20 February 2024)

The crystal structure of the tetra­ethyl­ammonium salt of the non-steroidal anti-inflammatory drug nimesulide (polymorph II) (systematic name: tetra­ethyl­ammonium N-methane­sulfonyl-4-nitro-2-phen­oxy­anilinide), C8H20N+·C13H11N2O5S, was determined using single-crystal X-ray diffraction. The title compound crystallizes in the monoclinic space group P21/c with one tetra­ethyl­ammonium cation and one nimesulide anion in the asymmetric unit. In the crystal, the ions are linked by C—H⋯N and C—H⋯O hydrogen bonds and C—H⋯π inter­actions. There are differences in the geometry of both the nimesulide anion and the tetra­ethyl­ammonium cation in polymorphs I [Rybczyńska & Sikorski (2023[Rybczyńska, M. & Sikorski, A. (2023). Sci. Rep. 13, 17268.]). Sci. Rep. 13, 17268] and II of the title compound.

1. Chemical context

Nimesulide [systematic name: N-(4-nitro-2-phen­oxy­phen­yl)methane­sulfonamide] is an active pharmaceutical ingredient (API) categorized among non-steroidal anti-inflammatory drugs (NSAIDs). This is a drug that effectively manages acute pain and primary dysmenorrhea as a result of its anti­pyretic, analgesic, and anti-inflammatory properties (Kress et al., 2016[Kress, H. G., Baltov, A., Basiński, A., Berghea, F., Castellsague, J., Codreanu, C., Copaciu, E., Giamberardino, M. A., Hakl, M., Hrazdira, L., Kokavec, M., Lejčko, J., Nachtnebl, L., Stančík, R., Švec, A., Tóth, T., Vlaskovska, M. V. & Woroń, J. (2016). Curr. Med. Res. Opin. 32, 23-36.]; Vane & Botting, 1998[Vane, J. R. & Botting, R. M. (1998). Am. J. Med. 104, 2-8.]). Similar to other NSAIDs, its action involves inhibiting cyclo­oxygenase – an enzyme crucial in prostaglandin synthesis within cell membranes (Bennett & Villa, 2000[Bennett, A. & Villa, G. (2000). Expert Opin. Pharmacother. 1, 277-286.]).

[Scheme 1]

The crystal structure of nimesulide is known – it exists in the form of two polymorphs (Dupont et al., 1995[Dupont, L., Pirotte, B., Masereel, B., Delarge, J. & Geczy, J. (1995). Acta Cryst. C51, 507-509.]; Sanphui et al., 2011[Sanphui, P., Sarma, B. & Nangia, A. (2011). J. Pharm. Sci. 100, 2287-2299.]; Banti et al., 2016[Banti, C. N., Papatriantafyllopoulou, C., Manoli, M., Tasiopoulos, A. J. & Hadjikakou, S. K. (2016). Inorg. Chem. 55, 8681-8696.]). However, only a few structures of multi-component crystals containing nimesulide have been described in the literature, such as co-crystals (Wang et al., 2020[Wang, M., Ma, Y., Shi, P., Du, S., Wu, S. & Gong, J. (2021). Cryst. Growth Des. 21, 287-296.]) and metal complexes (Banti et al., 2016[Banti, C. N., Papatriantafyllopoulou, C., Manoli, M., Tasiopoulos, A. J. & Hadjikakou, S. K. (2016). Inorg. Chem. 55, 8681-8696.]), but only two, previously examined by us, structures of organic salts of nimesulide (Rybczyńska & Sikorski, 2023[Rybczyńska, M. & Sikorski, A. (2023). Sci. Rep. 13, 17268.]) are known. One of these salts is the tetra­ethyl­ammonium salt of nimesulide (polymorph I). We became inter­ested in it because the quaternary tetra­ethyl­ammonium cation has inter­esting bio­logical activities: it is a ganglionic blocker and inhibitor at nicotinic acetyl­choline (Kleinhaus & Prichard, 1977[Kleinhaus, A. L. & Prichard, J. (1977). J. Physiol. 270, 181-194.]; Akk & Steinbach, 2003[Akk, G. & Steinbach, J. H. (2003). J. Physiol. 551, 155-168.]), and is a common organic structure-directing agent (OSDA) (Schmidt et al., 2016[Schmidt, J. E., Fu, D., Deem, M. W. & Weckhuysen, B. M. (2016). Angew. Chem. Int. Ed. 55, 16044-16048.]).

In this research communication, as a continuation of our recent study on the tetra­alkyl­ammonium salts of nimesulide (Rybczyńska & Sikorski, 2023[Rybczyńska, M. & Sikorski, A. (2023). Sci. Rep. 13, 17268.]), we report on the crystal structure, conformational analysis of ions and analysis of inter­molecular inter­actions in the crystal of tetra­ethyl­ammonium salt of nimesulide (polymorph II).

2. Structural commentary

The title compound crystallizes in the monoclinic P21/c space group with one tetra­ethyl­ammonium cation and one nimesulide anion in the asymmetric unit (Table 1[link], Fig. 1[link]). For comparison, polymorph I crystallizes in the monoclinic P21/n space group with one ion pair in the asymmetric unit.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C13–C18 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯O20i 0.96 2.65 3.360 (4) 131
C11—H11C⋯O20ii 0.96 2.66 3.555 (4) 156
C17—H17A⋯N7iii 0.93 2.70 3.478 (4) 142
C24—H24C⋯O10 0.96 2.47 3.415 (4) 168
C25—H25A⋯O9iv 0.97 2.47 3.155 (5) 128
C26—H26C⋯O9v 0.96 2.58 3.541 (4) 175
C27—H27B⋯O9v 0.97 2.52 3.267 (4) 134
C14—H14ACg1ii 0.93 3.07 3.951 (5) 158
C24—H24ACg2v 0.96 2.88 3.608 (5) 134
Symmetry codes: (i) [x+1, y, z]; (ii) [-x+1, -y, -z+1]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [x, y+1, z].
[Figure 1]
Figure 1
Crystal structure of title compound with the atom-labeling scheme (displacement ellipsoids are drawn at the 25% probability level; hydrogen bonds are represented by dashed lines).

In the crystal structure of the title compound, nimesulide occurs in an ionized form, which is confirmed by the C1—N7 [d(C—N) = 1.365 (4) Å] and N7—S8 [d(N—S) = 1.584 (2) Å] bond lengths and the value of the C1—N7—S8 angle [∠(C—N—S) = 122.7 (2)°] in the sulfonamide group. Similar d(N—S) values are also observed in the crystal structure of polymorph I [1.589 (2) Å], but the d(C—N) distance is slightly shorter and the ∠(C—N—S) angle is smaller for polymorph I [1.345 (3) Å and 119.2 (2)°, respectively]. There are also differences in the arrangement of the methyl group from the sulfonamide moiety and the phen­oxy group within the nimesulide anion (Fig. 2[link]). In the crystal of polymorph I, the methyl group lies almost in the plane of the phenyl ring of the nimesulide anion [with torsion angle ∠(C1—N7—S8—C11) = −174.7 (2)°], while in the crystal of polymorph II it is almost perpendicular [torsion angle ∠(C1—N7—S8—C11) = −74.0 (3)°]. In turn, in the crystal of polymorph I, the phen­oxy group is tilted and twisted relative to the benzene ring of nimesulide, with a torsion angle of ∠ (C3—C2—O12—C13) = 88.5 (2)° and an inter­planar angle of 84.8 (2)°, while in the crystal of polymorph II the values of these angles are 20.9(4 and 78.3 (2)°, respectively.

[Figure 2]
Figure 2
Comparison of the geometries of the nimesulide anion (a) and (b) and the tetra­ethyl­ammonium cation (c) and (d) in the crystals of the two polymorphs of the tetra­ethyl­ammonium salt of nimesulide.

Differences in the geometry of the tetra­ethyl­ammonium cation in the crystals of the two polymorphs of the title compound are also observed (Fig. 2[link]). In the case of polymorph I, the cation adopts the geometry of a tg·tg conformer, while in the crystal of polymorph II it exists in a tt·tt conformer (Ikuno et al., 2015[Ikuno, T., Chaikittisilp, W., Liu, Z., Iida, T., Yanaba, Y., Yoshikawa, T., Kohara, S., Wakihara, T. & Okubo, T. (2015). J. Am. Chem. Soc. 137, 14533-14544.]; Schmidt et al., 2016[Schmidt, J. E., Fu, D., Deem, M. W. & Weckhuysen, B. M. (2016). Angew. Chem. Int. Ed. 55, 16044-16048.]; Takekiyo & Yoshimura, 2006[Takekiyo, T. & Yoshimura, Y. (2006). J. Phys. Chem. A, 110, 10829-10833.]). Both conformers of the tetra­ethyl­ammonium cation are also observed in other tetra­ethyl­ammonium salts (e.g. de Arriba et al., 2011[Fuentes de Arriba, L., Turiel, M. G., Simón, L., Sanz, F., Boyero, J. F., Muñiz, F. M., Morán, J. R. & Alcázar, V. (2011). Org. Biomol. Chem. 9, 8321-8327.]; Evans et al., 1990[Evans, D. J., Hills, A., Hughes, D. L. & Leigh, G. J. (1990). Acta Cryst. C46, 1818-1821.]; Warnke et al., 2010[Warnke, Z., Styczeń, E., Wyrzykowski, D., Sikorski, A., Kłak, J. & Mroziński, J. (2010). Struct. Chem. 21, 285-289.]; Lutz et al., 2014[Lutz, M., Huang, Y., Moret, M.-E. & Klein Gebbink, R. J. M. (2014). Acta Cryst. C70, 470-476.]; Brahim et al., 2018[Ben Brahim, K., Ben gzaiel, M., Oueslati, A. & Gargouri, M. (2018). RSC Adv. 8, 40676-40686.]). It is inter­esting that the distribution of conformers of the tetra­ethyl­ammonium cation in tetra­ethyl­ammonium hydroxide solution is temperature dependent (the tt·tt conformer dominates at lower temperatures), and higher concentrations lead to a greater proportion of the tg·tg conformer (Ikuno et al., 2015[Ikuno, T., Chaikittisilp, W., Liu, Z., Iida, T., Yanaba, Y., Yoshikawa, T., Kohara, S., Wakihara, T. & Okubo, T. (2015). J. Am. Chem. Soc. 137, 14533-14544.]; Schmidt et al., 2016[Schmidt, J. E., Fu, D., Deem, M. W. & Weckhuysen, B. M. (2016). Angew. Chem. Int. Ed. 55, 16044-16048.]; Takekiyo & Yoshimura, 2006[Takekiyo, T. & Yoshimura, Y. (2006). J. Phys. Chem. A, 110, 10829-10833.]). This may explain why only a few single crystals of polymorph II were obtained as a result of the synthesis of the title compound carried out under specific conditions (see: Synthesis and crystallization section).

The changes in the conformation of both the nimesulide anion and the tetra­ethyl­ammonium cation results in an increase in the volume of the unit cell from 2300.6 (2) Å3 (polymorph I) to 2330.0 (4) Å3 (polymorph II). Moreover, the crystal density decreases (1.292 and 1.272 g cm−3 for polymorph I and II, respectively), as well as the Kitaigorodskii packing index (with the percentage of filled space equal to 66.7 and 66.0% for polymorphs I and II, respectively). This indicates a more favorable mol­ecular packing in the crystal of polymorph I.

3. Supra­molecular features

In the crystal of the title compound, neighboring nimesulide anions are linked by C14—H14Aπ inter­actions [d(H⋯Cg) = 3.07 Å; Fig. 3[link], Table 1[link]], forming a homodimer. Adjacent homodimers are linked through Cphen­oxy—H⋯N and Cmeth­yl—H⋯Onitro hydrogen bonds, building porous organic frameworks along the b-axis (Fig. 3[link], Table 1[link]). The tetra­ethyl­ammonium cations are located in the voids of these networks and linked with the nimesulide anions via Cmeth­yl—H⋯Osulfo hydrogen bonds and C24—H24Aπphen­oxy inter­actions [d(H⋯Cg) = 2.88 Å; Fig. 3[link], Table 1[link]].

[Figure 3]
Figure 3
Crystal packing of the title compound viewed along the b axis (inter­actions between nimesulide anions are highlighted in green, whereas inter­actions between the nimesulide anion and tetra­ethyl­ammonium cation are highlighted in orange).

4. Database survey

In the Cambridge Structural Database (CSD version 5.43, update of 03/2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) there are only 13 structures involving a nimesulide mol­ecule or ion, viz., the crystal structures of two polymorphs of nimesulide [refcodes WINWUL (Dupont et al., 1995[Dupont, L., Pirotte, B., Masereel, B., Delarge, J. & Geczy, J. (1995). Acta Cryst. C51, 507-509.]), WINWUL01, WINWUL02 (Sanphui et al., 2011[Sanphui, P., Sarma, B. & Nangia, A. (2011). J. Pharm. Sci. 100, 2287-2299.]), and WINWUL03 (Banti et al., 2016[Banti, C. N., Papatriantafyllopoulou, C., Manoli, M., Tasiopoulos, A. J. & Hadjikakou, S. K. (2016). Inorg. Chem. 55, 8681-8696.])], five structures of nimesulide–silver complexes (refcodes EXEZUE, EXIBAQ, EXIBAU, EXIBIY, EXIBOE; Banti et al., 2016[Banti, C. N., Papatriantafyllopoulou, C., Manoli, M., Tasiopoulos, A. J. & Hadjikakou, S. K. (2016). Inorg. Chem. 55, 8681-8696.]), the crystal structures of tetra­methyl­ammonium and tetra­ethyl­ammonium salts of nimesulide (polymorph I; CCDC 2281374 and CCDC 2281375; Rybczyńska & Sikorski, 2023[Rybczyńska, M. & Sikorski, A. (2023). Sci. Rep. 13, 17268.]), and four structures of co-crystals of nimesulide with pyridine derivatives (refcodes LAKLOC, LAKLUI, LAKMAP, and LAKMET; Wang et al., 2021[Wang, M., Ma, Y., Shi, P., Du, S., Wu, S. & Gong, J. (2021). Cryst. Growth Des. 21, 287-296.]). In the CSD, there are also 5062 structures of tetra­ethyl­ammonium salts: 728 of them are structures of organic compounds involving the tetra­ethyl­ammonium cation, including three structures of sulfonamide salts (refcodes RALGOC, RALGUI, and RALHAP; de Arriba et al., 2011[Fuentes de Arriba, L., Turiel, M. G., Simón, L., Sanz, F., Boyero, J. F., Muñiz, F. M., Morán, J. R. & Alcázar, V. (2011). Org. Biomol. Chem. 9, 8321-8327.]).

5. Synthesis and crystallization

All chemicals were purchased from Sigma-Aldrich and used without any further purification. Nimesulide (0.05 g, 0.162 mmol) was dissolved in 0.12 ml of tetra­ethyl­ammonium hydroxide (20 wt.% in H2O, d = 1.01 g cm−3 in 293 K, 0.162 mmol) and 5 cm3 of ethanol. The solution was mixed and heated until boiling. The solution was allowed to evaporate in place without sunlight for a few days, giving yellow crystals of polymorph I and a small amount of yellow crystals of polymorph II (m.p. = 388 K). The mixture of polymorphs was separated by mechanical means.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were placed geom­etrically and refined using a riding model with C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C) [C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for the methyl groups]. The most disagreeable reflections (621) and (589) with an error/s.u. of more than 10 were omitted using the OMIT instruction in SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]).

Table 2
Experimental details

Crystal data
Chemical formula C8H20N+·C13H11N2O5S
Mr 437.55
Crystal system, space group Monoclinic, P21/c
Temperature (K) 291
a, b, c (Å) 11.0276 (10), 10.7661 (8), 19.635 (2)
β (°) 91.792 (9)
V3) 2330.0 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.17
Crystal size (mm) 0.42 × 0.20 × 0.09
 
Data collection
Diffractometer Oxford Diffraction Ruby CCD
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]).
Tmin, Tmax 0.966, 0.998
No. of measured, independent and observed [I > 2σ(I)] reflections 15531, 4094, 2549
Rint 0.073
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.128, 1.10
No. of reflections 4094
No. of parameters 276
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.16, −0.23
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Tetraethylammonium N-methanesulfonyl-4-nitro-2-phenoxyanilinide top
Crystal data top
C8H20N+·C13H11N2O5SDx = 1.247 Mg m3
Mr = 437.55Melting point: 388 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.0276 (10) ÅCell parameters from 15531 reflections
b = 10.7661 (8) Åθ = 3.3–25.0°
c = 19.635 (2) ŵ = 0.17 mm1
β = 91.792 (9)°T = 291 K
V = 2330.0 (4) Å3Plate, yellow
Z = 40.42 × 0.20 × 0.09 mm
F(000) = 936
Data collection top
Oxford Diffraction Ruby CCD
diffractometer
4094 independent reflections
Radiation source: fine-focus sealed tube2549 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
Detector resolution: 10.4002 pixels mm-1θmax = 25.0°, θmin = 3.3°
ω scansh = 1312
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008).
k = 1211
Tmin = 0.966, Tmax = 0.998l = 2323
15531 measured reflections
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0316P)2 + 0.0136P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
4094 reflectionsΔρmax = 0.16 e Å3
276 parametersΔρmin = 0.23 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N220.8646 (2)0.6786 (2)0.66998 (12)0.0466 (7)
C230.7364 (3)0.6589 (3)0.6432 (2)0.0679 (10)
H23A0.7385810.6381640.5952040.082*
H23B0.6922370.7363760.6471150.082*
C240.6669 (4)0.5566 (3)0.6801 (3)0.1112 (17)
H24A0.5906650.5419120.6564740.167*
H24B0.6526260.5823320.7259250.167*
H24C0.7139240.4815270.6807910.167*
C250.8677 (4)0.7082 (3)0.74529 (16)0.0678 (10)
H25A0.9514110.7222870.7599580.081*
H25B0.8390970.6360990.7696430.081*
C260.7934 (4)0.8196 (3)0.76588 (18)0.0801 (12)
H26A0.8041230.8333770.8140020.120*
H26B0.7091880.8044190.7550440.120*
H26C0.8196810.8917370.7416520.120*
C270.9144 (3)0.7874 (3)0.63015 (17)0.0609 (10)
H27A0.9052860.7686930.5819300.073*
H27B0.8651040.8598490.6389680.073*
C281.0453 (4)0.8203 (3)0.6455 (2)0.0968 (15)
H28A1.0643080.8971930.6235590.145*
H28B1.0967020.7556820.6289660.145*
H28C1.0583430.8288540.6938760.145*
C290.9416 (3)0.5635 (3)0.66162 (18)0.0599 (9)
H29A1.0215250.5795230.6817820.072*
H29B0.9059010.4963720.6871200.072*
C300.9563 (4)0.5207 (3)0.58923 (19)0.0810 (12)
H30A1.0029750.4453540.5891540.122*
H30B0.9975490.5836070.5641850.122*
H30C0.8778940.5057020.5682640.122*
C10.5837 (3)0.1058 (3)0.62935 (14)0.0395 (7)
C20.4877 (3)0.0172 (3)0.62920 (15)0.0435 (8)
C30.3730 (3)0.0461 (3)0.60651 (15)0.0487 (8)
H3A0.3124920.0141350.6059230.058*
C40.3469 (3)0.1659 (3)0.58428 (15)0.0443 (8)
C50.4352 (3)0.2565 (3)0.58697 (16)0.0508 (9)
H5A0.4163350.3373480.5737190.061*
C60.5507 (3)0.2275 (3)0.60917 (15)0.0482 (8)
H6A0.6091740.2896990.6110060.058*
N70.6961 (2)0.0639 (2)0.64924 (12)0.0463 (7)
S80.81473 (7)0.14575 (7)0.64359 (4)0.0480 (2)
O90.9111 (2)0.07799 (19)0.67799 (12)0.0651 (7)
O100.8031 (2)0.27336 (18)0.66560 (12)0.0650 (7)
C110.8486 (3)0.1503 (3)0.55687 (17)0.0700 (10)
H11A0.9239350.1932150.5513810.105*
H11B0.7849640.1929620.5319550.105*
H11C0.8553810.0670330.5398460.105*
O120.5189 (2)0.09796 (19)0.65561 (12)0.0652 (7)
C130.4449 (3)0.2003 (3)0.63959 (18)0.0470 (8)
C140.4353 (3)0.2436 (3)0.57443 (18)0.0627 (10)
H14A0.4718340.2015980.5391240.075*
C150.3699 (3)0.3516 (3)0.56192 (18)0.0666 (10)
H15A0.3625590.3824620.5177370.080*
C160.3162 (3)0.4132 (3)0.6137 (2)0.0615 (10)
H16A0.2721620.4854490.6048270.074*
C170.3275 (3)0.3681 (3)0.6785 (2)0.0681 (11)
H17A0.2916250.4103400.7139520.082*
C180.3917 (3)0.2604 (3)0.69191 (17)0.0583 (9)
H18A0.3984650.2292720.7360420.070*
N190.2270 (3)0.1945 (3)0.55838 (14)0.0586 (8)
O200.1507 (2)0.1114 (3)0.55356 (16)0.0935 (9)
O210.2031 (2)0.3022 (2)0.54080 (13)0.0770 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N220.0522 (17)0.0362 (15)0.0510 (16)0.0145 (12)0.0039 (14)0.0031 (12)
C230.050 (2)0.054 (2)0.098 (3)0.0153 (18)0.014 (2)0.007 (2)
C240.073 (3)0.056 (3)0.205 (5)0.003 (2)0.014 (3)0.001 (3)
C250.087 (3)0.059 (2)0.056 (2)0.018 (2)0.007 (2)0.0037 (18)
C260.119 (4)0.061 (2)0.061 (2)0.024 (2)0.015 (2)0.0029 (19)
C270.074 (3)0.045 (2)0.064 (2)0.0070 (18)0.007 (2)0.0001 (17)
C280.072 (3)0.068 (3)0.151 (4)0.002 (2)0.021 (3)0.006 (3)
C290.058 (2)0.0418 (19)0.080 (2)0.0192 (17)0.000 (2)0.0001 (17)
C300.097 (3)0.055 (2)0.091 (3)0.024 (2)0.009 (3)0.011 (2)
C10.040 (2)0.0374 (17)0.0410 (17)0.0008 (15)0.0005 (15)0.0015 (14)
C20.044 (2)0.0340 (18)0.0525 (19)0.0003 (15)0.0052 (16)0.0032 (15)
C30.042 (2)0.0476 (19)0.056 (2)0.0055 (16)0.0017 (17)0.0028 (16)
C40.040 (2)0.045 (2)0.0471 (18)0.0125 (16)0.0036 (15)0.0040 (15)
C50.057 (2)0.0385 (19)0.057 (2)0.0086 (17)0.0053 (18)0.0015 (15)
C60.050 (2)0.0336 (18)0.061 (2)0.0008 (15)0.0035 (18)0.0000 (15)
N70.0420 (16)0.0359 (14)0.0604 (16)0.0043 (12)0.0097 (13)0.0023 (12)
S80.0430 (5)0.0379 (5)0.0625 (5)0.0019 (4)0.0088 (4)0.0006 (4)
O90.0511 (15)0.0513 (14)0.0908 (17)0.0002 (11)0.0303 (13)0.0074 (12)
O100.0650 (16)0.0354 (13)0.0943 (18)0.0065 (11)0.0034 (14)0.0120 (12)
C110.057 (2)0.083 (3)0.070 (2)0.004 (2)0.003 (2)0.005 (2)
O120.0570 (15)0.0397 (13)0.0973 (18)0.0101 (11)0.0246 (13)0.0216 (12)
C130.041 (2)0.0308 (17)0.069 (2)0.0017 (15)0.0028 (18)0.0121 (17)
C140.069 (3)0.060 (2)0.059 (2)0.005 (2)0.005 (2)0.0146 (19)
C150.077 (3)0.058 (2)0.064 (2)0.002 (2)0.005 (2)0.008 (2)
C160.053 (2)0.0384 (19)0.093 (3)0.0068 (16)0.000 (2)0.004 (2)
C170.074 (3)0.052 (2)0.079 (3)0.014 (2)0.020 (2)0.006 (2)
C180.069 (2)0.048 (2)0.058 (2)0.0018 (18)0.009 (2)0.0001 (17)
N190.053 (2)0.059 (2)0.0638 (18)0.0120 (17)0.0041 (16)0.0079 (16)
O200.0448 (17)0.0792 (19)0.155 (3)0.0002 (15)0.0180 (17)0.0119 (18)
O210.0763 (19)0.0619 (17)0.0912 (18)0.0275 (14)0.0240 (15)0.0052 (14)
Geometric parameters (Å, º) top
N22—C231.508 (4)C2—C31.364 (4)
N22—C251.512 (4)C2—O121.383 (3)
N22—C291.514 (3)C3—C41.389 (4)
N22—C271.520 (4)C3—H3A0.9300
C23—C241.536 (5)C4—C51.378 (4)
C23—H23A0.9700C4—N191.436 (4)
C23—H23B0.9700C5—C61.370 (4)
C24—H24A0.9600C5—H5A0.9300
C24—H24B0.9600C6—H6A0.9300
C24—H24C0.9600N7—S81.584 (2)
C25—C261.515 (4)S8—O91.439 (2)
C25—H25A0.9700S8—O101.447 (2)
C25—H25B0.9700S8—C111.755 (3)
C26—H26A0.9600C11—H11A0.9600
C26—H26B0.9600C11—H11B0.9600
C26—H26C0.9600C11—H11C0.9600
C27—C281.508 (5)O12—C131.401 (3)
C27—H27A0.9700C13—C141.363 (4)
C27—H27B0.9700C13—C181.363 (4)
C28—H28A0.9600C14—C151.387 (5)
C28—H28B0.9600C14—H14A0.9300
C28—H28C0.9600C15—C161.364 (5)
C29—C301.508 (4)C15—H15A0.9300
C29—H29A0.9700C16—C171.365 (5)
C29—H29B0.9700C16—H16A0.9300
C30—H30A0.9600C17—C181.379 (4)
C30—H30B0.9600C17—H17A0.9300
C30—H30C0.9600C18—H18A0.9300
C1—N71.365 (4)N19—O201.230 (3)
C1—C61.412 (4)N19—O211.235 (3)
C1—C21.425 (4)
C23—N22—C25111.3 (3)N7—C1—C6127.6 (3)
C23—N22—C29111.7 (2)N7—C1—C2116.6 (3)
C25—N22—C29106.5 (2)C6—C1—C2115.8 (3)
C23—N22—C27106.2 (2)C3—C2—O12123.0 (3)
C25—N22—C27110.1 (2)C3—C2—C1122.0 (3)
C29—N22—C27111.2 (2)O12—C2—C1115.0 (3)
N22—C23—C24114.4 (3)C2—C3—C4119.7 (3)
N22—C23—H23A108.7C2—C3—H3A120.2
C24—C23—H23A108.7C4—C3—H3A120.2
N22—C23—H23B108.7C5—C4—C3120.4 (3)
C24—C23—H23B108.7C5—C4—N19120.2 (3)
H23A—C23—H23B107.6C3—C4—N19119.4 (3)
C23—C24—H24A109.5C6—C5—C4120.0 (3)
C23—C24—H24B109.5C6—C5—H5A120.0
H24A—C24—H24B109.5C4—C5—H5A120.0
C23—C24—H24C109.5C5—C6—C1122.0 (3)
H24A—C24—H24C109.5C5—C6—H6A119.0
H24B—C24—H24C109.5C1—C6—H6A119.0
N22—C25—C26115.6 (3)C1—N7—S8122.7 (2)
N22—C25—H25A108.4O9—S8—O10114.35 (14)
C26—C25—H25A108.4O9—S8—N7106.51 (13)
N22—C25—H25B108.4O10—S8—N7115.20 (13)
C26—C25—H25B108.4O9—S8—C11107.03 (16)
H25A—C25—H25B107.4O10—S8—C11106.68 (16)
C25—C26—H26A109.5N7—S8—C11106.53 (16)
C25—C26—H26B109.5S8—C11—H11A109.5
H26A—C26—H26B109.5S8—C11—H11B109.5
C25—C26—H26C109.5H11A—C11—H11B109.5
H26A—C26—H26C109.5S8—C11—H11C109.5
H26B—C26—H26C109.5H11A—C11—H11C109.5
C28—C27—N22115.9 (3)H11B—C11—H11C109.5
C28—C27—H27A108.3C2—O12—C13119.0 (2)
N22—C27—H27A108.3C14—C13—C18121.5 (3)
C28—C27—H27B108.3C14—C13—O12120.5 (3)
N22—C27—H27B108.3C18—C13—O12117.8 (3)
H27A—C27—H27B107.4C13—C14—C15118.6 (3)
C27—C28—H28A109.5C13—C14—H14A120.7
C27—C28—H28B109.5C15—C14—H14A120.7
H28A—C28—H28B109.5C16—C15—C14120.8 (3)
C27—C28—H28C109.5C16—C15—H15A119.6
H28A—C28—H28C109.5C14—C15—H15A119.6
H28B—C28—H28C109.5C15—C16—C17119.5 (3)
C30—C29—N22115.5 (3)C15—C16—H16A120.2
C30—C29—H29A108.4C17—C16—H16A120.2
N22—C29—H29A108.4C16—C17—C18120.6 (3)
C30—C29—H29B108.4C16—C17—H17A119.7
N22—C29—H29B108.4C18—C17—H17A119.7
H29A—C29—H29B107.5C13—C18—C17119.1 (3)
C29—C30—H30A109.5C13—C18—H18A120.5
C29—C30—H30B109.5C17—C18—H18A120.5
H30A—C30—H30B109.5O20—N19—O21121.5 (3)
C29—C30—H30C109.5O20—N19—C4119.4 (3)
H30A—C30—H30C109.5O21—N19—C4119.1 (3)
H30B—C30—H30C109.5
C25—N22—C23—C2457.0 (4)N7—C1—C6—C5176.7 (3)
C29—N22—C23—C2461.9 (4)C2—C1—C6—C53.8 (4)
C27—N22—C23—C24176.7 (3)C6—C1—N7—S88.2 (4)
C23—N22—C25—C2656.6 (4)C2—C1—N7—S8172.3 (2)
C29—N22—C25—C26178.6 (3)C1—N7—S8—O9172.0 (2)
C27—N22—C25—C2660.8 (4)C1—N7—S8—O1044.0 (3)
C23—N22—C27—C28176.8 (3)C1—N7—S8—C1174.0 (3)
C25—N22—C27—C2862.7 (4)C3—C2—O12—C1320.9 (4)
C29—N22—C27—C2855.0 (4)C1—C2—O12—C13161.0 (3)
C23—N22—C29—C3061.3 (4)C2—O12—C13—C1466.3 (4)
C25—N22—C29—C30177.1 (3)C2—O12—C13—C18118.9 (3)
C27—N22—C29—C3057.2 (4)C18—C13—C14—C150.2 (5)
N7—C1—C2—C3176.0 (3)O12—C13—C14—C15174.3 (3)
C6—C1—C2—C34.3 (4)C13—C14—C15—C160.1 (5)
N7—C1—C2—O125.9 (4)C14—C15—C16—C170.3 (6)
C6—C1—C2—O12173.7 (3)C15—C16—C17—C180.6 (6)
O12—C2—C3—C4176.3 (3)C14—C13—C18—C170.6 (5)
C1—C2—C3—C41.6 (5)O12—C13—C18—C17174.1 (3)
C2—C3—C4—C52.0 (4)C16—C17—C18—C130.8 (5)
C2—C3—C4—N19178.0 (3)C5—C4—N19—O20176.9 (3)
C3—C4—C5—C62.6 (5)C3—C4—N19—O203.1 (4)
N19—C4—C5—C6177.4 (3)C5—C4—N19—O212.4 (4)
C4—C5—C6—C10.4 (5)C3—C4—N19—O21177.6 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C13–C18 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C11—H11A···O20i0.962.653.360 (4)131
C11—H11C···O20ii0.962.663.555 (4)156
C17—H17A···N7iii0.932.703.478 (4)142
C24—H24C···O100.962.473.415 (4)168
C25—H25A···O9iv0.972.473.155 (5)128
C26—H26C···O9v0.962.583.541 (4)175
C27—H27B···O9v0.972.523.267 (4)134
C14—H14A···Cg1ii0.933.073.951 (5)158
C24—H24A···Cg2v0.962.883.608 (5)134
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1; (iii) x+1, y1/2, z+3/2; (iv) x+2, y+1/2, z+3/2; (v) x, y+1, z.
 

Acknowledgements

The title compound is protected by European patent application No. EP22208962 submitted by the authors of this paper.

Funding information

Funding for this research was provided by: Research of Young Scientists grant (BMN) No. 539-T080-B063-23 (University of Gdańsk), DS No. 531-T080-D738-23 (University of Gdańsk), and project ‘Innovation Incubator 4.0’ established by the announcement of the Minister of Science and Higher Education in Poland on 5 June 2020.

References

First citationAkk, G. & Steinbach, J. H. (2003). J. Physiol. 551, 155–168.  CrossRef PubMed Google Scholar
First citationBanti, C. N., Papatriantafyllopoulou, C., Manoli, M., Tasiopoulos, A. J. & Hadjikakou, S. K. (2016). Inorg. Chem. 55, 8681–8696.  CSD CrossRef CAS PubMed Google Scholar
First citationBen Brahim, K., Ben gzaiel, M., Oueslati, A. & Gargouri, M. (2018). RSC Adv. 8, 40676–40686.  CrossRef CAS PubMed Google Scholar
First citationBennett, A. & Villa, G. (2000). Expert Opin. Pharmacother. 1, 277–286.  CrossRef PubMed CAS Google Scholar
First citationDupont, L., Pirotte, B., Masereel, B., Delarge, J. & Geczy, J. (1995). Acta Cryst. C51, 507–509.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationEvans, D. J., Hills, A., Hughes, D. L. & Leigh, G. J. (1990). Acta Cryst. C46, 1818–1821.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFuentes de Arriba, L., Turiel, M. G., Simón, L., Sanz, F., Boyero, J. F., Muñiz, F. M., Morán, J. R. & Alcázar, V. (2011). Org. Biomol. Chem. 9, 8321–8327.  CSD CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIkuno, T., Chaikittisilp, W., Liu, Z., Iida, T., Yanaba, Y., Yoshikawa, T., Kohara, S., Wakihara, T. & Okubo, T. (2015). J. Am. Chem. Soc. 137, 14533–14544.  CrossRef CAS PubMed Google Scholar
First citationKleinhaus, A. L. & Prichard, J. (1977). J. Physiol. 270, 181–194.  CrossRef CAS PubMed Google Scholar
First citationKress, H. G., Baltov, A., Basiński, A., Berghea, F., Castellsague, J., Codreanu, C., Copaciu, E., Giamberardino, M. A., Hakl, M., Hrazdira, L., Kokavec, M., Lejčko, J., Nachtnebl, L., Stančík, R., Švec, A., Tóth, T., Vlaskovska, M. V. & Woroń, J. (2016). Curr. Med. Res. Opin. 32, 23–36.  CrossRef CAS PubMed Google Scholar
First citationLutz, M., Huang, Y., Moret, M.-E. & Klein Gebbink, R. J. M. (2014). Acta Cryst. C70, 470–476.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationRybczyńska, M. & Sikorski, A. (2023). Sci. Rep. 13, 17268.  PubMed Google Scholar
First citationSanphui, P., Sarma, B. & Nangia, A. (2011). J. Pharm. Sci. 100, 2287–2299.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSchmidt, J. E., Fu, D., Deem, M. W. & Weckhuysen, B. M. (2016). Angew. Chem. Int. Ed. 55, 16044–16048.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTakekiyo, T. & Yoshimura, Y. (2006). J. Phys. Chem. A, 110, 10829–10833.  CrossRef PubMed CAS Google Scholar
First citationVane, J. R. & Botting, R. M. (1998). Am. J. Med. 104, 2–8.  CrossRef Google Scholar
First citationWang, M., Ma, Y., Shi, P., Du, S., Wu, S. & Gong, J. (2021). Cryst. Growth Des. 21, 287–296.  CSD CrossRef CAS Google Scholar
First citationWarnke, Z., Styczeń, E., Wyrzykowski, D., Sikorski, A., Kłak, J. & Mroziński, J. (2010). Struct. Chem. 21, 285–289.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds