research communications
of 1-{4-[bis(4-methylphenyl)amino]phenyl}ethene-1,2,2-tricarbonitrile
aAlfasial University, Riyadh, Saudi Arabia, and bPenn State Scranton, Dunmore, PA, USA
*Correspondence e-mail: mbader@alfaisal.edu
The title compound, C25H18N4, crystallizes in the centrosymmetric orthorhombic Pbca, with eight molecules in the The main feature noticeable in the structure is the impact of the tricyanovinyl (TCV) group in forcing partial planarity of the portion of the molecule carrying the TCV group and directing the molecular packing in the solid state, resulting in the formation of π-stacks of dimers within the Short π–π stack closest atom-to-atom distances of 3.444 (15) Å are observed. Such motif patterns are favorable as they are thought to be conducive for better charge transport in organic semiconductors, which results in enhanced device performance. Intramolecular charge transfer is evident from the shortening in the observed experimental bond lengths. The nitrogen atoms (of the cyano groups) are involved in extensive short contacts, primarily through C—H⋯NC interactions with distances of 2.637 (17) Å.
Keywords: crystal structure; donor/acceptor; dyes; triphenylamine; tricyanovinyl.
CCDC reference: 2202337
1. Chemical context
Triphenylamine and its derivatives have been employed in a wide range of applications in materials chemistry. Some of the most exploited applications of this important building block include: hole-transport materials, organic light-emitting diodes, photoconductors, photodiodes, semiconductors, and solar cell applications. The optical properties of triphenylamine derivatives have been explored in optical telecommunications, optical data storage, laser frequency conversion, color displays, and non-linear optics including optical power limiters and et al., 2023; Kong et al., 2012; Itoo et al., 2022; Bian 2023). In particular, donor/acceptor molecules incorporating this building block have received considerable attention. Synthetically, many creative and interesting molecular architectures incorporating triphenylamines have been reported (El-Nahass et al., 2013; Ogunyemi et al., 2020).
(KhasbaatarBoth molecular design and solid-state structures are important in effectively using molecular materials in the above-mentioned applications. Highly conjugated molecules with delocalized electrons synthesized by systematic modifications allow for access to a wide range of structures. However, the way the molecules are arranged in the solid state, either in thin films or in single crystals, dictates the performance of devices built with these molecular materials. Attention to solid-state structures of organic functional materials has steadily gained momentum. Much more work is still needed in this area to help better understand the competing inter- and intramolecular interactions in determining their solid-state structures. This study focuses on one the impact of the presence of the tricyanovinyl group on the solid-state structure of the title compound, which is also compared with those of closely related structures.
2. Structural commentary
The et al., 2007; Sobolev et al., 1985; Howells et al., 1954) There are no significant close interactions within the of triphenylamine except for C—H⋯π with a relatively long distance (2.817Å). We also note that there have been several recent structural reports on triphenylamine derivatives, with various structural features including multicyanoderivatives (Ishi et al., 2019; Akahane et al., 2018; Hariharan et al., 2017; Song et al., 2006; Tang et al., 2010).
of triphenylamine is known and has been examined several times (MartinThe closest reported structures to the title compound are the corresponding molecule without the methyl groups tricyanovinyltriphenylamine, which we will refer to as Ph3N-TCV (CYVTPA; Vozzhennikov et al., 1979; Popova et al., 1976, 1977). It is worth mentioning that the title compound forms shiny metallic crystals with large smooth surfaces·We note that, as expected, the title compound adopts a propeller molecular shape and crystallizes in the orthorhombic Pbca, similar to Ph3N-TCV. (Fig. 1) The angles around the central nitrogen atom are all nearly the same, showing similar trends, with the smallest angle between the phenyl groups without the electron-accepting group: 116.71 (14), 120.27 (14), 123.02 (15)° in the title compound Me2-Ph3N-TCV and 116, 121, 123° in Ph3N-TCV, whereas the C—N bond lengths are clearly significantly shorter for the ring bearing the Almost identical lengths are observed in this structure and Ph3N-TCV: 1.366 (2), 1.441 (2), 1.444 (2) Å in the title compound compared with 1.38, 1.44, 1,44 Å in Ph3N-TCV. The shortest lengths (depicted in italics) are for the N—C bond on the phenyl ring carrying the TCV groups, suggesting, as expected, intramolecular charge transfer (Fig. 2). The angles around the central nitrogen atom indicate planarity and range from to 116.71 (14) to 123.02 (15)°.
3. Supramolecular features
In the crystal (Fig. 3), the molecules form π-stacked dimers involving the acceptor-carrying phenyl rings of two adjacent molecules with a shortest atom-to-atom distance of 3.444 (15) Å, which compares with 3.616 Å in Ph3N-TCV. The dimers are further held together by C—H⋯NC interactions on both ends (Fig. 4). With distances of 2.637 (17) Å, the interactions in the title compound are slightly weaker than those observed in Ph3N-TCV (2.462 Å).
4. Database survey
A survey of the Cambridge Structural Database (CSD; Groom et al., 2016) in February 2024 revealed more than 30 hits each for `triphenylamine' and `tricyanovinyl'. No hits were found for the title compound. The closely related structure for a similar compound without the methyl groups (Popova et al., 1977) is compared with the title compound above.
5. Synthesis and crystallization
N,N-p-ditolylaniline (Aldrich, 0.5 mmol) was reacted with tetracyanoethylene (TCNE, Aldrich, 0.75 mmol) in DMF (5 mL) in a 25 mL round-bottom flask at room temperature. After 2 h the reaction was worked out either by addition of 6 M HCl or extraction by methylene chloride. The product was isolated as a purple solid, m.p. 462–463 K, and crystallized by slow evaporation from acetonitrile. 1H NMR, ppm: 7.13 (d, 6H); 7.15 (d, 4H); 7.30 (d, 2H); 2.32 (s, 6H).
6. Refinement
Crystal data, data collection and structure . H atoms were positioned geometrically (C—H = 0.95–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-methyl).
details are summarized in Table 1Supporting information
CCDC reference: 2202337
https://doi.org/10.1107/S2056989024001804/nx2005sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024001804/nx2005Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989024001804/nx2005Isup3.cml
C25H18N4 | Dx = 1.223 Mg m−3 |
Mr = 374.43 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 2998 reflections |
a = 16.8662 (15) Å | θ = 2.2–24.6° |
b = 12.8555 (11) Å | µ = 0.07 mm−1 |
c = 18.7561 (16) Å | T = 173 K |
V = 4066.8 (6) Å3 | Plate, red |
Z = 8 | 0.35 × 0.32 × 0.03 mm |
F(000) = 1568 |
Bruker APEXII CCD diffractometer | 2586 reflections with I > 2σ(I) |
Radiation source: sealed tube | Rint = 0.057 |
φ and ω scans | θmax = 26.4°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −21→21 |
Tmin = 0.975, Tmax = 0.998 | k = −15→16 |
23265 measured reflections | l = −23→13 |
4170 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.048 | H-atom parameters constrained |
wR(F2) = 0.125 | w = 1/[σ2(Fo2) + (0.047P)2 + 1.2157P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
4170 reflections | Δρmax = 0.39 e Å−3 |
264 parameters | Δρmin = −0.19 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
N1 | 0.54561 (9) | 0.35769 (12) | 0.25270 (8) | 0.0327 (4) | |
N2 | 0.40435 (13) | 0.75779 (16) | 0.48843 (10) | 0.0608 (6) | |
N3 | 0.56270 (11) | 0.81259 (15) | 0.62522 (10) | 0.0520 (5) | |
N4 | 0.71782 (13) | 0.57500 (19) | 0.55835 (12) | 0.0784 (7) | |
C1 | 0.54228 (11) | 0.42447 (14) | 0.30928 (10) | 0.0309 (4) | |
C2 | 0.47659 (11) | 0.49077 (14) | 0.31939 (10) | 0.0341 (4) | |
H2A | 0.433200 | 0.487458 | 0.287170 | 0.041* | |
C3 | 0.47442 (12) | 0.56000 (15) | 0.37507 (10) | 0.0360 (5) | |
H3A | 0.429465 | 0.603864 | 0.380322 | 0.043* | |
C4 | 0.53662 (11) | 0.56791 (14) | 0.42448 (10) | 0.0331 (4) | |
C5 | 0.60170 (11) | 0.50065 (15) | 0.41415 (10) | 0.0380 (5) | |
H5A | 0.644920 | 0.503697 | 0.446554 | 0.046* | |
C6 | 0.60455 (11) | 0.43136 (15) | 0.35909 (10) | 0.0367 (5) | |
H6A | 0.649299 | 0.387029 | 0.354280 | 0.044* | |
C7 | 0.53210 (12) | 0.64360 (15) | 0.48125 (10) | 0.0359 (5) | |
C8 | 0.58477 (12) | 0.66465 (15) | 0.53418 (11) | 0.0402 (5) | |
C9 | 0.46017 (13) | 0.70824 (16) | 0.48442 (10) | 0.0401 (5) | |
C10 | 0.57010 (12) | 0.74718 (17) | 0.58452 (11) | 0.0418 (5) | |
C11 | 0.65825 (14) | 0.61249 (18) | 0.54528 (12) | 0.0487 (6) | |
C12 | 0.48557 (11) | 0.36131 (14) | 0.19788 (9) | 0.0319 (4) | |
C13 | 0.42598 (12) | 0.28855 (16) | 0.19709 (11) | 0.0408 (5) | |
H13A | 0.424981 | 0.234803 | 0.231836 | 0.049* | |
C14 | 0.36727 (13) | 0.29368 (18) | 0.14546 (12) | 0.0491 (6) | |
H14A | 0.326013 | 0.243369 | 0.145631 | 0.059* | |
C15 | 0.36736 (13) | 0.37017 (19) | 0.09383 (11) | 0.0479 (6) | |
C16 | 0.42856 (14) | 0.44230 (18) | 0.09488 (11) | 0.0524 (6) | |
H16A | 0.430298 | 0.495020 | 0.059426 | 0.063* | |
C17 | 0.48744 (13) | 0.43899 (16) | 0.14681 (11) | 0.0438 (5) | |
H17A | 0.528520 | 0.489550 | 0.147200 | 0.053* | |
C18 | 0.30260 (15) | 0.3765 (2) | 0.03817 (13) | 0.0773 (9) | |
H18A | 0.279705 | 0.307222 | 0.030804 | 0.116* | 0.5 |
H18B | 0.324991 | 0.401877 | −0.006783 | 0.116* | 0.5 |
H18C | 0.261172 | 0.424333 | 0.054453 | 0.116* | 0.5 |
H18D | 0.297540 | 0.448399 | 0.021512 | 0.116* | 0.5 |
H18E | 0.252254 | 0.353745 | 0.059098 | 0.116* | 0.5 |
H18F | 0.316073 | 0.331288 | −0.002137 | 0.116* | 0.5 |
C19 | 0.60719 (10) | 0.28093 (14) | 0.24428 (10) | 0.0297 (4) | |
C20 | 0.65333 (10) | 0.28135 (14) | 0.18337 (10) | 0.0313 (4) | |
H20A | 0.645477 | 0.333290 | 0.148039 | 0.038* | |
C21 | 0.71086 (11) | 0.20612 (15) | 0.17394 (10) | 0.0358 (5) | |
H21A | 0.741966 | 0.206892 | 0.131715 | 0.043* | |
C22 | 0.72438 (11) | 0.12945 (14) | 0.22459 (10) | 0.0344 (5) | |
C23 | 0.67765 (11) | 0.13075 (15) | 0.28548 (11) | 0.0391 (5) | |
H23A | 0.685992 | 0.079460 | 0.321166 | 0.047* | |
C24 | 0.61923 (11) | 0.20484 (15) | 0.29552 (11) | 0.0376 (5) | |
H24A | 0.587496 | 0.203584 | 0.337350 | 0.045* | |
C25 | 0.78680 (13) | 0.04717 (17) | 0.21395 (13) | 0.0520 (6) | |
H25A | 0.799588 | 0.041696 | 0.163120 | 0.078* | |
H25B | 0.766801 | −0.019848 | 0.231175 | 0.078* | |
H25C | 0.834624 | 0.066109 | 0.240628 | 0.078* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0356 (9) | 0.0306 (9) | 0.0321 (9) | 0.0070 (7) | −0.0031 (7) | −0.0046 (7) |
N2 | 0.0746 (14) | 0.0627 (13) | 0.0451 (12) | 0.0302 (12) | −0.0004 (10) | −0.0061 (10) |
N3 | 0.0542 (12) | 0.0501 (12) | 0.0516 (12) | −0.0003 (9) | 0.0070 (9) | −0.0149 (10) |
N4 | 0.0614 (14) | 0.0978 (18) | 0.0760 (16) | 0.0188 (13) | −0.0223 (12) | −0.0394 (14) |
C1 | 0.0368 (10) | 0.0253 (10) | 0.0306 (10) | 0.0008 (8) | 0.0011 (8) | 0.0027 (8) |
C2 | 0.0379 (10) | 0.0318 (11) | 0.0327 (10) | 0.0059 (9) | −0.0030 (9) | 0.0007 (9) |
C3 | 0.0414 (11) | 0.0307 (11) | 0.0358 (11) | 0.0083 (9) | 0.0019 (9) | 0.0019 (9) |
C4 | 0.0428 (11) | 0.0269 (10) | 0.0297 (10) | 0.0013 (9) | 0.0041 (8) | 0.0020 (8) |
C5 | 0.0387 (11) | 0.0431 (12) | 0.0323 (11) | 0.0028 (9) | −0.0047 (9) | −0.0040 (9) |
C6 | 0.0359 (10) | 0.0396 (12) | 0.0347 (11) | 0.0085 (9) | −0.0029 (9) | −0.0041 (9) |
C7 | 0.0451 (11) | 0.0314 (11) | 0.0312 (11) | −0.0021 (9) | 0.0034 (9) | 0.0050 (8) |
C8 | 0.0450 (12) | 0.0358 (12) | 0.0396 (12) | 0.0010 (10) | 0.0041 (9) | −0.0019 (9) |
C9 | 0.0551 (13) | 0.0352 (12) | 0.0301 (11) | 0.0061 (11) | −0.0014 (10) | −0.0005 (9) |
C10 | 0.0459 (12) | 0.0398 (12) | 0.0398 (12) | −0.0044 (10) | 0.0080 (10) | −0.0038 (10) |
C11 | 0.0493 (14) | 0.0481 (14) | 0.0486 (14) | 0.0057 (11) | −0.0028 (11) | −0.0173 (11) |
C12 | 0.0361 (10) | 0.0312 (11) | 0.0285 (10) | 0.0083 (9) | −0.0021 (8) | −0.0038 (8) |
C13 | 0.0434 (11) | 0.0406 (12) | 0.0385 (12) | 0.0026 (10) | −0.0042 (9) | 0.0004 (9) |
C14 | 0.0419 (12) | 0.0553 (15) | 0.0502 (14) | 0.0016 (11) | −0.0068 (10) | −0.0124 (11) |
C15 | 0.0430 (12) | 0.0658 (16) | 0.0348 (12) | 0.0242 (12) | −0.0065 (10) | −0.0147 (11) |
C16 | 0.0652 (15) | 0.0573 (15) | 0.0348 (12) | 0.0259 (13) | 0.0006 (11) | 0.0071 (11) |
C17 | 0.0490 (12) | 0.0405 (12) | 0.0419 (12) | 0.0041 (10) | −0.0013 (10) | 0.0059 (10) |
C18 | 0.0597 (16) | 0.121 (2) | 0.0513 (16) | 0.0463 (16) | −0.0174 (12) | −0.0201 (16) |
C19 | 0.0308 (9) | 0.0269 (10) | 0.0314 (10) | 0.0009 (8) | −0.0033 (8) | −0.0040 (8) |
C20 | 0.0354 (10) | 0.0268 (10) | 0.0315 (10) | −0.0008 (8) | −0.0038 (8) | −0.0019 (8) |
C21 | 0.0353 (10) | 0.0377 (12) | 0.0343 (11) | −0.0004 (9) | 0.0028 (9) | −0.0054 (9) |
C22 | 0.0298 (10) | 0.0300 (11) | 0.0434 (12) | 0.0001 (8) | −0.0023 (9) | −0.0050 (9) |
C23 | 0.0395 (11) | 0.0321 (11) | 0.0456 (12) | 0.0037 (9) | −0.0021 (10) | 0.0081 (9) |
C24 | 0.0379 (11) | 0.0384 (12) | 0.0364 (11) | 0.0033 (9) | 0.0058 (9) | 0.0046 (9) |
C25 | 0.0455 (12) | 0.0478 (14) | 0.0627 (15) | 0.0147 (11) | 0.0015 (11) | −0.0018 (12) |
N1—C1 | 1.366 (2) | C14—H14A | 0.9500 |
N1—C19 | 1.441 (2) | C15—C16 | 1.388 (3) |
N1—C12 | 1.444 (2) | C15—C18 | 1.513 (3) |
N2—C9 | 1.139 (3) | C16—C17 | 1.392 (3) |
N3—C10 | 1.143 (2) | C16—H16A | 0.9500 |
N4—C11 | 1.141 (3) | C17—H17A | 0.9500 |
C1—C6 | 1.409 (3) | C18—H18A | 0.9800 |
C1—C2 | 1.411 (2) | C18—H18B | 0.9800 |
C2—C3 | 1.373 (3) | C18—H18C | 0.9800 |
C2—H2A | 0.9500 | C18—H18D | 0.9800 |
C3—C4 | 1.404 (3) | C18—H18E | 0.9800 |
C3—H3A | 0.9500 | C18—H18F | 0.9800 |
C4—C5 | 1.411 (3) | C19—C20 | 1.382 (2) |
C4—C7 | 1.444 (3) | C19—C24 | 1.386 (3) |
C5—C6 | 1.365 (3) | C20—C21 | 1.381 (2) |
C5—H5A | 0.9500 | C20—H20A | 0.9500 |
C6—H6A | 0.9500 | C21—C22 | 1.388 (3) |
C7—C8 | 1.359 (3) | C21—H21A | 0.9500 |
C7—C9 | 1.472 (3) | C22—C23 | 1.388 (3) |
C8—C11 | 1.424 (3) | C22—C25 | 1.506 (3) |
C8—C10 | 1.442 (3) | C23—C24 | 1.383 (3) |
C12—C13 | 1.373 (3) | C23—H23A | 0.9500 |
C12—C17 | 1.384 (3) | C24—H24A | 0.9500 |
C13—C14 | 1.387 (3) | C25—H25A | 0.9800 |
C13—H13A | 0.9500 | C25—H25B | 0.9800 |
C14—C15 | 1.380 (3) | C25—H25C | 0.9800 |
C1—N1—C19 | 123.02 (15) | C16—C17—H17A | 120.3 |
C1—N1—C12 | 120.27 (14) | C15—C18—H18A | 109.5 |
C19—N1—C12 | 116.71 (14) | C15—C18—H18B | 109.5 |
N1—C1—C6 | 121.61 (16) | H18A—C18—H18B | 109.5 |
N1—C1—C2 | 121.09 (16) | C15—C18—H18C | 109.5 |
C6—C1—C2 | 117.29 (17) | H18A—C18—H18C | 109.5 |
C3—C2—C1 | 121.00 (17) | H18B—C18—H18C | 109.5 |
C3—C2—H2A | 119.5 | C15—C18—H18D | 109.5 |
C1—C2—H2A | 119.5 | H18A—C18—H18D | 141.1 |
C2—C3—C4 | 121.97 (18) | H18B—C18—H18D | 56.3 |
C2—C3—H3A | 119.0 | H18C—C18—H18D | 56.3 |
C4—C3—H3A | 119.0 | C15—C18—H18E | 109.5 |
C3—C4—C5 | 116.52 (17) | H18A—C18—H18E | 56.3 |
C3—C4—C7 | 119.74 (17) | H18B—C18—H18E | 141.1 |
C5—C4—C7 | 123.73 (17) | H18C—C18—H18E | 56.3 |
C6—C5—C4 | 122.11 (18) | H18D—C18—H18E | 109.5 |
C6—C5—H5A | 118.9 | C15—C18—H18F | 109.5 |
C4—C5—H5A | 118.9 | H18A—C18—H18F | 56.3 |
C5—C6—C1 | 121.11 (18) | H18B—C18—H18F | 56.3 |
C5—C6—H6A | 119.4 | H18C—C18—H18F | 141.1 |
C1—C6—H6A | 119.4 | H18D—C18—H18F | 109.5 |
C8—C7—C4 | 129.64 (18) | H18E—C18—H18F | 109.5 |
C8—C7—C9 | 113.38 (17) | C20—C19—C24 | 119.55 (17) |
C4—C7—C9 | 116.98 (17) | C20—C19—N1 | 119.58 (16) |
C7—C8—C11 | 125.56 (19) | C24—C19—N1 | 120.84 (16) |
C7—C8—C10 | 120.84 (19) | C21—C20—C19 | 119.90 (17) |
C11—C8—C10 | 113.58 (19) | C21—C20—H20A | 120.0 |
N2—C9—C7 | 178.5 (2) | C19—C20—H20A | 120.0 |
N3—C10—C8 | 176.3 (2) | C20—C21—C22 | 121.67 (18) |
N4—C11—C8 | 175.1 (2) | C20—C21—H21A | 119.2 |
C13—C12—C17 | 120.05 (18) | C22—C21—H21A | 119.2 |
C13—C12—N1 | 119.94 (17) | C23—C22—C21 | 117.49 (17) |
C17—C12—N1 | 120.01 (18) | C23—C22—C25 | 120.97 (18) |
C12—C13—C14 | 119.9 (2) | C21—C22—C25 | 121.54 (18) |
C12—C13—H13A | 120.1 | C24—C23—C22 | 121.65 (18) |
C14—C13—H13A | 120.1 | C24—C23—H23A | 119.2 |
C15—C14—C13 | 121.5 (2) | C22—C23—H23A | 119.2 |
C15—C14—H14A | 119.2 | C23—C24—C19 | 119.73 (18) |
C13—C14—H14A | 119.2 | C23—C24—H24A | 120.1 |
C14—C15—C16 | 117.84 (19) | C19—C24—H24A | 120.1 |
C14—C15—C18 | 121.4 (2) | C22—C25—H25A | 109.5 |
C16—C15—C18 | 120.7 (2) | C22—C25—H25B | 109.5 |
C15—C16—C17 | 121.4 (2) | H25A—C25—H25B | 109.5 |
C15—C16—H16A | 119.3 | C22—C25—H25C | 109.5 |
C17—C16—H16A | 119.3 | H25A—C25—H25C | 109.5 |
C12—C17—C16 | 119.3 (2) | H25B—C25—H25C | 109.5 |
C12—C17—H17A | 120.3 | ||
C19—N1—C1—C6 | 7.9 (3) | C19—N1—C12—C17 | −103.2 (2) |
C12—N1—C1—C6 | −172.42 (17) | C17—C12—C13—C14 | −0.6 (3) |
C19—N1—C1—C2 | −173.19 (17) | N1—C12—C13—C14 | 178.40 (17) |
C12—N1—C1—C2 | 6.5 (3) | C12—C13—C14—C15 | 0.6 (3) |
N1—C1—C2—C3 | −178.05 (17) | C13—C14—C15—C16 | 0.2 (3) |
C6—C1—C2—C3 | 0.9 (3) | C13—C14—C15—C18 | −179.2 (2) |
C1—C2—C3—C4 | −0.3 (3) | C14—C15—C16—C17 | −1.0 (3) |
C2—C3—C4—C5 | −0.2 (3) | C18—C15—C16—C17 | 178.4 (2) |
C2—C3—C4—C7 | 178.70 (17) | C13—C12—C17—C16 | −0.1 (3) |
C3—C4—C5—C6 | 0.1 (3) | N1—C12—C17—C16 | −179.13 (17) |
C7—C4—C5—C6 | −178.76 (18) | C15—C16—C17—C12 | 0.9 (3) |
C4—C5—C6—C1 | 0.5 (3) | C1—N1—C19—C20 | −122.68 (19) |
N1—C1—C6—C5 | 177.93 (18) | C12—N1—C19—C20 | 57.6 (2) |
C2—C1—C6—C5 | −1.0 (3) | C1—N1—C19—C24 | 59.2 (2) |
C3—C4—C7—C8 | −179.8 (2) | C12—N1—C19—C24 | −120.46 (19) |
C5—C4—C7—C8 | −1.1 (3) | C24—C19—C20—C21 | 0.1 (3) |
C3—C4—C7—C9 | 0.9 (3) | N1—C19—C20—C21 | −178.05 (16) |
C5—C4—C7—C9 | 179.71 (18) | C19—C20—C21—C22 | −0.4 (3) |
C4—C7—C8—C11 | −0.9 (3) | C20—C21—C22—C23 | 0.1 (3) |
C9—C7—C8—C11 | 178.3 (2) | C20—C21—C22—C25 | 179.62 (18) |
C4—C7—C8—C10 | 177.54 (19) | C21—C22—C23—C24 | 0.5 (3) |
C9—C7—C8—C10 | −3.2 (3) | C25—C22—C23—C24 | −178.97 (19) |
C1—N1—C12—C13 | −101.9 (2) | C22—C23—C24—C19 | −0.9 (3) |
C19—N1—C12—C13 | 77.7 (2) | C20—C19—C24—C23 | 0.6 (3) |
C1—N1—C12—C17 | 77.1 (2) | N1—C19—C24—C23 | 178.66 (17) |
Acknowledgements
The authors also acknowledge Dr Victor Young Jr of the X-ray Crystallographic Laboratory, Department of Chemistry at the University of Minnesota for the data collection.
Funding information
Research Development Grants and Professional Development Grants from Penn State Scranton (PTP) and internal research grants from Alfaisal University IRG-2020 (MMB) are highly appreciated.
References
Akahane, S., Takeda, T., Hoshino, N. & Akutagawa, T. (2018). Cryst. Growth Des. 18, 6284–6292. CrossRef CAS Google Scholar
Bian, Y., Liu, Y. & Guo, Y. (2023). Sci. Bull. 68, 975–980. CrossRef CAS Google Scholar
Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
El-Nahass, M. M., Zeyada, H. M., Abd-El-Rahman, K. F. & Darwish, A. A. A. (2013). Eur. Phys. J. Appl. Phys. 62, 10202. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hariharan, P. S., Prasad, V. K., Nandi, S., Anoop, A., Moon, D. & Anthony, S. P. (2017). Cryst. Growth Des. 17, 146–155. CrossRef CAS Google Scholar
Howells, E. R., Lovell, F. M., Rogers, D. & Wilson, A. J. C. (1954). Acta Cryst. 7, 298–299. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Ishi-i, T., Tanaka, H., Youfu, R., Aizawa, N., Yasuda, T., Kato, S. & Matsumoto, T. (2019). New J. Chem. 43, 4998–5010. CAS Google Scholar
Itoo, A. M., Paul, M., Padaga, S. G., Ghosh, B. & Biswas, S. (2022). ACS Omega, 7, 45882–45909. CrossRef CAS PubMed Google Scholar
Khasbaatar, A., Xu, Z., Lee, J.-H., Campillo-Alvarado, G., Hwang, C., Onusaitis, B. N. & Diao, Y. (2023). Chem. Rev. 123, 8395–8487. CrossRef CAS PubMed Google Scholar
Kong, Q., Qian, H., Zhou, Y., Li, J. & Xiao, H. (2012). Mater. Chem. Phys. 135, 1048–1056. CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Martin, E., Pulham, C. R. & Parsons, S. (2007). CSD Communication (CCDC No. 660790. CCDC, Cambridge, England Google Scholar
Ogunyemi, B. T., Oyeneyin, O. E., Esan, O. T. & Adejoro, I. A. (2020). Results Chem. 2, 100069. CrossRef Google Scholar
Popova, E. G., Chetkina, L. A. & Kotov, B. V. (1976). Zh. Strukt. Khim., 17, 510. Google Scholar
Popova, E. G., Chetkina, L. A. & Kotov, B. V. (1977). J. Struct. Chem. 17, 438–443. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sobolev, A. N., Belsky, V. K., Romm, I. P., Chernikova, N. Yu. & Guryanova, E. N. (1985). Acta Cryst. C41, 967–971. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Song, Y., Di, C., Yang, X., Li, S., Xu, W., Liu, Y., Yang, L., Shuai, Z., Zhang, D. & Zhu, D. (2006). J. Am. Chem. Soc. 128, 15940–15941. Web of Science CSD CrossRef PubMed CAS Google Scholar
Tang, X., Liu, W., Wu, J., Lee, C.-S., You, J. & Wang, P. (2010). J. Org. Chem. 75, 7273–7278. CrossRef CAS PubMed Google Scholar
Vozzhennikov, V. M., Materikin, V. L. & Kotov, B. V. (1979). Zh. Fiz. Khim. 53, 1580. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.