research communications
Structural characterization of a new samarium–sodium heterometallic coordination polymer
aPacific Northwest National Laboratory, Richland, WA, 99354, USA, and bUniversity of Notre Dame, South Bend, IN 46556, USA
*Correspondence e-mail: ana.arteaga@pnnl.gov
Lanthanide-containing materials are of interest in the field of crystal engineering because of their unique properties and distinct structure types. In this context, a new samarium–sodium heterometallic coordination polymer, poly[tetrakis(μ2-2-formyl-6-methoxyphenolato)samarium(III)sodium(I)], {[SmNa(C8H7O3)4]·solvent}n (Sm-1), was synthesized and crystallized via slow evaporation from a mixture of ethanol and acetonitrile. The compound features alternating SmIII and NaI ions, which are linked by ortho-vanillin (o-vanillin) ligands to form a mono-periodic chain-like coordination polymer. The chains propagate along the [001] direction. Residual electron density of disordered solvent molecules in the void space could not be reasonably modeled, thus the SQUEEZE function was applied. The structural, vibrational, and optical properties are reported.
Keywords: crystal structure; samarium; o-vanillin; coordination polymer; lanthanide chemistry.
CCDC reference: 2329845
1. Chemical context
The synthesis of lanthanide compounds with 2-hydroxy-3-methoxy benzaldehyde (o-vanillin) ligand derivatives is of great interest in the field of crystal engineering because of their photophysical and magnetic properties (Chaudhari et al., 2012; Song et al., 2017; Novitchi et al., 2012; Albrecht, 2001). In crystal engineering, the ligand of choice has a large effect on the dimensionality of lanthanide-containing compounds owing to their high-coordination environments (Bunzli & Piguet, 2002). For example, ligands with multiple binding sites are ideal because of their ability to bridge metal centers or act as capping ligands (Heuer-Jungemann et al., 2019; Cheng & Yang, 2017). o-Vanillin is a popular ligand for heterometallic synthesis due to its ability to generate a variety of compounds through its multiple binding sites (carboxylate and methoxy groups; Andruh, 2015). While there is an extensive library of lanthanide and o-vanillin-containing compounds, ranging in dimensionality from small molecules to coordination polymers (CPs) and metal organic frameworks (MOFs) (CSD, version 2021.3.0; Groom et al., 2016), we are not aware of any reports containing o-vanillin, SmIII and NaI, and have found only a single report containing both o-vanillin and SmIII (Griffiths et al., 2016). However, heterometallic lanthanide–transition-metal compounds with o-vanillin have been reported (Costes et al., 2015, 2018; Kırpık et al., 2019). These compounds crystallize as discrete molecular dinuclear units. To the best of our knowledge, the only reported lanthanide–NaI–o-vanillin-containing compound crystallized as an aggregate structure with a hydrophobic cavity (Li et al., 2022). The lanthanide–NaI–o-vanillin compound isolated by Li et al. is vastly different from the structure described here, [SmNa(C8H7O3)4]·solvent (Sm-1). Herein we report the synthesis, and characterization of an interesting new samarium–sodium heterometallic CP synthesized with o-vanillin ligands.
2. Structural commentary
The compound [SmNa(C8H7O3)4]·solvent (Sm-1) crystallizes in the P21/c The features one crystallographically unique SmIII and NaI metal center, and four o-vanillin ligands (Fig. 1). Each metal center is coordinated by eight oxygen atoms, each displaying a distorted square-antiprismatic geometry with a local C1 symmetry (Fig. 1). The SmIII metal centers are bound to four o-vanillin ligands (κ2) with an average Sm—O bond length of 2.395 (2) Å. The NaI cations are bound to six o-vanillin ligands, two of which are bidentate (κ2) and four are monodentate (κ1), with average Na—O bond lengths of 2.530 (4) Å. The metal-to-oxygen bond distances are typical of those reported in similar systems (Ma et al., 2021; Peng et al., 2011). The SmIII and NaI atoms alternate and are bridged together by three μ2-o-vanillin ligands that each display unique bonding environments through the phenoxo, aldehydic, and methoxy groups (see Fig. S1 in the supporting information). The first o-vanillin ligand binds the alternating SmIII and NaI atoms through the phenoxo and aldehydic groups, leaving the methoxy group uncoordinated, Fig. S1a. The second o-vanillin ligand bridges the SmIII and NaI atoms using the phenolic group, with the aldehydic and methoxy groups binding solely to the SmIII and NaI atoms, respectively, Fig. S1b. Lastly, the third o-vanillin ligand bridges the alternating SmIII and NaI atoms via the aldehydic and phenoxo groups while the methoxy group binds solely to an adjacent NaI atom, Fig. S1c. This creates a bimetallic helical chain that propagates along the [001] direction (Fig. 2). The potential solvent area volume of Sm-1 is 10.6% per (calculated using PLATON; Spek, 2020).
3. Supramolecular features
The structure was analyzed for non-covalent interactions and no evidence for π–π interactions was observed. However, a series of close atom contacts (C—H⋯C) are present between adjacent chains (Table 1). The supramolecular chains are stabilized primarily through C—H⋯C interactions, allowing the stacking of adjacent chains in the structure.
|
4. Database survey
The o-vanillin ligand is widely used in coordination chemistry with over 70 structures containing o-vanillin and lanthanides reported in the Cambridge Structural Database (CSD, version 2021.3.0; Groom et al., 2016). A survey of structures containing samarium and o-vanillin resulted in only one compound, [Ni2Sm2(C14H11NO3)4(C8O3H7)2(H2O)2]·4CH3CN, a heterometallic and heteroleptic cluster containing SmIII and NaI metal centers bound by 2-(E)-{[(2-hydroxyphenyl)imino]methyl}-6-methoxyphenol ligands (Griffiths et al., 2016). In this compound, the o-vanillin ligands act as capping ligands and are bidentate (κ2) in fashion, whereas in Sm-1, the o-vanillin ligands act as bridging ligands that connect the SmIII and NaI atoms to form a mono-periodic CP.
5. Synthesis and crystallization
The compound Sm-1 was synthesized by dissolving 10 mg of SmIII chloride hexahydrate (SmCl3·6H2O, Strem Chemicals, 99.9%) in 208.5 µL of hydrochloric acid (HCl, Sigma Aldrich, 37% w/w). The mixture was slowly heated to dryness, and the residue was dissolved in 500 µL of hydrobromic acid (HBr, Aldrich, 48% w/w ACS reagent). The solution was gently heated to dryness and once cooled, the residue was dissolved in 655 µL ethanol (Fisher, 200 proof) to form a 0.042 M SmIII solution with a pH near 1.4 (Solution A). A 0.105 M o-vanillin solution (Solution B) was prepared by dissolving o-vanillin (TCI, >99.0%) in an ethanol/acetonitrile (1:1, acetonitrile: Fisher, 99.5% certified ACS) mixture. The following were added to a 4 mL glass reaction vial: 100 µL Solution A, 400 µL Solution B, and 33.4 µL 0.5 M NaOH (aqueous, Sigma Aldrich, >98.0%), yielding a yellow solution with a pH of 7.7. The vial was covered with parafilm that had a small slash in it to allow slow evaporation of the solvent. After 4 days, yellow acicular crystals grew from the reaction solution in radial bursts (Fig. 3). The synthesis of Sm-1 has an 80% yield. Several synthetic variations were explored to improve the single-crystal diffraction quality. Adding an additional equivalent of NaOH brought the initial pH to ∼8.5 and yielded the same phase, but the crystals were too small for single-crystal studies. Decreasing the NaOH equivalents (in the pH range of 2–4) did not yield any quality crystalline product upon evaporation. In addition, simply starting with SmCl3·6H2O salt, instead of the HCl/HBr Sm stock protocol, indeed crystallized Sm-1; however, these were also too small for individual manipulation. Although not reported here, the synthesis was developed as an analogue for transuranic chemistry, in which strong acid stock solutions are a practicality and serve as redox control.
6. Experimental details
Sm-1 crystals were harvested, washed with ethanol, and mounted to MiTeGen MicroMounts from immersion oil. Data were collected on a Bruker D8 Venture diffractometer equipped with a Photon III detector using a Mo anode micro-focus source (diamond IμS 3.0) and φ and ω scans, at 100 K. The collection strategy was calculated factoring in the known symmetry and collected with at least triplicate multiplicity. The data were reduced using SAINT (Bruker, 2014) and multi-scan absorption correction was applied using SADABS (Krause et al., 2015), both within the APEX4 software (Bruker, 2014). Using Olex2 (Dolomanov et al., 2009), the structure was solved with the SHELXT (Sheldrick, 2015a) structure solution program and refined with the SHELXL (Sheldrick, 2015b) package using least-squares minimization. Additional experimental and instrumentation details on powder X-ray diffraction, infrared spectroscopy, and diffuse reflectance spectroscopy can be found in the supporting information.
7. Refinement
Crystal data, data collection, and structure Sm-1 are summarized in Table 2. The H atoms associated with the carbon atoms were affixed to the respective parent atoms using a riding model. Residual electron density of disordered solvent molecules in the void space could not be reasonably modeled, thus the SQUEEZE function was applied via PLATON (Spek, 2015, 2020). A total of 47 electrons were accounted for by SQUEEZE and removed. This amounts to about 2 solvent molecules (acetonitrile and/or ethanol) per While most of the reaction medium was acetonitrile and ethanol, water molecules are also possible from the aqueous NaOH spike. The Sm-1 single crystals diffracted weakly, perhaps owing to the small crystal size. Attempts to crystallize and select higher quality single crystals were unsuccessful. Bond-valence analysis on the metal centers yields summations of 3.30 and 0.98 for SmIII and NaI, respectively (Brown & Altermatt, 1985; Yee et al., 2019).
details ofSupporting information
CCDC reference: 2329845
https://doi.org/10.1107/S2056989024001051/oo2002sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024001051/oo2002Isup2.hkl
Word document (Characterization details, experimental diffractogram of Sm-1, and FTIR spectrum and diffuse reflectance spectrum of Sm-1 are provided.). DOI: https://doi.org/10.1107/S2056989024001051/oo2002sup3.docx
Supporting information file. DOI: https://doi.org/10.1107/S2056989024001051/oo2002Isup4.mol
[SmNa(C8H7O3)4][+solvent] | F(000) = 1556 |
Mr = 777.88 | Dx = 1.581 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 11.5512 (7) Å | Cell parameters from 6204 reflections |
b = 24.4768 (14) Å | θ = 2.4–25.1° |
c = 12.8355 (6) Å | µ = 1.87 mm−1 |
β = 115.742 (2)° | T = 100 K |
V = 3268.9 (3) Å3 | Needle, yellow |
Z = 4 | 0.05 × 0.01 × 0.002 mm |
Bruker D8 Venture with photon detector diffractometer | 4562 reflections with I > 2σ(I) |
Radiation source: Microfocus sealed source | Rint = 0.147 |
φ and ω scans | θmax = 25.7°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −14→14 |
k = −29→29 | |
41476 measured reflections | l = −15→15 |
6204 independent reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.050 | H-atom parameters constrained |
wR(F2) = 0.108 | w = 1/[σ2(Fo2) + (0.0186P)2 + 17.6315P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.002 |
6204 reflections | Δρmax = 0.76 e Å−3 |
419 parameters | Δρmin = −1.13 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Sm1 | 0.54972 (3) | 0.69282 (2) | 0.62323 (3) | 0.01414 (10) | |
Na2 | 0.5507 (2) | 0.70628 (10) | 0.9140 (2) | 0.0195 (6) | |
O11 | 0.3989 (4) | 0.75247 (18) | 0.4906 (4) | 0.0175 (10) | |
O9 | 0.7502 (4) | 0.84841 (19) | 0.5347 (4) | 0.0222 (10) | |
O6 | 0.4809 (4) | 0.61822 (18) | 0.9430 (4) | 0.0194 (10) | |
O3 | 0.8796 (5) | 0.55301 (19) | 0.7600 (4) | 0.0270 (11) | |
O8 | 0.6755 (4) | 0.76769 (19) | 0.6213 (4) | 0.0219 (10) | |
O12 | 0.2499 (4) | 0.79508 (19) | 0.2874 (4) | 0.0252 (11) | |
O5 | 0.4883 (4) | 0.64323 (18) | 0.7484 (4) | 0.0202 (10) | |
O2 | 0.6974 (4) | 0.62447 (19) | 0.6429 (4) | 0.0223 (11) | |
O10 | 0.4681 (4) | 0.75359 (18) | 0.7262 (4) | 0.0203 (10) | |
O7 | 0.7195 (5) | 0.70785 (18) | 0.8182 (4) | 0.0246 (11) | |
O1 | 0.5810 (4) | 0.6879 (2) | 0.4454 (4) | 0.0249 (11) | |
O4 | 0.3873 (5) | 0.62479 (19) | 0.5110 (4) | 0.0252 (11) | |
C19 | 1.0010 (6) | 0.7857 (3) | 0.8527 (6) | 0.0229 (15) | |
H19 | 1.056559 | 0.770846 | 0.925847 | 0.027* | |
C4 | 0.9473 (6) | 0.5771 (3) | 0.5065 (6) | 0.0242 (15) | |
H4 | 1.006658 | 0.566356 | 0.477312 | 0.029* | |
C22 | 0.8385 (6) | 0.8297 (3) | 0.6396 (6) | 0.0192 (14) | |
C15 | 0.4218 (6) | 0.6003 (2) | 0.7474 (6) | 0.0145 (13) | |
C6 | 0.8746 (6) | 0.5710 (3) | 0.6568 (6) | 0.0199 (14) | |
C21 | 0.9621 (6) | 0.8489 (3) | 0.6987 (6) | 0.0211 (15) | |
H21 | 0.991966 | 0.877738 | 0.667205 | 0.025* | |
C7 | 0.7722 (6) | 0.6096 (3) | 0.5976 (6) | 0.0160 (13) | |
C23 | 0.7901 (6) | 0.7854 (3) | 0.6825 (6) | 0.0180 (14) | |
C18 | 0.8738 (6) | 0.7657 (3) | 0.7937 (6) | 0.0195 (14) | |
C30 | 0.2253 (6) | 0.8102 (3) | 0.3781 (5) | 0.0196 (13) | |
C25 | 0.3742 (7) | 0.7852 (3) | 0.6983 (6) | 0.0214 (15) | |
H25 | 0.357064 | 0.799463 | 0.758981 | 0.026* | |
C31 | 0.3105 (6) | 0.7860 (3) | 0.4853 (6) | 0.0185 (14) | |
C17 | 0.8289 (7) | 0.7282 (3) | 0.8549 (6) | 0.0203 (15) | |
H17 | 0.888831 | 0.717983 | 0.930675 | 0.024* | |
C20 | 1.0441 (7) | 0.8258 (3) | 0.8057 (6) | 0.0268 (16) | |
H20 | 1.130164 | 0.838390 | 0.845323 | 0.032* | |
C29 | 0.1314 (7) | 0.8462 (3) | 0.3702 (7) | 0.0271 (16) | |
H29 | 0.077035 | 0.861599 | 0.297210 | 0.033* | |
C3 | 0.8513 (6) | 0.6128 (3) | 0.4460 (6) | 0.0215 (15) | |
H3 | 0.843275 | 0.626777 | 0.374140 | 0.026* | |
C26 | 0.2898 (6) | 0.8020 (3) | 0.5821 (6) | 0.0196 (14) | |
C14 | 0.4154 (6) | 0.5839 (3) | 0.8518 (6) | 0.0185 (14) | |
C5 | 0.9586 (6) | 0.5560 (3) | 0.6128 (6) | 0.0216 (15) | |
H5 | 1.025602 | 0.530931 | 0.654560 | 0.026* | |
C28 | 0.1143 (7) | 0.8608 (3) | 0.4684 (7) | 0.0330 (19) | |
H28 | 0.047552 | 0.885288 | 0.461531 | 0.040* | |
C9 | 0.3416 (7) | 0.5839 (3) | 0.5370 (6) | 0.0272 (16) | |
H9 | 0.294351 | 0.559717 | 0.475132 | 0.033* | |
C1 | 0.6639 (7) | 0.6662 (3) | 0.4223 (6) | 0.0211 (15) | |
H1 | 0.660792 | 0.675538 | 0.349272 | 0.025* | |
C2 | 0.7627 (6) | 0.6294 (3) | 0.4899 (6) | 0.0183 (14) | |
C11 | 0.2853 (7) | 0.5207 (3) | 0.6534 (6) | 0.0255 (16) | |
H11 | 0.240991 | 0.499080 | 0.586178 | 0.031* | |
C10 | 0.3508 (7) | 0.5683 (3) | 0.6477 (6) | 0.0218 (15) | |
C16 | 0.4904 (7) | 0.6026 (3) | 1.0538 (6) | 0.0238 (16) | |
H16A | 0.542757 | 0.629416 | 1.111908 | 0.036* | |
H16B | 0.530618 | 0.566523 | 1.074545 | 0.036* | |
H16C | 0.404221 | 0.601242 | 1.050900 | 0.036* | |
C12 | 0.2858 (7) | 0.5058 (3) | 0.7564 (7) | 0.0280 (17) | |
H12 | 0.242187 | 0.473566 | 0.760530 | 0.034* | |
C32 | 0.1628 (7) | 0.8160 (3) | 0.1762 (6) | 0.0316 (18) | |
H32A | 0.190174 | 0.803721 | 0.117616 | 0.047* | |
H32B | 0.163046 | 0.856006 | 0.178571 | 0.047* | |
H32C | 0.075922 | 0.802486 | 0.156396 | 0.047* | |
C13 | 0.3503 (7) | 0.5377 (3) | 0.8560 (6) | 0.0227 (15) | |
H13 | 0.348877 | 0.527208 | 0.926644 | 0.027* | |
C27 | 0.1937 (7) | 0.8398 (3) | 0.5735 (7) | 0.0319 (18) | |
H27 | 0.184498 | 0.850406 | 0.640731 | 0.038* | |
C8 | 0.9725 (8) | 0.5111 (3) | 0.8178 (7) | 0.039 (2) | |
H8A | 0.960792 | 0.480832 | 0.764274 | 0.059* | |
H8B | 0.960716 | 0.497837 | 0.884633 | 0.059* | |
H8C | 1.059277 | 0.526134 | 0.844102 | 0.059* | |
C24 | 0.7805 (7) | 0.8960 (3) | 0.4863 (7) | 0.0286 (17) | |
H24A | 0.857600 | 0.888943 | 0.474678 | 0.043* | |
H24B | 0.796381 | 0.926870 | 0.539359 | 0.043* | |
H24C | 0.708379 | 0.904619 | 0.411926 | 0.043* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sm1 | 0.01358 (16) | 0.01627 (16) | 0.01311 (16) | 0.00116 (16) | 0.00628 (12) | 0.00091 (16) |
Na2 | 0.0222 (14) | 0.0203 (14) | 0.0167 (13) | −0.0018 (10) | 0.0090 (11) | −0.0019 (10) |
O11 | 0.012 (2) | 0.019 (2) | 0.018 (2) | 0.0034 (18) | 0.0026 (19) | 0.0009 (19) |
O9 | 0.021 (3) | 0.025 (3) | 0.021 (3) | −0.002 (2) | 0.009 (2) | 0.008 (2) |
O6 | 0.023 (3) | 0.021 (2) | 0.015 (2) | −0.003 (2) | 0.009 (2) | 0.0001 (19) |
O3 | 0.026 (3) | 0.026 (3) | 0.025 (3) | 0.009 (2) | 0.008 (2) | 0.010 (2) |
O8 | 0.015 (2) | 0.031 (3) | 0.014 (2) | −0.006 (2) | 0.001 (2) | 0.002 (2) |
O12 | 0.021 (3) | 0.030 (3) | 0.020 (3) | 0.006 (2) | 0.005 (2) | 0.005 (2) |
O5 | 0.021 (3) | 0.021 (2) | 0.022 (3) | −0.001 (2) | 0.011 (2) | −0.004 (2) |
O2 | 0.021 (3) | 0.028 (3) | 0.020 (3) | 0.014 (2) | 0.010 (2) | 0.010 (2) |
O10 | 0.025 (3) | 0.018 (2) | 0.018 (2) | 0.000 (2) | 0.010 (2) | −0.0058 (19) |
O7 | 0.027 (3) | 0.024 (3) | 0.021 (3) | −0.007 (2) | 0.009 (2) | 0.003 (2) |
O1 | 0.026 (3) | 0.033 (3) | 0.021 (2) | 0.011 (2) | 0.014 (2) | 0.005 (2) |
O4 | 0.029 (3) | 0.029 (3) | 0.018 (3) | −0.010 (2) | 0.011 (2) | −0.004 (2) |
C19 | 0.015 (4) | 0.032 (4) | 0.017 (4) | 0.007 (3) | 0.003 (3) | −0.002 (3) |
C4 | 0.016 (4) | 0.027 (4) | 0.028 (4) | −0.002 (3) | 0.009 (3) | −0.004 (3) |
C22 | 0.019 (4) | 0.023 (3) | 0.017 (3) | 0.004 (3) | 0.009 (3) | 0.002 (3) |
C15 | 0.005 (3) | 0.015 (3) | 0.022 (4) | 0.003 (2) | 0.004 (3) | 0.003 (3) |
C6 | 0.020 (4) | 0.014 (3) | 0.025 (4) | 0.002 (3) | 0.009 (3) | 0.003 (3) |
C21 | 0.016 (4) | 0.021 (3) | 0.029 (4) | −0.004 (3) | 0.012 (3) | −0.006 (3) |
C7 | 0.011 (3) | 0.017 (3) | 0.020 (3) | 0.000 (3) | 0.006 (3) | −0.004 (3) |
C23 | 0.013 (3) | 0.020 (3) | 0.027 (4) | 0.005 (3) | 0.014 (3) | 0.000 (3) |
C18 | 0.013 (3) | 0.028 (4) | 0.018 (3) | 0.002 (3) | 0.007 (3) | −0.002 (3) |
C30 | 0.012 (3) | 0.021 (3) | 0.022 (3) | −0.001 (3) | 0.004 (3) | 0.005 (3) |
C25 | 0.026 (4) | 0.021 (3) | 0.023 (4) | −0.006 (3) | 0.015 (3) | −0.004 (3) |
C31 | 0.008 (3) | 0.018 (3) | 0.031 (4) | −0.002 (3) | 0.010 (3) | 0.000 (3) |
C17 | 0.023 (4) | 0.020 (3) | 0.016 (3) | 0.007 (3) | 0.007 (3) | 0.001 (3) |
C20 | 0.019 (4) | 0.034 (4) | 0.023 (4) | −0.007 (3) | 0.005 (3) | −0.010 (3) |
C29 | 0.016 (4) | 0.031 (4) | 0.034 (4) | 0.007 (3) | 0.011 (3) | 0.011 (3) |
C3 | 0.021 (4) | 0.019 (3) | 0.029 (4) | −0.004 (3) | 0.014 (3) | −0.005 (3) |
C26 | 0.013 (3) | 0.021 (3) | 0.022 (3) | 0.002 (3) | 0.005 (3) | 0.005 (3) |
C14 | 0.014 (3) | 0.018 (3) | 0.025 (4) | 0.002 (3) | 0.009 (3) | 0.005 (3) |
C5 | 0.013 (3) | 0.017 (3) | 0.030 (4) | 0.003 (3) | 0.005 (3) | −0.001 (3) |
C28 | 0.021 (4) | 0.037 (4) | 0.050 (5) | 0.008 (3) | 0.024 (4) | 0.010 (4) |
C9 | 0.028 (4) | 0.023 (4) | 0.034 (4) | −0.006 (3) | 0.016 (4) | −0.013 (3) |
C1 | 0.029 (4) | 0.015 (3) | 0.021 (4) | 0.002 (3) | 0.013 (3) | 0.004 (3) |
C2 | 0.018 (3) | 0.018 (3) | 0.022 (4) | 0.000 (3) | 0.011 (3) | −0.001 (3) |
C11 | 0.022 (4) | 0.019 (4) | 0.029 (4) | −0.004 (3) | 0.005 (3) | −0.005 (3) |
C10 | 0.021 (4) | 0.018 (3) | 0.024 (4) | 0.000 (3) | 0.008 (3) | −0.002 (3) |
C16 | 0.039 (4) | 0.022 (4) | 0.013 (3) | 0.002 (3) | 0.015 (3) | 0.009 (3) |
C12 | 0.022 (4) | 0.018 (4) | 0.046 (5) | −0.007 (3) | 0.016 (4) | −0.002 (3) |
C32 | 0.026 (4) | 0.041 (5) | 0.016 (4) | 0.007 (3) | −0.002 (3) | 0.005 (3) |
C13 | 0.026 (4) | 0.018 (3) | 0.029 (4) | 0.000 (3) | 0.017 (3) | 0.004 (3) |
C27 | 0.029 (4) | 0.034 (4) | 0.042 (5) | 0.007 (3) | 0.024 (4) | 0.000 (4) |
C8 | 0.036 (5) | 0.041 (5) | 0.037 (5) | 0.016 (4) | 0.013 (4) | 0.011 (4) |
C24 | 0.024 (4) | 0.026 (4) | 0.037 (4) | 0.001 (3) | 0.015 (4) | 0.005 (3) |
Sm1—Na2 | 3.742 (2) | C6—C5 | 1.368 (9) |
Sm1—Na2i | 3.652 (2) | C21—H21 | 0.9500 |
Sm1—O11 | 2.343 (4) | C21—C20 | 1.404 (10) |
Sm1—O8 | 2.346 (4) | C7—C2 | 1.424 (9) |
Sm1—O5 | 2.355 (4) | C23—C18 | 1.417 (9) |
Sm1—O2 | 2.323 (4) | C18—C17 | 1.444 (9) |
Sm1—O10 | 2.435 (4) | C30—C31 | 1.427 (9) |
Sm1—O7 | 2.446 (5) | C30—C29 | 1.366 (9) |
Sm1—O1 | 2.464 (4) | C25—H25 | 0.9500 |
Sm1—O4 | 2.454 (5) | C25—C26 | 1.442 (9) |
Na2—O11ii | 2.561 (5) | C31—C26 | 1.419 (9) |
Na2—O9ii | 2.530 (5) | C17—H17 | 0.9500 |
Na2—O6 | 2.386 (5) | C20—H20 | 0.9500 |
Na2—O8ii | 2.496 (5) | C29—H29 | 0.9500 |
Na2—O5 | 2.468 (5) | C29—C28 | 1.405 (10) |
Na2—O10 | 2.463 (5) | C3—H3 | 0.9500 |
Na2—O7 | 2.720 (5) | C3—C2 | 1.424 (9) |
Na2—O1ii | 2.622 (5) | C26—C27 | 1.412 (9) |
O11—C31 | 1.288 (7) | C14—C13 | 1.371 (9) |
O9—C22 | 1.367 (8) | C5—H5 | 0.9500 |
O9—C24 | 1.433 (8) | C28—H28 | 0.9500 |
O6—C14 | 1.372 (8) | C28—C27 | 1.361 (11) |
O6—C16 | 1.430 (7) | C9—H9 | 0.9500 |
O3—C6 | 1.373 (8) | C9—C10 | 1.429 (10) |
O3—C8 | 1.436 (8) | C1—H1 | 0.9500 |
O8—C23 | 1.286 (8) | C1—C2 | 1.418 (9) |
O12—C30 | 1.365 (8) | C11—H11 | 0.9500 |
O12—C32 | 1.437 (8) | C11—C10 | 1.409 (9) |
O5—C15 | 1.300 (7) | C11—C12 | 1.369 (10) |
O2—C7 | 1.286 (7) | C16—H16A | 0.9800 |
O10—C25 | 1.251 (8) | C16—H16B | 0.9800 |
O7—C17 | 1.245 (8) | C16—H16C | 0.9800 |
O1—C1 | 1.239 (8) | C12—H12 | 0.9500 |
O4—C9 | 1.243 (8) | C12—C13 | 1.404 (10) |
C19—H19 | 0.9500 | C32—H32A | 0.9800 |
C19—C18 | 1.415 (9) | C32—H32B | 0.9800 |
C19—C20 | 1.356 (10) | C32—H32C | 0.9800 |
C4—H4 | 0.9500 | C13—H13 | 0.9500 |
C4—C3 | 1.360 (10) | C27—H27 | 0.9500 |
C4—C5 | 1.411 (10) | C8—H8A | 0.9800 |
C22—C21 | 1.376 (9) | C8—H8B | 0.9800 |
C22—C23 | 1.434 (9) | C8—H8C | 0.9800 |
C15—C14 | 1.431 (9) | C24—H24A | 0.9800 |
C15—C10 | 1.418 (9) | C24—H24B | 0.9800 |
C6—C7 | 1.444 (9) | C24—H24C | 0.9800 |
Na2i—Sm1—Na2 | 132.39 (3) | C17—O7—Na2 | 130.1 (4) |
O11—Sm1—Na2 | 110.43 (11) | Sm1—O1—Na2i | 91.74 (16) |
O11—Sm1—Na2i | 44.20 (11) | C1—O1—Sm1 | 133.1 (4) |
O11—Sm1—O8 | 76.94 (16) | C1—O1—Na2i | 116.9 (4) |
O11—Sm1—O5 | 117.89 (15) | C9—O4—Sm1 | 133.9 (5) |
O11—Sm1—O10 | 70.90 (15) | C18—C19—H19 | 119.7 |
O11—Sm1—O7 | 131.50 (15) | C20—C19—H19 | 119.7 |
O11—Sm1—O1 | 73.70 (15) | C20—C19—C18 | 120.6 (7) |
O11—Sm1—O4 | 81.87 (16) | C3—C4—H4 | 120.1 |
O8—Sm1—Na2i | 42.62 (12) | C3—C4—C5 | 119.8 (6) |
O8—Sm1—Na2 | 102.02 (12) | C5—C4—H4 | 120.1 |
O8—Sm1—O5 | 141.38 (16) | O9—C22—C21 | 125.5 (6) |
O8—Sm1—O10 | 85.20 (15) | O9—C22—C23 | 112.5 (6) |
O8—Sm1—O7 | 70.62 (15) | C21—C22—C23 | 122.0 (6) |
O8—Sm1—O1 | 71.81 (16) | O5—C15—C14 | 119.3 (6) |
O8—Sm1—O4 | 147.48 (15) | O5—C15—C10 | 124.2 (6) |
O5—Sm1—Na2i | 161.47 (12) | C10—C15—C14 | 116.5 (6) |
O5—Sm1—Na2 | 40.22 (11) | O3—C6—C7 | 113.5 (5) |
O5—Sm1—O10 | 69.04 (15) | C5—C6—O3 | 124.8 (6) |
O5—Sm1—O7 | 74.01 (15) | C5—C6—C7 | 121.6 (6) |
O5—Sm1—O1 | 144.62 (16) | C22—C21—H21 | 120.0 |
O5—Sm1—O4 | 70.78 (15) | C22—C21—C20 | 120.0 (6) |
O2—Sm1—Na2i | 109.28 (11) | C20—C21—H21 | 120.0 |
O2—Sm1—Na2 | 105.73 (11) | O2—C7—C6 | 120.3 (6) |
O2—Sm1—O11 | 143.78 (15) | O2—C7—C2 | 124.0 (6) |
O2—Sm1—O8 | 97.74 (16) | C2—C7—C6 | 115.7 (5) |
O2—Sm1—O5 | 88.81 (15) | O8—C23—C22 | 119.4 (6) |
O2—Sm1—O10 | 145.08 (16) | O8—C23—C18 | 124.9 (6) |
O2—Sm1—O7 | 76.86 (16) | C18—C23—C22 | 115.7 (6) |
O2—Sm1—O1 | 70.67 (15) | C19—C18—C23 | 121.2 (6) |
O2—Sm1—O4 | 85.02 (17) | C19—C18—C17 | 117.6 (6) |
O10—Sm1—Na2i | 96.41 (11) | C23—C18—C17 | 121.0 (6) |
O10—Sm1—Na2 | 40.45 (11) | O12—C30—C31 | 113.4 (6) |
O10—Sm1—O7 | 71.35 (16) | O12—C30—C29 | 124.3 (6) |
O10—Sm1—O1 | 141.24 (15) | C29—C30—C31 | 122.3 (6) |
O10—Sm1—O4 | 110.82 (16) | O10—C25—H25 | 117.1 |
O7—Sm1—Na2 | 46.55 (12) | O10—C25—C26 | 125.8 (6) |
O7—Sm1—Na2i | 113.18 (11) | C26—C25—H25 | 117.1 |
O7—Sm1—O1 | 125.48 (16) | O11—C31—C30 | 121.0 (6) |
O7—Sm1—O4 | 140.51 (15) | O11—C31—C26 | 124.1 (6) |
O1—Sm1—Na2i | 45.86 (12) | C26—C31—C30 | 114.9 (6) |
O1—Sm1—Na2 | 171.95 (12) | O7—C17—C18 | 126.5 (6) |
O4—Sm1—Na2 | 108.40 (11) | O7—C17—H17 | 116.8 |
O4—Sm1—Na2i | 105.84 (12) | C18—C17—H17 | 116.8 |
O4—Sm1—O1 | 78.76 (16) | C19—C20—C21 | 120.3 (7) |
Sm1ii—Na2—Sm1 | 142.49 (7) | C19—C20—H20 | 119.9 |
O11ii—Na2—Sm1 | 135.37 (13) | C21—C20—H20 | 119.9 |
O11ii—Na2—Sm1ii | 39.63 (10) | C30—C29—H29 | 119.6 |
O11ii—Na2—O7 | 155.90 (17) | C30—C29—C28 | 120.9 (7) |
O11ii—Na2—O1ii | 67.62 (14) | C28—C29—H29 | 119.6 |
O9ii—Na2—Sm1 | 99.88 (12) | C4—C3—H3 | 119.8 |
O9ii—Na2—Sm1ii | 101.57 (13) | C4—C3—C2 | 120.3 (7) |
O9ii—Na2—O11ii | 124.54 (17) | C2—C3—H3 | 119.8 |
O9ii—Na2—O7 | 69.09 (15) | C31—C26—C25 | 122.1 (6) |
O9ii—Na2—O1ii | 113.80 (18) | C27—C26—C25 | 115.0 (6) |
O6—Na2—Sm1 | 102.78 (13) | C27—C26—C31 | 122.6 (6) |
O6—Na2—Sm1ii | 112.76 (13) | O6—C14—C15 | 113.2 (5) |
O6—Na2—O11ii | 87.83 (16) | C13—C14—O6 | 125.5 (6) |
O6—Na2—O9ii | 72.92 (17) | C13—C14—C15 | 121.3 (6) |
O6—Na2—O8ii | 98.17 (17) | C4—C5—H5 | 119.4 |
O6—Na2—O5 | 65.02 (16) | C6—C5—C4 | 121.1 (6) |
O6—Na2—O10 | 124.32 (18) | C6—C5—H5 | 119.4 |
O6—Na2—O7 | 116.13 (17) | C29—C28—H28 | 120.1 |
O6—Na2—O1ii | 154.16 (17) | C27—C28—C29 | 119.8 (7) |
O8ii—Na2—Sm1 | 146.68 (14) | C27—C28—H28 | 120.1 |
O8ii—Na2—Sm1ii | 39.52 (11) | O4—C9—H9 | 115.7 |
O8ii—Na2—O11ii | 70.44 (15) | O4—C9—C10 | 128.7 (7) |
O8ii—Na2—O9ii | 62.06 (15) | C10—C9—H9 | 115.7 |
O8ii—Na2—O7 | 106.41 (17) | O1—C1—H1 | 115.6 |
O8ii—Na2—O1ii | 66.87 (16) | O1—C1—C2 | 128.8 (6) |
O5—Na2—Sm1ii | 164.45 (14) | C2—C1—H1 | 115.6 |
O5—Na2—Sm1 | 38.03 (11) | C7—C2—C3 | 121.4 (6) |
O5—Na2—O11ii | 125.80 (18) | C1—C2—C7 | 120.8 (6) |
O5—Na2—O9ii | 92.53 (17) | C1—C2—C3 | 117.7 (6) |
O5—Na2—O8ii | 153.53 (19) | C10—C11—H11 | 120.2 |
O5—Na2—O7 | 67.52 (15) | C12—C11—H11 | 120.2 |
O5—Na2—O1ii | 136.04 (17) | C12—C11—C10 | 119.6 (7) |
O10—Na2—Sm1 | 39.91 (10) | C15—C10—C9 | 121.0 (6) |
O10—Na2—Sm1ii | 106.15 (12) | C11—C10—C15 | 121.5 (6) |
O10—Na2—O11ii | 98.71 (16) | C11—C10—C9 | 117.5 (6) |
O10—Na2—O9ii | 135.31 (18) | O6—C16—H16A | 109.5 |
O10—Na2—O8ii | 136.24 (18) | O6—C16—H16B | 109.5 |
O10—Na2—O5 | 66.83 (15) | O6—C16—H16C | 109.5 |
O10—Na2—O7 | 66.42 (16) | H16A—C16—H16B | 109.5 |
O10—Na2—O1ii | 69.82 (15) | H16A—C16—H16C | 109.5 |
O7—Na2—Sm1ii | 123.68 (13) | H16B—C16—H16C | 109.5 |
O7—Na2—Sm1 | 40.76 (11) | C11—C12—H12 | 119.7 |
O1ii—Na2—Sm1 | 100.53 (11) | C11—C12—C13 | 120.6 (6) |
O1ii—Na2—Sm1ii | 42.40 (10) | C13—C12—H12 | 119.7 |
O1ii—Na2—O7 | 88.94 (15) | O12—C32—H32A | 109.5 |
Sm1—O11—Na2i | 96.18 (16) | O12—C32—H32B | 109.5 |
C31—O11—Sm1 | 139.3 (4) | O12—C32—H32C | 109.5 |
C31—O11—Na2i | 112.8 (4) | H32A—C32—H32B | 109.5 |
C22—O9—Na2i | 121.2 (4) | H32A—C32—H32C | 109.5 |
C22—O9—C24 | 118.7 (5) | H32B—C32—H32C | 109.5 |
C24—O9—Na2i | 119.6 (4) | C14—C13—C12 | 120.4 (6) |
C14—O6—Na2 | 121.3 (4) | C14—C13—H13 | 119.8 |
C14—O6—C16 | 117.4 (5) | C12—C13—H13 | 119.8 |
C16—O6—Na2 | 120.7 (4) | C26—C27—H27 | 120.2 |
C6—O3—C8 | 115.9 (5) | C28—C27—C26 | 119.6 (7) |
Sm1—O8—Na2i | 97.86 (17) | C28—C27—H27 | 120.2 |
C23—O8—Sm1 | 137.3 (4) | O3—C8—H8A | 109.5 |
C23—O8—Na2i | 122.0 (4) | O3—C8—H8B | 109.5 |
C30—O12—C32 | 115.9 (5) | O3—C8—H8C | 109.5 |
Sm1—O5—Na2 | 101.75 (17) | H8A—C8—H8B | 109.5 |
C15—O5—Sm1 | 139.7 (4) | H8A—C8—H8C | 109.5 |
C15—O5—Na2 | 117.6 (4) | H8B—C8—H8C | 109.5 |
C7—O2—Sm1 | 139.6 (4) | O9—C24—H24A | 109.5 |
Sm1—O10—Na2 | 99.63 (17) | O9—C24—H24B | 109.5 |
C25—O10—Sm1 | 135.6 (4) | O9—C24—H24C | 109.5 |
C25—O10—Na2 | 119.4 (4) | H24A—C24—H24B | 109.5 |
Sm1—O7—Na2 | 92.68 (16) | H24A—C24—H24C | 109.5 |
C17—O7—Sm1 | 132.7 (4) | H24B—C24—H24C | 109.5 |
Sm1—O11—C31—C30 | −171.4 (4) | O4—C9—C10—C15 | −1.8 (12) |
Sm1—O11—C31—C26 | 9.0 (10) | O4—C9—C10—C11 | 177.4 (7) |
Sm1—O8—C23—C22 | 169.3 (4) | C19—C18—C17—O7 | 177.7 (6) |
Sm1—O8—C23—C18 | −13.0 (10) | C4—C3—C2—C7 | 0.4 (10) |
Sm1—O5—C15—C14 | 177.5 (4) | C4—C3—C2—C1 | −179.3 (6) |
Sm1—O5—C15—C10 | −4.2 (10) | C22—C21—C20—C19 | −1.8 (10) |
Sm1—O2—C7—C6 | 163.9 (5) | C22—C23—C18—C19 | −5.4 (9) |
Sm1—O2—C7—C2 | −15.2 (11) | C22—C23—C18—C17 | 169.0 (6) |
Sm1—O10—C25—C26 | −10.9 (10) | C15—C14—C13—C12 | −1.3 (10) |
Sm1—O7—C17—C18 | 22.4 (10) | C6—C7—C2—C3 | −1.5 (9) |
Sm1—O1—C1—C2 | 9.8 (11) | C6—C7—C2—C1 | 178.2 (6) |
Sm1—O4—C9—C10 | 14.5 (11) | C21—C22—C23—O8 | −177.2 (6) |
Na2i—O11—C31—C30 | 56.8 (7) | C21—C22—C23—C18 | 5.0 (9) |
Na2i—O11—C31—C26 | −122.8 (6) | C7—C6—C5—C4 | −0.9 (10) |
Na2i—O9—C22—C21 | 163.7 (5) | C23—C22—C21—C20 | −1.5 (10) |
Na2i—O9—C22—C23 | −14.4 (7) | C23—C18—C17—O7 | 3.1 (10) |
Na2—O6—C14—C15 | 14.1 (7) | C18—C19—C20—C21 | 1.3 (10) |
Na2—O6—C14—C13 | −166.7 (5) | C30—C31—C26—C25 | −174.4 (6) |
Na2i—O8—C23—C22 | 13.1 (8) | C30—C31—C26—C27 | −1.1 (10) |
Na2i—O8—C23—C18 | −169.2 (5) | C30—C29—C28—C27 | 1.3 (11) |
Na2—O5—C15—C14 | −15.7 (7) | C25—C26—C27—C28 | 175.8 (7) |
Na2—O5—C15—C10 | 162.7 (5) | C31—C30—C29—C28 | −0.4 (11) |
Na2—O10—C25—C26 | −158.9 (5) | C31—C26—C27—C28 | 2.1 (11) |
Na2—O7—C17—C18 | −126.9 (6) | C20—C19—C18—C23 | 2.5 (10) |
Na2i—O1—C1—C2 | 131.2 (6) | C20—C19—C18—C17 | −172.1 (6) |
O11—C31—C26—C25 | 5.3 (10) | C29—C30—C31—O11 | −179.4 (6) |
O11—C31—C26—C27 | 178.6 (6) | C29—C30—C31—C26 | 0.3 (9) |
O9—C22—C21—C20 | −179.4 (6) | C29—C28—C27—C26 | −2.1 (11) |
O9—C22—C23—O8 | 1.1 (8) | C3—C4—C5—C6 | −0.3 (10) |
O9—C22—C23—C18 | −176.8 (5) | C14—C15—C10—C9 | 174.6 (6) |
O6—C14—C13—C12 | 179.6 (6) | C14—C15—C10—C11 | −4.5 (9) |
O3—C6—C7—O2 | 0.9 (9) | C5—C4—C3—C2 | 0.5 (10) |
O3—C6—C7—C2 | −179.9 (6) | C5—C6—C7—O2 | −177.5 (6) |
O3—C6—C5—C4 | −179.1 (6) | C5—C6—C7—C2 | 1.7 (9) |
O8—C23—C18—C19 | 176.8 (6) | C11—C12—C13—C14 | −1.0 (11) |
O8—C23—C18—C17 | −8.8 (10) | C10—C15—C14—O6 | −176.8 (5) |
O12—C30—C31—O11 | −1.3 (9) | C10—C15—C14—C13 | 3.9 (9) |
O12—C30—C31—C26 | 178.4 (5) | C10—C11—C12—C13 | 0.4 (11) |
O12—C30—C29—C28 | −178.3 (6) | C16—O6—C14—C15 | −174.3 (5) |
O5—C15—C14—O6 | 1.7 (8) | C16—O6—C14—C13 | 4.9 (9) |
O5—C15—C14—C13 | −177.5 (6) | C12—C11—C10—C15 | 2.5 (10) |
O5—C15—C10—C9 | −3.9 (10) | C12—C11—C10—C9 | −176.7 (7) |
O5—C15—C10—C11 | 177.0 (6) | C32—O12—C30—C31 | 176.9 (6) |
O2—C7—C2—C3 | 177.7 (6) | C32—O12—C30—C29 | −5.1 (10) |
O2—C7—C2—C1 | −2.6 (10) | C8—O3—C6—C7 | 174.9 (6) |
O10—C25—C26—C31 | −3.8 (11) | C8—O3—C6—C5 | −6.8 (10) |
O10—C25—C26—C27 | −177.6 (7) | C24—O9—C22—C21 | −7.8 (9) |
O1—C1—C2—C7 | 4.1 (11) | C24—O9—C22—C23 | 174.1 (5) |
O1—C1—C2—C3 | −176.2 (7) |
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x, −y+3/2, z+1/2. |
Atom pair | Distance |
C11—H11···C4 | 2.716 |
C16—H16B···C12 | 2.851 |
C16—H16B···C13 | 2.888 |
Acknowledgements
The authors thank Dr Aaron D. Nicholas for his feedback in preparing this manuscript.
Funding information
The primary funding mechanism for this study was the Laboratory Directed Research and Development program at Pacific Northwest National Laboratory, a multiprogram national laboratory operated by Battelle for the Department of Energy. AW and AA are grateful for support from the Linus Pauling Distinguished Postdoctoral Fellowship. RGS was supported by the US Department of Energy Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences, Heavy Element Chemistry program, FWP 73200. AMH was supported by the Department of Energy, National Nuclear Security Administration under award No. DE-NA0003763, the Arthur J. Schmitt Leadership Fellowship at the University of Notre Dame, and the postdoctoral program at Lawrence Livermore National Laboratory.
References
Albrecht, M. (2001). Chem. Rev. 101, 3457–3498. Web of Science CrossRef PubMed CAS Google Scholar
Andruh, M. (2015). Dalton Trans. 44, 16633–16653. Web of Science CrossRef CAS PubMed Google Scholar
Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2014). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bünzli, J. G. & Piguet, C. (2002). Chem. Rev. 102, 1897–1928. Web of Science PubMed Google Scholar
Chaudhari, A. K., Joarder, B., Rivière, E., Rogez, G. & Ghosh, S. K. (2012). Inorg. Chem. 51, 9159–9161. Web of Science CSD CrossRef CAS PubMed Google Scholar
Cheng, J.-W. & Yang, G.-Y. (2017). Recent Development in Clusters of Rare Earths and Actinides: Chemistry and Materials, edited by Z. Zheng, pp. 97–119. Berlin, Heidelberg: Springer Berlin Heidelberg. Google Scholar
Costes, J., Dahan, F., Duhayon, C. & Mota, A. J. (2015). Polyhedron, 96, 51–56. Web of Science CSD CrossRef CAS Google Scholar
Costes, J., Dahan, F., Vendier, L., Shova, S., Lorusso, G. & Evangelisti, M. (2018). Dalton Trans. 47, 1106–1116. Web of Science CSD CrossRef CAS PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Griffiths, K., Kumar, P., Mattock, J. D., Abdul-Sada, A., Pitak, M. B., Coles, S. J., Navarro, O., Vargas, A. & Kostakis, G. E. (2016). Inorg. Chem. 55, 6988–6994. Web of Science CSD CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Heuer-Jungemann, A., Feliu, N., Bakaimi, I., Hamaly, M., Alkilany, A., Chakraborty, I., Masood, A., Casula, M. F., Kostopoulou, A., Oh, E., Susumu, K., Stewart, M. H., Medintz, I. L., Stratakis, E., Parak, W. J. & Kanaras, A. G. (2019). Chem. Rev. 119, 97–119. Google Scholar
Kırpık, H., Kose, M., Elsegood, M. & Carpenter-Warren, C. L. (2019). J. Mol. Struct. 1175, 882–888. Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Li, X., Zhao, L., Wu, J., Shi, W., Struch, N., Lutzen, A., Powell, A. K., Cheng, P. & Tang, J. (2022). Chem. Sci. 13, 10048–10056. Web of Science CSD CrossRef CAS PubMed Google Scholar
Ma, J., Ma, T., Qian, R., Zhou, L., Guo, Q., Yang, J. & Yang, Q. (2021). Inorg. Chem. 60, 7937–7951. Web of Science CSD CrossRef CAS PubMed Google Scholar
Novitchi, G., Pilet, G., Ungur, L., Moshchalkov, V. V., Wernsdorfer, W., Chibotaru, L. F., Luneau, D. & Powell, A. K. (2012). Chem. Sci. 3, 1169–1176. Web of Science CSD CrossRef CAS Google Scholar
Peng, G., Ma, L., Cai, J., Liang, L., Deng, H. & Kostakis, G. E. (2011). Cryst. Growth Des. 11, 2485–2492. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Song, X., Liu, P., Wang, C., Liu, Y., Liu, W. & Zhang, M. (2017). RSC Adv. 7, 22692–22698. Web of Science CSD CrossRef CAS Google Scholar
Spek, A. L. (2015). Acta Cryst. C71, 9–18. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Yee, T. A., Suescun, L. & Rabuffetti, F. A. (2019). J. Solid State Chem. 270, 242–246. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.