research communications
Z)-N-[(pyridin-2-yl)carbonylazanidyl]pyridine-2-carboximidato}vanadate(1−) monohydrate
of diethylammonium dioxido{aDepartment of Chemistry, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata-700118, West Bengal, India
*Correspondence e-mail: dbmd79@gmail.com
The title compound, (C4H12N)[V(C12H8N4O2)O2]·H2O, was synthesized via aerial oxidation on refluxing picolinohydrazide with ethyl picolinate followed by addition of VIVO(acac)2 and diethylamine in methanol. It crystallizes in the triclinic in P. In the complex anion, the dioxidovanadium(V) moiety exhibits a distorted square-pyramidal geometry. In the crystal, extensive hydrogen bonding links the water molecule to two complex anions and one diethylammonium ion. One of the CH2 groups in the diethylamine is disordered over two sets of sites in a 0.7:0.3 ratio.
CCDC reference: 2294358
1. Chemical context
Vanadium, a biologically important viz., +III, +IV and +V) physiologically important oxidation states. In this vanadium exists in three different motifs, viz., VO3+, V2O34+ and VO2+. The formation and stability of these three motifs depends upon the nature of the solvent, the pH of the reaction medium and basicity of the donor atoms of the ligand(s), with a preference for N, O-donor ligands because of the hard acidic nature of VV. It is evident from the literature (Mondal et al., 2010, 2008) that the vanadium complexes containing VO2+ motifs are formed in basic media. Vanadium compounds show the catalytic cycle of haloperoxidase activity has been suggested to proceed through hydrogen-bonding interactions (Colpas et al., 1996; Messerschimdt & Wever, 1996; Weyand et al., 1999; Isupov et al., 2000). In the presence of appropriate hydrogen-bond donors, hydrogen bonding is a general feature of vanadium(IV) and vanadium(V) complexes (Mondal et al., 2010; Plass, 1997, 1998; Plass & Yozgatli, 2003; Pohlmann & Plass, 2001; Pohlmann et al., 2005; Vergopoulos et al., 1993; Sutradhar et al., 2006). In general, these examples lead to the formation of hydrogen-bonded molecular assemblies ranging from simple dimers to three-dimensional networks.
with the +V has received considerable attention among the three (In this work, an ionic compound of dioxidovanadium(V) containing a symmetric N-(pyridine-2-ylcarbamoyl)picolinamide (Shao et al., 1999) ligand (H2L) bound to vanadium through NNO in an asymmetric fashion, was synthesized in the presence of diethylamine in good yield and characterized by X-ray crystallography. The title compound may be used for antidiabetic drug development (Jia et al., 2017).
2. Structural commentary
The solid-state molecular structure was confirmed by single-crystal X-ray characterization. The title compound crystallizes in the triclinic P. The (Fig. 1a) comprises a diethylammonium cation, a complex dioxidovanadium(V) and a water molecule, which is interlinked between the two ionic parts of the compound through hydrogen bonding (Fig. 1b). The anionic part of the compound consists of one crystallographically independent V5+ ion, two oxido ligands and one NNO donor ligand with coordination sphere of the VO3N2 type (Fig. 1a). The V5+ ion is coordinated by two oxygen (O1 and O2) atoms (oxido ligands), one nitrogen (N1) atom of the pyridine ring, one deprotonated amide nitrogen (N2) atom and a deprotonated amide-oxygen (O3) through enolization (Fig. 2) of the ligand. The five-coordinate V5+ ion has a distorted square-pyramidal geometry with one of the two oxido oxygen atoms (O1) at the apex. The extent of distortion from a perfect square-pyramidal geometry can be quantified by the structural index parameter (τ = 0.35), as determined from the equation τ = (β - α)/60 (where β and α are the two largest L—M—L angles), which is 0 for an idealized square pyramid and 1 for a trigonal bipyramid (Nair et al., 2018; Ghosh et al., 2022). The square plane consists of one nitrogen atom from the pyridine ring (N1), one deprotonated amide nitrogen (N2), one enolate oxygen (O3) and one oxido oxygen (O2) atom of the ligands. The vanadium atom is located 0.555 (4) Å above the equatorial plane and displaced towards the axial O1 atom. Selected bonds involving the V atom are given in Table 1. The V—O1 bond is longer than V—O2, probably due to the involvement of O1 in a hydrogen bond with the water hydrogen atom H5C (Table 2). Among the three V—O bonds, the longest is the V—O3 bond length due to the absence of a V—O π-bond (Mondal et al., 2010; Jia et al., 2017). In the absence of diethylamine, the formation of neutral dioxido complex has been reported in which the uncoordinated pyridine atom N4 is protonated (Jia et al., 2017), but in this case the protonation of the diethylamine moiety (pKa = 10.98) is probably due to its higher basicity than pyridine (pKa = 5.23).
|
3. Supramolecular features
The oxygen (O5) atom of water acts as a hydrogen-bond donor with an acceptor oxido group (O1) of the dioxidovanadium(V) complex in the same C⋯O1) and a symmetry-related amide oxygen (O4) atom in a neighbouring (O5—H5D⋯O4) (Table 2). The O5 atom also acts as a hydrogen-bond acceptor for the amine H5A atom (N5—H5A⋯O5). Another amine hydrogen (H5B) is hydrogen bonded with the N3 atom (N5—H5B⋯N3) of an adjacent complex. Two C—H⋯O and one C—H⋯N interactions are also observed. These hydrogen bonds within the same and different asymmetric units enhance the crystal packing of the compounds (Figs. 1b and 3). The mono-periodic constructs are packed perpendicular to the bc plane, giving rise to an overall three-dimensional packing arrangement (Fig. 4).
(O5—H54. Database survey
Mondal et al. (2010) reported numerous ionic dioxidovanadium(V) compounds with O,N,O donor ligands in presence of different types of bases. Jia et al. (2017) also reported a neutral dioxidovanadium(V) compound with the same ligand.
5. Synthesis and crystallization
To a solution of picolinohydrazide (0.137 g, 1 mmol) in methanol (25 ml) was added ethyl picolinate (0.151 g, 1 mmol). The solution was heated under reflux for 3 h. The reaction mixture was cooled to room temperature and a methanolic solution (20 ml) of [VIVO(acac)2] (0.265 g, 1 mmol) was added with stirring. After stirring for 2 h, a methanolic solution (10 ml) of diethylamine (1 ml) was added with continuous stirring. The solution immediately turned yellow and the reaction mixture was then refluxed for 1 h. The reaction mixture was then kept for slow evaporation at room temperature. A yellow X-ray quality crystalline compound was obtained, which was filtered, washed with methanol and dried over silica gel (fused). Yield: 0.34 g (82%). Crystals of the complex were obtained after 4-days on slow evaporation at room temperature.
6. Refinement
Crystal data, data collection and structure . N-bound H atoms were refined with Uiso(H) = 1.2Ueq(N). C-bound H atoms and water H atoms were placed at calculated positions (C—H = 0.93–0.97 Å, O—H = 0.85 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-methyl,O). Initially, residual electron density ws noted near to C15. The part command was used to locate the two positions of C15 (i.e., C15A, in PART 1; and C15B, in PART 2). The site occupancie are 0.7 and 0.3, respectively. Subsequently, an isotropic was done and finally, an anisotropic is performed.
details are summarized in Table 3
|
Supporting information
CCDC reference: 2294358
https://doi.org/10.1107/S2056989024001166/ev2002sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024001166/ev2002Isup2.hkl
(C4H12N)[V(C12H8N4O2)O2]·H2O | Z = 2 |
Mr = 415.32 | F(000) = 432 |
Triclinic, P1 | Dx = 1.471 Mg m−3 |
a = 7.6850 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.4135 (4) Å | Cell parameters from 9990 reflections |
c = 13.9147 (7) Å | θ = 2.3–30.2° |
α = 105.609 (2)° | µ = 0.57 mm−1 |
β = 101.103 (2)° | T = 298 K |
γ = 96.253 (2)° | BLOCK, yellow |
V = 937.50 (8) Å3 | 0.32 × 0.18 × 0.03 mm |
Bruker D8 Quest with Photon II area detector diffractometer | 3852 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.081 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 29.1°, θmin = 2.3° |
Tmin = 0.670, Tmax = 0.747 | h = −10→10 |
61285 measured reflections | k = −12→12 |
5048 independent reflections | l = −19→19 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.038 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.110 | w = 1/[σ2(Fo2) + (0.045P)2 + 0.4439P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
5048 reflections | Δρmax = 0.43 e Å−3 |
274 parameters | Δρmin = −0.39 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
V1 | 0.58085 (4) | 0.29537 (3) | 0.78356 (3) | 0.03307 (10) | |
N4 | 0.0021 (2) | −0.1100 (2) | 0.63830 (14) | 0.0431 (4) | |
O2 | 0.5724 (2) | 0.42364 (17) | 0.88516 (12) | 0.0518 (4) | |
O3 | 0.32784 (18) | 0.22542 (14) | 0.71551 (11) | 0.0394 (3) | |
N3 | 0.36076 (19) | −0.00629 (16) | 0.73136 (13) | 0.0332 (3) | |
C1 | 0.9836 (3) | 0.3489 (2) | 0.88556 (17) | 0.0419 (5) | |
H1 | 0.979921 | 0.446045 | 0.882458 | 0.050* | |
O1 | 0.6564 (2) | 0.36927 (18) | 0.70301 (13) | 0.0528 (4) | |
C2 | 1.1439 (3) | 0.3148 (3) | 0.92898 (18) | 0.0487 (5) | |
H2 | 1.246761 | 0.387685 | 0.955215 | 0.058* | |
O5 | 0.8727 (2) | 0.6487 (2) | 0.7639 (2) | 0.0755 (6) | |
H5C | 0.799539 | 0.566441 | 0.738019 | 0.113* | |
H5D | 0.806183 | 0.714430 | 0.777364 | 0.113* | |
N2 | 0.53498 (19) | 0.07461 (16) | 0.77552 (12) | 0.0316 (3) | |
C4 | 0.9945 (3) | 0.0640 (2) | 0.89249 (17) | 0.0415 (4) | |
H4 | 0.996177 | −0.034329 | 0.893312 | 0.050* | |
N5 | 1.2242 (3) | 0.6901 (2) | 0.72745 (16) | 0.0484 (5) | |
H5A | 1.107 (4) | 0.694 (3) | 0.740 (2) | 0.058* | |
H5B | 1.276 (4) | 0.777 (3) | 0.732 (2) | 0.058* | |
C3 | 1.1493 (3) | 0.1707 (3) | 0.93290 (18) | 0.0493 (5) | |
H3 | 1.256060 | 0.145211 | 0.962437 | 0.059* | |
O4 | 0.64803 (19) | −0.13258 (15) | 0.80366 (14) | 0.0497 (4) | |
N1 | 0.8323 (2) | 0.24697 (17) | 0.84751 (12) | 0.0325 (3) | |
C5 | 0.8380 (2) | 0.1063 (2) | 0.85105 (14) | 0.0313 (4) | |
C7 | 0.2627 (2) | 0.08519 (19) | 0.70259 (14) | 0.0311 (4) | |
C6 | 0.6610 (2) | 0.00098 (19) | 0.80739 (15) | 0.0330 (4) | |
C14 | 1.3191 (3) | 0.6392 (3) | 0.8113 (2) | 0.0598 (7) | |
H14A | 1.442548 | 0.635076 | 0.805965 | 0.072* | |
H14B | 1.261482 | 0.539255 | 0.805202 | 0.072* | |
C13 | 1.3170 (4) | 0.7421 (4) | 0.9123 (2) | 0.0828 (10) | |
H13A | 1.371411 | 0.841452 | 0.917594 | 0.124* | |
H13B | 1.383288 | 0.709304 | 0.965860 | 0.124* | |
H13C | 1.194956 | 0.742057 | 0.918946 | 0.124* | |
C15A | 1.1933 (5) | 0.5973 (5) | 0.6175 (4) | 0.0527 (10) | 0.7 |
H15A | 1.112883 | 0.639100 | 0.573984 | 0.063* | 0.7 |
H15B | 1.137207 | 0.496051 | 0.609451 | 0.063* | 0.7 |
C16A | 1.3721 (7) | 0.5944 (7) | 0.5852 (5) | 0.0695 (13) | 0.7 |
H16A | 1.349650 | 0.557036 | 0.511873 | 0.104* | 0.7 |
H16B | 1.438875 | 0.530498 | 0.615382 | 0.104* | 0.7 |
H16C | 1.440214 | 0.693958 | 0.608190 | 0.104* | 0.7 |
C8 | 0.0699 (2) | 0.0330 (2) | 0.65164 (14) | 0.0326 (4) | |
C9 | −0.0329 (3) | 0.1301 (2) | 0.61863 (16) | 0.0421 (5) | |
H9 | 0.017119 | 0.229460 | 0.630326 | 0.050* | |
C10 | −0.2108 (3) | 0.0772 (3) | 0.56808 (19) | 0.0534 (6) | |
H10 | −0.282243 | 0.140321 | 0.544890 | 0.064* | |
C11 | −0.2801 (3) | −0.0687 (3) | 0.55262 (19) | 0.0554 (6) | |
H11 | −0.398965 | −0.107782 | 0.517707 | 0.067* | |
C12 | −0.1699 (3) | −0.1567 (3) | 0.58996 (19) | 0.0526 (6) | |
H12 | −0.219043 | −0.255526 | 0.580788 | 0.063* | |
C15B | 1.279 (3) | 0.5710 (13) | 0.6404 (12) | 0.102 (6) | 0.3 |
H15C | 1.399256 | 0.553432 | 0.665826 | 0.123* | 0.3 |
H15D | 1.196845 | 0.477106 | 0.621828 | 0.123* | 0.3 |
C16B | 1.276 (3) | 0.6182 (19) | 0.5559 (13) | 0.116 (6) | 0.3 |
H16D | 1.270778 | 0.533969 | 0.497547 | 0.173* | 0.3 |
H16E | 1.383543 | 0.688974 | 0.567037 | 0.173* | 0.3 |
H16F | 1.172786 | 0.664919 | 0.543386 | 0.173* | 0.3 |
U11 | U22 | U33 | U12 | U13 | U23 | |
V1 | 0.03157 (16) | 0.02325 (15) | 0.04138 (19) | 0.00202 (11) | 0.00358 (13) | 0.00908 (12) |
N4 | 0.0319 (8) | 0.0415 (9) | 0.0525 (11) | −0.0027 (7) | 0.0019 (7) | 0.0175 (8) |
O2 | 0.0457 (8) | 0.0400 (8) | 0.0543 (9) | 0.0124 (7) | −0.0010 (7) | −0.0046 (7) |
O3 | 0.0345 (7) | 0.0278 (6) | 0.0520 (8) | 0.0024 (5) | −0.0009 (6) | 0.0141 (6) |
N3 | 0.0249 (7) | 0.0277 (7) | 0.0438 (9) | −0.0003 (6) | 0.0023 (6) | 0.0111 (6) |
C1 | 0.0354 (10) | 0.0326 (9) | 0.0495 (12) | −0.0043 (8) | 0.0055 (9) | 0.0056 (9) |
O1 | 0.0511 (9) | 0.0474 (9) | 0.0672 (11) | 0.0019 (7) | 0.0118 (8) | 0.0329 (8) |
C2 | 0.0319 (10) | 0.0489 (12) | 0.0526 (13) | −0.0062 (9) | 0.0018 (9) | 0.0049 (10) |
O5 | 0.0432 (9) | 0.0467 (10) | 0.146 (2) | 0.0060 (8) | 0.0276 (11) | 0.0400 (12) |
N2 | 0.0239 (7) | 0.0261 (7) | 0.0422 (9) | 0.0002 (5) | 0.0031 (6) | 0.0106 (6) |
C4 | 0.0325 (9) | 0.0428 (11) | 0.0485 (12) | 0.0072 (8) | 0.0035 (8) | 0.0163 (9) |
N5 | 0.0555 (12) | 0.0325 (9) | 0.0583 (12) | 0.0029 (8) | 0.0163 (10) | 0.0151 (9) |
C3 | 0.0294 (10) | 0.0594 (14) | 0.0536 (13) | 0.0053 (9) | −0.0009 (9) | 0.0162 (11) |
O4 | 0.0362 (7) | 0.0312 (7) | 0.0835 (12) | 0.0050 (6) | 0.0057 (7) | 0.0260 (7) |
N1 | 0.0288 (7) | 0.0288 (7) | 0.0371 (8) | 0.0010 (6) | 0.0065 (6) | 0.0076 (6) |
C5 | 0.0283 (8) | 0.0318 (9) | 0.0339 (9) | 0.0043 (7) | 0.0067 (7) | 0.0108 (7) |
C7 | 0.0306 (8) | 0.0289 (8) | 0.0324 (9) | 0.0018 (7) | 0.0058 (7) | 0.0090 (7) |
C6 | 0.0320 (9) | 0.0262 (8) | 0.0399 (10) | 0.0035 (7) | 0.0040 (7) | 0.0119 (7) |
C14 | 0.0450 (12) | 0.0587 (15) | 0.098 (2) | 0.0169 (11) | 0.0232 (13) | 0.0522 (15) |
C13 | 0.072 (2) | 0.124 (3) | 0.0664 (19) | 0.0195 (19) | 0.0103 (15) | 0.054 (2) |
C15A | 0.049 (2) | 0.041 (2) | 0.059 (3) | 0.0063 (15) | 0.0060 (18) | 0.0045 (17) |
C16A | 0.066 (3) | 0.077 (3) | 0.065 (3) | 0.019 (2) | 0.023 (2) | 0.011 (2) |
C8 | 0.0296 (8) | 0.0355 (9) | 0.0317 (9) | 0.0034 (7) | 0.0066 (7) | 0.0095 (7) |
C9 | 0.0372 (10) | 0.0438 (11) | 0.0438 (11) | 0.0103 (8) | 0.0046 (8) | 0.0127 (9) |
C10 | 0.0353 (11) | 0.0700 (16) | 0.0564 (14) | 0.0171 (11) | 0.0032 (10) | 0.0232 (12) |
C11 | 0.0260 (9) | 0.0803 (17) | 0.0554 (14) | 0.0011 (10) | 0.0004 (9) | 0.0221 (13) |
C12 | 0.0344 (11) | 0.0547 (13) | 0.0609 (15) | −0.0099 (9) | 0.0015 (10) | 0.0178 (11) |
C15B | 0.179 (19) | 0.039 (5) | 0.083 (10) | 0.028 (9) | 0.019 (12) | 0.013 (6) |
C16B | 0.137 (17) | 0.088 (10) | 0.111 (14) | 0.029 (11) | 0.046 (13) | −0.005 (9) |
V1—O2 | 1.6107 (15) | C4—C5 | 1.378 (3) |
V1—O3 | 1.9461 (14) | N5—C14 | 1.473 (3) |
V1—O1 | 1.6310 (16) | N5—C15A | 1.502 (5) |
V1—N2 | 2.0385 (15) | N5—C15B | 1.573 (16) |
V1—N1 | 2.1170 (15) | O4—C6 | 1.237 (2) |
N4—C8 | 1.340 (2) | N1—C5 | 1.343 (2) |
N4—C12 | 1.329 (3) | C5—C6 | 1.506 (2) |
O3—C7 | 1.311 (2) | C7—C8 | 1.480 (2) |
N3—N2 | 1.400 (2) | C14—C13 | 1.481 (4) |
N3—C7 | 1.296 (2) | C15A—C16A | 1.526 (7) |
C1—C2 | 1.375 (3) | C8—C9 | 1.383 (3) |
C1—N1 | 1.342 (2) | C9—C10 | 1.380 (3) |
C2—C3 | 1.377 (3) | C10—C11 | 1.362 (4) |
N2—C6 | 1.327 (2) | C11—C12 | 1.374 (3) |
C4—C3 | 1.385 (3) | C15B—C16B | 1.36 (2) |
O2—V1—O3 | 102.55 (7) | C1—N1—V1 | 123.69 (13) |
O2—V1—O1 | 110.64 (9) | C1—N1—C5 | 118.88 (16) |
O2—V1—N2 | 121.01 (8) | C5—N1—V1 | 117.43 (12) |
O2—V1—N1 | 95.14 (7) | C4—C5—C6 | 123.33 (17) |
O3—V1—N2 | 74.82 (5) | N1—C5—C4 | 121.92 (17) |
O3—V1—N1 | 148.99 (6) | N1—C5—C6 | 114.75 (15) |
O1—V1—O3 | 102.22 (7) | O3—C7—C8 | 117.03 (15) |
O1—V1—N2 | 127.77 (8) | N3—C7—O3 | 122.55 (16) |
O1—V1—N1 | 94.92 (7) | N3—C7—C8 | 120.41 (16) |
N2—V1—N1 | 74.24 (6) | N2—C6—C5 | 109.38 (15) |
C12—N4—C8 | 116.92 (18) | O4—C6—N2 | 129.15 (17) |
C7—O3—V1 | 117.29 (11) | O4—C6—C5 | 121.47 (16) |
C7—N3—N2 | 106.98 (14) | N5—C14—C13 | 110.7 (2) |
N1—C1—C2 | 122.3 (2) | N5—C15A—C16A | 109.9 (3) |
C1—C2—C3 | 118.8 (2) | N4—C8—C7 | 117.44 (16) |
N3—N2—V1 | 118.33 (10) | N4—C8—C9 | 122.41 (18) |
C6—N2—V1 | 124.19 (12) | C9—C8—C7 | 120.14 (17) |
C6—N2—N3 | 117.46 (14) | C10—C9—C8 | 119.0 (2) |
C5—C4—C3 | 118.71 (19) | C11—C10—C9 | 119.1 (2) |
C14—N5—C15A | 120.9 (2) | C10—C11—C12 | 118.2 (2) |
C14—N5—C15B | 94.6 (6) | N4—C12—C11 | 124.4 (2) |
C2—C3—C4 | 119.43 (19) | C16B—C15B—N5 | 111.2 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
N5—H5A···O5 | 0.95 (3) | 1.92 (3) | 2.848 (3) | 165 (3) |
N5—H5B···N3i | 0.85 (3) | 2.08 (3) | 2.918 (3) | 171 (3) |
O5—H5C···O1 | 0.85 | 1.94 | 2.776 (3) | 169 |
O5—H5D···O4ii | 0.85 | 1.99 | 2.838 (2) | 178 |
C2—H2···O2iii | 0.93 | 2.48 | 3.277 (3) | 143 |
C14—H14A···O4i | 0.97 | 2.57 | 3.172 (3) | 121 |
C15A—H15A···N4i | 0.97 | 2.59 | 3.233 (5) | 124 |
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) −x+2, −y+1, −z+2. |
Acknowledgements
The author thanks Dr Pabitra Baran Chatterjee for the single-crystal X-ray crystallographic data collection and analysis, and is also grateful to the college authorities for providing research facilities.
Funding information
Funding for this research was provided by: The Science and Engineering Research Board (SERB), New Delhi, India (file No. EEQ/2019/000292).
References
Bruker (2016). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA. Google Scholar
Colpas, G. J., Hamstra, B. J., Kampf, J. W. & Pecoraro, V. L. (1996). J. Am. Chem. Soc. 118, 3469–3478. CSD CrossRef CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ghosh, R., Debnath, S., Bhattacharya, A., Pradhan, D. & Chatterjee, P. B. (2022). J. Inorg. Biochem. 233, 111845–111852. Web of Science CSD CrossRef CAS PubMed Google Scholar
Isupov, M. N., Dalby, A. R., Brindley, A. A., Izumi, Y., Tanabe, T., Murshudov, G. N. & Littlechild, J. A. (2000). J. Mol. Biol. 299, 1035–1049. Web of Science CrossRef PubMed CAS Google Scholar
Jia, Y., Lu, L., Zhu, M., Yuan, C., Xing, S. & Fu, X. (2017). Eur. J. Med. Chem. 128, 287–292. Web of Science CSD CrossRef CAS PubMed Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Messerschmidt, A. & Wever, R. (1996). Proc. Natl Acad. Sci. USA, 93, 392–396. CrossRef CAS PubMed Web of Science Google Scholar
Mondal, B., Drew, M. G. B. & Ghosh, T. (2010). Inorg. Chim. Acta, 363, 2296–2306. Web of Science CSD CrossRef CAS Google Scholar
Mondal, B., Ghosh, T., Sutradhar, M., Mukherjee, G., Drew, M. G. B. & Ghosh, T. (2008). Polyhedron, 27, 2193–2201. Web of Science CSD CrossRef CAS Google Scholar
Nair, R. R., Raju, M., Jana, K., Mondal, D., Suresh, E., Ganguly, B. & Chatterjee, P. B. (2018). Chem. Eur. J. 24, 10721–10731. Web of Science CSD CrossRef CAS PubMed Google Scholar
Plass, W. (1997). Z. Anorg. Allg. Chem. 623, 461–477. CSD CrossRef CAS Web of Science Google Scholar
Plass, W. (1998). Eur. J. Inorg. Chem. 1998, 799–805. CrossRef Google Scholar
Plass, W. & Yozgatli, H. P. (2003). Z. Anorg. Allg. Chem. 629, 65–70. Web of Science CSD CrossRef CAS Google Scholar
Pohlmann, A., Nica, S., Luong, T. K. K. & Plass, W. (2005). Inorg. Chem. Commun. 8, 289–292. Web of Science CSD CrossRef CAS Google Scholar
Pohlmann, A. & Plass, W. (2001). J. Inorg. Biochem. 86, 381–390. Google Scholar
Shao, S., Zhu, D., Song, Y., You, X. Z., Shanmuga Sundara Raj, S. & Fun, H.-K. (1999). Acta Cryst. C55, 1841–1843. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sutradhar, M., Mukherjee, G., Drew, M. G. B. & Ghosh, S. (2006). Inorg. Chem. 45, 5150–5161. Web of Science CSD CrossRef PubMed CAS Google Scholar
Vergopoulos, V., Priebsch, W., Fritzsche, M. & Rehder, D. (1993). Inorg. Chem. 32, 1844–1849. CSD CrossRef CAS Web of Science Google Scholar
Weyand, M., Hecht, H., Kiess, M., Liaud, M., Vilter, H. & Schomburg, D. (1999). J. Mol. Biol. 293, 595–611. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.