research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of the sodium salt of mesotrione: a triketone herbicide

crossmark logo

aNational Taras Shevchenko University, Department of Chemistry, 01601 Kyiv, Volodymyrska str. 64, Ukraine
*Correspondence e-mail: k.gubina@knu.ua

Edited by S.-L. Zheng, Harvard University, USA (Received 27 December 2023; accepted 13 February 2024; online 16 February 2024)

The crystal structure of the sodium salt of mesotrione, namely, catena-poly[[sodium-μ3-2-[(4-methane­sulfonyl-2-nitro­phen­yl)carbon­yl]-3-oxo­cyclo­hex-1-en-1-olato] ethanol monosolvate], {[Na(C14H12NO7S)]C2H5OH}n, is described. The X-ray structural analysis results reveal that the coordination sphere is established by two chelating O atoms, the O atom of the coordinated ethanol mol­ecule, and an O atom from the methyl­sulfonyl group of a neighboring mol­ecule. Simultaneously, an O atom of the cyclo­hexane fragment serves as a bridge to a neighboring sodium ion, forming a flat Na–O–Na–O quadrangle, thereby forming a mono-periodic polymer. The structure displays O—H⋯O hydrogen bonds and C—H⋯O short contacts. Thermogravimetric analysis (TGA) data indicate that the sodium salt of mesotrione decomposes in four stages.

1. Chemical context

Mesotrione, 2-(4-methyl­sulfonyl-2-nitro­benzo­yl) cyclo­hexane-1,3-dione, is an organic compound classified as a triketone herbicide that is widely used in modern agriculture to control weeds and increase crop yields of corn (Mitchell et al., 2001[Mitchell, G., Bartlett, D. W., Fraser, T. E. M., Hawkes, T. R., Holt, D. C., Townson, J. K. & Wichert, R. A. (2001). Pest. Manag. Sci. 57, 120-128.]). The coordination properties of triketone herbicides are dictated by the presence of three ketone functional groups, which act as ligands, forming stable coordination complexes with metal ions such as Cu2+, Co2+ and Fe3+ (Le Person et al., 2016[Le Person, A., Siampiringue, M., Sarakha, M., Moncomble, A. & Cornard, J.-P. (2016). J. Photochem. Photobiol. Chem. 315, 76-86.]). The stability of the chelates depends largely on the pH, as mesotrione is a weak acid that dissociates from the mol­ecular to the anionic form at higher pH, which is more resistant to hydrolysis and photolysis processes (Reynolds et al., 2007[Reynolds, J. D., James, J. R. & Pearson, A. M. (2007). US Patent 20070207929 A1.]). For a comparative study, the crystal structure of the sodium salt of mesotrione, NaL, as well as analogues structures were retrieved from the Cambridge Structural Database (CSD, vesion 5.44, update of September 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) and their geometries and confirmations are discussed (Kang et al., 2015[Kang, G., Kim, J., Park, H. & Kim, T. H. (2015). Acta Cryst. E71, o548-o549.]); Hou et al., 2010[Hou, Y.-J., Chu, W.-Y., Sui, J. & Sun, Z.-Z. (2010). Z. Kristallogr. New Cryst. Struct. 225, 465-466.]; Wu et al., 2002[Wu, C.-S., Huang, J.-L., Sun, Y.-S. & Yang, D.-Y. (2002). J. Med. Chem. 45, 2222-2228.]).

[Scheme 1]

2. Structural commentary

Selected geometrical parameters of the sodium salt of mesotrione are summarized in Table 1[link]. The ligand shows a polydentate function. Coordination to the sodium ion occurs through the formation of a 6-membered chelate involving two oxygen atoms from the two keto groups (Fig. 1[link]). This leads to the occurrence of π-conjugation within the chelate ring, leading to a shortening of the C—C bonds by 0.06 (3) Å and lengthening of C=O bonds by 0.062 (3) Å in comparison to the free ligand HL (Table 2[link]). In turn, in the mesotrione sodium salt, the occurrence of conjugation in the triketonate ligand results in a decrease in the conjugation between the benzene ring and the chelate ring, as evidenced by a 0.014 (3) Å increase in the C4—C8 bond length (Table 2[link]).

Table 1
Selected geometric parameters (Å, °)

Na1—O6 2.2815 (17) O3—N1 1.218 (3)
Na1—O5 2.3191 (18) O4—N1 1.218 (2)
Na1—O5i 2.3215 (17) O5—C14 1.251 (3)
Na1—O8 2.347 (2) O6—C8 1.237 (3)
Na1—O1ii 2.3700 (19) O7—C10 1.245 (3)
Na1—Na1i 3.3927 (18) O8—C15 1.443 (3)
S1—O2 1.4386 (18) N1—C3 1.466 (3)
S1—O1 1.4445 (18) C4—C8 1.528 (3)
S1—C7 1.754 (3) C8—C9 1.440 (3)
S1—C1 1.773 (2) C9—C14 1.442 (3)
       
O6—Na1—O5 73.86 (6) O1ii—Na1—Na1i 120.78 (6)
O6—Na1—O5i 159.89 (7) O2—S1—O1 118.31 (11)
O5—Na1—O5i 86.04 (6) O2—S1—C7 108.75 (13)
O6—Na1—O8 93.06 (7) O1—S1—C7 108.40 (12)
O5—Na1—O8 122.94 (7) S1—O1—Na1ii 144.85 (11)
O5i—Na1—O8 98.52 (7) C14—O5—Na1 136.71 (15)
O6—Na1—O1ii 90.74 (7) C14—O5—Na1i 129.29 (15)
O5—Na1—O1ii 124.59 (7) Na1—O5—Na1i 93.96 (6)
O5i—Na1—O1ii 100.42 (7) C8—O6—Na1 136.56 (15)
O8—Na1—O1ii 110.49 (7) C15—O8—Na1 109.47 (15)
O6—Na1—Na1i 116.90 (6) O3—N1—O4 123.5 (2)
O5—Na1—Na1i 43.05 (4) O3—N1—C3 118.18 (19)
O5i—Na1—Na1i 42.99 (4) O4—N1—C3 118.3 (2)
O8—Na1—Na1i 118.24 (6)    
Symmetry codes: (i) [-x+1, -y+1, -z]; (ii) [-x, -y+1, -z+1].

Table 2
Comparison between some geometrical parameters (Å) in the chelate ring for HL and NaL

Note that the numbering of atoms in the HL structure has brought into accordance with the numbering in the published structure.

Bond NaL HL Δ
C14—O5 1.252 (3) 1.314 (2) 0.062
C9—C14 1.442 (3) 1.382 (2) 0.06
C8—C9 1.439 (3) 1.448 (2) 0.009
C8—O6 1.237 (3) 1.239 (2) 0.02
C4—C8 1.528 (3) 1.514 (2) 0.014
[Figure 1]
Figure 1
The fragment of the structure of the sodium salt of mesotrione, showing the atom-numbering scheme for non-hydrogen atoms and displacement ellipsoids at 50% probability level.

The chelate fragment tends towards a planar structure. Simultaneously, the oxygen atom O5 of the cyclo­hexane fragment serves as a bridge to a neighboring sodium ion, forming a flat quadrangle Na1–O5–Na1i–O5i constituting the linker that forms the polymer chain (Fig. 2[link]).

[Figure 2]
Figure 2
Coordination polyhedron of the sodium salt of mesotrione.

The benzene and cyclo­hexane ring conformations in the structure of sodium salt and free ligand are similar. The benzene ring has a planar conformation, while the cyclo­hexane ring represents a semi chair with a bend in the line linking atoms C11–C13. The main geometrical characteristics of hydrogen bonds of the compound [NaL(EtOH)]·EtOH are given in Table 3[link].

Table 3
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9A—H9⋯O8 0.90 (4) 1.98 (4) 2.875 (5) 170 (4)
O9B—H9⋯O8 0.91 (4) 1.98 (4) 2.81 (2) 152 (4)
O8—H8⋯O7iii 0.76 (3) 1.92 (3) 2.681 (2) 171 (3)
C2—H2⋯O6ii 0.95 2.59 3.229 (3) 125
C7—H7B⋯O4ii 0.98 2.43 3.200 (3) 135
C7—H7C⋯O9Aiv 0.98 2.37 3.349 (5) 176
Symmetry codes: (ii) [-x, -y+1, -z+1]; (iii) [x+1, y, z]; (iv) [-x+1, -y, -z+1].

The environment sphere of the sodium ion comprises the oxygen atoms O5 and O6 of the chelate, the bridging oxygen atom O5i, the oxygen atom O8 from the coordinated ethanol mol­ecule, and the oxygen atom O1ii from the methyl sulfonyl group of a neighboring mol­ecule (Fig. 2[link]). Using the SHAPE program (Version 2.1; Llunell et al., 2013[Llunell, M., Casanova, D., Cirera, J., Alemany, P. & Alvarez, S. (2013). SHAPE. Shape Software, Barcelona, Spain]), it was determined that the environment of the sodium atom is close to D3h symmetry (trigonal bipyramid) with a convergence factor of 1.6.

3. Supra­molecular features

In the crystal structure of the sodium salt of mesotrione, the mol­ecules are assembled in a polymer chain (Fig. 3[link]). Two types of hydrogen bonds are observed: the first between the oxygen atom of the uncoordinated ethanol mol­ecule (O9A) and the oxygen atom (O8) of the coordinated ethanol mol­ecule [2.870 (4) Å] and the second between the oxygen atom (O8) of a coordinated ethanol mol­ecule and the free oxygen atom (O7) of the keto group of a neighboring mol­ecule not involved in coordination [2.681 (2) Å]. In the structure of the coordination compound, three types of short contacts are observed, viz. C2—H2⋯O6ii [3.229 (3) Å], C7—H7B⋯O4ii [3.200 (3) Å], and C7—H7C⋯O9Aiv [3.356 (4) Å] (symmetry codes are as per Table 3[link]).

Table 4
Experimental details

Crystal data
Chemical formula [Na(C14H12NO7S)]·C2H6O
Mr 453.43
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 9.9014 (5), 10.7214 (6), 11.9401 (6)
α, β, γ (°) 69.789 (3), 71.074 (3), 66.439 (3)
V3) 1064.45 (10)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.22
Crystal size (mm) 0.36 × 0.23 × 0.18
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.679, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 15328, 4340, 3259
Rint 0.039
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.133, 1.05
No. of reflections 4340
No. of parameters 308
No. of restraints 22
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.47, −0.41
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).
[Figure 3]
Figure 3
Crystal packing in a cell with projection onto the ac plane. Hydrogen bonds are highlighted in blue.

4. Experimental

The FT–IR spectra of the solids were recorded in a KBr matrix in the range 4000–400cm−1 using a Perkin-Elmer Spectrum BX2 spectrometer. 1H NMR spectra were recorded using a WR-400 Bruker NMR spectrometer at room temperature in DMSO-d6, with TMS used as the inter­nal standard. Studies on the thermal properties of the sodium salt of mesotrione were conducted using a synchronous TG/DTA analyzer, the Shimadzu DTG-60H. The sample was heated in an air atmosphere to 600°C in aluminum crucibles at a heating rate of 10°C min−1.

5. Synthesis and crystallization

Mesotrione was obtained commercially. Other chemicals and solvents used in this study were purchased from Aldrich and used without further purification.

The sodium salt was prepared as shown in Fig. 4[link], where 2-(4-methyl­sulfonyl-2-nitro­benzo­yl)cyclo­hexane-1,3-dione was added to a freshly prepared sodium methyl­ate solution. For the monovalent metal sodium, the molar ratio of mesotrione to metal ions is 2:1. The resulting mixture was filtered, and the solvent was removed under vacuum. The yellowish crystalline powder (80% yield) was dissolved in a mixture of ethanol and methanol under heating (∼333 K) and then cooled to room temperature. After a while (∼72 h), monocrystals of the sodium salt of mesotrione, which were suitable for X-ray analysis, were formed.

[Figure 4]
Figure 4
Synthesis of the sodium salt of mesotrione.

[NaL(EtOH)]·EtOH: IR (KBr, cm−1): 1642 [νas(C=O)keto], 1582 [νs(C=O)enol], 1524 [νas(NO2)], 1328 [νs(NO2)], 1312 [νas(SO2)], 1148 [νs(SO2)].

[NaL(EtOH)]·EtOH: NMR 1H (400 MHz, DMSO-d6, 298 K, TMS): Δ = 1.75 ppm (m, 2H), 2.17 ppm (m, 4H), 7.29–7.31 ppm (d, 1H), 8.11–8.12 ppm (d, 1H), 8.45 ppm (s, 1H), 3.39 ppm (m, 3H, CH3), 4.39 ppm (m, 2H, OH), 1.05 ppm (m, 6H, CH3), 3.43 ppm (m, 4H, CH2).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. Non-coordinated ethanol mol­ecules forming hydrogen bonds with the coordination fragment are disordered at two positions H9–O9A–C17A–C18A with an occupancy ratio of 0.8 and 0.2 for H9–O9B–C17B–C18B. Both disordered mol­ecules were refined anisotropically, with certain constraints applied to bond lengths and the same Uij components in the minor constituent. C-bound H atoms were positioned geometrically (C—H = 0.95–0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

7. Thermogravimetric analysis

Four different stages of decomposition of the mesotrione-based sodium complex were observed in the investigated temperature range (Fig. 5[link]). The first stage of thermal decomposition is characterized by a distinct exothermic effect and a mass loss of ∼12% in the temperature range of 25–182°C. The exothermic effect is observed at a temperature of 147°C (m.p. = 149–151°C), corresponding to the loss of the first ethanol mol­ecule.

[Figure 5]
Figure 5
The DTA (red line), DrTGA (pink line) and TGA (blue line) weight loss trace for the sodium salt of mesotrione.

At the second stage of the decomposition of the coordination compound in the temperature range 182–281°C, the loss (∼11%) of the second ethanol mol­ecule occurs, which is accompanied by an endothermic effect. The third stage of thermal decomposition is characterized by exothermic effect and a mass loss of ∼8.5% in the temperature range 280–340°C. The exothermic effect is observed at a temperature of 318.8°C, corresponding to the combustion of the entire organic components.

The fourth stage begins at 500°C and ends at 600°C and cannot be detected by the Shimadzu DTG-60H.

The TGV analysis and calculations based on its results show that the third and fourth stages consist of the combustion of the entire organic component of the mol­ecule and the formation of sodium pyro­sulfate.

According to the thermal studies, the fourth stage is accompanied by a strong exothermic effect and includes the further transformation of Na2S2O7 into Na2SO4, which is confirmed by the results of IR spectroscopy (Fig. 6[link]).

[Figure 6]
Figure 6
The IR spectrum for the final product after TGA (Na2SO4).

Supporting information


Computing details top

catena-Poly[[sodium-µ3-2-[(4-methanesulfonyl-2-nitrophenyl)carbonyl]-3-oxocyclohex-1-en-1-olato] ethanol monosolvate] top
Crystal data top
[Na(C14H12NO7S)]·C2H6OZ = 2
Mr = 453.43F(000) = 476
Triclinic, P1Dx = 1.415 Mg m3
a = 9.9014 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.7214 (6) ÅCell parameters from 4340 reflections
c = 11.9401 (6) Åθ = 1.9–26.4°
α = 69.789 (3)°µ = 0.22 mm1
β = 71.074 (3)°T = 173 K
γ = 66.439 (3)°Prizm, yellow
V = 1064.45 (10) Å30.36 × 0.23 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
3259 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.039
φ and ω scansθmax = 26.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1212
Tmin = 0.679, Tmax = 0.745k = 1310
15328 measured reflectionsl = 1414
4340 independent reflections
Refinement top
Refinement on F222 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0686P)2 + 0.3718P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4340 reflectionsΔρmax = 0.47 e Å3
308 parametersΔρmin = 0.41 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Na10.46287 (10)0.49578 (10)0.15007 (8)0.0271 (2)
S10.20329 (6)0.18062 (6)0.76443 (5)0.02386 (17)
O10.34311 (18)0.29415 (18)0.78282 (15)0.0337 (4)
O20.2105 (2)0.04798 (18)0.76771 (16)0.0361 (5)
O30.2679 (2)0.6168 (2)0.3932 (2)0.0674 (8)
O40.0518 (2)0.60798 (18)0.27209 (15)0.0346 (4)
O50.37328 (18)0.43201 (18)0.02826 (14)0.0295 (4)
O60.27562 (18)0.4081 (2)0.27717 (15)0.0317 (4)
O70.07874 (17)0.3379 (2)0.23648 (15)0.0315 (4)
O80.6424 (2)0.3351 (2)0.26488 (16)0.0312 (4)
H80.723 (4)0.338 (3)0.249 (3)0.046 (10)*
N10.1331 (2)0.5579 (2)0.36258 (18)0.0288 (5)
C10.0937 (2)0.2401 (2)0.6198 (2)0.0201 (5)
C20.1495 (2)0.3751 (2)0.5520 (2)0.0204 (5)
H20.2431640.4375570.5836060.025*
C30.0661 (2)0.4176 (2)0.4367 (2)0.0198 (5)
C40.0718 (2)0.3301 (2)0.38681 (19)0.0212 (5)
C50.1247 (3)0.1941 (3)0.4576 (2)0.0331 (6)
H50.2187520.1316420.4264090.040*
C60.0421 (3)0.1481 (3)0.5734 (2)0.0310 (6)
H60.0784920.0544890.6201040.037*
C70.1024 (3)0.1529 (3)0.8723 (2)0.0360 (6)
H7A0.1556090.1154100.9542610.054*
H7B0.0938520.2421290.8689640.054*
H7C0.0012510.0856140.8538470.054*
C80.1760 (2)0.3745 (2)0.2656 (2)0.0228 (5)
C90.1652 (2)0.3566 (2)0.1551 (2)0.0214 (5)
C100.0378 (3)0.3228 (2)0.1541 (2)0.0226 (5)
C110.0423 (3)0.2744 (3)0.0483 (2)0.0257 (5)
H11A0.0167650.3543710.0075900.031*
H11B0.0060940.2005590.0795090.031*
C120.2020 (3)0.2168 (3)0.0229 (2)0.0276 (5)
H12A0.1988510.1948470.0958470.033*
H12B0.2584930.1292740.0289040.033*
C130.2798 (3)0.3266 (3)0.0617 (2)0.0277 (5)
H13A0.3858980.2868900.1031360.033*
H13B0.2295790.4087570.1216120.033*
C140.2778 (2)0.3753 (2)0.0438 (2)0.0222 (5)
C150.5810 (3)0.3345 (3)0.3924 (2)0.0428 (7)
H15A0.4711760.3511260.4101640.051*
H15B0.5945310.4134660.4075640.051*
C160.6491 (4)0.2045 (4)0.4767 (3)0.0584 (9)
H16A0.6016520.2121920.5609940.088*
H16B0.6338680.1258450.4641230.088*
H16C0.7574140.1882820.4615180.088*
O9A0.7557 (4)0.0676 (4)0.2067 (4)0.0470 (10)0.815 (5)
C17A0.6460 (4)0.0028 (4)0.2653 (3)0.0462 (11)0.815 (5)
H17B0.6038390.0074050.3502340.055*0.815 (5)
H17A0.6951690.1042160.2687230.055*0.815 (5)
C18A0.5179 (5)0.0571 (5)0.1970 (5)0.0668 (14)0.815 (5)
H18C0.4444880.0068210.2392010.100*0.815 (5)
H18B0.4679830.1571190.1947440.100*0.815 (5)
H18A0.5592280.0456020.1133090.100*0.815 (5)
O9B0.7192 (18)0.101 (2)0.174 (2)0.051 (4)0.185 (5)
C17B0.5847 (18)0.0752 (18)0.1820 (15)0.045 (2)0.185 (5)
H17C0.6013980.0309550.1161760.054*0.185 (5)
H17D0.5018480.1657500.1699590.054*0.185 (5)
C18B0.538 (2)0.021 (2)0.3067 (16)0.080 (4)0.185 (5)
H18D0.4458480.0364550.3092740.120*0.185 (5)
H18E0.6192230.1116300.3181950.120*0.185 (5)
H18F0.5197380.0230780.3719440.120*0.185 (5)
H90.709 (4)0.153 (4)0.223 (4)0.078 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0234 (5)0.0371 (6)0.0197 (5)0.0147 (4)0.0002 (4)0.0042 (4)
S10.0249 (3)0.0274 (3)0.0163 (3)0.0136 (3)0.0001 (2)0.0001 (2)
O10.0266 (9)0.0376 (11)0.0238 (9)0.0107 (8)0.0063 (7)0.0027 (8)
O20.0493 (11)0.0315 (10)0.0288 (10)0.0248 (9)0.0026 (8)0.0005 (8)
O30.0473 (14)0.0426 (13)0.0484 (14)0.0102 (10)0.0132 (11)0.0123 (10)
O40.0408 (11)0.0342 (10)0.0242 (9)0.0214 (9)0.0043 (8)0.0066 (8)
O50.0272 (9)0.0438 (11)0.0191 (9)0.0216 (8)0.0012 (7)0.0036 (8)
O60.0289 (9)0.0544 (12)0.0191 (9)0.0259 (9)0.0009 (7)0.0072 (8)
O70.0196 (9)0.0551 (12)0.0245 (9)0.0200 (8)0.0034 (7)0.0137 (8)
O80.0224 (10)0.0427 (11)0.0277 (10)0.0150 (8)0.0043 (8)0.0035 (8)
N10.0326 (12)0.0253 (11)0.0214 (11)0.0096 (10)0.0015 (9)0.0015 (9)
C10.0213 (12)0.0264 (13)0.0138 (11)0.0117 (10)0.0014 (9)0.0038 (9)
C20.0181 (11)0.0241 (13)0.0179 (11)0.0072 (10)0.0001 (9)0.0070 (10)
C30.0226 (12)0.0209 (12)0.0173 (11)0.0099 (10)0.0054 (9)0.0019 (9)
C40.0199 (12)0.0302 (13)0.0138 (11)0.0119 (10)0.0029 (9)0.0020 (10)
C50.0224 (13)0.0358 (15)0.0222 (13)0.0007 (11)0.0027 (10)0.0026 (11)
C60.0276 (13)0.0248 (13)0.0237 (13)0.0031 (11)0.0025 (10)0.0044 (11)
C70.0393 (16)0.0509 (18)0.0184 (13)0.0244 (14)0.0039 (11)0.0001 (12)
C80.0180 (11)0.0279 (13)0.0176 (12)0.0083 (10)0.0021 (9)0.0006 (10)
C90.0182 (11)0.0284 (13)0.0156 (11)0.0101 (10)0.0011 (9)0.0022 (10)
C100.0213 (12)0.0235 (12)0.0195 (12)0.0078 (10)0.0054 (10)0.0004 (10)
C110.0251 (13)0.0313 (14)0.0237 (13)0.0139 (11)0.0043 (10)0.0057 (11)
C120.0297 (13)0.0288 (14)0.0231 (13)0.0094 (11)0.0042 (10)0.0064 (11)
C130.0276 (13)0.0368 (15)0.0164 (12)0.0149 (11)0.0007 (10)0.0039 (10)
C140.0188 (11)0.0264 (13)0.0165 (11)0.0069 (10)0.0048 (9)0.0009 (10)
C150.0311 (15)0.060 (2)0.0326 (16)0.0143 (14)0.0024 (12)0.0106 (14)
C160.067 (2)0.065 (2)0.046 (2)0.0285 (19)0.0158 (17)0.0064 (17)
O9A0.034 (2)0.042 (2)0.059 (3)0.0073 (17)0.0052 (15)0.0159 (18)
C17A0.056 (3)0.037 (2)0.044 (2)0.0167 (18)0.0024 (18)0.0139 (17)
C18A0.047 (3)0.063 (3)0.090 (4)0.023 (2)0.009 (3)0.017 (3)
O9B0.034 (6)0.048 (6)0.057 (7)0.005 (5)0.001 (5)0.017 (5)
C17B0.056 (4)0.037 (4)0.045 (4)0.013 (3)0.006 (3)0.020 (3)
C18B0.052 (6)0.075 (6)0.097 (7)0.015 (6)0.010 (6)0.015 (6)
Geometric parameters (Å, º) top
Na1—O62.2815 (17)C9—C101.449 (3)
Na1—O52.3191 (18)C10—C111.504 (3)
Na1—O5i2.3215 (17)C11—C121.521 (3)
Na1—O82.347 (2)C11—H11A0.9900
Na1—O1ii2.3699 (19)C11—H11B0.9900
Na1—Na1i3.3928 (18)C12—C131.520 (3)
S1—O21.4386 (18)C12—H12A0.9900
S1—O11.4445 (18)C12—H12B0.9900
S1—C71.754 (3)C13—C141.514 (3)
S1—C11.773 (2)C13—H13A0.9900
O3—N11.218 (3)C13—H13B0.9900
O4—N11.218 (2)C15—C161.459 (4)
O5—C141.251 (3)C15—H15A0.9900
O6—C81.237 (3)C15—H15B0.9900
O7—C101.245 (3)C16—H16A0.9800
O8—C151.443 (3)C16—H16B0.9800
O8—H80.76 (3)C16—H16C0.9800
N1—C31.466 (3)O9A—C17A1.4270 (19)
C1—C21.377 (3)O9A—H90.90 (4)
C1—C61.386 (3)C17A—C18A1.531 (2)
C2—C31.384 (3)C17A—H17B0.9900
C2—H20.9500C17A—H17A0.9900
C3—C41.390 (3)C18A—H18C0.9800
C4—C51.393 (3)C18A—H18B0.9800
C4—C81.528 (3)C18A—H18A0.9800
C5—C61.393 (3)O9B—C17B1.429 (2)
C5—H50.9500O9B—H90.91 (4)
C6—H60.9500C17B—C18B1.539 (2)
C7—H7A0.9800C17B—H17C0.9900
C7—H7B0.9800C17B—H17D0.9900
C7—H7C0.9800C18B—H18D0.9800
C8—C91.440 (3)C18B—H18E0.9800
C9—C141.442 (3)C18B—H18F0.9800
O6—Na1—O573.86 (6)O7—C10—C9121.8 (2)
O6—Na1—O5i159.89 (7)O7—C10—C11118.6 (2)
O5—Na1—O5i86.04 (6)C9—C10—C11119.58 (19)
O6—Na1—O893.06 (7)C10—C11—C12112.88 (19)
O5—Na1—O8122.94 (7)C10—C11—H11A109.0
O5i—Na1—O898.52 (7)C12—C11—H11A109.0
O6—Na1—O1ii90.74 (7)C10—C11—H11B109.0
O5—Na1—O1ii124.59 (7)C12—C11—H11B109.0
O5i—Na1—O1ii100.41 (7)H11A—C11—H11B107.8
O8—Na1—O1ii110.49 (7)C13—C12—C11108.7 (2)
O6—Na1—Na1i116.90 (6)C13—C12—H12A109.9
O5—Na1—Na1i43.05 (4)C11—C12—H12A109.9
O5i—Na1—Na1i42.99 (4)C13—C12—H12B109.9
O8—Na1—Na1i118.24 (6)C11—C12—H12B109.9
O1ii—Na1—Na1i120.78 (6)H12A—C12—H12B108.3
O2—S1—O1118.31 (11)C14—C13—C12113.39 (19)
O2—S1—C7108.75 (13)C14—C13—H13A108.9
O1—S1—C7108.40 (12)C12—C13—H13A108.9
O2—S1—C1107.70 (10)C14—C13—H13B108.9
O1—S1—C1107.16 (11)C12—C13—H13B108.9
C7—S1—C1105.83 (11)H13A—C13—H13B107.7
S1—O1—Na1ii144.85 (11)O5—C14—C9123.8 (2)
C14—O5—Na1136.71 (15)O5—C14—C13117.54 (19)
C14—O5—Na1i129.29 (15)C9—C14—C13118.67 (19)
Na1—O5—Na1i93.96 (6)O8—C15—C16114.3 (3)
C8—O6—Na1136.56 (15)O8—C15—H15A108.7
C15—O8—Na1109.47 (15)C16—C15—H15A108.7
C15—O8—H8108 (2)O8—C15—H15B108.7
Na1—O8—H8122 (2)C16—C15—H15B108.7
O3—N1—O4123.5 (2)H15A—C15—H15B107.6
O3—N1—C3118.18 (19)C15—C16—H16A109.5
O4—N1—C3118.3 (2)C15—C16—H16B109.5
C2—C1—C6120.9 (2)H16A—C16—H16B109.5
C2—C1—S1119.19 (17)C15—C16—H16C109.5
C6—C1—S1119.77 (18)H16A—C16—H16C109.5
C1—C2—C3118.5 (2)H16B—C16—H16C109.5
C1—C2—H2120.8C17A—O9A—H9104 (2)
C3—C2—H2120.8O9A—C17A—C18A111.3 (4)
C2—C3—C4122.8 (2)O9A—C17A—H17B109.4
C2—C3—N1117.48 (19)C18A—C17A—H17B109.4
C4—C3—N1119.59 (19)O9A—C17A—H17A109.4
C3—C4—C5117.3 (2)C18A—C17A—H17A109.4
C3—C4—C8125.3 (2)H17B—C17A—H17A108.0
C5—C4—C8117.2 (2)C17A—C18A—H18C109.5
C4—C5—C6121.1 (2)C17A—C18A—H18B109.5
C4—C5—H5119.5H18C—C18A—H18B109.5
C6—C5—H5119.5C17A—C18A—H18A109.5
C1—C6—C5119.4 (2)H18C—C18A—H18A109.5
C1—C6—H6120.3H18B—C18A—H18A109.5
C5—C6—H6120.3C17B—O9B—H9115 (3)
S1—C7—H7A109.5O9B—C17B—C18B111.6 (17)
S1—C7—H7B109.5O9B—C17B—H17C109.3
H7A—C7—H7B109.5C18B—C17B—H17C109.3
S1—C7—H7C109.5O9B—C17B—H17D109.3
H7A—C7—H7C109.5C18B—C17B—H17D109.3
H7B—C7—H7C109.5H17C—C17B—H17D108.0
O6—C8—C9126.1 (2)C17B—C18B—H18D109.5
O6—C8—C4113.4 (2)C17B—C18B—H18E109.5
C9—C8—C4119.87 (19)H18D—C18B—H18E109.5
C8—C9—C14120.88 (19)C17B—C18B—H18F109.5
C8—C9—C10119.83 (19)H18D—C18B—H18F109.5
C14—C9—C10119.3 (2)H18E—C18B—H18F109.5
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9A—H9···O80.90 (4)1.98 (4)2.875 (5)170 (4)
O9B—H9···O80.91 (4)1.98 (4)2.81 (2)152 (4)
O8—H8···O7iii0.76 (3)1.92 (3)2.681 (2)171 (3)
C2—H2···O6ii0.952.593.229 (3)125
C7—H7B···O4ii0.982.433.200 (3)135
C7—H7C···O9Aiv0.982.373.349 (5)176
Symmetry codes: (ii) x, y+1, z+1; (iii) x+1, y, z; (iv) x+1, y, z+1.
Comparison between some geometrical parameters (Å) in the chelate ring for HL and NaL top
Note that the numbering of atoms in the HL structure has brought into accordance with the numbering in the published structure.
BondNaLHLΔ
C14—O51.252 (3)1.314 (2)0.062
C9—C141.442 (3)1.382 (2)0.06
C8—C91.439 (3)1.448 (2)0.009
C8—O61.237 (3)1.239 (2)0.02
C4—C81.528 (3)1.514 (2)0.014
 

Acknowledgements

This work was supported by the Taras Shevchenko National University of Kyiv

References

First citationBruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHou, Y.-J., Chu, W.-Y., Sui, J. & Sun, Z.-Z. (2010). Z. Kristallogr. New Cryst. Struct. 225, 465–466.  CrossRef CAS Google Scholar
First citationKang, G., Kim, J., Park, H. & Kim, T. H. (2015). Acta Cryst. E71, o548–o549.  CSD CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLe Person, A., Siampiringue, M., Sarakha, M., Moncomble, A. & Cornard, J.-P. (2016). J. Photochem. Photobiol. Chem. 315, 76–86.  CrossRef CAS Google Scholar
First citationLlunell, M., Casanova, D., Cirera, J., Alemany, P. & Alvarez, S. (2013). SHAPE. Shape Software, Barcelona, Spain  Google Scholar
First citationMitchell, G., Bartlett, D. W., Fraser, T. E. M., Hawkes, T. R., Holt, D. C., Townson, J. K. & Wichert, R. A. (2001). Pest. Manag. Sci. 57, 120–128.  Web of Science CrossRef PubMed CAS Google Scholar
First citationReynolds, J. D., James, J. R. & Pearson, A. M. (2007). US Patent 20070207929 A1.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWu, C.-S., Huang, J.-L., Sun, Y.-S. & Yang, D.-Y. (2002). J. Med. Chem. 45, 2222–2228.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds