AfCA collection\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of the adduct between 2-pyridyl­selenyl chloride and isobutyro­nitrile

crossmark logo

aDepartment of Chemistry, College of Natural and Computational Science, University of Gondar, Gondar 196, Ethiopia, bPeoples' Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation, cKurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 31, 119071 Moscow, Russian Federation, dInstitute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation, and eUniversity of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, 100000, Vietnam
*Correspondence e-mail: Wodajo.Ayalew@uog.edu.et

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 13 November 2023; accepted 26 January 2024; online 6 February 2024)

This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.

The reaction between 2-pyridyl­selenenyl chloride and isobutyro­nitrile results in the formation of the corresponding cationic pyridinium-fused 1,2,4-seleno­diazole, namely, 3-(propan-2-yl)-1,2,4-[1,2,4]selena­diazolo[4,5-a]pyridin-4-ylium chloride, C9H11N2Se+·Cl, in high yield (89%). The structure of the compound, established by means of single-crystal X-ray analysis at 100 K, has monoclinic (P21/c) symmetry and revealed the presence of bifurcated chalcogen-hydrogen bonding Se⋯Cl⋯H—Cl, and these non-covalent contacts were analysed by DFT calculations followed by a topological analysis of the electron-density distribution (ωB97XD/6-311++G** level of theory).

1. Chemical context

Recently, we discovered a novel cyclo­addition reaction between nitriles and 2-pyridyl­selenyl reagents (Artemjev et al., 2023[Artemjev, A. A., Kubasov, A. S., Kuznetsov, M. L., Grudova, M. V., Khrustalev, V. N., Kritchenkov, A. S. & Tskhovrebov, A. G. (2023). CrystEngComm. https://doi.org/10.1039/D3CE00385J.]; Khrustalev et al., 2021[Khrustalev, V. N., Grishina, M. M., Matsulevich, Z. V., Lukiyanova, J. M., Borisova, G. N., Osmanov, V. K., Novikov, A. S., Kirichuk, A. A., Borisov, A. V., Solari, E. & Tskhovrebov, A. G. (2021). Dalton Trans. 50, 10689-10691.]). Importantly, the reaction proceeds under mild conditions with high chemoselectivity and results in the formation of pyridinium-fused seleno­diazo­lium salts in high yields. The Se centre in these systems acts as a chalcogen bond donor and provides two σ-holes (Grudova et al., 2022a[Grudova, M. V., Khrustalev, V. N., Kubasov, A. S., Strashnov, P. V., Matsulevich, Z. V., Lukiyanova, J. M., Borisova, G. N., Kritchenkov, A. S., Grishina, M. M., Artemjev, A. A., Buslov, I. V., Osmanov, V. K., Nenajdenko, V. G., Trung, N. Q., Borisov, A. V. & Tskhovrebov, A. G. (2022a). Cryst. Growth Des. 22, 313-322.],b[Grudova, M. V., Kubasov, A. S., Khrustalev, V. N., Novikov, A. S., Kritchenkov, A. S., Nenajdenko, V. G., Borisov, A. V. & Tskhovrebov, A. G. (2022b). Molecules. https://doi.org/10.3390/molecules27031029.]). The 1,2,4-seleno­diazo­lium salts were shown to form supra­molecular dimers via four-center Se⋯X (X = Hal, N) chalcogen-bonding inter­actions (Grudova et al., 2022a[Grudova, M. V., Khrustalev, V. N., Kubasov, A. S., Strashnov, P. V., Matsulevich, Z. V., Lukiyanova, J. M., Borisova, G. N., Kritchenkov, A. S., Grishina, M. M., Artemjev, A. A., Buslov, I. V., Osmanov, V. K., Nenajdenko, V. G., Trung, N. Q., Borisov, A. V. & Tskhovrebov, A. G. (2022a). Cryst. Growth Des. 22, 313-322.],b[Grudova, M. V., Kubasov, A. S., Khrustalev, V. N., Novikov, A. S., Kritchenkov, A. S., Nenajdenko, V. G., Borisov, A. V. & Tskhovrebov, A. G. (2022b). Molecules. https://doi.org/10.3390/molecules27031029.]). In some instances, other types of supra­molecular organization were observed, depending on the nitrile employed in the cyclo­addition reaction (Grudova et al., 2022a[Grudova, M. V., Khrustalev, V. N., Kubasov, A. S., Strashnov, P. V., Matsulevich, Z. V., Lukiyanova, J. M., Borisova, G. N., Kritchenkov, A. S., Grishina, M. M., Artemjev, A. A., Buslov, I. V., Osmanov, V. K., Nenajdenko, V. G., Trung, N. Q., Borisov, A. V. & Tskhovrebov, A. G. (2022a). Cryst. Growth Des. 22, 313-322.],b[Grudova, M. V., Kubasov, A. S., Khrustalev, V. N., Novikov, A. S., Kritchenkov, A. S., Nenajdenko, V. G., Borisov, A. V. & Tskhovrebov, A. G. (2022b). Molecules. https://doi.org/10.3390/molecules27031029.]; Sapronov et al., 2022[Sapronov, A. A., Artemjev, A. A., Burkin, G. M., Khrustalev, V. N., Kubasov, A. S., Nenajdenko, V. G., Gomila, R. M., Frontera, A., Kritchenkov, A. S. & Tskhovrebov, A. G. (2022). International Journal of Molecular Sciences. (2022). https://doi.org/10.3390/ijms232314973.], 2023[Sapronov, A. A., Kubasov, A. S., Khrustalev, V. N., Artemjev, A. A., Burkin, G. M., Dukhnovsky, E. A., Chizhov, A. O., Kritchenkov, A. S., Gomila, R. M., Frontera, A. & Tskhovrebov, A. G. (2023). Symmetry. (2023). https://doi.org/10.3390/sym15010212.]; Artemjev et al., 2022[Artemjev, A. A., Novikov, A. P., Burkin, G. M., Sapronov, A. A., Kubasov, A. S., Nenajdenko, V. G., Khrustalev, V. N., Borisov, A. V., Kirichuk, A. A., Kritchenkov, A. S., Gomila, R. M., Frontera, A. & Tskhovrebov, A. G. (2022). Int. J. Mol. Sci. 23, 6372.]; Buslov et al., 2021[Buslov, I. V., Novikov, A. S., Khrustalev, V. N., Grudova, M. V., Kubasov, A. S., Matsulevich, Z. V., Borisov, A. V., Lukiyanova, J. M., Grishina, M. M., Kirichuk, A. A., Serebryanskaya, T. V., Kritchenkov, A. S. & Tskhovrebov, A. G. (2021). Symmetry, 13, 2350. https://doi.org/10.3390/sym13122350]).

[Scheme 1]

Here we report the preparation and structural characterization of a cationic pyridinium-fused 1,2,4-seleno­diazole, which was prepared via reaction of 2-pyridyl­selenenyl chloride with isobutyro­nitrile (reagent ratio of 1:1). The reaction was carried out under stirring at room temperature in CH2Cl2/Et2O over 24 h, which led to the formation of a white suspension. Isolation and purification gave a crystalline solid of the target compound in a yield of 89%.

2. Structural commentary

The title compound (Fig. 1[link]) crystallized in space group P21/c with four cations and four Cl anions in the asymmetric unit. The four cations exhibit identical bond distances and angles, except for the dihedral angle of the isopropyl substituent [N—C—C—C torsion angles are in the range −15.9 (12) to 17.7 (11)°]. The 1,2,4-seleno­diazole fragments are almost planar (r.m.s.d. = 0.008–0.014 Å). The Se⋯Cl distances lie in the range 2.901 (3) – 2.956 (3) Å.

[Figure 1]
Figure 1
Mol­ecular structure of one of the four conformational isomers in the title compound.

Inter­estingly, the novel 1,2,4-seleno­diazole did not form supra­molecular dimers via Se⋯N contacts.

3. Supra­molecular features and QTAIM analysis

The crystal packing is shown in Fig. 2[link]. The mol­ecules of the title compound are packed in layers parallel to the ac plane. Each row of 1,2,4-seleno­diazo­lium salts in the layer is located anti­parallel to the adjacent one. In addition to Se⋯Cl contacts (Table 1[link]), the anions form C—H⋯Cl contacts (Table 2[link]) that link the cations and anions both within the layers and between them.

Table 1
Selected interatomic distances (Å)

Se1⋯Cl1 2.957 (4) Se3⋯Cl3 2.934 (4)
Se1⋯N1 2.656 (8) Se3⋯N5 2.661 (8)
Se2⋯Cl2 2.900 (4) Se4⋯Cl4 2.920 (4)
Se2⋯N3 2.664 (7) Se4⋯N7 2.658 (8)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cl1 0.95 2.62 3.327 (10) 132
C3—H3⋯Cl2i 0.95 2.67 3.598 (9) 167
C5—H5⋯Cl1ii 0.95 2.67 3.395 (10) 133
C11—H11⋯Cl2 0.95 2.61 3.288 (10) 129
C14—H14⋯Cl2ii 0.95 2.47 3.310 (10) 147
C18—H18C⋯Cl4iii 0.98 2.73 3.687 (11) 167
C20—H20⋯Cl3 0.95 2.67 3.364 (10) 131
C23—H23⋯Cl3iv 0.95 2.73 3.418 (10) 130
C29—H29⋯Cl4 0.95 2.63 3.323 (10) 130
C30—H30⋯Cl3v 0.95 2.81 3.651 (9) 148
C32—H32⋯Cl4ii 0.95 2.76 3.452 (9) 131
Symmetry codes: (i) [x-1, y-1, z]; (ii) [x-1, y, z]; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x+1, y, z]; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
View along the a axis of the crystal packing of the title compound.

A Hirshfeld surface analysis was performed to investigate which inter­atomic contacts make the largest contributions to the crystal packing. Fig. 3[link] shows the Hirshfeld surface mapped over dnorm where the region of the short inter­molecular Se⋯Cl contact is indicated by an intense red spot. The contributions of the different inter­atomic contacts to the Hirshfeld surface are H⋯H (47.0%), Se⋯H (10.5%), Cl⋯H (10.4%), C⋯H (10.1%), N⋯H (8.5%), Se⋯C (4.5%), Se⋯Cl (2.7%), Cl⋯C (1.8%), Se⋯N (1.6%), Cl⋯N (1.3%), N⋯C (1.0%), N⋯N (0.5%), and C⋯C (0.1%). Thus, the Hirshfeld surface analysis for the crystal structure reveals that crystal packing is determined primarily by inter­molecular contacts involving hydrogen atoms.

[Figure 3]
Figure 3
Total Hirshfeld surface mapped over dnorm and delineated into Se⋯H, Cl⋯H, C⋯H and N⋯H inter­actions.

Inter­estingly, the title compound did not form supra­molecular dimers via Se⋯N contacts. To obtain a deeper understanding of the nature and qu­antify the strength of the bifurcated Se⋯Cl⋯H—C chalcogen-hydrogen bonding in the title compound, single-point DFT calculations based on the experimental X-ray geometry were performed at the B97XD/6-311++G** level of theory using the dispersion-corrected hybrid functional ωB97XD using GAUSSIAN09 (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc. Wallingford, CT, USA.]) with the 6-311++G** basis sets used for all atoms, followed by a topological analysis of the electron-density distribution.

A QTAIM analysis of the model structure demonstrates the presence of bond critical points (3, −1) for short contacts Se⋯Cl and C—H⋯Cl in the formed 1,2,4-seleno­diazole (Table 3[link] and Fig. 4[link]). The low magnitude of the electron density, positive values of the Laplacian of the electron density and zero or very close to zero values of energy density in these bond critical points (3, −1) and estimated strength for appropriate short contacts are typical for weak, purely non-covalent inter­actions (Espinosa et al., 2002[Espinosa, E., Alkorta, I., Elguero, J. & Molins, E. (2002). J. Chem. Phys. 117, 5529-5542.]). Note that the nature of the discussed non-covalent contacts are similar to those weak inter­actions in closely related chemical systems (Grudova et al., 2022a[Grudova, M. V., Khrustalev, V. N., Kubasov, A. S., Strashnov, P. V., Matsulevich, Z. V., Lukiyanova, J. M., Borisova, G. N., Kritchenkov, A. S., Grishina, M. M., Artemjev, A. A., Buslov, I. V., Osmanov, V. K., Nenajdenko, V. G., Trung, N. Q., Borisov, A. V. & Tskhovrebov, A. G. (2022a). Cryst. Growth Des. 22, 313-322.],b[Grudova, M. V., Kubasov, A. S., Khrustalev, V. N., Novikov, A. S., Kritchenkov, A. S., Nenajdenko, V. G., Borisov, A. V. & Tskhovrebov, A. G. (2022b). Molecules. https://doi.org/10.3390/molecules27031029.]).

Table 3
Values of the density of all electrons ρ(r), Laplacian of electron density ∇(r) and appropriate λ2 eigenvalues, energy density – Hb, potential energy density – V(r), Lagrangian kinetic energyG(r), and electron localization function – ELF (a.u.) at the bond critical points (3, −1), corresponding to bifurcated chalcogen-hydrogen bonding Se⋯Cl⋯H—C in the structure, and estimated strength for these inter­actions Eint ≃ –V(r)/2 (kcal mol−1)

The Bondi (1966[Bondi, A. (1966). J. Phys. Chem. 70, 3006-3007.]) van der Waals radii for the H, Se, and Cl atoms are 1.20, 1.90, and 1.75 Å, respectively.

Contact (Å) ρ(r) 2ρ(r) λ2 Hb V(r) G(r) ELF Eint
Se⋯Cl 2.900 0.027 0.060 −0.027 0.000 −0.015 0.015 0.170 4.7
C–H⋯Cl 2.609 0.012 0.043 −0.012 0.002 −0.006 0.008 0.045 1.9
Se⋯Cl 2.957 0.024 0.056 −0.024 0.001 −0.013 0.014 0.142 4.1
C–H⋯Cl 2.617 0.012 0.041 −0.012 0.002 −0.006 0.008 0.045 1.9
Se⋯Cl 2.934 0.025 0.058 −0.025 0.000 −0.014 0.014 0.147 4.4
C–H⋯Cl 2.667 0.011 0.037 −0.011 0.002 −0.005 0.007 0.041 1.6
Se⋯Cl 2.920 0.026 0.058 −0.026 0.000 −0.015 0.015 0.165 4.7
C–H⋯Cl 2.633 0.012 0.040 −0.012 0.002 −0.006 0.008 0.044 1.9
[Figure 4]
Figure 4
Contour line diagram of the Laplacian of electron density distribution ∇2r(r), bond paths, and selected zero-flux surfaces (left panel), visualization of electron localization function (ELF, center panel) and reduced density gradient (RDG, right panel) analyses for bifurcated chalcogen-hydrogen bonding Se⋯Cl⋯H–C in sample (for Se⋯Cl 2.900 Å and C–H⋯Cl 2.609 Å). Bond critical points (3, −1) are shown in blue, nuclear critical points (3, −3) in pale brown, ring critical points (3, +1) in orange, bond paths are shown as pale-brown lines, length units are Å and the colour scale for the ELF and RDG maps is presented in a.u.

4. Database survey

A search in the Cambridge Structural Database (CSD, Version 5.43, update of Sep. 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave only 16 hits for 1,2,4-seleno­diazo­lium salts. These salts differ not only in the type of nitrile fragment [Me (EWEPUU; Khrustalev et al., 2021[Khrustalev, V. N., Grishina, M. M., Matsulevich, Z. V., Lukiyanova, J. M., Borisova, G. N., Osmanov, V. K., Novikov, A. S., Kirichuk, A. A., Borisov, A. V., Solari, E. & Tskhovrebov, A. G. (2021). Dalton Trans. 50, 10689-10691.]), Ph (NAQDES; Buslov et al., 2021[Buslov, I. V., Novikov, A. S., Khrustalev, V. N., Grudova, M. V., Kubasov, A. S., Matsulevich, Z. V., Borisov, A. V., Lukiyanova, J. M., Grishina, M. M., Kirichuk, A. A., Serebryanskaya, T. V., Kritchenkov, A. S. & Tskhovrebov, A. G. (2021). Symmetry, 13, 2350. https://doi.org/10.3390/sym13122350]), BrC6H4 (EWEQEF; Khrustalev et al., 2021[Khrustalev, V. N., Grishina, M. M., Matsulevich, Z. V., Lukiyanova, J. M., Borisova, G. N., Osmanov, V. K., Novikov, A. S., Kirichuk, A. A., Borisov, A. V., Solari, E. & Tskhovrebov, A. G. (2021). Dalton Trans. 50, 10689-10691.])], but also in the CF3COO anion (YEJXEU; Artemjev et al., 2022[Artemjev, A. A., Novikov, A. P., Burkin, G. M., Sapronov, A. A., Kubasov, A. S., Nenajdenko, V. G., Khrustalev, V. N., Borisov, A. V., Kirichuk, A. A., Kritchenkov, A. S., Gomila, R. M., Frontera, A. & Tskhovrebov, A. G. (2022). Int. J. Mol. Sci. 23, 6372.]), AuCl4 (YEJXUK; Artemjev et al., 2022[Artemjev, A. A., Novikov, A. P., Burkin, G. M., Sapronov, A. A., Kubasov, A. S., Nenajdenko, V. G., Khrustalev, V. N., Borisov, A. V., Kirichuk, A. A., Kritchenkov, A. S., Gomila, R. M., Frontera, A. & Tskhovrebov, A. G. (2022). Int. J. Mol. Sci. 23, 6372.]), ReO4 (YEJYAR; Artemjev et al., 2022[Artemjev, A. A., Novikov, A. P., Burkin, G. M., Sapronov, A. A., Kubasov, A. S., Nenajdenko, V. G., Khrustalev, V. N., Borisov, A. V., Kirichuk, A. A., Kritchenkov, A. S., Gomila, R. M., Frontera, A. & Tskhovrebov, A. G. (2022). Int. J. Mol. Sci. 23, 6372.]).

5. Synthesis and crystallization

General remarks. All manipulations were carried out in air and all reagents used in this study were obtained from commercial sources (Aldrich, TCI-Europe, Strem, ABCR). Commercially available solvents were purified by conventional methods and distilled immediately prior to use. NMR spectra were recorded on a Bruker Avance III (1H: 400 MHz); chemical shifts (δ) are given in ppm, coupling constants (J) in Hz. 2-Pyridyl­selenyl chloride was synthesized by our method (Artemjev et al., 2023[Artemjev, A. A., Kubasov, A. S., Kuznetsov, M. L., Grudova, M. V., Khrustalev, V. N., Kritchenkov, A. S. & Tskhovrebov, A. G. (2023). CrystEngComm. https://doi.org/10.1039/D3CE00385J.]; Khrustalev et al., 2021[Khrustalev, V. N., Grishina, M. M., Matsulevich, Z. V., Lukiyanova, J. M., Borisova, G. N., Osmanov, V. K., Novikov, A. S., Kirichuk, A. A., Borisov, A. V., Solari, E. & Tskhovrebov, A. G. (2021). Dalton Trans. 50, 10689-10691.]). Isobutyro­nitrile (81 µmol, 5.6 mg) was added to a suspension of 2-pyridyl­selenyl chloride (81 µmol, 15.5 mg) in CH2Cl2/Et2O (1/1, 4 mL), and the mixture was stirred at room temperature for 24 h. The formed colorless precipitate was filtered, washed with Et2O (3 × 1 mL) and dried under vacuum. Yield 18.8 mg (89%), colorless blocks. 1H NMR (400 MHz, chloro­form-d) δ 8.48 (d, J = 4.8 Hz, 1H), 7.83 (d, J = 7.9 Hz, 1H), 7.58 (td, J = 7.8 Hz, 1H), 7.12 (td, J = 7.5 Hz, 1H), 2.70 (hept, J = 7.0 Hz, 1H), 1.33 (d, J = 7.0 Hz, 6H). Crystals suitable for X-ray analysis were obtained by the slow evaporation of a CH2Cl2 solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. H atoms were positioned geom­etrically (C—H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The remaining positive and negative residual electron density close to the Se1, Se2, Se3 and Se4 atom positions (1.71 Å−3 at 0.94 Å from Se4, 1.67 Å−3 at 1.05 Å from Se2, 1.58 Å−3 at 1.03 Å from Se3, 1.54 Å−3 at 1.06 Å from Se4 and −1.53 Å−3 at 1.06 Å from Se4) suggests the possible presence of a small twin component as well.

Table 4
Experimental details

Crystal data
Chemical formula C9H11N2Se+·Cl
Mr 261.61
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 9.054 (11), 15.015 (15), 30.93 (3)
β (°) 94.10 (3)
V3) 4194 (8)
Z 16
Radiation type Mo Kα
μ (mm−1) 3.79
Crystal size (mm) 0.2 × 0.2 × 0.1
 
Data collection
Diffractometer Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.499, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 25216, 9604, 6328
Rint 0.092
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.080, 0.192, 1.10
No. of reflections 9604
No. of parameters 477
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.77, −1.49
Computer programs: APEX2 and SAINT (Bruker, 2019[Bruker (2019). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 1.5 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

3-(Propan-2-yl)-1,2,4-[1,2,4]selenadiazolo[4,5-a]pyridin-4-ylium chloride top
Crystal data top
C9H11N2Se+·ClF(000) = 2080
Mr = 261.61Dx = 1.657 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.054 (11) ÅCell parameters from 5157 reflections
b = 15.015 (15) Åθ = 2.5–27.0°
c = 30.93 (3) ŵ = 3.79 mm1
β = 94.10 (3)°T = 100 K
V = 4194 (8) Å3Block, colourless
Z = 160.2 × 0.2 × 0.1 mm
Data collection top
Bruker D8 Venture
diffractometer
6328 reflections with I > 2σ(I)
φ and ω scansRint = 0.092
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 27.5°, θmin = 1.5°
Tmin = 0.499, Tmax = 0.746h = 1110
25216 measured reflectionsk = 1719
9604 independent reflectionsl = 3440
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.080H-atom parameters constrained
wR(F2) = 0.192 w = 1/[σ2(Fo2) + (0.0572P)2 + 24.4862P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
9604 reflectionsΔρmax = 1.77 e Å3
477 parametersΔρmin = 1.49 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.47831 (10)0.56571 (5)0.44129 (3)0.0188 (2)
N10.2029 (8)0.5041 (4)0.4321 (2)0.0158 (14)
N20.3169 (8)0.6405 (4)0.4298 (2)0.0208 (15)
C10.3415 (9)0.4706 (5)0.4407 (2)0.0157 (16)
C20.3662 (10)0.3806 (5)0.4468 (2)0.0215 (19)
H20.4635680.3582850.4529490.026*
C30.2475 (10)0.3244 (5)0.4437 (3)0.0225 (19)
H30.2625190.2622470.4474720.027*
C40.1014 (10)0.3578 (5)0.4348 (3)0.0231 (19)
H40.0195210.3181330.4325350.028*
C50.0794 (10)0.4484 (5)0.4294 (3)0.0226 (18)
H50.0174610.4720850.4239510.027*
C60.1954 (10)0.5998 (5)0.4265 (3)0.0182 (17)
C70.0449 (10)0.6424 (5)0.4148 (3)0.0228 (19)
H70.0068340.6060910.3912480.027*
C80.0552 (10)0.6457 (6)0.4531 (3)0.029 (2)
H8A0.0591400.5865920.4664030.043*
H8B0.1552230.6640660.4425830.043*
H8C0.0147470.6886500.4747180.043*
C90.0689 (12)0.7371 (6)0.3968 (3)0.037 (2)
H9A0.1129410.7752430.4200180.055*
H9B0.0264820.7620780.3858100.055*
H9C0.1354720.7339640.3732460.055*
Se20.99777 (10)0.98507 (5)0.43039 (3)0.0206 (2)
N30.7271 (7)1.0382 (4)0.4473 (2)0.0155 (14)
N40.8305 (9)0.9161 (4)0.4154 (2)0.0240 (16)
C100.8686 (10)1.0696 (5)0.4521 (2)0.0201 (17)
C110.9007 (10)1.1530 (5)0.4712 (3)0.0224 (18)
H110.9993541.1747020.4749690.027*
C120.7821 (10)1.2025 (5)0.4842 (3)0.0223 (18)
H120.7992701.2603980.4958850.027*
C130.6357 (10)1.1680 (5)0.4805 (3)0.0204 (18)
H130.5560891.2015470.4906210.024*
C140.6109 (10)1.0862 (5)0.4623 (3)0.0217 (18)
H140.5135731.0621520.4599120.026*
C150.7132 (10)0.9517 (5)0.4276 (3)0.0217 (18)
C160.5614 (10)0.9090 (5)0.4235 (3)0.0244 (19)
H160.5150320.9177890.4515510.029*
C170.5773 (12)0.8075 (6)0.4161 (4)0.043 (3)
H17A0.6312170.7970540.3902440.065*
H17B0.4787560.7803910.4121470.065*
H17C0.6319040.7806930.4413820.065*
C180.4603 (12)0.9510 (6)0.3879 (3)0.034 (2)
H18A0.4687931.0159640.3895820.051*
H18B0.3576980.9333780.3914480.051*
H18C0.4892450.9306710.3595650.051*
Se30.26260 (10)0.42116 (5)0.32555 (3)0.01773 (19)
N50.5420 (8)0.4775 (4)0.3319 (2)0.0199 (15)
N60.4195 (9)0.3446 (4)0.3392 (2)0.0226 (16)
C190.4032 (9)0.5118 (5)0.3232 (3)0.0178 (16)
C200.3850 (10)0.6028 (5)0.3142 (3)0.0198 (17)
H200.2889590.6266410.3074430.024*
C210.5068 (10)0.6569 (5)0.3152 (3)0.0232 (19)
H210.4950700.7188890.3097850.028*
C220.6498 (11)0.6212 (6)0.3244 (3)0.027 (2)
H220.7342930.6587280.3247400.033*
C230.6658 (10)0.5327 (5)0.3327 (3)0.0218 (18)
H230.7618290.5084310.3390560.026*
C240.5435 (10)0.3829 (5)0.3405 (3)0.0193 (17)
C250.6916 (10)0.3370 (6)0.3495 (3)0.026 (2)
H250.7542210.3731840.3708620.031*
C260.7723 (11)0.3267 (6)0.3083 (3)0.030 (2)
H26A0.7075440.2964670.2861240.045*
H26B0.8623080.2913120.3144420.045*
H26C0.7989480.3856090.2976420.045*
C270.6644 (12)0.2436 (6)0.3695 (3)0.034 (2)
H27A0.5953870.2097680.3498770.050*
H27B0.6221060.2508760.3975300.050*
H27C0.7585060.2113840.3734940.050*
Se41.25396 (10)0.52189 (5)0.20254 (3)0.0204 (2)
N70.9756 (8)0.4644 (4)0.1977 (2)0.0195 (15)
N81.0966 (8)0.5971 (4)0.1871 (2)0.0213 (15)
C281.1139 (9)0.4318 (5)0.2066 (3)0.0187 (17)
C291.1317 (10)0.3407 (5)0.2175 (3)0.0226 (19)
H291.2274410.3167550.2246500.027*
C301.0089 (11)0.2875 (5)0.2175 (3)0.025 (2)
H301.0201210.2257480.2236660.030*
C310.8675 (10)0.3229 (6)0.2085 (3)0.0253 (19)
H310.7828370.2856100.2091180.030*
C320.8512 (9)0.4109 (5)0.1990 (3)0.0201 (17)
H320.7552490.4356340.1931950.024*
C330.9714 (10)0.5569 (5)0.1863 (2)0.0205 (18)
C340.8239 (10)0.6012 (5)0.1729 (3)0.0220 (18)
H340.7669380.5595460.1527660.026*
C350.7292 (10)0.6186 (6)0.2117 (3)0.027 (2)
H35A0.7836860.6575120.2327080.040*
H35B0.7077400.5618630.2256940.040*
H35C0.6360910.6473100.2014160.040*
C360.8505 (10)0.6869 (5)0.1477 (3)0.028 (2)
H36A0.7551270.7122600.1369340.042*
H36B0.9096010.6733830.1232450.042*
H36C0.9036250.7299180.1669440.042*
Cl10.7227 (2)0.43621 (13)0.45609 (7)0.0235 (4)
Cl21.2466 (2)1.08940 (12)0.46641 (7)0.0237 (4)
Cl30.0233 (2)0.54927 (12)0.30482 (7)0.0218 (4)
Cl41.4889 (2)0.39388 (13)0.22603 (7)0.0227 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.0212 (5)0.0144 (4)0.0206 (4)0.0026 (3)0.0009 (3)0.0022 (3)
N10.020 (4)0.016 (3)0.011 (3)0.000 (3)0.001 (3)0.002 (2)
N20.030 (4)0.016 (3)0.016 (4)0.000 (3)0.003 (3)0.005 (3)
C10.017 (4)0.019 (4)0.010 (4)0.003 (3)0.000 (3)0.003 (3)
C20.033 (5)0.019 (4)0.012 (4)0.000 (4)0.004 (4)0.001 (3)
C30.031 (5)0.018 (4)0.018 (4)0.008 (4)0.001 (4)0.003 (3)
C40.025 (5)0.019 (4)0.025 (5)0.003 (4)0.001 (4)0.003 (3)
C50.018 (5)0.029 (4)0.020 (4)0.001 (4)0.001 (3)0.002 (3)
C60.024 (5)0.011 (3)0.019 (4)0.003 (3)0.003 (3)0.001 (3)
C70.022 (5)0.025 (4)0.020 (4)0.008 (4)0.004 (4)0.001 (3)
C80.023 (5)0.025 (4)0.039 (6)0.002 (4)0.009 (4)0.005 (4)
C90.042 (7)0.036 (5)0.032 (6)0.015 (5)0.001 (5)0.007 (4)
Se20.0193 (5)0.0179 (4)0.0244 (5)0.0017 (3)0.0002 (3)0.0009 (3)
N30.013 (3)0.016 (3)0.018 (4)0.004 (3)0.001 (3)0.002 (2)
N40.030 (4)0.019 (3)0.023 (4)0.003 (3)0.003 (3)0.003 (3)
C100.027 (5)0.022 (4)0.010 (4)0.001 (4)0.004 (3)0.004 (3)
C110.026 (5)0.023 (4)0.018 (4)0.007 (4)0.006 (4)0.002 (3)
C120.023 (5)0.020 (4)0.023 (5)0.001 (4)0.000 (4)0.000 (3)
C130.020 (5)0.021 (4)0.021 (4)0.006 (3)0.000 (3)0.001 (3)
C140.018 (4)0.018 (4)0.029 (5)0.002 (3)0.001 (4)0.003 (3)
C150.032 (5)0.017 (4)0.015 (4)0.002 (4)0.007 (4)0.002 (3)
C160.021 (5)0.026 (4)0.025 (5)0.005 (4)0.001 (4)0.001 (3)
C170.039 (7)0.032 (5)0.058 (8)0.010 (5)0.003 (5)0.009 (5)
C180.038 (6)0.041 (5)0.022 (5)0.005 (5)0.006 (4)0.007 (4)
Se30.0200 (4)0.0133 (4)0.0197 (4)0.0013 (3)0.0001 (3)0.0003 (3)
N50.021 (4)0.023 (3)0.016 (4)0.002 (3)0.002 (3)0.003 (3)
N60.032 (5)0.016 (3)0.020 (4)0.000 (3)0.002 (3)0.001 (3)
C190.018 (4)0.017 (4)0.019 (4)0.005 (3)0.003 (3)0.000 (3)
C200.024 (5)0.013 (4)0.023 (4)0.001 (3)0.001 (3)0.000 (3)
C210.025 (5)0.014 (4)0.030 (5)0.001 (3)0.002 (4)0.001 (3)
C220.029 (5)0.025 (4)0.028 (5)0.010 (4)0.001 (4)0.001 (4)
C230.015 (4)0.024 (4)0.027 (5)0.000 (3)0.001 (3)0.002 (3)
C240.027 (5)0.015 (4)0.016 (4)0.005 (3)0.003 (3)0.001 (3)
C250.023 (5)0.026 (4)0.028 (5)0.002 (4)0.004 (4)0.003 (3)
C260.027 (6)0.032 (5)0.031 (5)0.011 (4)0.003 (4)0.002 (4)
C270.039 (6)0.026 (5)0.035 (6)0.010 (4)0.004 (5)0.009 (4)
Se40.0192 (5)0.0170 (4)0.0246 (5)0.0007 (3)0.0022 (3)0.0011 (3)
N70.024 (4)0.015 (3)0.018 (4)0.003 (3)0.003 (3)0.003 (3)
N80.018 (4)0.015 (3)0.031 (4)0.005 (3)0.000 (3)0.007 (3)
C280.019 (4)0.019 (4)0.018 (4)0.001 (3)0.003 (3)0.005 (3)
C290.024 (5)0.018 (4)0.023 (5)0.003 (3)0.011 (4)0.000 (3)
C300.034 (6)0.019 (4)0.022 (5)0.003 (4)0.007 (4)0.001 (3)
C310.021 (5)0.026 (4)0.028 (5)0.009 (4)0.001 (4)0.004 (3)
C320.013 (4)0.025 (4)0.023 (5)0.000 (3)0.001 (3)0.006 (3)
C330.036 (5)0.012 (4)0.012 (4)0.007 (3)0.002 (4)0.002 (3)
C340.025 (5)0.023 (4)0.016 (4)0.003 (4)0.007 (4)0.001 (3)
C350.022 (5)0.024 (4)0.034 (5)0.004 (4)0.000 (4)0.004 (4)
C360.026 (5)0.018 (4)0.038 (6)0.008 (4)0.008 (4)0.004 (3)
Cl10.0217 (11)0.0213 (10)0.0273 (11)0.0000 (8)0.0012 (8)0.0019 (8)
Cl20.0184 (11)0.0191 (9)0.0332 (12)0.0000 (8)0.0020 (9)0.0056 (8)
Cl30.0191 (11)0.0183 (9)0.0278 (11)0.0021 (8)0.0001 (8)0.0026 (7)
Cl40.0197 (11)0.0264 (10)0.0216 (11)0.0025 (8)0.0005 (8)0.0008 (8)
Geometric parameters (Å, º) top
Se1—N21.857 (7)Se3—N61.853 (7)
Se1—C11.890 (8)Se3—C191.868 (8)
N1—C11.360 (10)N5—C191.367 (10)
N1—C51.394 (10)N5—C231.393 (11)
N1—C61.448 (9)N5—C241.444 (10)
N2—C61.256 (11)N6—C241.260 (11)
C1—C21.381 (11)C19—C201.402 (10)
C2—H20.9500C20—H200.9500
C2—C31.364 (12)C20—C211.369 (12)
C3—H30.9500C21—H210.9500
C3—C41.422 (12)C21—C221.411 (12)
C4—H40.9500C22—H220.9500
C4—C51.383 (11)C22—C231.359 (11)
C5—H50.9500C23—H230.9500
C6—C71.526 (11)C24—C251.516 (12)
C7—H71.0000C25—H251.0000
C7—C81.542 (12)C25—C261.523 (12)
C7—C91.549 (12)C25—C271.559 (12)
C8—H8A0.9800C26—H26A0.9800
C8—H8B0.9800C26—H26B0.9800
C8—H8C0.9800C26—H26C0.9800
C9—H9A0.9800C27—H27A0.9800
C9—H9B0.9800C27—H27B0.9800
C9—H9C0.9800C27—H27C0.9800
Se2—N41.866 (8)Se4—N81.854 (7)
Se2—C101.882 (8)Se4—C281.865 (8)
N3—C101.363 (11)N7—C281.354 (11)
N3—C141.383 (10)N7—C321.386 (10)
N3—C151.437 (10)N7—C331.433 (9)
N4—C151.270 (11)N8—C331.283 (11)
C10—C111.407 (11)C28—C291.415 (11)
C11—H110.9500C29—H290.9500
C11—C121.389 (12)C29—C301.369 (12)
C12—H120.9500C30—H300.9500
C12—C131.420 (12)C30—C311.396 (12)
C13—H130.9500C31—H310.9500
C13—C141.364 (11)C31—C321.361 (11)
C14—H140.9500C32—H320.9500
C15—C161.513 (12)C33—C341.522 (12)
C16—H161.0000C34—H341.0000
C16—C171.550 (12)C34—C351.546 (12)
C16—C181.518 (12)C34—C361.533 (11)
C17—H17A0.9800C35—H35A0.9800
C17—H17B0.9800C35—H35B0.9800
C17—H17C0.9800C35—H35C0.9800
C18—H18A0.9800C36—H36A0.9800
C18—H18B0.9800C36—H36B0.9800
C18—H18C0.9800C36—H36C0.9800
Se1···Cl12.957 (4)Se3···Cl32.934 (4)
Se1···N12.656 (8)Se3···N52.661 (8)
Se2···Cl22.900 (4)Se4···Cl42.920 (4)
Se2···N32.664 (7)Se4···N72.658 (8)
N2—Se1—C187.0 (3)N6—Se3—C1987.0 (3)
C1—N1—C5121.0 (7)C19—N5—C23120.4 (7)
C1—N1—C6115.1 (7)C19—N5—C24113.8 (7)
C5—N1—C6123.9 (7)C23—N5—C24125.8 (7)
C6—N2—Se1113.2 (5)C24—N6—Se3113.0 (5)
N1—C1—Se1108.5 (5)N5—C19—Se3109.7 (5)
N1—C1—C2121.8 (7)N5—C19—C20120.0 (8)
C2—C1—Se1129.7 (7)C20—C19—Se3130.3 (7)
C1—C2—H2120.8C19—C20—H20120.3
C3—C2—C1118.5 (8)C21—C20—C19119.4 (8)
C3—C2—H2120.8C21—C20—H20120.3
C2—C3—H3119.6C20—C21—H21119.9
C2—C3—C4120.8 (8)C20—C21—C22120.3 (7)
C4—C3—H3119.6C22—C21—H21119.9
C3—C4—H4120.2C21—C22—H22120.2
C5—C4—C3119.6 (8)C23—C22—C21119.6 (8)
C5—C4—H4120.2C23—C22—H22120.2
N1—C5—H5120.8N5—C23—H23119.9
C4—C5—N1118.3 (8)C22—C23—N5120.2 (8)
C4—C5—H5120.8C22—C23—H23119.9
N1—C6—C7118.5 (7)N5—C24—C25118.5 (7)
N2—C6—N1116.1 (7)N6—C24—N5116.5 (7)
N2—C6—C7125.3 (7)N6—C24—C25124.9 (7)
C6—C7—H7108.0C24—C25—H25109.0
C6—C7—C8113.3 (7)C24—C25—C26111.3 (7)
C6—C7—C9108.9 (7)C24—C25—C27108.6 (8)
C8—C7—H7108.0C26—C25—H25109.0
C8—C7—C9110.6 (7)C26—C25—C27109.8 (7)
C9—C7—H7108.0C27—C25—H25109.0
C7—C8—H8A109.5C25—C26—H26A109.5
C7—C8—H8B109.5C25—C26—H26B109.5
C7—C8—H8C109.5C25—C26—H26C109.5
H8A—C8—H8B109.5H26A—C26—H26B109.5
H8A—C8—H8C109.5H26A—C26—H26C109.5
H8B—C8—H8C109.5H26B—C26—H26C109.5
C7—C9—H9A109.5C25—C27—H27A109.5
C7—C9—H9B109.5C25—C27—H27B109.5
C7—C9—H9C109.5C25—C27—H27C109.5
H9A—C9—H9B109.5H27A—C27—H27B109.5
H9A—C9—H9C109.5H27A—C27—H27C109.5
H9B—C9—H9C109.5H27B—C27—H27C109.5
N4—Se2—C1087.0 (4)N8—Se4—C2886.9 (3)
C10—N3—C14121.0 (7)C28—N7—C32121.7 (7)
C10—N3—C15114.3 (7)C28—N7—C33114.2 (7)
C14—N3—C15124.6 (7)C32—N7—C33124.1 (7)
C15—N4—Se2112.0 (6)C33—N8—Se4112.3 (5)
N3—C10—Se2109.3 (5)N7—C28—Se4110.3 (5)
N3—C10—C11121.2 (8)N7—C28—C29119.1 (7)
C11—C10—Se2129.4 (7)C29—C28—Se4130.6 (7)
C10—C11—H11121.4C28—C29—H29120.5
C12—C11—C10117.2 (8)C30—C29—C28119.1 (8)
C12—C11—H11121.4C30—C29—H29120.5
C11—C12—H12119.4C29—C30—H30119.6
C11—C12—C13121.2 (8)C29—C30—C31120.7 (8)
C13—C12—H12119.4C31—C30—H30119.6
C12—C13—H13120.4C30—C31—H31120.1
C14—C13—C12119.1 (8)C32—C31—C30119.8 (8)
C14—C13—H13120.4C32—C31—H31120.1
N3—C14—H14120.0N7—C32—H32120.2
C13—C14—N3120.1 (8)C31—C32—N7119.6 (8)
C13—C14—H14120.0C31—C32—H32120.2
N3—C15—C16118.1 (7)N7—C33—C34119.8 (7)
N4—C15—N3117.1 (8)N8—C33—N7116.3 (8)
N4—C15—C16124.8 (7)N8—C33—C34123.8 (7)
C15—C16—H16107.8C33—C34—H34107.5
C15—C16—C17109.6 (8)C33—C34—C35112.8 (7)
C15—C16—C18112.5 (7)C33—C34—C36109.8 (7)
C17—C16—H16107.8C35—C34—H34107.5
C18—C16—H16107.8C36—C34—H34107.5
C18—C16—C17111.1 (8)C36—C34—C35111.6 (7)
C16—C17—H17A109.5C34—C35—H35A109.5
C16—C17—H17B109.5C34—C35—H35B109.5
C16—C17—H17C109.5C34—C35—H35C109.5
H17A—C17—H17B109.5H35A—C35—H35B109.5
H17A—C17—H17C109.5H35A—C35—H35C109.5
H17B—C17—H17C109.5H35B—C35—H35C109.5
C16—C18—H18A109.5C34—C36—H36A109.5
C16—C18—H18B109.5C34—C36—H36B109.5
C16—C18—H18C109.5C34—C36—H36C109.5
H18A—C18—H18B109.5H36A—C36—H36B109.5
H18A—C18—H18C109.5H36A—C36—H36C109.5
H18B—C18—H18C109.5H36B—C36—H36C109.5
Se1—N2—C6—N10.2 (9)Se3—N6—C24—N50.9 (9)
Se1—N2—C6—C7176.5 (6)Se3—N6—C24—C25178.1 (6)
Se1—C1—C2—C3178.3 (6)Se3—C19—C20—C21178.7 (7)
N1—C1—C2—C30.3 (12)N5—C19—C20—C211.4 (12)
N1—C6—C7—C874.0 (9)N5—C24—C25—C2673.8 (9)
N1—C6—C7—C9162.4 (7)N5—C24—C25—C27165.2 (7)
N2—Se1—C1—N10.8 (5)N6—Se3—C19—N50.4 (6)
N2—Se1—C1—C2179.5 (8)N6—Se3—C19—C20179.7 (8)
N2—C6—C7—C8109.8 (9)N6—C24—C25—C26105.2 (10)
N2—C6—C7—C913.8 (11)N6—C24—C25—C2715.9 (12)
C1—Se1—N2—C60.3 (6)C19—Se3—N6—C240.7 (6)
C1—N1—C5—C41.5 (11)C19—N5—C23—C220.5 (12)
C1—N1—C6—N20.9 (10)C19—N5—C24—N60.6 (10)
C1—N1—C6—C7177.5 (7)C19—N5—C24—C25178.5 (7)
C1—C2—C3—C40.5 (12)C19—C20—C21—C221.3 (13)
C2—C3—C4—C50.2 (13)C20—C21—C22—C230.8 (13)
C3—C4—C5—N11.2 (12)C21—C22—C23—N50.4 (13)
C5—N1—C1—Se1179.5 (6)C23—N5—C19—Se3179.0 (6)
C5—N1—C1—C20.7 (11)C23—N5—C19—C201.1 (11)
C5—N1—C6—N2179.7 (7)C23—N5—C24—N6178.4 (7)
C5—N1—C6—C73.2 (11)C23—N5—C24—C252.6 (12)
C6—N1—C1—Se11.1 (8)C24—N5—C19—Se30.0 (8)
C6—N1—C1—C2180.0 (7)C24—N5—C19—C20179.9 (7)
C6—N1—C5—C4179.3 (7)C24—N5—C23—C22179.4 (8)
Se2—N4—C15—N34.0 (9)Se4—N8—C33—N70.8 (9)
Se2—N4—C15—C16175.0 (6)Se4—N8—C33—C34177.4 (6)
Se2—C10—C11—C12179.6 (6)Se4—C28—C29—C30179.0 (7)
N3—C10—C11—C120.9 (11)N7—C28—C29—C301.8 (12)
N3—C15—C16—C17161.4 (7)N7—C33—C34—C3574.5 (9)
N3—C15—C16—C1874.5 (10)N7—C33—C34—C36160.3 (7)
N4—Se2—C10—N31.6 (5)N8—Se4—C28—N71.2 (6)
N4—Se2—C10—C11178.9 (8)N8—Se4—C28—C29179.6 (8)
N4—C15—C16—C1717.6 (12)N8—C33—C34—C35107.3 (9)
N4—C15—C16—C18106.5 (10)N8—C33—C34—C3617.9 (11)
C10—Se2—N4—C153.2 (6)C28—Se4—N8—C330.2 (6)
C10—N3—C14—C132.9 (12)C28—N7—C32—C311.3 (12)
C10—N3—C15—N42.8 (10)C28—N7—C33—N81.9 (10)
C10—N3—C15—C16176.3 (7)C28—N7—C33—C34176.5 (7)
C10—C11—C12—C133.2 (12)C28—C29—C30—C312.4 (13)
C11—C12—C13—C142.5 (12)C29—C30—C31—C321.1 (13)
C12—C13—C14—N30.7 (12)C30—C31—C32—N70.8 (13)
C14—N3—C10—Se2177.4 (6)C32—N7—C28—Se4179.3 (6)
C14—N3—C10—C112.1 (11)C32—N7—C28—C290.0 (11)
C14—N3—C15—N4180.0 (7)C32—N7—C33—N8179.3 (7)
C14—N3—C15—C161.0 (11)C32—N7—C33—C342.3 (11)
C15—N3—C10—Se20.1 (8)C33—N7—C28—Se41.9 (8)
C15—N3—C10—C11179.5 (7)C33—N7—C28—C29178.8 (7)
C15—N3—C14—C13180.0 (7)C33—N7—C32—C31177.4 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cl10.952.623.327 (10)132
C3—H3···Cl2i0.952.673.598 (9)167
C5—H5···Cl1ii0.952.673.395 (10)133
C11—H11···Cl20.952.613.288 (10)129
C14—H14···Cl2ii0.952.473.310 (10)147
C18—H18C···Cl4iii0.982.733.687 (11)167
C20—H20···Cl30.952.673.364 (10)131
C23—H23···Cl3iv0.952.733.418 (10)130
C29—H29···Cl40.952.633.323 (10)130
C30—H30···Cl3v0.952.813.651 (9)148
C32—H32···Cl4ii0.952.763.452 (9)131
Symmetry codes: (i) x1, y1, z; (ii) x1, y, z; (iii) x+2, y+1/2, z+1/2; (iv) x+1, y, z; (v) x+1, y1/2, z+1/2.
Values of the density of all electrons ρ(r), Laplacian of electron density \nabla2ρ(r) and appropriate λ2 eigenvalues, energy density – Hb, potential energy density – V(r), Lagrangian kinetic energyG(r), and electron localization function – ELF (a.u.) at the bond critical points (3, –1), corresponding to bifurcated chalcogen-hydrogen bonding Se···Cl···H—C in the structure, and estimated strength for these interactions Eint V(r)/2 (kcal mol-1) top
The Bondi (1966) van der Waals radii for the H, Se, and Cl atoms are 1.20, 1.90, and 1.75 Å, respectively.
Contact (Å)ρ(r)\nabla2ρ(r)λ2HbV(r)G(r)ELFEint
Se···Cl 2.9000.0270.060-0.0270.000-0.0150.0150.1704.7
C–H···Cl 2.6090.0120.043-0.0120.002-0.0060.0080.0451.9
Se···Cl 2.9570.0240.056-0.0240.001-0.0130.0140.1424.1
C–H···Cl 2.6170.0120.041-0.0120.002-0.0060.0080.0451.9
Se···Cl 2.9340.0250.058-0.0250.000-0.0140.0140.1474.4
C–H···Cl 2.6670.0110.037-0.0110.002-0.0050.0070.0411.6
Se···Cl 2.9200.0260.058-0.0260.000-0.0150.0150.1654.7
C–H···Cl 2.6330.0120.040-0.0120.002-0.0060.0080.0441.9
 

Acknowledgements

Authors' contributions are as follows: conceptualization, AWT, AGT; methodology, AAS, AGT; validation: AWT, ASK, AGT; formal analysis: ASN, TAL; investigation: AWT, ASK, TAL and AGT; resources, ASK, AGT; data curation, AAS, ASN, AKK; writing (original draft), ASN, AWT and TAL; writing (review and editing), AAS, AGT, TAL; visualization, AWT, TAL; supervision, AWT, AGT; project administration, AGT; funding acquisition, AGT, TAL.

Funding information

This work was performed under the support of the Russian Science Foundation (award No. 2273-10007).

References

First citationArtemjev, A. A., Kubasov, A. S., Kuznetsov, M. L., Grudova, M. V., Khrustalev, V. N., Kritchenkov, A. S. & Tskhovrebov, A. G. (2023). CrystEngComm. https://doi.org/10.1039/D3CE00385J.  Google Scholar
First citationArtemjev, A. A., Novikov, A. P., Burkin, G. M., Sapronov, A. A., Kubasov, A. S., Nenajdenko, V. G., Khrustalev, V. N., Borisov, A. V., Kirichuk, A. A., Kritchenkov, A. S., Gomila, R. M., Frontera, A. & Tskhovrebov, A. G. (2022). Int. J. Mol. Sci. 23, 6372.  Web of Science CSD CrossRef PubMed Google Scholar
First citationBondi, A. (1966). J. Phys. Chem. 70, 3006–3007.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2019). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuslov, I. V., Novikov, A. S., Khrustalev, V. N., Grudova, M. V., Kubasov, A. S., Matsulevich, Z. V., Borisov, A. V., Lukiyanova, J. M., Grishina, M. M., Kirichuk, A. A., Serebryanskaya, T. V., Kritchenkov, A. S. & Tskhovrebov, A. G. (2021). Symmetry, 13, 2350. https://doi.org/10.3390/sym13122350  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEspinosa, E., Alkorta, I., Elguero, J. & Molins, E. (2002). J. Chem. Phys. 117, 5529–5542.  Web of Science CrossRef CAS Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc. Wallingford, CT, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGrudova, M. V., Khrustalev, V. N., Kubasov, A. S., Strashnov, P. V., Matsulevich, Z. V., Lukiyanova, J. M., Borisova, G. N., Kritchenkov, A. S., Grishina, M. M., Artemjev, A. A., Buslov, I. V., Osmanov, V. K., Nenajdenko, V. G., Trung, N. Q., Borisov, A. V. & Tskhovrebov, A. G. (2022a). Cryst. Growth Des. 22, 313–322.  Web of Science CSD CrossRef CAS Google Scholar
First citationGrudova, M. V., Kubasov, A. S., Khrustalev, V. N., Novikov, A. S., Kritchenkov, A. S., Nenajdenko, V. G., Borisov, A. V. & Tskhovrebov, A. G. (2022b). Molecules. https://doi.org/10.3390/molecules27031029.  Google Scholar
First citationKhrustalev, V. N., Grishina, M. M., Matsulevich, Z. V., Lukiyanova, J. M., Borisova, G. N., Osmanov, V. K., Novikov, A. S., Kirichuk, A. A., Borisov, A. V., Solari, E. & Tskhovrebov, A. G. (2021). Dalton Trans. 50, 10689–10691.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationSapronov, A. A., Artemjev, A. A., Burkin, G. M., Khrustalev, V. N., Kubasov, A. S., Nenajdenko, V. G., Gomila, R. M., Frontera, A., Kritchenkov, A. S. & Tskhovrebov, A. G. (2022). International Journal of Molecular Sciences. (2022). https://doi.org/10.3390/ijms232314973.  Google Scholar
First citationSapronov, A. A., Kubasov, A. S., Khrustalev, V. N., Artemjev, A. A., Burkin, G. M., Dukhnovsky, E. A., Chizhov, A. O., Kritchenkov, A. S., Gomila, R. M., Frontera, A. & Tskhovrebov, A. G. (2023). Symmetry. (2023). https://doi.org/10.3390/sym15010212.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds