research communications
μ-2-hydroxy-3,5-diisopropylbenzoato)bis[(dimethyl sulfoxide)copper(II)]
of tetrakis(aDepartment of Chemistry, Columbia University, New York, NY 10027, USA, and bDepartment of Chemistry & Physical Sciences, Pace University, New York, NY 10038, USA
*Correspondence e-mail: rupmacis@pace.edu
Metal complexes of 3,5-diisopropylsalicylate are reported to have anti-inflammatory and anti-convulsant activities. The title binuclear copper complex, [Cu2(C13H17O3)4(C2H6OS)2] or [Cu(II)2(3,5-DIPS)4(DMSO)2], contains two five-coordinate copper atoms that are bridged by four 3,5-diisopropylsalicylate ligands and capped by two axial dimethyl sulfoxide (DMSO) moieties. Each copper atom is attached to four oxygen atoms in an almost square-planar fashion, with the addition of a DMSO ligand in an apical position leading to a square-pyramidal arrangement. The hydroxy group of the diisopropylsalicylate ligands participates in intramolecular O—H⋯O hydrogen-bonding interactions.
CCDC reference: 2333981
1. Chemical context
A variety of binuclear CuII complexes bound to carboxylate moieties and donor ligands are known (Doedens, 1976). These include, for instance, CuII complexes with dialkylsalicylates (Morgant et al., 2000; Benisvy et al., 2006; Seguin et al., 2021) and non-steroidal anti-inflammatory drugs (NSAIDs) (Dendrinou-Samara et al., 1990; Kovala-Demertzi et al., 1997; Guessous et al., 1998; Greenaway et al., 1999; Viossat et al., 2003, 2005). With regard to CuII complexes with dialkylsalicylates, several complexes containing 3,5-diisopropylsalicylate (3,5-DIPS) of the type [Cu(II)2(3,5-DIPS)4(L)2], in which L is a donor molecule, are known and have been characterized by (EPR), infrared (IR) and ultraviolet–visible (UV–Vis) spectroscopies (Greenaway et al., 1988). However, compounds featuring dimethyl formamide (DMF) and diethylether giving rise to [Cu(II)2(3,5-DIPS)4(DMF)2] and [Cu(II)2(3,5-DIPS)4(OEt2)2], respectively, have been characterized by X-ray diffraction (Morgant et al., 2000).
In contrast to the binuclear structures of these copper compounds, the structure of the zinc counterpart that is obtained from dimethyl sulfoxide (DMSO) is mononuclear, [Zn(II)(3,5-DIPS)2(DMSO)2], as determined by X-ray crystallography (Morgant et al., 1998). Since CuII and ZnII complexes of 3,5-DIPS are of interest because they inhibit polymorphonuclear leukocyte oxidative metabolism in vitro and have anticonvulsant activity (Morgant et al., 1998, 2000), it is pertinent to determine the structure of the corresponding copper complex. Therefore, herein, we describe the X-ray crystallography structure of the binuclear copper complex, [Cu(II)2(3,5-DIPS)4(DMSO)2], which is obtained from a solution of copper(II) 3,5-diisopropylsalicylate hydrate in DMSO.
2. Structural commentary
The structure of [Cu(II)2(3,5-DIPS)4(DMSO)2], shown in Fig. 1, reveals that the compound is a centrosymmetric binuclear complex containing two copper atoms, with a Cu⋯Cu distance of 2.6170 (7) Å, that are bridged by four 3,5-diisopropylsalicylate (DIPS) ligands. The internal (inversion center) allows for half of the complex to be represented in the As found with other [Cu(II)(3,5-DIPS)] compounds, the OH moiety attached to the aromatic ring is not involved in bonding to the copper centers (Ranford et al., 1993; Morgant et al., 2000). Each Cu atom forms an almost square-planar geometry with four oxygen atoms from the carboxylate groups of the 3,5-DIPS moieties, with Cu—O distances ranging between 1.958 (2) and 1.972 (2) Å. The O—Cu—O angles range from 88.12 (9) to 90.21 (9)° for cis and 168.77 (7) to 168.80 (8)° for trans positions, indicating that the arrangement is close to an idealized square-planar geometry.
Each Cu atom is also capped by a DMSO ligand in the apical position with a Cu—OSMe2 distance of 2.1226 (19) Å leading to a square-pyramidal arrangement. The O11—Cu—OSMe2, O12—Cu—OSMe2, O31—Cu—OSMe2 and O32—Cu—OSMe2 angles range from 95.41 (8) to 95.79 (7)°, indicating a slight deviation from the 90° angle expected for an idealized square-pyramidal arrangement. In accord with this description, the τ5 geometry index (Addison et al., 1984) for the [CuO5] moiety is close to zero (0.00005); for reference, a τ5 geometry index of 0.00 corresponds to a square-pyramidal geometry while a value of 1.00 corresponds to an idealized trigonal–bipyramidal geometry (Addison et al., 1984; Palmer & Parkin, 2014).
The OH group is disordered over two sites on each aromatic ring, namely C13/C17 and C33/C37, with site occupancy ratios of 0.723 (6):0.277 (6) and 0.859 (5):0.141 (5), respectively. This type of disorder has previously been observed for other [Cu(II)(3,5-DIPS)] compounds, such as [Cu(II)2(3,5-DIPS)4(DMF)2] and mononuclear [Cu(II)(3,5-DIPS)2(1,10-phenanthroline)] (Morgant et al., 2000; Ranford et al., 1993). For comparison, the OH group disorder for [Cu(II)2(3,5-DIPS)4(DMF)2] occurs in a 64:36 ratio for each 3,5-DIPS ligand (Morgant et al., 2000), while for the mononuclear Cu structure containing 1,10-phenanthroline, the disorder occurs in a 60:40 ratio (Ranford et al., 1993).
3. Supramolecular features
Fig. 2 shows the packing in the There are no significant intermolecular interactions. However, the structure displays hydrogen-bonding interactions within the molecule, which are those between the aromatic OH groups and an oxygen atom of the carboxylate group within the 3,5-DIPS ligand. The hydrogen bond O—H⋯O distances and angles for O13—H⋯O11, O13A—H⋯O12, O33—H⋯O31 and O33A—H⋯O32 are reported in Table 1. As a result of the OH disorder observed, there are two O—H⋯O distances recorded for each aromatic ring.
|
The intramolecular hydrogen-bond distances and angles reported in Table 1 are within the typical range of other reported [Cu(II)2(3,5-DIPS)4(L)2] compounds. For instance, the hydrogen-bond O—H⋯O distances and angles reported for [Cu(II)2(3,5-DIPS)4(DMF)2] range from 2.493 (4) to 2.559 (4) Å and 137.0 to 147.6°, respectively (Morgant et al., 2000).
Similar intramolecular hydrogen-bond O—H⋯O distances and angles are also reported for related binuclear copper(II) compounds containing 3,5-diisobutylsalicylate (3,5-DIBS) that also bear a ring molecule with ortho carboxylic and alcohol functional groups. For example, [Cu(II)2(3,5-DIBS)4(CH3OH)2] displays intramolecular hydrogen-bond O—H⋯O distances ranging from 2.575 (6) to 2.565 (6) Å, and O—H⋯O angles between 131 and 146° (Benisvy et al., 2006).
4. Database survey
Crystal structures of 3,5-diisopropylsalicylate copper(II) complexes bound to additional axial donors (L) of the form [Cu(II)2(3,5-DIPS)4(L)2] are known, and include the DMF and diethylether ligated compounds (Morgant et al., 2000). The title compound, as well as others containing different solvent molecules, such as the diaqua variant, have been previously characterized as [Cu(II)2(3,5-DIPS)4(L)2] compounds, but crystal structures were not published (Greenaway et al., 1988; Ranford et al., 1993).
Other ternary CuII complexes containing solvents bound in the axial positions where 3,5-DIPS is replaced by non-steroidal anti-inflammatory drugs (NSAIDs) of the form [Cu(II)2(NSAID)4(L)2] are also known. These include: [Cu(II)2(naproxen)4(DMSO)2] (Dendrinou-Samara et al., 1990); [Cu(II)2(diclofenac)4(DMF)2] (Kovala-Demertzi et al., 1997); [Cu(II)2(indomethacinate)4(DMF)2] (Guessous et al., 1998); [Cu(II)2(niflumate)4(DMSO)2] (Greenaway et al., 1999); [Cu(II)2(aspirinate)4(DMSO)2] (Viossat et al., 2003) and [Cu(II)2(niflumate)4(H2O)2·4DMA] (DMA = dimethylacetamide; Viossat et al., 2005). Notably, the title compound has similar structural features to previously characterized NSAID analogs (Table 2).
Related ternary binuclear copper(II) containing 3,5-diisobutylsalicylate (3,5-DIBS) compounds that contain solvent ligands are also known. For instance, compounds such as [Cu(II)2(3,5-DIBS)4(CH3OH)2] and [Cu(II)2(3,5-DIBS)4(EtOH)2] have also been characterized (Benisvy et al., 2006; Seguin et al., 2021).
In contrast to these binuclear copper structures, other motifs are observed for different metals. For example, the zinc compound contains a mononuclear zinc center surrounded by two 3,5-DIPS ligands and two DMSO solvent molecules of the form [Zn(II)(3,5-DIPS)2(DMSO)2] (Morgant et al., 1998). The ZnII complex of 3,5-DIPS has anticonvulsant activity and inhibits polymorphonuclear leukocyte oxidative bursts in vitro (Morgant et al., 1998). The (3,5-DIPS) compounds of Fe and Mn also exhibit anti-oxidant activity (Tavadyan et al., 2004).
5. Synthesis and crystallization
A green block of [Cu(II)2(3,5-DIPS)4(DMSO)2] suitable for X-ray diffraction was obtained by directing a flow of air above a solution of copper(II) 3,5-diisopropylsalicylate hydrate (0.07 g, 0.14 mmol) in DMSO (15 mL) over several days at room temperature. In the absence of a flow of air, crystals were also obtained over a period of 11 months.
6. Refinement
Crystal data, data collection and structure . Disordered groups were treated using fully (site occupancies, coordinates, thermal parameters) with SHELXTL (Version 2014/7; Sheldrick, 2008). Hydrogen atoms on carbon were placed in calculated positions (C—H = 0.95–1.00 Å) and included as riding contributions with isotropic displacement parameters Uiso(H) = 1.2Ueq(Csp2) or 1.5Ueq(Csp3). The disorder of the hydroxyl groups was modeled such that the sum of their site occupancies is 1.0.
details are summarized in Table 3
|
Supporting information
CCDC reference: 2333981
https://doi.org/10.1107/S205698902400166X/ev2003sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698902400166X/ev2003Isup2.hkl
[Cu2(C13H17O3)4(C2H6OS)2] | Z = 1 |
Mr = 1168.40 | F(000) = 618 |
Triclinic, P1 | Dx = 1.315 Mg m−3 |
a = 10.2990 (17) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.734 (2) Å | Cell parameters from 6990 reflections |
c = 12.846 (2) Å | θ = 2.3–28.4° |
α = 87.275 (3)° | µ = 0.85 mm−1 |
β = 88.918 (3)° | T = 180 K |
γ = 72.096 (2)° | Block, green |
V = 1475.6 (4) Å3 | 0.13 × 0.08 × 0.05 mm |
Bruker APEXII CCD diffractometer | 4879 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.046 |
Absorption correction: empirical (using intensity measurements) (SADABS; Krause et al., 2015) | θmax = 27.5°, θmin = 1.6° |
Tmin = 0.692, Tmax = 0.746 | h = −13→13 |
19892 measured reflections | k = −15→15 |
6767 independent reflections | l = −16→16 |
Refinement on F2 | 12 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.047 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.130 | w = 1/[σ2(Fo2) + (0.0587P)2 + 0.2858P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max = 0.001 |
6767 reflections | Δρmax = 0.61 e Å−3 |
367 parameters | Δρmin = −0.52 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. X-ray diffraction data were collected on a Bruker APEXII diffractometer using Mo-Kα radiation. The structures were solved by using direct methods and standard difference map techniques and were refined by full-matrix least-squares procedures on F2 with SHELXTL (Version 2014/7). |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu | 0.37845 (3) | 0.49460 (3) | 0.47832 (2) | 0.02804 (12) | |
S | 0.17501 (7) | 0.37569 (7) | 0.38084 (6) | 0.0393 (2) | |
O1 | 0.18432 (19) | 0.48200 (18) | 0.43872 (16) | 0.0389 (5) | |
C1 | 0.0029 (3) | 0.4164 (3) | 0.3402 (3) | 0.0507 (9) | |
H1A | −0.0116 | 0.3512 | 0.3016 | 0.076* | |
H1B | −0.0573 | 0.4310 | 0.4014 | 0.076* | |
H1C | −0.0178 | 0.4894 | 0.2951 | 0.076* | |
C2 | 0.1689 (4) | 0.2664 (4) | 0.4795 (4) | 0.0768 (14) | |
H2A | 0.1627 | 0.1942 | 0.4472 | 0.115* | |
H2B | 0.2518 | 0.2461 | 0.5218 | 0.115* | |
H2C | 0.0888 | 0.2984 | 0.5240 | 0.115* | |
O11 | 0.6237 (2) | 0.56862 (18) | 0.37685 (15) | 0.0372 (5) | |
O12 | 0.4147 (2) | 0.56118 (19) | 0.34213 (15) | 0.0399 (5) | |
O13 | 0.7689 (3) | 0.6204 (3) | 0.2281 (3) | 0.0555 (12) | 0.723 (6) |
H13B | 0.750 (4) | 0.609 (4) | 0.284 (3) | 0.050 (10)* | 0.723 (6) |
O13A | 0.3219 (9) | 0.6118 (9) | 0.1651 (6) | 0.053 (3) | 0.277 (6) |
H13C | 0.317 (9) | 0.579 (10) | 0.215 (4) | 0.050 (10)* | 0.277 (6) |
C11 | 0.5242 (3) | 0.5824 (2) | 0.3152 (2) | 0.0347 (6) | |
C12 | 0.5380 (3) | 0.6236 (3) | 0.2058 (2) | 0.0373 (7) | |
C13 | 0.6608 (3) | 0.6379 (3) | 0.1690 (2) | 0.0427 (7) | |
H13 | 0.7350 | 0.6248 | 0.2157 | 0.051* | 0.277 (6) |
C14 | 0.6762 (4) | 0.6711 (3) | 0.0650 (3) | 0.0577 (10) | |
C15 | 0.5636 (5) | 0.6937 (3) | 0.0008 (3) | 0.0617 (10) | |
H15A | 0.5717 | 0.7184 | −0.0698 | 0.074* | |
C16 | 0.4389 (5) | 0.6821 (3) | 0.0352 (3) | 0.0624 (11) | |
C17 | 0.4288 (4) | 0.6456 (3) | 0.1381 (3) | 0.0516 (9) | |
H17 | 0.3455 | 0.6355 | 0.1630 | 0.062* | 0.723 (6) |
C21 | 0.8506 (7) | 0.6300 (7) | −0.0806 (5) | 0.161 (3) | |
H21A | 0.8511 | 0.5462 | −0.0773 | 0.242* | |
H21B | 0.7839 | 0.6758 | −0.1325 | 0.242* | |
H21C | 0.9415 | 0.6338 | −0.1005 | 0.242* | |
C22 | 0.8122 (5) | 0.6828 (4) | 0.0253 (3) | 0.0814 (14) | |
H22A | 0.8843 | 0.6370 | 0.0758 | 0.098* | |
C23 | 0.8107 (5) | 0.8131 (5) | 0.0221 (4) | 0.0937 (16) | |
H23A | 0.7858 | 0.8459 | 0.0910 | 0.141* | |
H23B | 0.9015 | 0.8176 | 0.0026 | 0.141* | |
H23C | 0.7439 | 0.8596 | −0.0294 | 0.141* | |
C24 | 0.3386 (9) | 0.6856 (6) | −0.1406 (5) | 0.208 (5) | |
H24A | 0.4008 | 0.6039 | −0.1461 | 0.313* | |
H24B | 0.2521 | 0.6921 | −0.1746 | 0.313* | |
H24C | 0.3798 | 0.7427 | −0.1746 | 0.313* | |
C25 | 0.3147 (7) | 0.7109 (6) | −0.0361 (4) | 0.109 (2) | |
H25A | 0.2630 | 0.6559 | −0.0095 | 0.131* | |
C26 | 0.2219 (6) | 0.8322 (9) | −0.0186 (5) | 0.188 (4) | |
H26A | 0.2098 | 0.8436 | 0.0564 | 0.282* | |
H26B | 0.2610 | 0.8920 | −0.0503 | 0.282* | |
H26C | 0.1333 | 0.8415 | −0.0504 | 0.282* | |
O31 | 0.31003 (18) | 0.65648 (16) | 0.53077 (16) | 0.0351 (5) | |
O32 | 0.51797 (18) | 0.66681 (17) | 0.56497 (15) | 0.0338 (4) | |
O33 | 0.0967 (2) | 0.8246 (2) | 0.5838 (2) | 0.0379 (7) | 0.859 (5) |
H33B | 0.138 (3) | 0.772 (3) | 0.555 (3) | 0.050 (10)* | 0.859 (5) |
O33A | 0.5527 (15) | 0.8378 (14) | 0.6593 (16) | 0.054 (6) | 0.141 (5) |
H33C | 0.578 (12) | 0.789 (14) | 0.622 (14) | 0.050 (10)* | 0.141 (5) |
C31 | 0.3898 (3) | 0.7105 (2) | 0.5652 (2) | 0.0295 (6) | |
C32 | 0.3274 (3) | 0.8303 (2) | 0.6083 (2) | 0.0286 (6) | |
C33 | 0.1852 (3) | 0.8809 (2) | 0.6158 (2) | 0.0304 (6) | |
H33 | 0.1274 | 0.8388 | 0.5912 | 0.036* | 0.141 (5) |
C34 | 0.1278 (3) | 0.9922 (3) | 0.6591 (2) | 0.0313 (6) | |
C35 | 0.2159 (3) | 1.0517 (2) | 0.6925 (2) | 0.0320 (6) | |
H35A | 0.1779 | 1.1284 | 0.7207 | 0.038* | |
C36 | 0.3580 (3) | 1.0038 (2) | 0.6866 (2) | 0.0317 (6) | |
C37 | 0.4114 (3) | 0.8930 (2) | 0.6445 (2) | 0.0320 (6) | |
H37 | 0.5076 | 0.8585 | 0.6401 | 0.038* | 0.859 (5) |
C41 | −0.0798 (3) | 1.1751 (3) | 0.6886 (3) | 0.0557 (9) | |
H41A | −0.1792 | 1.1996 | 0.6968 | 0.084* | |
H41B | −0.0387 | 1.1936 | 0.7513 | 0.084* | |
H41C | −0.0558 | 1.2185 | 0.6279 | 0.084* | |
C42 | −0.0267 (3) | 1.0413 (3) | 0.6728 (2) | 0.0398 (7) | |
H42A | −0.0692 | 1.0259 | 0.6078 | 0.048* | |
C43 | −0.0731 (3) | 0.9727 (4) | 0.7631 (3) | 0.0625 (11) | |
H43A | −0.0383 | 0.8864 | 0.7522 | 0.094* | |
H43B | −0.0377 | 0.9899 | 0.8288 | 0.094* | |
H43C | −0.1730 | 0.9978 | 0.7659 | 0.094* | |
C44 | 0.5460 (4) | 1.0940 (3) | 0.6422 (3) | 0.0520 (9) | |
H44A | 0.4937 | 1.1331 | 0.5803 | 0.078* | |
H44B | 0.5954 | 1.1459 | 0.6685 | 0.078* | |
H44C | 0.6112 | 1.0174 | 0.6236 | 0.078* | |
C45 | 0.4495 (3) | 1.0721 (3) | 0.7256 (3) | 0.0394 (7) | |
H45A | 0.3888 | 1.1524 | 0.7456 | 0.047* | |
C46 | 0.5272 (4) | 1.0117 (3) | 0.8226 (3) | 0.0575 (10) | |
H46C | 0.4628 | 0.9984 | 0.8754 | 0.086* | |
H46D | 0.5923 | 0.9345 | 0.8050 | 0.086* | |
H46A | 0.5765 | 1.0630 | 0.8499 | 0.086* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu | 0.02434 (18) | 0.02916 (19) | 0.0328 (2) | −0.01076 (14) | 0.00134 (13) | −0.00635 (14) |
S | 0.0299 (4) | 0.0473 (5) | 0.0447 (5) | −0.0169 (3) | −0.0029 (3) | −0.0084 (4) |
O1 | 0.0289 (10) | 0.0425 (12) | 0.0486 (13) | −0.0146 (9) | 0.0000 (9) | −0.0120 (10) |
C1 | 0.0322 (16) | 0.071 (2) | 0.054 (2) | −0.0201 (16) | −0.0063 (14) | −0.0122 (18) |
C2 | 0.077 (3) | 0.070 (3) | 0.097 (3) | −0.047 (2) | −0.037 (2) | 0.035 (2) |
O11 | 0.0368 (11) | 0.0413 (12) | 0.0333 (11) | −0.0120 (9) | 0.0022 (9) | −0.0004 (9) |
O12 | 0.0422 (12) | 0.0466 (13) | 0.0357 (11) | −0.0206 (10) | −0.0020 (9) | −0.0023 (9) |
O13 | 0.0343 (18) | 0.073 (3) | 0.047 (2) | −0.0008 (16) | 0.0075 (15) | 0.0165 (18) |
O13A | 0.055 (6) | 0.085 (7) | 0.030 (5) | −0.038 (5) | −0.010 (4) | 0.010 (4) |
C11 | 0.0403 (17) | 0.0274 (15) | 0.0356 (16) | −0.0086 (13) | 0.0035 (13) | −0.0070 (12) |
C12 | 0.0453 (17) | 0.0332 (16) | 0.0315 (16) | −0.0090 (13) | 0.0031 (13) | −0.0056 (12) |
C13 | 0.0461 (19) | 0.0387 (17) | 0.0379 (17) | −0.0054 (14) | 0.0068 (14) | −0.0040 (14) |
C14 | 0.066 (2) | 0.050 (2) | 0.048 (2) | −0.0044 (18) | 0.0175 (18) | 0.0020 (17) |
C15 | 0.094 (3) | 0.055 (2) | 0.0348 (19) | −0.020 (2) | 0.009 (2) | −0.0002 (16) |
C16 | 0.095 (3) | 0.063 (3) | 0.0359 (19) | −0.034 (2) | −0.0154 (19) | 0.0015 (17) |
C17 | 0.067 (2) | 0.058 (2) | 0.0380 (19) | −0.0307 (19) | −0.0072 (16) | −0.0014 (16) |
C21 | 0.177 (7) | 0.184 (7) | 0.138 (6) | −0.074 (6) | 0.114 (5) | −0.078 (5) |
C22 | 0.069 (3) | 0.098 (4) | 0.057 (3) | 0.000 (2) | 0.034 (2) | 0.018 (2) |
C23 | 0.070 (3) | 0.135 (5) | 0.087 (4) | −0.048 (3) | 0.016 (3) | −0.005 (3) |
C24 | 0.321 (12) | 0.114 (5) | 0.131 (6) | 0.036 (6) | −0.134 (7) | −0.053 (5) |
C25 | 0.146 (5) | 0.158 (6) | 0.048 (3) | −0.086 (5) | −0.049 (3) | 0.028 (3) |
C26 | 0.079 (4) | 0.298 (11) | 0.127 (6) | 0.046 (5) | −0.056 (4) | −0.092 (6) |
O31 | 0.0268 (10) | 0.0308 (11) | 0.0498 (12) | −0.0105 (8) | −0.0015 (9) | −0.0120 (9) |
O32 | 0.0240 (10) | 0.0324 (11) | 0.0458 (12) | −0.0087 (8) | 0.0040 (8) | −0.0119 (9) |
O33 | 0.0240 (12) | 0.0396 (15) | 0.0538 (17) | −0.0135 (11) | −0.0009 (11) | −0.0140 (12) |
O33A | 0.029 (8) | 0.032 (9) | 0.107 (16) | −0.014 (7) | 0.004 (8) | −0.030 (9) |
C31 | 0.0265 (14) | 0.0309 (15) | 0.0328 (15) | −0.0108 (12) | 0.0008 (11) | −0.0041 (12) |
C32 | 0.0241 (13) | 0.0292 (14) | 0.0342 (15) | −0.0104 (11) | 0.0022 (11) | −0.0038 (11) |
C33 | 0.0257 (13) | 0.0326 (15) | 0.0335 (15) | −0.0098 (12) | −0.0004 (11) | −0.0012 (12) |
C34 | 0.0243 (13) | 0.0356 (16) | 0.0332 (15) | −0.0083 (12) | −0.0014 (11) | 0.0012 (12) |
C35 | 0.0320 (15) | 0.0265 (14) | 0.0338 (15) | −0.0030 (12) | 0.0001 (12) | −0.0058 (12) |
C36 | 0.0257 (14) | 0.0290 (15) | 0.0396 (16) | −0.0069 (11) | −0.0016 (12) | −0.0026 (12) |
C37 | 0.0219 (13) | 0.0318 (15) | 0.0411 (17) | −0.0062 (11) | 0.0003 (11) | −0.0049 (12) |
C41 | 0.0314 (17) | 0.053 (2) | 0.073 (3) | 0.0015 (15) | 0.0025 (16) | −0.0090 (18) |
C42 | 0.0234 (14) | 0.0443 (18) | 0.0475 (18) | −0.0039 (13) | 0.0008 (13) | −0.0045 (14) |
C43 | 0.0325 (18) | 0.071 (3) | 0.077 (3) | −0.0082 (17) | 0.0171 (17) | 0.008 (2) |
C44 | 0.052 (2) | 0.054 (2) | 0.062 (2) | −0.0333 (17) | −0.0034 (17) | 0.0014 (17) |
C45 | 0.0319 (15) | 0.0307 (16) | 0.058 (2) | −0.0109 (13) | −0.0031 (14) | −0.0125 (14) |
C46 | 0.057 (2) | 0.074 (3) | 0.052 (2) | −0.035 (2) | −0.0099 (17) | −0.0036 (19) |
Cu—O12 | 1.958 (2) | C21—C22 | 1.518 (7) |
Cu—O31 | 1.9595 (19) | C22—C23 | 1.522 (7) |
Cu—O32i | 1.9672 (19) | C24—C25 | 1.389 (8) |
Cu—O11i | 1.972 (2) | C25—C26 | 1.474 (8) |
Cu—O1 | 2.1226 (19) | O31—C31 | 1.278 (3) |
Cu—Cui | 2.6170 (7) | O32—C31 | 1.261 (3) |
S—O1 | 1.511 (2) | O32—Cui | 1.9672 (19) |
S—C1 | 1.770 (3) | C31—C32 | 1.483 (4) |
S—C2 | 1.774 (4) | C32—C37 | 1.394 (4) |
O11—C11 | 1.273 (3) | C32—C33 | 1.404 (4) |
O11—Cui | 1.972 (2) | C33—C34 | 1.394 (4) |
O12—C11 | 1.267 (3) | C34—C35 | 1.388 (4) |
C11—C12 | 1.483 (4) | C34—C42 | 1.527 (4) |
C12—C17 | 1.387 (4) | C35—C36 | 1.400 (4) |
C12—C13 | 1.397 (4) | C36—C37 | 1.379 (4) |
C13—C14 | 1.394 (4) | C36—C45 | 1.517 (4) |
C14—C15 | 1.386 (6) | C41—C42 | 1.517 (4) |
C14—C22 | 1.525 (6) | C42—C43 | 1.532 (4) |
C15—C16 | 1.393 (6) | C44—C45 | 1.514 (4) |
C16—C17 | 1.382 (5) | C45—C46 | 1.516 (4) |
C16—C25 | 1.529 (6) | ||
O12—Cu—O31 | 90.21 (9) | C17—C16—C25 | 120.0 (4) |
O12—Cu—O32i | 89.59 (9) | C15—C16—C25 | 122.2 (4) |
O31—Cu—O32i | 168.77 (7) | C16—C17—C12 | 121.3 (4) |
O12—Cu—O11i | 168.80 (8) | C21—C22—C23 | 110.4 (4) |
O31—Cu—O11i | 88.12 (9) | C21—C22—C14 | 112.3 (5) |
O32i—Cu—O11i | 89.91 (8) | C23—C22—C14 | 111.0 (3) |
O12—Cu—O1 | 95.71 (8) | C24—C25—C26 | 114.0 (5) |
O31—Cu—O1 | 95.79 (7) | C24—C25—C16 | 117.3 (6) |
O32i—Cu—O1 | 95.41 (8) | C26—C25—C16 | 110.6 (4) |
O11i—Cu—O1 | 95.48 (8) | C31—O31—Cu | 122.11 (17) |
O12—Cu—Cui | 83.21 (6) | C31—O32—Cui | 125.63 (18) |
O31—Cu—Cui | 85.92 (6) | O32—C31—O31 | 123.3 (3) |
O32i—Cu—Cui | 82.91 (6) | O32—C31—C32 | 118.8 (2) |
O11i—Cu—Cui | 85.63 (6) | O31—C31—C32 | 117.9 (2) |
O1—Cu—Cui | 177.99 (6) | C37—C32—C33 | 119.1 (3) |
O1—S—C1 | 104.47 (14) | C37—C32—C31 | 119.4 (2) |
O1—S—C2 | 105.02 (18) | C33—C32—C31 | 121.4 (2) |
C1—S—C2 | 98.30 (18) | C34—C33—C32 | 120.9 (2) |
S—O1—Cu | 119.72 (11) | C35—C34—C33 | 117.8 (2) |
C11—O11—Cui | 122.04 (19) | C35—C34—C42 | 122.4 (3) |
C11—O12—Cu | 125.71 (19) | C33—C34—C42 | 119.8 (2) |
O12—C11—O11 | 123.3 (3) | C34—C35—C36 | 122.9 (3) |
O12—C11—C12 | 118.3 (3) | C37—C36—C35 | 117.8 (2) |
O11—C11—C12 | 118.4 (3) | C37—C36—C45 | 121.5 (2) |
C17—C12—C13 | 119.4 (3) | C35—C36—C45 | 120.7 (2) |
C17—C12—C11 | 119.8 (3) | C36—C37—C32 | 121.5 (2) |
C13—C12—C11 | 120.8 (3) | C41—C42—C34 | 114.4 (3) |
C14—C13—C12 | 121.0 (3) | C41—C42—C43 | 110.1 (3) |
C15—C14—C13 | 117.4 (3) | C34—C42—C43 | 110.0 (2) |
C15—C14—C22 | 122.2 (3) | C44—C45—C46 | 110.9 (3) |
C13—C14—C22 | 120.4 (4) | C44—C45—C36 | 112.5 (3) |
C14—C15—C16 | 123.1 (3) | C46—C45—C36 | 112.0 (3) |
C17—C16—C15 | 117.8 (4) | ||
C1—S—O1—Cu | −167.93 (15) | C15—C16—C25—C26 | −98.5 (7) |
C2—S—O1—Cu | 89.15 (19) | Cui—O32—C31—O31 | −4.4 (4) |
Cu—O12—C11—O11 | −4.0 (4) | Cui—O32—C31—C32 | 175.15 (17) |
Cu—O12—C11—C12 | 175.03 (18) | Cu—O31—C31—O32 | 2.6 (4) |
Cui—O11—C11—O12 | 2.6 (4) | Cu—O31—C31—C32 | −176.86 (17) |
Cui—O11—C11—C12 | −176.39 (18) | O32—C31—C32—C37 | 1.9 (4) |
O12—C11—C12—C17 | 4.4 (4) | O31—C31—C32—C37 | −178.6 (3) |
O11—C11—C12—C17 | −176.6 (3) | O32—C31—C32—C33 | −176.6 (3) |
O12—C11—C12—C13 | −174.1 (3) | O31—C31—C32—C33 | 3.0 (4) |
O11—C11—C12—C13 | 5.0 (4) | C37—C32—C33—C34 | −0.2 (4) |
C17—C12—C13—C14 | −1.6 (5) | C31—C32—C33—C34 | 178.3 (2) |
C11—C12—C13—C14 | 176.9 (3) | C32—C33—C34—C35 | 1.1 (4) |
C12—C13—C14—C15 | 2.5 (5) | C32—C33—C34—C42 | −176.0 (3) |
C12—C13—C14—C22 | −178.3 (3) | C33—C34—C35—C36 | −1.4 (4) |
C13—C14—C15—C16 | −1.6 (6) | C42—C34—C35—C36 | 175.7 (3) |
C22—C14—C15—C16 | 179.2 (4) | C34—C35—C36—C37 | 0.6 (4) |
C14—C15—C16—C17 | −0.3 (6) | C34—C35—C36—C45 | −179.2 (3) |
C14—C15—C16—C25 | 178.2 (4) | C35—C36—C37—C32 | 0.4 (4) |
C15—C16—C17—C12 | 1.3 (6) | C45—C36—C37—C32 | −179.8 (3) |
C25—C16—C17—C12 | −177.3 (4) | C33—C32—C37—C36 | −0.6 (4) |
C13—C12—C17—C16 | −0.4 (5) | C31—C32—C37—C36 | −179.1 (3) |
C11—C12—C17—C16 | −178.8 (3) | C35—C34—C42—C41 | 20.9 (4) |
C15—C14—C22—C21 | −42.9 (6) | C33—C34—C42—C41 | −162.2 (3) |
C13—C14—C22—C21 | 137.9 (5) | C35—C34—C42—C43 | −103.7 (3) |
C15—C14—C22—C23 | 81.2 (5) | C33—C34—C42—C43 | 73.3 (4) |
C13—C14—C22—C23 | −98.0 (4) | C37—C36—C45—C44 | 57.2 (4) |
C17—C16—C25—C24 | −146.9 (6) | C35—C36—C45—C44 | −123.1 (3) |
C15—C16—C25—C24 | 34.6 (8) | C37—C36—C45—C46 | −68.6 (4) |
C17—C16—C25—C26 | 80.0 (6) | C35—C36—C45—C46 | 111.2 (3) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O13—H13B···O11 | 0.75 (3) | 1.91 (3) | 2.568 (4) | 147 (4) |
O13A—H13C···O12 | 0.75 (3) | 1.90 (4) | 2.458 (8) | 131 (4) |
O33—H33B···O31 | 0.74 (3) | 1.90 (3) | 2.567 (3) | 149 (4) |
O33A—H33C···O32 | 0.75 (4) | 1.90 (4) | 2.511 (14) | 138 (5) |
Compound | Cu···Cu | C—O (basal) | C—O (axial) | Cu—O—C | O—C—O | Reference |
[Cu(II)2(naproxen)4(DMSO)2] | 2.629 (1) | 1.995 (4) 1.958 (4) | 2.155 (5) 2.123 (5) | 123.1 (4) 121.7 (4) | 125.7 (5) 126.2 (5) | Dendrinou-Samara et al. (1990) |
[Cu(II)2(diclofenac)4(DMF)2] | 2.6265 (8) | 1.981 (2) 1.953 (2) | 2.122 (2) | 124.7 (2) 121.2 (2) | 125.5 (3) | (Kovala-Demertzi et al. (1997) |
[Cu(II)2(indomethacinate)4(DMF)2] | 2.629 (2) | 1.956 (7) 1.967 (7) | 2.154 (6) | 122.3 (6) 123.6 (6) | 125.1 (9) 125.9 (8) | Guessous et al. (1998) |
[Cu(II)2(niflumate)4(DMSO)2] | 2.6272 (5) | 1.952 (2) 1.968 (2) | 2.152 (2) | 117.2 (2) 130.5 (2) | 123.8 (2) 124.1 (2) | Greenaway et al. (1999) |
[Cu(II)2(3,5-DIPS)4(DMF)2] | 2.6139 (9) | 1.950 (2) 1.967 (2) | 2.129 (2) | 121.9 (2) 125.29 (2) | 123.8 (3) 123.9 (3) | Morgant et al. (2000) |
[Cu(II)2(3,5-DIPS)4(OEt)2] | 2.613 (1) | 1.948 (3) 1.957 (3) | 2.230 (3) | 119.7 (3) 127.0 (3) | 124.0 (4) 124.1 (4) | Morgant et al. (2000) |
[Cu(II)2(aspirinate)4(DMF)2] | 2.6154 (4) | 1.953 (1) 1.971 (1) | 2.154 (1) | 119.(1) 125.2 (1) | 125.7 (2) 125.8 (2) | Viossat et al. (2003) |
[Cu(II)2(niflumate)4(H2O)2]·4DMA | 2.6439 (7) | 1.952 (2) 1.970 (2) | 2.128 (2) | 120.9 (2) 127.2 (2) | 123.8 (3) 124.6 (3) | Viossat et al. (2005) |
[Cu(II)2(3,5-DIPS)4(DMSO)2] | 2.6170 (7) | 1.958 (2) 1.972 (2) | 2.1226 (19) | 122.04 (19) 125.71 (19) | 123.3 (3) 123.3 (3) | This work |
Acknowledgements
Gerard Parkin (Columbia University) is thanked for helpful discussions. RKU would like to thank Pace University for Scholarly Research support awards. KM would like to thank the Collegiate Science and Technology Program of Pace University for financial support.
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Benisvy, L., Mutikainen, I., Quesada, M., Turpeinen, U., Gamez, P. & Reedijk, J. (2006). Chem. Commun. pp. 3723–3725. CSD CrossRef Google Scholar
Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dendrinou-Samara, C., Kessissoglou, D. P., Manoussakis, G. E., Mentzafos, D. & Terzis, A. (1990). J. Chem. Soc. Dalton Trans. pp. 959–965. Google Scholar
Doedens, R. J. (1976). Structure and Metal–Metal interactions in Copper(II) Carboxylate Complexes. In Progress in Inorganic Chemistry, Vol. 21, edited by S. J. Lippard, pp. 209-231. New York: John Wiley & Sons, Inc. Google Scholar
Greenaway, F. T., Joseph Norris, L. & Sorenson, J. R. J. (1988). Inorg. Chim. Acta, 145, 279–284. CrossRef CAS Google Scholar
Greenaway, F. T., Riviere, E., Girerd, J. J., Labouze, X., Morgant, G., Viossat, B., Daran, J. C., Roch Arveiller, M. & Dung, N. H. (1999). J. Inorg. Biochem. 76, 19–27. CSD CrossRef PubMed CAS Google Scholar
Guessous, F., Daran, J.-C. B. V., Viossat, B., Morgant, G., Labouze, X., Leroy, A. L., Roch-Arveiller, M. & Dung, N. H. (1998). Met.-Based Drugs, 5, 337–345. CSD CrossRef CAS Google Scholar
Kovala-Demertzi, D., Theodorou, A., Demertzis, M. A., Raptopoulou, C. P. & Terzis, A. (1997). J. Inorg. Biochem. 65, 151–157. CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Morgant, G., Dung, N. H., Daran, J. C., Viossat, B., Labouze, X., Roch-Arveiller, M., Greenaway, F. T., Cordes, W. & Sorenson, J. R. (2000). J. Inorg. Biochem. 81, 11–22. CSD CrossRef PubMed CAS Google Scholar
Morgant, G., Viossat, B., Daran, J. C., Roch-Arveiller, M., Giroud, J. P., Nguyen, H. D. & Sorenson, J. R. J. (1998). J. Inorg. Biochem. 70, 137–143. CSD CrossRef CAS PubMed Google Scholar
Palmer, J. H. & Parkin, G. (2014). Dalton Trans. 43, 13874–13882. Web of Science CSD CrossRef CAS PubMed Google Scholar
Ranford, J. D., Sadler, P. J. & Tocher, D. A. (1993). J. Chem. Soc. Dalton Trans. pp. 3393–3399. CSD CrossRef Web of Science Google Scholar
Seguin, A. K., Wrighton-Araneda, K., Cortés-Arriagada, D., Cruz, C., Venegas-Yazigi, D. & Paredes-García, V. (2021). J. Mol. Struct. 1224, 129172. CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Tavadyan, L. A., Sedrakyan, G. Z., Minasyan, S. H., Greenaway, F. T. & Sorenson, J. R. J. (2004). Transition Met. Chem. 29, 684–696. CrossRef CAS Google Scholar
Viossat, B., Daran, J. C., Savouret, G., Morgant, G., Greenaway, F. T., Dung, N. H., Pham-Tran, V. A. & Sorenson, J. R. J. (2003). J. Inorg. Biochem. 96, 375–385. Web of Science CSD CrossRef PubMed CAS Google Scholar
Viossat, B., Greenaway, F. T., Morgant, G., Daran, J. C., Dung, N. H. & Sorenson, J. R. J. (2005). J. Inorg. Biochem. 99, 355–367. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.