research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di­ethyl­ammonium dioxido{Z)-N-[(pyri­din-2-yl)car­bon­yl­azan­idyl]pyri­dine-2-car­box­imid­ato}vana­date(1−) monohydrate

crossmark logo

aDepartment of Chemistry, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata-700118, West Bengal, India
*Correspondence e-mail: dbmd79@gmail.com

Edited by S. P. Kelley, University of Missouri-Columbia, USA (Received 9 November 2023; accepted 3 February 2024; online 8 February 2024)

The title compound, (C4H12N)[V(C12H8N4O2)O2]·H2O, was synthesized via aerial oxidation on refluxing picolinohydrazide with ethyl picolinate followed by addition of VIVO(acac)2 and di­ethyl­amine in methanol. It crystallizes in the triclinic crystal system in space group P[\overline{1}]. In the complex anion, the dioxidovanadium(V) moiety exhibits a distorted square-pyramidal geometry. In the crystal, extensive hydrogen bonding links the water mol­ecule to two complex anions and one di­ethyl­ammonium ion. One of the CH2 groups in the di­ethyl­amine is disordered over two sets of sites in a 0.7:0.3 ratio.

1. Chemical context

Vanadium, a biologically important trace element with the +V oxidation state, has received considerable attention among the three (viz., +III, +IV and +V) physiologically important oxidation states. In this oxidation state, vanadium exists in three different motifs, viz., VO3+, V2O34+ and VO2+. The formation and stability of these three motifs depends upon the nature of the solvent, the pH of the reaction medium and basicity of the donor atoms of the ligand(s), with a preference for N, O-donor ligands because of the hard acidic nature of VV. It is evident from the literature (Mondal et al., 2010[Mondal, B., Drew, M. G. B. & Ghosh, T. (2010). Inorg. Chim. Acta, 363, 2296-2306.], 2008[Mondal, B., Ghosh, T., Sutradhar, M., Mukherjee, G., Drew, M. G. B. & Ghosh, T. (2008). Polyhedron, 27, 2193-2201.]) that the vanadium complexes containing VO2+ motifs are formed in basic media. Vanadium compounds show the catalytic cycle of haloperoxidase activity has been suggested to proceed through hydrogen-bonding inter­actions (Colpas et al., 1996[Colpas, G. J., Hamstra, B. J., Kampf, J. W. & Pecoraro, V. L. (1996). J. Am. Chem. Soc. 118, 3469-3478.]; Messerschimdt & Wever, 1996[Messerschmidt, A. & Wever, R. (1996). Proc. Natl Acad. Sci. USA, 93, 392-396.]; Weyand et al., 1999[Weyand, M., Hecht, H., Kiess, M., Liaud, M., Vilter, H. & Schomburg, D. (1999). J. Mol. Biol. 293, 595-611.]; Isupov et al., 2000[Isupov, M. N., Dalby, A. R., Brindley, A. A., Izumi, Y., Tanabe, T., Murshudov, G. N. & Littlechild, J. A. (2000). J. Mol. Biol. 299, 1035-1049.]). In the presence of appropriate hydrogen-bond donors, hydrogen bonding is a general feature of vanadium(IV) and vanadium(V) complexes (Mondal et al., 2010[Mondal, B., Drew, M. G. B. & Ghosh, T. (2010). Inorg. Chim. Acta, 363, 2296-2306.]; Plass, 1997[Plass, W. (1997). Z. Anorg. Allg. Chem. 623, 461-477.], 1998[Plass, W. (1998). Eur. J. Inorg. Chem. 1998, 799-805.]; Plass & Yozgatli, 2003[Plass, W. & Yozgatli, H. P. (2003). Z. Anorg. Allg. Chem. 629, 65-70.]; Pohlmann & Plass, 2001[Pohlmann, A. & Plass, W. (2001). J. Inorg. Biochem. 86, 381-390.]; Pohlmann et al., 2005[Pohlmann, A., Nica, S., Luong, T. K. K. & Plass, W. (2005). Inorg. Chem. Commun. 8, 289-292.]; Vergopoulos et al., 1993[Vergopoulos, V., Priebsch, W., Fritzsche, M. & Rehder, D. (1993). Inorg. Chem. 32, 1844-1849.]; Sutradhar et al., 2006[Sutradhar, M., Mukherjee, G., Drew, M. G. B. & Ghosh, S. (2006). Inorg. Chem. 45, 5150-5161.]). In general, these examples lead to the formation of hydrogen-bonded mol­ecular assemblies ranging from simple dimers to three-dimensional networks.

[Scheme 1]

In this work, an ionic compound of dioxidovanadium(V) containing a symmetric N-(pyridine-2-ylcarbamo­yl)picolinamide (Shao et al., 1999[Shao, S., Zhu, D., Song, Y., You, X. Z., Shanmuga Sundara Raj, S. & Fun, H.-K. (1999). Acta Cryst. C55, 1841-1843.]) ligand (H2L) bound to vanadium through NNO in an asymmetric fashion, was synthesized in the presence of di­ethyl­amine in good yield and characterized by X-ray crystallography. The title compound may be used for anti­diabetic drug development (Jia et al., 2017[Jia, Y., Lu, L., Zhu, M., Yuan, C., Xing, S. & Fu, X. (2017). Eur. J. Med. Chem. 128, 287-292.]).

2. Structural commentary

The solid-state mol­ecular structure was confirmed by single-crystal X-ray characterization. The title compound crystallizes in the triclinic crystal system, space group P[\overline{1}]. The asymmetric unit (Fig. 1[link]a) comprises a di­ethyl­ammonium cation, a complex dioxidovanadium(V) and a water mol­ecule, which is inter­linked between the two ionic parts of the compound through hydrogen bonding (Fig. 1[link]b). The anionic part of the compound consists of one crystallographically independent V5+ ion, two oxido ligands and one NNO donor ligand with coordination sphere of the VO3N2 type (Fig. 1[link]a). The V5+ ion is coordinated by two oxygen (O1 and O2) atoms (oxido ligands), one nitro­gen (N1) atom of the pyridine ring, one deprotonated amide nitro­gen (N2) atom and a deprotonated amide-oxygen (O3) through enolization (Fig. 2[link]) of the ligand. The five-coordinate V5+ ion has a distorted square-pyramidal geometry with one of the two oxido oxygen atoms (O1) at the apex. The extent of distortion from a perfect square-pyramidal geometry can be qu­anti­fied by the structural index parameter (τ = 0.35), as determined from the equation τ = (β - α)/60 (where β and α are the two largest LML angles), which is 0 for an ideal­ized square pyramid and 1 for a trigonal bipyramid (Nair et al., 2018[Nair, R. R., Raju, M., Jana, K., Mondal, D., Suresh, E., Ganguly, B. & Chatterjee, P. B. (2018). Chem. Eur. J. 24, 10721-10731.]; Ghosh et al., 2022[Ghosh, R., Debnath, S., Bhattacharya, A., Pradhan, D. & Chatterjee, P. B. (2022). J. Inorg. Biochem. 233, 111845-111852.]). The square plane consists of one nitro­gen atom from the pyridine ring (N1), one deprotonated amide nitro­gen (N2), one enolate oxygen (O3) and one oxido oxygen (O2) atom of the ligands. The vanadium atom is located 0.555 (4) Å above the equatorial plane and displaced towards the axial O1 atom. Selected bonds involving the V atom are given in Table 1[link]. The V—O1 bond is longer than V—O2, probably due to the involvement of O1 in a hydrogen bond with the water hydrogen atom H5C (Table 2[link]). Among the three V—O bonds, the longest is the V—O3 bond length due to the absence of a V—O π-bond (Mondal et al., 2010[Mondal, B., Drew, M. G. B. & Ghosh, T. (2010). Inorg. Chim. Acta, 363, 2296-2306.]; Jia et al., 2017[Jia, Y., Lu, L., Zhu, M., Yuan, C., Xing, S. & Fu, X. (2017). Eur. J. Med. Chem. 128, 287-292.]). In the absence of di­ethyl­amine, the formation of neutral dioxido complex has been reported in which the uncoordinated pyridine atom N4 is protonated (Jia et al., 2017[Jia, Y., Lu, L., Zhu, M., Yuan, C., Xing, S. & Fu, X. (2017). Eur. J. Med. Chem. 128, 287-292.]), but in this case the protonation of the di­ethyl­amine moiety (pKa = 10.98) is probably due to its higher basicity than pyridine (pKa = 5.23).

Table 1
Selected bond lengths (Å)

V1—O2 1.6107 (15) V1—N2 2.0385 (15)
V1—O3 1.9461 (14) V1—N1 2.1170 (15)
V1—O1 1.6310 (16)    

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5A⋯O5 0.95 (3) 1.92 (3) 2.848 (3) 165 (3)
N5—H5B⋯N3i 0.85 (3) 2.08 (3) 2.918 (3) 171 (3)
O5—H5C⋯O1 0.85 1.94 2.776 (3) 169
O5—H5D⋯O4ii 0.85 1.99 2.838 (2) 178
C2—H2⋯O2iii 0.93 2.48 3.277 (3) 143
C14—H14A⋯O4i 0.97 2.57 3.172 (3) 121
C15A—H15A⋯N4i 0.97 2.59 3.233 (5) 124
Symmetry codes: (i) [x+1, y+1, z]; (ii) [x, y+1, z]; (iii) [-x+2, -y+1, -z+2].
[Figure 1]
Figure 1
(a) The mol­ecular structure with the atom-numbering scheme and ellipsoids drawn at the 50% probability level and (b) the intra­molecular hydrogen bond.
[Figure 2]
Figure 2
The keto–enol tautomeric forms of the ligand.

3. Supra­molecular features

The oxygen (O5) atom of water acts as a hydrogen-bond donor with an acceptor oxido group (O1) of the dioxidovan­adium(V) complex in the same asymmetric unit (O5—H5C⋯O1) and a symmetry-related amide oxygen (O4) atom in a neighbouring asymmetric unit (O5—H5D⋯O4) (Table 2[link]). The O5 atom also acts as a hydrogen-bond acceptor for the amine H5A atom (N5—H5A⋯O5). Another amine hydrogen (H5B) is hydrogen bonded with the N3 atom (N5—H5B⋯N3) of an adjacent complex. Two C—H⋯O and one C—H⋯N inter­actions are also observed. These hydrogen bonds within the same and different asymmetric units enhance the crystal packing of the compounds (Figs. 1[link]b and 3[link]). The mono-periodic constructs are packed perpendicular to the bc plane, giving rise to an overall three-dimensional packing arrangement (Fig. 4[link]).

[Figure 3]
Figure 3
The hydrogen bonding in adjacent asymmetric units.
[Figure 4]
Figure 4
The three-dimensional packing arrangement of the components of the title compound.

4. Database survey

Mondal et al. (2010[Mondal, B., Drew, M. G. B. & Ghosh, T. (2010). Inorg. Chim. Acta, 363, 2296-2306.]) reported numerous ionic dioxidovanadium(V) compounds with O,N,O donor ligands in presence of different types of bases. Jia et al. (2017[Jia, Y., Lu, L., Zhu, M., Yuan, C., Xing, S. & Fu, X. (2017). Eur. J. Med. Chem. 128, 287-292.]) also reported a neutral dioxidovanadium(V) compound with the same ligand.

5. Synthesis and crystallization

To a solution of picolinohydrazide (0.137 g, 1 mmol) in methanol (25 ml) was added ethyl picolinate (0.151 g, 1 mmol). The solution was heated under reflux for 3 h. The reaction mixture was cooled to room temperature and a methano­lic solution (20 ml) of [VIVO(acac)2] (0.265 g, 1 mmol) was added with stirring. After stirring for 2 h, a methano­lic solution (10 ml) of di­ethyl­amine (1 ml) was added with continuous stirring. The solution immediately turned yellow and the reaction mixture was then refluxed for 1 h. The reaction mixture was then kept for slow evaporation at room temperature. A yellow X-ray quality crystalline compound was obtained, which was filtered, washed with methanol and dried over silica gel (fused). Yield: 0.34 g (82%). Crystals of the complex were obtained after 4-days on slow evaporation at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. N-bound H atoms were refined with Uiso(H) = 1.2Ueq(N). C-bound H atoms and water H atoms were placed at calculated positions (C—H = 0.93–0.97 Å, O—H = 0.85 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-methyl,O). Initially, residual electron density ws noted near to C15. The part command was used to locate the two positions of C15 (i.e., C15A, in PART 1; and C15B, in PART 2). The site occupancie are 0.7 and 0.3, respectively. Subsequently, an isotropic refinement was done and finally, an anisotropic refinement is performed.

Table 3
Experimental details

Crystal data
Chemical formula (C4H12N)[V(C12H8N4O2)O2]·H2O
Mr 415.32
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 298
a, b, c (Å) 7.6850 (4), 9.4135 (4), 13.9147 (7)
α, β, γ (°) 105.609 (2), 101.103 (2), 96.253 (2)
V3) 937.50 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.57
Crystal size (mm) 0.32 × 0.18 × 0.03
 
Data collection
Diffractometer Bruker D8 Quest with Photon II area detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.670, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 61285, 5048, 3852
Rint 0.081
(sin θ/λ)max−1) 0.685
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.110, 1.06
No. of reflections 5048
No. of parameters 274
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.43, −0.39
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Diethylammonium dioxido{Z)-N-[(pyridin-2-yl)carbonylazanidyl]pyridine-2-carboximidato}vanadate(1-) monohydrate top
Crystal data top
(C4H12N)[V(C12H8N4O2)O2]·H2OZ = 2
Mr = 415.32F(000) = 432
Triclinic, P1Dx = 1.471 Mg m3
a = 7.6850 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.4135 (4) ÅCell parameters from 9990 reflections
c = 13.9147 (7) Åθ = 2.3–30.2°
α = 105.609 (2)°µ = 0.57 mm1
β = 101.103 (2)°T = 298 K
γ = 96.253 (2)°BLOCK, yellow
V = 937.50 (8) Å30.32 × 0.18 × 0.03 mm
Data collection top
Bruker D8 Quest with Photon II area detector
diffractometer
3852 reflections with I > 2σ(I)
φ and ω scansRint = 0.081
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 29.1°, θmin = 2.3°
Tmin = 0.670, Tmax = 0.747h = 1010
61285 measured reflectionsk = 1212
5048 independent reflectionsl = 1919
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.045P)2 + 0.4439P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
5048 reflectionsΔρmax = 0.43 e Å3
274 parametersΔρmin = 0.39 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
V10.58085 (4)0.29537 (3)0.78356 (3)0.03307 (10)
N40.0021 (2)0.1100 (2)0.63830 (14)0.0431 (4)
O20.5724 (2)0.42364 (17)0.88516 (12)0.0518 (4)
O30.32784 (18)0.22542 (14)0.71551 (11)0.0394 (3)
N30.36076 (19)0.00629 (16)0.73136 (13)0.0332 (3)
C10.9836 (3)0.3489 (2)0.88556 (17)0.0419 (5)
H10.9799210.4460450.8824580.050*
O10.6564 (2)0.36927 (18)0.70301 (13)0.0528 (4)
C21.1439 (3)0.3148 (3)0.92898 (18)0.0487 (5)
H21.2467610.3876850.9552150.058*
O50.8727 (2)0.6487 (2)0.7639 (2)0.0755 (6)
H5C0.7995390.5664410.7380190.113*
H5D0.8061830.7144300.7773640.113*
N20.53498 (19)0.07461 (16)0.77552 (12)0.0316 (3)
C40.9945 (3)0.0640 (2)0.89249 (17)0.0415 (4)
H40.9961770.0343290.8933120.050*
N51.2242 (3)0.6901 (2)0.72745 (16)0.0484 (5)
H5A1.107 (4)0.694 (3)0.740 (2)0.058*
H5B1.276 (4)0.777 (3)0.732 (2)0.058*
C31.1493 (3)0.1707 (3)0.93290 (18)0.0493 (5)
H31.2560600.1452110.9624370.059*
O40.64803 (19)0.13258 (15)0.80366 (14)0.0497 (4)
N10.8323 (2)0.24697 (17)0.84751 (12)0.0325 (3)
C50.8380 (2)0.1063 (2)0.85105 (14)0.0313 (4)
C70.2627 (2)0.08519 (19)0.70259 (14)0.0311 (4)
C60.6610 (2)0.00098 (19)0.80739 (15)0.0330 (4)
C141.3191 (3)0.6392 (3)0.8113 (2)0.0598 (7)
H14A1.4425480.6350760.8059650.072*
H14B1.2614820.5392550.8052020.072*
C131.3170 (4)0.7421 (4)0.9123 (2)0.0828 (10)
H13A1.3714110.8414520.9175940.124*
H13B1.3832880.7093040.9658600.124*
H13C1.1949560.7420570.9189460.124*
C15A1.1933 (5)0.5973 (5)0.6175 (4)0.0527 (10)0.7
H15A1.1128830.6391000.5739840.063*0.7
H15B1.1372070.4960510.6094510.063*0.7
C16A1.3721 (7)0.5944 (7)0.5852 (5)0.0695 (13)0.7
H16A1.3496500.5570360.5118730.104*0.7
H16B1.4388750.5304980.6153820.104*0.7
H16C1.4402140.6939580.6081900.104*0.7
C80.0699 (2)0.0330 (2)0.65164 (14)0.0326 (4)
C90.0329 (3)0.1301 (2)0.61863 (16)0.0421 (5)
H90.0171190.2294600.6303260.050*
C100.2108 (3)0.0772 (3)0.56808 (19)0.0534 (6)
H100.2822430.1403210.5448900.064*
C110.2801 (3)0.0687 (3)0.55262 (19)0.0554 (6)
H110.3989650.1077820.5177070.067*
C120.1699 (3)0.1567 (3)0.58996 (19)0.0526 (6)
H120.2190430.2555260.5807880.063*
C15B1.279 (3)0.5710 (13)0.6404 (12)0.102 (6)0.3
H15C1.3992560.5534320.6658260.123*0.3
H15D1.1968450.4771060.6218280.123*0.3
C16B1.276 (3)0.6182 (19)0.5559 (13)0.116 (6)0.3
H16D1.2707780.5339690.4975470.173*0.3
H16E1.3835430.6889740.5670370.173*0.3
H16F1.1727860.6649190.5433860.173*0.3
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.03157 (16)0.02325 (15)0.04138 (19)0.00202 (11)0.00358 (13)0.00908 (12)
N40.0319 (8)0.0415 (9)0.0525 (11)0.0027 (7)0.0019 (7)0.0175 (8)
O20.0457 (8)0.0400 (8)0.0543 (9)0.0124 (7)0.0010 (7)0.0046 (7)
O30.0345 (7)0.0278 (6)0.0520 (8)0.0024 (5)0.0009 (6)0.0141 (6)
N30.0249 (7)0.0277 (7)0.0438 (9)0.0003 (6)0.0023 (6)0.0111 (6)
C10.0354 (10)0.0326 (9)0.0495 (12)0.0043 (8)0.0055 (9)0.0056 (9)
O10.0511 (9)0.0474 (9)0.0672 (11)0.0019 (7)0.0118 (8)0.0329 (8)
C20.0319 (10)0.0489 (12)0.0526 (13)0.0062 (9)0.0018 (9)0.0049 (10)
O50.0432 (9)0.0467 (10)0.146 (2)0.0060 (8)0.0276 (11)0.0400 (12)
N20.0239 (7)0.0261 (7)0.0422 (9)0.0002 (5)0.0031 (6)0.0106 (6)
C40.0325 (9)0.0428 (11)0.0485 (12)0.0072 (8)0.0035 (8)0.0163 (9)
N50.0555 (12)0.0325 (9)0.0583 (12)0.0029 (8)0.0163 (10)0.0151 (9)
C30.0294 (10)0.0594 (14)0.0536 (13)0.0053 (9)0.0009 (9)0.0162 (11)
O40.0362 (7)0.0312 (7)0.0835 (12)0.0050 (6)0.0057 (7)0.0260 (7)
N10.0288 (7)0.0288 (7)0.0371 (8)0.0010 (6)0.0065 (6)0.0076 (6)
C50.0283 (8)0.0318 (9)0.0339 (9)0.0043 (7)0.0067 (7)0.0108 (7)
C70.0306 (8)0.0289 (8)0.0324 (9)0.0018 (7)0.0058 (7)0.0090 (7)
C60.0320 (9)0.0262 (8)0.0399 (10)0.0035 (7)0.0040 (7)0.0119 (7)
C140.0450 (12)0.0587 (15)0.098 (2)0.0169 (11)0.0232 (13)0.0522 (15)
C130.072 (2)0.124 (3)0.0664 (19)0.0195 (19)0.0103 (15)0.054 (2)
C15A0.049 (2)0.041 (2)0.059 (3)0.0063 (15)0.0060 (18)0.0045 (17)
C16A0.066 (3)0.077 (3)0.065 (3)0.019 (2)0.023 (2)0.011 (2)
C80.0296 (8)0.0355 (9)0.0317 (9)0.0034 (7)0.0066 (7)0.0095 (7)
C90.0372 (10)0.0438 (11)0.0438 (11)0.0103 (8)0.0046 (8)0.0127 (9)
C100.0353 (11)0.0700 (16)0.0564 (14)0.0171 (11)0.0032 (10)0.0232 (12)
C110.0260 (9)0.0803 (17)0.0554 (14)0.0011 (10)0.0004 (9)0.0221 (13)
C120.0344 (11)0.0547 (13)0.0609 (15)0.0099 (9)0.0015 (10)0.0178 (11)
C15B0.179 (19)0.039 (5)0.083 (10)0.028 (9)0.019 (12)0.013 (6)
C16B0.137 (17)0.088 (10)0.111 (14)0.029 (11)0.046 (13)0.005 (9)
Geometric parameters (Å, º) top
V1—O21.6107 (15)C4—C51.378 (3)
V1—O31.9461 (14)N5—C141.473 (3)
V1—O11.6310 (16)N5—C15A1.502 (5)
V1—N22.0385 (15)N5—C15B1.573 (16)
V1—N12.1170 (15)O4—C61.237 (2)
N4—C81.340 (2)N1—C51.343 (2)
N4—C121.329 (3)C5—C61.506 (2)
O3—C71.311 (2)C7—C81.480 (2)
N3—N21.400 (2)C14—C131.481 (4)
N3—C71.296 (2)C15A—C16A1.526 (7)
C1—C21.375 (3)C8—C91.383 (3)
C1—N11.342 (2)C9—C101.380 (3)
C2—C31.377 (3)C10—C111.362 (4)
N2—C61.327 (2)C11—C121.374 (3)
C4—C31.385 (3)C15B—C16B1.36 (2)
O2—V1—O3102.55 (7)C1—N1—V1123.69 (13)
O2—V1—O1110.64 (9)C1—N1—C5118.88 (16)
O2—V1—N2121.01 (8)C5—N1—V1117.43 (12)
O2—V1—N195.14 (7)C4—C5—C6123.33 (17)
O3—V1—N274.82 (5)N1—C5—C4121.92 (17)
O3—V1—N1148.99 (6)N1—C5—C6114.75 (15)
O1—V1—O3102.22 (7)O3—C7—C8117.03 (15)
O1—V1—N2127.77 (8)N3—C7—O3122.55 (16)
O1—V1—N194.92 (7)N3—C7—C8120.41 (16)
N2—V1—N174.24 (6)N2—C6—C5109.38 (15)
C12—N4—C8116.92 (18)O4—C6—N2129.15 (17)
C7—O3—V1117.29 (11)O4—C6—C5121.47 (16)
C7—N3—N2106.98 (14)N5—C14—C13110.7 (2)
N1—C1—C2122.3 (2)N5—C15A—C16A109.9 (3)
C1—C2—C3118.8 (2)N4—C8—C7117.44 (16)
N3—N2—V1118.33 (10)N4—C8—C9122.41 (18)
C6—N2—V1124.19 (12)C9—C8—C7120.14 (17)
C6—N2—N3117.46 (14)C10—C9—C8119.0 (2)
C5—C4—C3118.71 (19)C11—C10—C9119.1 (2)
C14—N5—C15A120.9 (2)C10—C11—C12118.2 (2)
C14—N5—C15B94.6 (6)N4—C12—C11124.4 (2)
C2—C3—C4119.43 (19)C16B—C15B—N5111.2 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O50.95 (3)1.92 (3)2.848 (3)165 (3)
N5—H5B···N3i0.85 (3)2.08 (3)2.918 (3)171 (3)
O5—H5C···O10.851.942.776 (3)169
O5—H5D···O4ii0.851.992.838 (2)178
C2—H2···O2iii0.932.483.277 (3)143
C14—H14A···O4i0.972.573.172 (3)121
C15A—H15A···N4i0.972.593.233 (5)124
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x+2, y+1, z+2.
 

Acknowledgements

The author thanks Dr Pabitra Baran Chatterjee for the single-crystal X-ray crystallographic data collection and analysis, and is also grateful to the college authorities for providing research facilities.

Funding information

Funding for this research was provided by: The Science and Engineering Research Board (SERB), New Delhi, India (file No. EEQ/2019/000292).

References

First citationBruker (2016). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationColpas, G. J., Hamstra, B. J., Kampf, J. W. & Pecoraro, V. L. (1996). J. Am. Chem. Soc. 118, 3469–3478.  CSD CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGhosh, R., Debnath, S., Bhattacharya, A., Pradhan, D. & Chatterjee, P. B. (2022). J. Inorg. Biochem. 233, 111845–111852.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationIsupov, M. N., Dalby, A. R., Brindley, A. A., Izumi, Y., Tanabe, T., Murshudov, G. N. & Littlechild, J. A. (2000). J. Mol. Biol. 299, 1035–1049.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJia, Y., Lu, L., Zhu, M., Yuan, C., Xing, S. & Fu, X. (2017). Eur. J. Med. Chem. 128, 287–292.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMesserschmidt, A. & Wever, R. (1996). Proc. Natl Acad. Sci. USA, 93, 392–396.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMondal, B., Drew, M. G. B. & Ghosh, T. (2010). Inorg. Chim. Acta, 363, 2296–2306.  Web of Science CSD CrossRef CAS Google Scholar
First citationMondal, B., Ghosh, T., Sutradhar, M., Mukherjee, G., Drew, M. G. B. & Ghosh, T. (2008). Polyhedron, 27, 2193–2201.  Web of Science CSD CrossRef CAS Google Scholar
First citationNair, R. R., Raju, M., Jana, K., Mondal, D., Suresh, E., Ganguly, B. & Chatterjee, P. B. (2018). Chem. Eur. J. 24, 10721–10731.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPlass, W. (1997). Z. Anorg. Allg. Chem. 623, 461–477.  CSD CrossRef CAS Web of Science Google Scholar
First citationPlass, W. (1998). Eur. J. Inorg. Chem. 1998, 799–805.  CrossRef Google Scholar
First citationPlass, W. & Yozgatli, H. P. (2003). Z. Anorg. Allg. Chem. 629, 65–70.  Web of Science CSD CrossRef CAS Google Scholar
First citationPohlmann, A., Nica, S., Luong, T. K. K. & Plass, W. (2005). Inorg. Chem. Commun. 8, 289–292.  Web of Science CSD CrossRef CAS Google Scholar
First citationPohlmann, A. & Plass, W. (2001). J. Inorg. Biochem. 86, 381–390.  Google Scholar
First citationShao, S., Zhu, D., Song, Y., You, X. Z., Shanmuga Sundara Raj, S. & Fun, H.-K. (1999). Acta Cryst. C55, 1841–1843.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSutradhar, M., Mukherjee, G., Drew, M. G. B. & Ghosh, S. (2006). Inorg. Chem. 45, 5150–5161.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationVergopoulos, V., Priebsch, W., Fritzsche, M. & Rehder, D. (1993). Inorg. Chem. 32, 1844–1849.  CSD CrossRef CAS Web of Science Google Scholar
First citationWeyand, M., Hecht, H., Kiess, M., Liaud, M., Vilter, H. & Schomburg, D. (1999). J. Mol. Biol. 293, 595–611.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds