research communications
of the sodium salt of mesotrione: a triketone herbicide
aNational Taras Shevchenko University, Department of Chemistry, 01601 Kyiv, Volodymyrska str. 64, Ukraine
*Correspondence e-mail: k.gubina@knu.ua
The catena-poly[[sodium-μ3-2-[(4-methanesulfonyl-2-nitrophenyl)carbonyl]-3-oxocyclohex-1-en-1-olato] ethanol monosolvate], {[Na(C14H12NO7S)]C2H5OH}n, is described. The X-ray structural analysis results reveal that the coordination sphere is established by two chelating O atoms, the O atom of the coordinated ethanol molecule, and an O atom from the methylsulfonyl group of a neighboring molecule. Simultaneously, an O atom of the cyclohexane fragment serves as a bridge to a neighboring sodium ion, forming a flat Na–O–Na–O quadrangle, thereby forming a mono-periodic polymer. The structure displays O—H⋯O hydrogen bonds and C—H⋯O short contacts. Thermogravimetric analysis (TGA) data indicate that the sodium salt of mesotrione decomposes in four stages.
of the sodium salt of mesotrione, namely,Keywords: mesotrione; herbicides; sodium salt; crystal structure; TGA analysis.
CCDC reference: 2072869
1. Chemical context
Mesotrione, 2-(4-methylsulfonyl-2-nitrobenzoyl) cyclohexane-1,3-dione, is an organic compound classified as a triketone herbicide that is widely used in modern agriculture to control weeds and increase crop yields of corn (Mitchell et al., 2001). The coordination properties of triketone herbicides are dictated by the presence of three ketone functional groups, which act as ligands, forming stable coordination complexes with metal ions such as Cu2+, Co2+ and Fe3+ (Le Person et al., 2016). The stability of the chelates depends largely on the pH, as mesotrione is a weak acid that dissociates from the molecular to the anionic form at higher pH, which is more resistant to hydrolysis and photolysis processes (Reynolds et al., 2007). For a comparative study, the of the sodium salt of mesotrione, NaL, as well as analogues structures were retrieved from the Cambridge Structural Database (CSD, vesion 5.44, update of September 2023; Groom et al., 2016) and their geometries and confirmations are discussed (Kang et al., 2015); Hou et al., 2010; Wu et al., 2002).
2. Structural commentary
Selected geometrical parameters of the sodium salt of mesotrione are summarized in Table 1. The ligand shows a polydentate function. Coordination to the sodium ion occurs through the formation of a 6-membered chelate involving two oxygen atoms from the two keto groups (Fig. 1). This leads to the occurrence of π-conjugation within the chelate ring, leading to a shortening of the C—C bonds by 0.06 (3) Å and lengthening of C=O bonds by 0.062 (3) Å in comparison to the free ligand HL (Table 2). In turn, in the mesotrione sodium salt, the occurrence of conjugation in the triketonate ligand results in a decrease in the conjugation between the benzene ring and the chelate ring, as evidenced by a 0.014 (3) Å increase in the C4—C8 bond length (Table 2).
|
The chelate fragment tends towards a planar structure. Simultaneously, the oxygen atom O5 of the cyclohexane fragment serves as a bridge to a neighboring sodium ion, forming a flat quadrangle Na1–O5–Na1i–O5i constituting the linker that forms the polymer chain (Fig. 2).
The benzene and cyclohexane ring conformations in the structure of sodium salt and free ligand are similar. The benzene ring has a planar conformation, while the cyclohexane ring represents a semi chair with a bend in the line linking atoms C11–C13. The main geometrical characteristics of hydrogen bonds of the compound [NaL(EtOH)]·EtOH are given in Table 3.
|
The environment sphere of the sodium ion comprises the oxygen atoms O5 and O6 of the chelate, the bridging oxygen atom O5i, the oxygen atom O8 from the coordinated ethanol molecule, and the oxygen atom O1ii from the methyl sulfonyl group of a neighboring molecule (Fig. 2). Using the SHAPE program (Version 2.1; Llunell et al., 2013), it was determined that the environment of the sodium atom is close to D3h symmetry (trigonal bipyramid) with a convergence factor of 1.6.
3. Supramolecular features
In the ). Two types of hydrogen bonds are observed: the first between the oxygen atom of the uncoordinated ethanol molecule (O9A) and the oxygen atom (O8) of the coordinated ethanol molecule [2.870 (4) Å] and the second between the oxygen atom (O8) of a coordinated ethanol molecule and the free oxygen atom (O7) of the keto group of a neighboring molecule not involved in coordination [2.681 (2) Å]. In the structure of the coordination compound, three types of short contacts are observed, viz. C2—H2⋯O6ii [3.229 (3) Å], C7—H7B⋯O4ii [3.200 (3) Å], and C7—H7C⋯O9Aiv [3.356 (4) Å] (symmetry codes are as per Table 3).
of the sodium salt of mesotrione, the molecules are assembled in a polymer chain (Fig. 3
|
4. Experimental
The FT–IR spectra of the solids were recorded in a KBr matrix in the range 4000–400cm−1 using a Perkin-Elmer Spectrum BX2 spectrometer. 1H NMR spectra were recorded using a WR-400 Bruker NMR spectrometer at room temperature in DMSO-d6, with TMS used as the internal standard. Studies on the thermal properties of the sodium salt of mesotrione were conducted using a synchronous TG/DTA analyzer, the Shimadzu DTG-60H. The sample was heated in an air atmosphere to 600°C in aluminum crucibles at a heating rate of 10°C min−1.
5. Synthesis and crystallization
Mesotrione was obtained commercially. Other chemicals and solvents used in this study were purchased from Aldrich and used without further purification.
The sodium salt was prepared as shown in Fig. 4, where 2-(4-methylsulfonyl-2-nitrobenzoyl)cyclohexane-1,3-dione was added to a freshly prepared sodium methylate solution. For the monovalent metal sodium, the molar ratio of mesotrione to metal ions is 2:1. The resulting mixture was filtered, and the solvent was removed under vacuum. The yellowish crystalline powder (80% yield) was dissolved in a mixture of ethanol and methanol under heating (∼333 K) and then cooled to room temperature. After a while (∼72 h), monocrystals of the sodium salt of mesotrione, which were suitable for X-ray analysis, were formed.
[NaL(EtOH)]·EtOH: IR (KBr, cm−1): 1642 [νas(C=O)keto], 1582 [νs(C=O)enol], 1524 [νas(NO2)], 1328 [νs(NO2)], 1312 [νas(SO2)], 1148 [νs(SO2)].
[NaL(EtOH)]·EtOH: NMR 1H (400 MHz, DMSO-d6, 298 K, TMS): Δ = 1.75 ppm (m, 2H), 2.17 ppm (m, 4H), 7.29–7.31 ppm (d, 1H), 8.11–8.12 ppm (d, 1H), 8.45 ppm (s, 1H), 3.39 ppm (m, 3H, CH3), 4.39 ppm (m, 2H, OH), 1.05 ppm (m, 6H, CH3), 3.43 ppm (m, 4H, CH2).
6. Refinement
Crystal data, data collection and structure . Non-coordinated ethanol molecules forming hydrogen bonds with the coordination fragment are disordered at two positions H9–O9A–C17A–C18A with an occupancy ratio of 0.8 and 0.2 for H9–O9B–C17B–C18B. Both disordered molecules were refined anisotropically, with certain constraints applied to bond lengths and the same Uij components in the minor constituent. C-bound H atoms were positioned geometrically (C—H = 0.95–0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 47. Thermogravimetric analysis
Four different stages of decomposition of the mesotrione-based sodium complex were observed in the investigated temperature range (Fig. 5). The first stage of thermal decomposition is characterized by a distinct exothermic effect and a mass loss of ∼12% in the temperature range of 25–182°C. The exothermic effect is observed at a temperature of 147°C (m.p. = 149–151°C), corresponding to the loss of the first ethanol molecule.
At the second stage of the decomposition of the coordination compound in the temperature range 182–281°C, the loss (∼11%) of the second ethanol molecule occurs, which is accompanied by an endothermic effect. The third stage of thermal decomposition is characterized by exothermic effect and a mass loss of ∼8.5% in the temperature range 280–340°C. The exothermic effect is observed at a temperature of 318.8°C, corresponding to the combustion of the entire organic components.
The fourth stage begins at 500°C and ends at 600°C and cannot be detected by the Shimadzu DTG-60H.
The TGV analysis and calculations based on its results show that the third and fourth stages consist of the combustion of the entire organic component of the molecule and the formation of sodium pyrosulfate.
According to the thermal studies, the fourth stage is accompanied by a strong exothermic effect and includes the further transformation of Na2S2O7 into Na2SO4, which is confirmed by the results of IR spectroscopy (Fig. 6).
Supporting information
CCDC reference: 2072869
https://doi.org/10.1107/S2056989024001439/oi2003sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024001439/oi2003Isup2.hkl
[Na(C14H12NO7S)]·C2H6O | Z = 2 |
Mr = 453.43 | F(000) = 476 |
Triclinic, P1 | Dx = 1.415 Mg m−3 |
a = 9.9014 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.7214 (6) Å | Cell parameters from 4340 reflections |
c = 11.9401 (6) Å | θ = 1.9–26.4° |
α = 69.789 (3)° | µ = 0.22 mm−1 |
β = 71.074 (3)° | T = 173 K |
γ = 66.439 (3)° | Prizm, yellow |
V = 1064.45 (10) Å3 | 0.36 × 0.23 × 0.18 mm |
Bruker APEXII CCD diffractometer | 3259 reflections with I > 2σ(I) |
Radiation source: sealed tube | Rint = 0.039 |
φ and ω scans | θmax = 26.4°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −12→12 |
Tmin = 0.679, Tmax = 0.745 | k = −13→10 |
15328 measured reflections | l = −14→14 |
4340 independent reflections |
Refinement on F2 | 22 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.050 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.133 | w = 1/[σ2(Fo2) + (0.0686P)2 + 0.3718P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
4340 reflections | Δρmax = 0.47 e Å−3 |
308 parameters | Δρmin = −0.41 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Na1 | 0.46287 (10) | 0.49578 (10) | 0.15007 (8) | 0.0271 (2) | |
S1 | −0.20329 (6) | 0.18062 (6) | 0.76443 (5) | 0.02386 (17) | |
O1 | −0.34311 (18) | 0.29415 (18) | 0.78282 (15) | 0.0337 (4) | |
O2 | −0.2105 (2) | 0.04798 (18) | 0.76771 (16) | 0.0361 (5) | |
O3 | −0.2679 (2) | 0.6168 (2) | 0.3932 (2) | 0.0674 (8) | |
O4 | −0.0518 (2) | 0.60798 (18) | 0.27209 (15) | 0.0346 (4) | |
O5 | 0.37328 (18) | 0.43201 (18) | 0.02826 (14) | 0.0295 (4) | |
O6 | 0.27562 (18) | 0.4081 (2) | 0.27717 (15) | 0.0317 (4) | |
O7 | −0.07874 (17) | 0.3379 (2) | 0.23648 (15) | 0.0315 (4) | |
O8 | 0.6424 (2) | 0.3351 (2) | 0.26488 (16) | 0.0312 (4) | |
H8 | 0.723 (4) | 0.338 (3) | 0.249 (3) | 0.046 (10)* | |
N1 | −0.1331 (2) | 0.5579 (2) | 0.36258 (18) | 0.0288 (5) | |
C1 | −0.0937 (2) | 0.2401 (2) | 0.6198 (2) | 0.0201 (5) | |
C2 | −0.1495 (2) | 0.3751 (2) | 0.5520 (2) | 0.0204 (5) | |
H2 | −0.243164 | 0.437557 | 0.583606 | 0.025* | |
C3 | −0.0661 (2) | 0.4176 (2) | 0.4367 (2) | 0.0198 (5) | |
C4 | 0.0718 (2) | 0.3301 (2) | 0.38681 (19) | 0.0212 (5) | |
C5 | 0.1247 (3) | 0.1941 (3) | 0.4576 (2) | 0.0331 (6) | |
H5 | 0.218752 | 0.131642 | 0.426409 | 0.040* | |
C6 | 0.0421 (3) | 0.1481 (3) | 0.5734 (2) | 0.0310 (6) | |
H6 | 0.078492 | 0.054489 | 0.620104 | 0.037* | |
C7 | −0.1024 (3) | 0.1529 (3) | 0.8723 (2) | 0.0360 (6) | |
H7A | −0.155609 | 0.115410 | 0.954261 | 0.054* | |
H7B | −0.093852 | 0.242129 | 0.868964 | 0.054* | |
H7C | −0.001251 | 0.085614 | 0.853847 | 0.054* | |
C8 | 0.1760 (2) | 0.3745 (2) | 0.2656 (2) | 0.0228 (5) | |
C9 | 0.1652 (2) | 0.3566 (2) | 0.1551 (2) | 0.0214 (5) | |
C10 | 0.0378 (3) | 0.3228 (2) | 0.1541 (2) | 0.0226 (5) | |
C11 | 0.0423 (3) | 0.2744 (3) | 0.0483 (2) | 0.0257 (5) | |
H11A | −0.016765 | 0.354371 | −0.007590 | 0.031* | |
H11B | −0.006094 | 0.200559 | 0.079509 | 0.031* | |
C12 | 0.2020 (3) | 0.2168 (3) | −0.0229 (2) | 0.0276 (5) | |
H12A | 0.198851 | 0.194847 | −0.095847 | 0.033* | |
H12B | 0.258493 | 0.129274 | 0.028904 | 0.033* | |
C13 | 0.2798 (3) | 0.3266 (3) | −0.0617 (2) | 0.0277 (5) | |
H13A | 0.385898 | 0.286890 | −0.103136 | 0.033* | |
H13B | 0.229579 | 0.408757 | −0.121612 | 0.033* | |
C14 | 0.2778 (2) | 0.3753 (2) | 0.0438 (2) | 0.0222 (5) | |
C15 | 0.5810 (3) | 0.3345 (3) | 0.3924 (2) | 0.0428 (7) | |
H15A | 0.471176 | 0.351126 | 0.410164 | 0.051* | |
H15B | 0.594531 | 0.413466 | 0.407564 | 0.051* | |
C16 | 0.6491 (4) | 0.2045 (4) | 0.4767 (3) | 0.0584 (9) | |
H16A | 0.601652 | 0.212192 | 0.560994 | 0.088* | |
H16B | 0.633868 | 0.125845 | 0.464123 | 0.088* | |
H16C | 0.757414 | 0.188282 | 0.461518 | 0.088* | |
O9A | 0.7557 (4) | 0.0676 (4) | 0.2067 (4) | 0.0470 (10) | 0.815 (5) |
C17A | 0.6460 (4) | −0.0028 (4) | 0.2653 (3) | 0.0462 (11) | 0.815 (5) |
H17B | 0.603839 | 0.007405 | 0.350234 | 0.055* | 0.815 (5) |
H17A | 0.695169 | −0.104216 | 0.268723 | 0.055* | 0.815 (5) |
C18A | 0.5179 (5) | 0.0571 (5) | 0.1970 (5) | 0.0668 (14) | 0.815 (5) |
H18C | 0.444488 | 0.006821 | 0.239201 | 0.100* | 0.815 (5) |
H18B | 0.467983 | 0.157119 | 0.194744 | 0.100* | 0.815 (5) |
H18A | 0.559228 | 0.045602 | 0.113309 | 0.100* | 0.815 (5) |
O9B | 0.7192 (18) | 0.101 (2) | 0.174 (2) | 0.051 (4) | 0.185 (5) |
C17B | 0.5847 (18) | 0.0752 (18) | 0.1820 (15) | 0.045 (2) | 0.185 (5) |
H17C | 0.601398 | 0.030955 | 0.116176 | 0.054* | 0.185 (5) |
H17D | 0.501848 | 0.165750 | 0.169959 | 0.054* | 0.185 (5) |
C18B | 0.538 (2) | −0.021 (2) | 0.3067 (16) | 0.080 (4) | 0.185 (5) |
H18D | 0.445848 | −0.036455 | 0.309274 | 0.120* | 0.185 (5) |
H18E | 0.619223 | −0.111630 | 0.318195 | 0.120* | 0.185 (5) |
H18F | 0.519738 | 0.023078 | 0.371944 | 0.120* | 0.185 (5) |
H9 | 0.709 (4) | 0.153 (4) | 0.223 (4) | 0.078 (13)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Na1 | 0.0234 (5) | 0.0371 (6) | 0.0197 (5) | −0.0147 (4) | −0.0002 (4) | −0.0042 (4) |
S1 | 0.0249 (3) | 0.0274 (3) | 0.0163 (3) | −0.0136 (3) | −0.0001 (2) | 0.0001 (2) |
O1 | 0.0266 (9) | 0.0376 (11) | 0.0238 (9) | −0.0107 (8) | 0.0063 (7) | −0.0027 (8) |
O2 | 0.0493 (11) | 0.0315 (10) | 0.0288 (10) | −0.0248 (9) | −0.0026 (8) | −0.0005 (8) |
O3 | 0.0473 (14) | 0.0426 (13) | 0.0484 (14) | 0.0102 (10) | 0.0132 (11) | 0.0123 (10) |
O4 | 0.0408 (11) | 0.0342 (10) | 0.0242 (9) | −0.0214 (9) | −0.0043 (8) | 0.0066 (8) |
O5 | 0.0272 (9) | 0.0438 (11) | 0.0191 (9) | −0.0216 (8) | 0.0012 (7) | −0.0036 (8) |
O6 | 0.0289 (9) | 0.0544 (12) | 0.0191 (9) | −0.0259 (9) | −0.0009 (7) | −0.0072 (8) |
O7 | 0.0196 (9) | 0.0551 (12) | 0.0245 (9) | −0.0200 (8) | 0.0034 (7) | −0.0137 (8) |
O8 | 0.0224 (10) | 0.0427 (11) | 0.0277 (10) | −0.0150 (8) | −0.0043 (8) | −0.0035 (8) |
N1 | 0.0326 (12) | 0.0253 (11) | 0.0214 (11) | −0.0096 (10) | −0.0015 (9) | −0.0015 (9) |
C1 | 0.0213 (12) | 0.0264 (13) | 0.0138 (11) | −0.0117 (10) | −0.0014 (9) | −0.0038 (9) |
C2 | 0.0181 (11) | 0.0241 (13) | 0.0179 (11) | −0.0072 (10) | −0.0001 (9) | −0.0070 (10) |
C3 | 0.0226 (12) | 0.0209 (12) | 0.0173 (11) | −0.0099 (10) | −0.0054 (9) | −0.0019 (9) |
C4 | 0.0199 (12) | 0.0302 (13) | 0.0138 (11) | −0.0119 (10) | −0.0029 (9) | −0.0020 (10) |
C5 | 0.0224 (13) | 0.0358 (15) | 0.0222 (13) | −0.0007 (11) | 0.0027 (10) | −0.0026 (11) |
C6 | 0.0276 (13) | 0.0248 (13) | 0.0237 (13) | −0.0031 (11) | −0.0025 (10) | 0.0044 (11) |
C7 | 0.0393 (16) | 0.0509 (18) | 0.0184 (13) | −0.0244 (14) | −0.0039 (11) | 0.0001 (12) |
C8 | 0.0180 (11) | 0.0279 (13) | 0.0176 (12) | −0.0083 (10) | −0.0021 (9) | −0.0006 (10) |
C9 | 0.0182 (11) | 0.0284 (13) | 0.0156 (11) | −0.0101 (10) | −0.0011 (9) | −0.0022 (10) |
C10 | 0.0213 (12) | 0.0235 (12) | 0.0195 (12) | −0.0078 (10) | −0.0054 (10) | 0.0004 (10) |
C11 | 0.0251 (13) | 0.0313 (14) | 0.0237 (13) | −0.0139 (11) | −0.0043 (10) | −0.0057 (11) |
C12 | 0.0297 (13) | 0.0288 (14) | 0.0231 (13) | −0.0094 (11) | −0.0042 (10) | −0.0064 (11) |
C13 | 0.0276 (13) | 0.0368 (15) | 0.0164 (12) | −0.0149 (11) | 0.0007 (10) | −0.0039 (10) |
C14 | 0.0188 (11) | 0.0264 (13) | 0.0165 (11) | −0.0069 (10) | −0.0048 (9) | 0.0009 (10) |
C15 | 0.0311 (15) | 0.060 (2) | 0.0326 (16) | −0.0143 (14) | −0.0024 (12) | −0.0106 (14) |
C16 | 0.067 (2) | 0.065 (2) | 0.046 (2) | −0.0285 (19) | −0.0158 (17) | −0.0064 (17) |
O9A | 0.034 (2) | 0.042 (2) | 0.059 (3) | −0.0073 (17) | −0.0052 (15) | −0.0159 (18) |
C17A | 0.056 (3) | 0.037 (2) | 0.044 (2) | −0.0167 (18) | −0.0024 (18) | −0.0139 (17) |
C18A | 0.047 (3) | 0.063 (3) | 0.090 (4) | −0.023 (2) | −0.009 (3) | −0.017 (3) |
O9B | 0.034 (6) | 0.048 (6) | 0.057 (7) | −0.005 (5) | 0.001 (5) | −0.017 (5) |
C17B | 0.056 (4) | 0.037 (4) | 0.045 (4) | −0.013 (3) | −0.006 (3) | −0.020 (3) |
C18B | 0.052 (6) | 0.075 (6) | 0.097 (7) | −0.015 (6) | −0.010 (6) | −0.015 (6) |
Na1—O6 | 2.2815 (17) | C9—C10 | 1.449 (3) |
Na1—O5 | 2.3191 (18) | C10—C11 | 1.504 (3) |
Na1—O5i | 2.3215 (17) | C11—C12 | 1.521 (3) |
Na1—O8 | 2.347 (2) | C11—H11A | 0.9900 |
Na1—O1ii | 2.3699 (19) | C11—H11B | 0.9900 |
Na1—Na1i | 3.3928 (18) | C12—C13 | 1.520 (3) |
S1—O2 | 1.4386 (18) | C12—H12A | 0.9900 |
S1—O1 | 1.4445 (18) | C12—H12B | 0.9900 |
S1—C7 | 1.754 (3) | C13—C14 | 1.514 (3) |
S1—C1 | 1.773 (2) | C13—H13A | 0.9900 |
O3—N1 | 1.218 (3) | C13—H13B | 0.9900 |
O4—N1 | 1.218 (2) | C15—C16 | 1.459 (4) |
O5—C14 | 1.251 (3) | C15—H15A | 0.9900 |
O6—C8 | 1.237 (3) | C15—H15B | 0.9900 |
O7—C10 | 1.245 (3) | C16—H16A | 0.9800 |
O8—C15 | 1.443 (3) | C16—H16B | 0.9800 |
O8—H8 | 0.76 (3) | C16—H16C | 0.9800 |
N1—C3 | 1.466 (3) | O9A—C17A | 1.4270 (19) |
C1—C2 | 1.377 (3) | O9A—H9 | 0.90 (4) |
C1—C6 | 1.386 (3) | C17A—C18A | 1.531 (2) |
C2—C3 | 1.384 (3) | C17A—H17B | 0.9900 |
C2—H2 | 0.9500 | C17A—H17A | 0.9900 |
C3—C4 | 1.390 (3) | C18A—H18C | 0.9800 |
C4—C5 | 1.393 (3) | C18A—H18B | 0.9800 |
C4—C8 | 1.528 (3) | C18A—H18A | 0.9800 |
C5—C6 | 1.393 (3) | O9B—C17B | 1.429 (2) |
C5—H5 | 0.9500 | O9B—H9 | 0.91 (4) |
C6—H6 | 0.9500 | C17B—C18B | 1.539 (2) |
C7—H7A | 0.9800 | C17B—H17C | 0.9900 |
C7—H7B | 0.9800 | C17B—H17D | 0.9900 |
C7—H7C | 0.9800 | C18B—H18D | 0.9800 |
C8—C9 | 1.440 (3) | C18B—H18E | 0.9800 |
C9—C14 | 1.442 (3) | C18B—H18F | 0.9800 |
O6—Na1—O5 | 73.86 (6) | O7—C10—C9 | 121.8 (2) |
O6—Na1—O5i | 159.89 (7) | O7—C10—C11 | 118.6 (2) |
O5—Na1—O5i | 86.04 (6) | C9—C10—C11 | 119.58 (19) |
O6—Na1—O8 | 93.06 (7) | C10—C11—C12 | 112.88 (19) |
O5—Na1—O8 | 122.94 (7) | C10—C11—H11A | 109.0 |
O5i—Na1—O8 | 98.52 (7) | C12—C11—H11A | 109.0 |
O6—Na1—O1ii | 90.74 (7) | C10—C11—H11B | 109.0 |
O5—Na1—O1ii | 124.59 (7) | C12—C11—H11B | 109.0 |
O5i—Na1—O1ii | 100.41 (7) | H11A—C11—H11B | 107.8 |
O8—Na1—O1ii | 110.49 (7) | C13—C12—C11 | 108.7 (2) |
O6—Na1—Na1i | 116.90 (6) | C13—C12—H12A | 109.9 |
O5—Na1—Na1i | 43.05 (4) | C11—C12—H12A | 109.9 |
O5i—Na1—Na1i | 42.99 (4) | C13—C12—H12B | 109.9 |
O8—Na1—Na1i | 118.24 (6) | C11—C12—H12B | 109.9 |
O1ii—Na1—Na1i | 120.78 (6) | H12A—C12—H12B | 108.3 |
O2—S1—O1 | 118.31 (11) | C14—C13—C12 | 113.39 (19) |
O2—S1—C7 | 108.75 (13) | C14—C13—H13A | 108.9 |
O1—S1—C7 | 108.40 (12) | C12—C13—H13A | 108.9 |
O2—S1—C1 | 107.70 (10) | C14—C13—H13B | 108.9 |
O1—S1—C1 | 107.16 (11) | C12—C13—H13B | 108.9 |
C7—S1—C1 | 105.83 (11) | H13A—C13—H13B | 107.7 |
S1—O1—Na1ii | 144.85 (11) | O5—C14—C9 | 123.8 (2) |
C14—O5—Na1 | 136.71 (15) | O5—C14—C13 | 117.54 (19) |
C14—O5—Na1i | 129.29 (15) | C9—C14—C13 | 118.67 (19) |
Na1—O5—Na1i | 93.96 (6) | O8—C15—C16 | 114.3 (3) |
C8—O6—Na1 | 136.56 (15) | O8—C15—H15A | 108.7 |
C15—O8—Na1 | 109.47 (15) | C16—C15—H15A | 108.7 |
C15—O8—H8 | 108 (2) | O8—C15—H15B | 108.7 |
Na1—O8—H8 | 122 (2) | C16—C15—H15B | 108.7 |
O3—N1—O4 | 123.5 (2) | H15A—C15—H15B | 107.6 |
O3—N1—C3 | 118.18 (19) | C15—C16—H16A | 109.5 |
O4—N1—C3 | 118.3 (2) | C15—C16—H16B | 109.5 |
C2—C1—C6 | 120.9 (2) | H16A—C16—H16B | 109.5 |
C2—C1—S1 | 119.19 (17) | C15—C16—H16C | 109.5 |
C6—C1—S1 | 119.77 (18) | H16A—C16—H16C | 109.5 |
C1—C2—C3 | 118.5 (2) | H16B—C16—H16C | 109.5 |
C1—C2—H2 | 120.8 | C17A—O9A—H9 | 104 (2) |
C3—C2—H2 | 120.8 | O9A—C17A—C18A | 111.3 (4) |
C2—C3—C4 | 122.8 (2) | O9A—C17A—H17B | 109.4 |
C2—C3—N1 | 117.48 (19) | C18A—C17A—H17B | 109.4 |
C4—C3—N1 | 119.59 (19) | O9A—C17A—H17A | 109.4 |
C3—C4—C5 | 117.3 (2) | C18A—C17A—H17A | 109.4 |
C3—C4—C8 | 125.3 (2) | H17B—C17A—H17A | 108.0 |
C5—C4—C8 | 117.2 (2) | C17A—C18A—H18C | 109.5 |
C4—C5—C6 | 121.1 (2) | C17A—C18A—H18B | 109.5 |
C4—C5—H5 | 119.5 | H18C—C18A—H18B | 109.5 |
C6—C5—H5 | 119.5 | C17A—C18A—H18A | 109.5 |
C1—C6—C5 | 119.4 (2) | H18C—C18A—H18A | 109.5 |
C1—C6—H6 | 120.3 | H18B—C18A—H18A | 109.5 |
C5—C6—H6 | 120.3 | C17B—O9B—H9 | 115 (3) |
S1—C7—H7A | 109.5 | O9B—C17B—C18B | 111.6 (17) |
S1—C7—H7B | 109.5 | O9B—C17B—H17C | 109.3 |
H7A—C7—H7B | 109.5 | C18B—C17B—H17C | 109.3 |
S1—C7—H7C | 109.5 | O9B—C17B—H17D | 109.3 |
H7A—C7—H7C | 109.5 | C18B—C17B—H17D | 109.3 |
H7B—C7—H7C | 109.5 | H17C—C17B—H17D | 108.0 |
O6—C8—C9 | 126.1 (2) | C17B—C18B—H18D | 109.5 |
O6—C8—C4 | 113.4 (2) | C17B—C18B—H18E | 109.5 |
C9—C8—C4 | 119.87 (19) | H18D—C18B—H18E | 109.5 |
C8—C9—C14 | 120.88 (19) | C17B—C18B—H18F | 109.5 |
C8—C9—C10 | 119.83 (19) | H18D—C18B—H18F | 109.5 |
C14—C9—C10 | 119.3 (2) | H18E—C18B—H18F | 109.5 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O9A—H9···O8 | 0.90 (4) | 1.98 (4) | 2.875 (5) | 170 (4) |
O9B—H9···O8 | 0.91 (4) | 1.98 (4) | 2.81 (2) | 152 (4) |
O8—H8···O7iii | 0.76 (3) | 1.92 (3) | 2.681 (2) | 171 (3) |
C2—H2···O6ii | 0.95 | 2.59 | 3.229 (3) | 125 |
C7—H7B···O4ii | 0.98 | 2.43 | 3.200 (3) | 135 |
C7—H7C···O9Aiv | 0.98 | 2.37 | 3.349 (5) | 176 |
Symmetry codes: (ii) −x, −y+1, −z+1; (iii) x+1, y, z; (iv) −x+1, −y, −z+1. |
Note that the numbering of atoms in the HL structure has brought into accordance with the numbering in the published structure. |
Bond | NaL | HL | Δ |
C14—O5 | 1.252 (3) | 1.314 (2) | 0.062 |
C9—C14 | 1.442 (3) | 1.382 (2) | 0.06 |
C8—C9 | 1.439 (3) | 1.448 (2) | 0.009 |
C8—O6 | 1.237 (3) | 1.239 (2) | 0.02 |
C4—C8 | 1.528 (3) | 1.514 (2) | 0.014 |
Acknowledgements
This work was supported by the Taras Shevchenko National University of Kyiv
References
Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hou, Y.-J., Chu, W.-Y., Sui, J. & Sun, Z.-Z. (2010). Z. Kristallogr. New Cryst. Struct. 225, 465–466. CrossRef CAS Google Scholar
Kang, G., Kim, J., Park, H. & Kim, T. H. (2015). Acta Cryst. E71, o548–o549. CSD CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Le Person, A., Siampiringue, M., Sarakha, M., Moncomble, A. & Cornard, J.-P. (2016). J. Photochem. Photobiol. Chem. 315, 76–86. CrossRef CAS Google Scholar
Llunell, M., Casanova, D., Cirera, J., Alemany, P. & Alvarez, S. (2013). SHAPE. Shape Software, Barcelona, Spain Google Scholar
Mitchell, G., Bartlett, D. W., Fraser, T. E. M., Hawkes, T. R., Holt, D. C., Townson, J. K. & Wichert, R. A. (2001). Pest. Manag. Sci. 57, 120–128. Web of Science CrossRef PubMed CAS Google Scholar
Reynolds, J. D., James, J. R. & Pearson, A. M. (2007). US Patent 20070207929 A1. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Wu, C.-S., Huang, J.-L., Sun, Y.-S. & Yang, D.-Y. (2002). J. Med. Chem. 45, 2222–2228. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.