research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Structural characterization of a new samarium–sodium heterometallic coordination polymer

crossmark logo

aPacific Northwest National Laboratory, Richland, WA, 99354, USA, and bUniversity of Notre Dame, South Bend, IN 46556, USA
*Correspondence e-mail: ana.arteaga@pnnl.gov

Edited by L. Suescun, Universidad de la República, Uruguay (Received 28 November 2023; accepted 30 January 2024; online 6 February 2024)

Lanthanide-containing materials are of inter­est in the field of crystal engin­eering because of their unique properties and distinct structure types. In this context, a new samarium–sodium heterometallic coordination polymer, poly[tetra­kis­(μ2-2-formyl-6-meth­oxy­phenolato)samarium(III)sodium(I)], {[SmNa(C8H7O3)4]·solvent}n (Sm-1), was synthesized and crystallized via slow evaporation from a mixture of ethanol and aceto­nitrile. The compound features alternating SmIII and NaI ions, which are linked by ortho-vanillin (o-vanillin) ligands to form a mono-periodic chain-like coordination polymer. The chains propagate along the [001] direction. Residual electron density of disordered solvent mol­ecules in the void space could not be reasonably modeled, thus the SQUEEZE function was applied. The structural, vibrational, and optical properties are reported.

1. Chemical context

The synthesis of lanthanide compounds with 2-hy­droxy-3-meth­oxy benzaldehyde (o-vanillin) ligand derivatives is of great inter­est in the field of crystal engineering because of their photophysical and magnetic properties (Chaudhari et al., 2012[Chaudhari, A. K., Joarder, B., Rivière, E., Rogez, G. & Ghosh, S. K. (2012). Inorg. Chem. 51, 9159-9161.]; Song et al., 2017[Song, X., Liu, P., Wang, C., Liu, Y., Liu, W. & Zhang, M. (2017). RSC Adv. 7, 22692-22698.]; Novitchi et al., 2012[Novitchi, G., Pilet, G., Ungur, L., Moshchalkov, V. V., Wernsdorfer, W., Chibotaru, L. F., Luneau, D. & Powell, A. K. (2012). Chem. Sci. 3, 1169-1176.]; Albrecht, 2001[Albrecht, M. (2001). Chem. Rev. 101, 3457-3498.]). In crystal engineering, the ligand of choice has a large effect on the dimensionality of lanthanide-containing compounds owing to their high-coordination environments (Bunzli & Piguet, 2002[Bünzli, J. G. & Piguet, C. (2002). Chem. Rev. 102, 1897-1928.]). For example, ligands with multiple binding sites are ideal because of their ability to bridge metal centers or act as capping ligands (Heuer-Jungemann et al., 2019[Heuer-Jungemann, A., Feliu, N., Bakaimi, I., Hamaly, M., Alkilany, A., Chakraborty, I., Masood, A., Casula, M. F., Kostopoulou, A., Oh, E., Susumu, K., Stewart, M. H., Medintz, I. L., Stratakis, E., Parak, W. J. & Kanaras, A. G. (2019). Chem. Rev. 119, 97-119.]; Cheng & Yang, 2017[Cheng, J.-W. & Yang, G.-Y. (2017). Recent Development in Clusters of Rare Earths and Actinides: Chemistry and Materials, edited by Z. Zheng, pp. 97-119. Berlin, Heidelberg: Springer Berlin Heidelberg.]). o-Vanillin is a popular ligand for heterometallic synthesis due to its ability to generate a variety of compounds through its multiple binding sites (carboxyl­ate and meth­oxy groups; Andruh, 2015[Andruh, M. (2015). Dalton Trans. 44, 16633-16653.]). While there is an extensive library of lanthanide and o-vanillin-containing compounds, ranging in dimensionality from small mol­ecules to coordination polymers (CPs) and metal organic frameworks (MOFs) (CSD, version 2021.3.0; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), we are not aware of any reports containing o-vanillin, SmIII and NaI, and have found only a single report containing both o-vanillin and SmIII (Griffiths et al., 2016[Griffiths, K., Kumar, P., Mattock, J. D., Abdul-Sada, A., Pitak, M. B., Coles, S. J., Navarro, O., Vargas, A. & Kostakis, G. E. (2016). Inorg. Chem. 55, 6988-6994.]). However, heterometallic lanthanide–transition-metal com­pounds with o-vanillin have been reported (Costes et al., 2015[Costes, J., Dahan, F., Duhayon, C. & Mota, A. J. (2015). Polyhedron, 96, 51-56.], 2018[Costes, J., Dahan, F., Vendier, L., Shova, S., Lorusso, G. & Evangelisti, M. (2018). Dalton Trans. 47, 1106-1116.]; Kırpık et al., 2019[Kırpık, H., Kose, M., Elsegood, M. & Carpenter-Warren, C. L. (2019). J. Mol. Struct. 1175, 882-888.]). These compounds crystallize as discrete mol­ecular dinuclear units. To the best of our knowledge, the only reported lanthanide–NaIo-vanillin-containing compound crystallized as an aggregate structure with a hydro­phobic cavity (Li et al., 2022[Li, X., Zhao, L., Wu, J., Shi, W., Struch, N., Lutzen, A., Powell, A. K., Cheng, P. & Tang, J. (2022). Chem. Sci. 13, 10048-10056.]). The lanthanide–NaIo-vanillin compound isolated by Li et al. is vastly different from the structure described here, [SmNa(C8H7O3)4]·solvent (Sm-1). Herein we report the synthesis, crystal structure, and characterization of an inter­esting new samarium–sodium heterometallic CP synthesized with o-vanillin ligands.

[Scheme 1]

2. Structural commentary

The compound [SmNa(C8H7O3)4]·solvent (Sm-1) crystallizes in the P21/c space group. The asymmetric unit features one crystallographically unique SmIII and NaI metal center, and four o-vanillin ligands (Fig. 1[link]). Each metal center is coordinated by eight oxygen atoms, each displaying a distorted square-anti­prismatic geometry with a local C1 symmetry (Fig. 1[link]). The SmIII metal centers are bound to four o-vanillin ligands (κ2) with an average Sm—O bond length of 2.395 (2) Å. The NaI cations are bound to six o-vanillin ligands, two of which are bidentate (κ2) and four are monodentate (κ1), with average Na—O bond lengths of 2.530 (4) Å. The metal-to-oxygen bond distances are typical of those reported in similar systems (Ma et al., 2021[Ma, J., Ma, T., Qian, R., Zhou, L., Guo, Q., Yang, J. & Yang, Q. (2021). Inorg. Chem. 60, 7937-7951.]; Peng et al., 2011[Peng, G., Ma, L., Cai, J., Liang, L., Deng, H. & Kostakis, G. E. (2011). Cryst. Growth Des. 11, 2485-2492.]). The SmIII and NaI atoms alternate and are bridged together by three μ2-o-vanillin ligands that each display unique bonding environments through the phenoxo, aldehydic, and meth­oxy groups (see Fig. S1 in the supporting information). The first o-vanillin ligand binds the alternating SmIII and NaI atoms through the phenoxo and aldehydic groups, leaving the meth­oxy group uncoordinated, Fig. S1a. The second o-vanillin ligand bridges the SmIII and NaI atoms using the phenolic group, with the aldehydic and meth­oxy groups binding solely to the SmIII and NaI atoms, respectively, Fig. S1b. Lastly, the third o-vanillin ligand bridges the alternating SmIII and NaI atoms via the aldehydic and phenoxo groups while the meth­oxy group binds solely to an adjacent NaI atom, Fig. S1c. This creates a bimetallic helical chain that propagates along the [001] direction (Fig. 2[link]). The potential solvent area volume of Sm-1 is 10.6% per unit cell (calculated using PLATON; Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

[Figure 1]
Figure 1
Top: The asymmetric unit of Sm-1. The Sm, Na, C, and O atoms are depicted as orange, teal, black, and red ellipsoids, respectively. The displacement ellipsoids are drawn at 50% probability. The hydrogen atoms are removed for clarity. Bottom: The coordination environment of the SmIII and NaI metal centers, represented as orange and teal polyhedra, respectively.
[Figure 2]
Figure 2
Polyhedral representation of Sm-1 showing the propagation of the chains along the [001] direction. The SmIII and NaI atoms are represented as orange and teal polyhedra, respectively. The oxygen atoms are represented by red spheres and the carbon atoms are represented in stick form. Hydrogen atoms have been omitted for clarity.

3. Supra­molecular features

The structure was analyzed for non-covalent inter­actions and no evidence for ππ inter­actions was observed. However, a series of close atom contacts (C—H⋯C) are present between adjacent chains (Table 1[link]). The supra­molecular chains are stabilized primarily through C—H⋯C inter­actions, allowing the stacking of adjacent chains in the structure.

Table 1
Atom pairs and distances (Å)

Atom pair Distance
C11—H11⋯C4 2.716
C16—H16B⋯C12 2.851
C16—H16B⋯C13 2.888

4. Database survey

The o-vanillin ligand is widely used in coordination chemistry with over 70 structures containing o-vanillin and lanthanides reported in the Cambridge Structural Database (CSD, version 2021.3.0; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). A survey of structures containing samarium and o-vanillin resulted in only one compound, [Ni2Sm2(C14H11NO3)4(C8O3H7)2(H2O)2]·4CH3CN, a heterometallic and heteroleptic cluster containing SmIII and NaI metal centers bound by 2-(E)-{[(2-hy­droxy­phen­yl)imino]­meth­yl}-6-meth­oxy­phenol ligands (Griffiths et al., 2016[Griffiths, K., Kumar, P., Mattock, J. D., Abdul-Sada, A., Pitak, M. B., Coles, S. J., Navarro, O., Vargas, A. & Kostakis, G. E. (2016). Inorg. Chem. 55, 6988-6994.]). In this compound, the o-vanillin ligands act as capping ligands and are bidentate (κ2) in fashion, whereas in Sm-1, the o-vanillin ligands act as bridging ligands that connect the SmIII and NaI atoms to form a mono-periodic CP.

5. Synthesis and crystallization

The compound Sm-1 was synthesized by dissolving 10 mg of SmIII chloride hexa­hydrate (SmCl3·6H2O, Strem Chemicals, 99.9%) in 208.5 µL of hydro­chloric acid (HCl, Sigma Aldrich, 37% w/w). The mixture was slowly heated to dryness, and the residue was dissolved in 500 µL of hydro­bromic acid (HBr, Aldrich, 48% w/w ACS reagent). The solution was gently heated to dryness and once cooled, the residue was dissolved in 655 µL ethanol (Fisher, 200 proof) to form a 0.042 M SmIII solution with a pH near 1.4 (Solution A). A 0.105 M o-vanillin solution (Solution B) was prepared by dissolving o-vanillin (TCI, >99.0%) in an ethanol/aceto­nitrile (1:1, aceto­nitrile: Fisher, 99.5% certified ACS) mixture. The following were added to a 4 mL glass reaction vial: 100 µL Solution A, 400 µL Solution B, and 33.4 µL 0.5 M NaOH (aqueous, Sigma Aldrich, >98.0%), yielding a yellow solution with a pH of 7.7. The vial was covered with parafilm that had a small slash in it to allow slow evaporation of the solvent. After 4 days, yellow acicular crystals grew from the reaction solution in radial bursts (Fig. 3[link]). The synthesis of Sm-1 has an 80% yield. Several synthetic variations were explored to improve the single-crystal diffraction quality. Adding an additional equivalent of NaOH brought the initial pH to ∼8.5 and yielded the same phase, but the crystals were too small for single-crystal studies. Decreasing the NaOH equivalents (in the pH range of 2–4) did not yield any quality crystalline product upon evaporation. In addition, simply starting with SmCl3·6H2O salt, instead of the HCl/HBr Sm stock protocol, indeed crystallized Sm-1; however, these were also too small for individual manipulation. Although not reported here, the synthesis was developed as an analogue for transuranic chemistry, in which strong acid stock solutions are a practicality and serve as redox control.

[Figure 3]
Figure 3
Microscope image of Sm-1 crystals with scale for reference.

6. Experimental details

Sm-1 crystals were harvested, washed with ethanol, and mounted to MiTeGen MicroMounts from immersion oil. Data were collected on a Bruker D8 Venture diffractometer equipped with a Photon III detector using a Mo anode micro-focus source (diamond IμS 3.0) and φ and ω scans, at 100 K. The collection strategy was calculated factoring in the known symmetry and collected with at least triplicate multiplicity. The data were reduced using SAINT (Bruker, 2014[Bruker (2014). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) and multi-scan absorption correction was applied using SADABS (Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]), both within the APEX4 software (Bruker, 2014[Bruker (2014). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]). Using Olex2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), the structure was solved with the SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) structure solution program and refined with the SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) refinement package using least-squares minimization. Additional experimental and instrumentation details on powder X-ray diffraction, infrared spectroscopy, and diffuse reflectance spectroscopy can be found in the supporting information.

7. Refinement

Crystal data, data collection, and structure refinement details of Sm-1 are summarized in Table 2[link]. The H atoms associated with the carbon atoms were affixed to the respective parent atoms using a riding model. Residual electron density of disordered solvent mol­ecules in the void space could not be reasonably modeled, thus the SQUEEZE function was applied via PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.], 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]). A total of 47 electrons were accounted for by SQUEEZE and removed. This amounts to about 2 solvent mol­ecules (aceto­nitrile and/or ethanol) per unit cell. While most of the reaction medium was aceto­nitrile and ethanol, water mol­ecules are also possible from the aqueous NaOH spike. The Sm-1 single crystals diffracted weakly, perhaps owing to the small crystal size. Attempts to crystallize and select higher quality single crystals were unsuccessful. Bond-valence analysis on the metal centers yields summations of 3.30 and 0.98 for SmIII and NaI, respectively (Brown & Altermatt, 1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]; Yee et al., 2019[Yee, T. A., Suescun, L. & Rabuffetti, F. A. (2019). J. Solid State Chem. 270, 242-246.]).

Table 2
Experimental details

Crystal data
Chemical formula [SmNa(C8H7O3)4][+solvent]
Mr 777.88
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 11.5512 (7), 24.4768 (14), 12.8355 (6)
β (°) 115.742 (2)
V3) 3268.9 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.87
Crystal size (mm) 0.05 × 0.01 × 0.002
 
Data collection
Diffractometer Bruker D8 Venture with photon detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
No. of measured, independent and observed [I > 2σ(I)] reflections 41476, 6204, 4562
Rint 0.147
(sin θ/λ)max−1) 0.610
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.108, 1.02
No. of reflections 6204
No. of parameters 419
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.76, −1.13
Computer programs: APEX4 and SAINT (Bruker, 2014[Bruker (2014). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Poly[tetrakis(µ-2-formyl-6-methoxyphenolato)samarium(III)sodium(I)] top
Crystal data top
[SmNa(C8H7O3)4][+solvent]F(000) = 1556
Mr = 777.88Dx = 1.581 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.5512 (7) ÅCell parameters from 6204 reflections
b = 24.4768 (14) Åθ = 2.4–25.1°
c = 12.8355 (6) ŵ = 1.87 mm1
β = 115.742 (2)°T = 100 K
V = 3268.9 (3) Å3Needle, yellow
Z = 40.05 × 0.01 × 0.002 mm
Data collection top
Bruker D8 Venture with photon detector
diffractometer
4562 reflections with I > 2σ(I)
Radiation source: Microfocus sealed sourceRint = 0.147
φ and ω scansθmax = 25.7°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1414
k = 2929
41476 measured reflectionsl = 1515
6204 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0186P)2 + 17.6315P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.002
6204 reflectionsΔρmax = 0.76 e Å3
419 parametersΔρmin = 1.13 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sm10.54972 (3)0.69282 (2)0.62323 (3)0.01414 (10)
Na20.5507 (2)0.70628 (10)0.9140 (2)0.0195 (6)
O110.3989 (4)0.75247 (18)0.4906 (4)0.0175 (10)
O90.7502 (4)0.84841 (19)0.5347 (4)0.0222 (10)
O60.4809 (4)0.61822 (18)0.9430 (4)0.0194 (10)
O30.8796 (5)0.55301 (19)0.7600 (4)0.0270 (11)
O80.6755 (4)0.76769 (19)0.6213 (4)0.0219 (10)
O120.2499 (4)0.79508 (19)0.2874 (4)0.0252 (11)
O50.4883 (4)0.64323 (18)0.7484 (4)0.0202 (10)
O20.6974 (4)0.62447 (19)0.6429 (4)0.0223 (11)
O100.4681 (4)0.75359 (18)0.7262 (4)0.0203 (10)
O70.7195 (5)0.70785 (18)0.8182 (4)0.0246 (11)
O10.5810 (4)0.6879 (2)0.4454 (4)0.0249 (11)
O40.3873 (5)0.62479 (19)0.5110 (4)0.0252 (11)
C191.0010 (6)0.7857 (3)0.8527 (6)0.0229 (15)
H191.0565590.7708460.9258470.027*
C40.9473 (6)0.5771 (3)0.5065 (6)0.0242 (15)
H41.0066580.5663560.4773120.029*
C220.8385 (6)0.8297 (3)0.6396 (6)0.0192 (14)
C150.4218 (6)0.6003 (2)0.7474 (6)0.0145 (13)
C60.8746 (6)0.5710 (3)0.6568 (6)0.0199 (14)
C210.9621 (6)0.8489 (3)0.6987 (6)0.0211 (15)
H210.9919660.8777380.6672050.025*
C70.7722 (6)0.6096 (3)0.5976 (6)0.0160 (13)
C230.7901 (6)0.7854 (3)0.6825 (6)0.0180 (14)
C180.8738 (6)0.7657 (3)0.7937 (6)0.0195 (14)
C300.2253 (6)0.8102 (3)0.3781 (5)0.0196 (13)
C250.3742 (7)0.7852 (3)0.6983 (6)0.0214 (15)
H250.3570640.7994630.7589810.026*
C310.3105 (6)0.7860 (3)0.4853 (6)0.0185 (14)
C170.8289 (7)0.7282 (3)0.8549 (6)0.0203 (15)
H170.8888310.7179830.9306750.024*
C201.0441 (7)0.8258 (3)0.8057 (6)0.0268 (16)
H201.1301640.8383900.8453230.032*
C290.1314 (7)0.8462 (3)0.3702 (7)0.0271 (16)
H290.0770350.8615990.2972100.033*
C30.8513 (6)0.6128 (3)0.4460 (6)0.0215 (15)
H30.8432750.6267770.3741400.026*
C260.2898 (6)0.8020 (3)0.5821 (6)0.0196 (14)
C140.4154 (6)0.5839 (3)0.8518 (6)0.0185 (14)
C50.9586 (6)0.5560 (3)0.6128 (6)0.0216 (15)
H51.0256020.5309310.6545600.026*
C280.1143 (7)0.8608 (3)0.4684 (7)0.0330 (19)
H280.0475520.8852880.4615310.040*
C90.3416 (7)0.5839 (3)0.5370 (6)0.0272 (16)
H90.2943510.5597170.4751320.033*
C10.6639 (7)0.6662 (3)0.4223 (6)0.0211 (15)
H10.6607920.6755380.3492720.025*
C20.7627 (6)0.6294 (3)0.4899 (6)0.0183 (14)
C110.2853 (7)0.5207 (3)0.6534 (6)0.0255 (16)
H110.2409910.4990800.5861780.031*
C100.3508 (7)0.5683 (3)0.6477 (6)0.0218 (15)
C160.4904 (7)0.6026 (3)1.0538 (6)0.0238 (16)
H16A0.5427570.6294161.1119080.036*
H16B0.5306180.5665231.0745450.036*
H16C0.4042210.6012421.0509000.036*
C120.2858 (7)0.5058 (3)0.7564 (7)0.0280 (17)
H120.2421870.4735660.7605300.034*
C320.1628 (7)0.8160 (3)0.1762 (6)0.0316 (18)
H32A0.1901740.8037210.1176160.047*
H32B0.1630460.8560060.1785710.047*
H32C0.0759220.8024860.1563960.047*
C130.3503 (7)0.5377 (3)0.8560 (6)0.0227 (15)
H130.3488770.5272080.9266440.027*
C270.1937 (7)0.8398 (3)0.5735 (7)0.0319 (18)
H270.1844980.8504060.6407310.038*
C80.9725 (8)0.5111 (3)0.8178 (7)0.039 (2)
H8A0.9607920.4808320.7642740.059*
H8B0.9607160.4978370.8846330.059*
H8C1.0592770.5261340.8441020.059*
C240.7805 (7)0.8960 (3)0.4863 (7)0.0286 (17)
H24A0.8576000.8889430.4746780.043*
H24B0.7963810.9268700.5393590.043*
H24C0.7083790.9046190.4119260.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sm10.01358 (16)0.01627 (16)0.01311 (16)0.00116 (16)0.00628 (12)0.00091 (16)
Na20.0222 (14)0.0203 (14)0.0167 (13)0.0018 (10)0.0090 (11)0.0019 (10)
O110.012 (2)0.019 (2)0.018 (2)0.0034 (18)0.0026 (19)0.0009 (19)
O90.021 (3)0.025 (3)0.021 (3)0.002 (2)0.009 (2)0.008 (2)
O60.023 (3)0.021 (2)0.015 (2)0.003 (2)0.009 (2)0.0001 (19)
O30.026 (3)0.026 (3)0.025 (3)0.009 (2)0.008 (2)0.010 (2)
O80.015 (2)0.031 (3)0.014 (2)0.006 (2)0.001 (2)0.002 (2)
O120.021 (3)0.030 (3)0.020 (3)0.006 (2)0.005 (2)0.005 (2)
O50.021 (3)0.021 (2)0.022 (3)0.001 (2)0.011 (2)0.004 (2)
O20.021 (3)0.028 (3)0.020 (3)0.014 (2)0.010 (2)0.010 (2)
O100.025 (3)0.018 (2)0.018 (2)0.000 (2)0.010 (2)0.0058 (19)
O70.027 (3)0.024 (3)0.021 (3)0.007 (2)0.009 (2)0.003 (2)
O10.026 (3)0.033 (3)0.021 (2)0.011 (2)0.014 (2)0.005 (2)
O40.029 (3)0.029 (3)0.018 (3)0.010 (2)0.011 (2)0.004 (2)
C190.015 (4)0.032 (4)0.017 (4)0.007 (3)0.003 (3)0.002 (3)
C40.016 (4)0.027 (4)0.028 (4)0.002 (3)0.009 (3)0.004 (3)
C220.019 (4)0.023 (3)0.017 (3)0.004 (3)0.009 (3)0.002 (3)
C150.005 (3)0.015 (3)0.022 (4)0.003 (2)0.004 (3)0.003 (3)
C60.020 (4)0.014 (3)0.025 (4)0.002 (3)0.009 (3)0.003 (3)
C210.016 (4)0.021 (3)0.029 (4)0.004 (3)0.012 (3)0.006 (3)
C70.011 (3)0.017 (3)0.020 (3)0.000 (3)0.006 (3)0.004 (3)
C230.013 (3)0.020 (3)0.027 (4)0.005 (3)0.014 (3)0.000 (3)
C180.013 (3)0.028 (4)0.018 (3)0.002 (3)0.007 (3)0.002 (3)
C300.012 (3)0.021 (3)0.022 (3)0.001 (3)0.004 (3)0.005 (3)
C250.026 (4)0.021 (3)0.023 (4)0.006 (3)0.015 (3)0.004 (3)
C310.008 (3)0.018 (3)0.031 (4)0.002 (3)0.010 (3)0.000 (3)
C170.023 (4)0.020 (3)0.016 (3)0.007 (3)0.007 (3)0.001 (3)
C200.019 (4)0.034 (4)0.023 (4)0.007 (3)0.005 (3)0.010 (3)
C290.016 (4)0.031 (4)0.034 (4)0.007 (3)0.011 (3)0.011 (3)
C30.021 (4)0.019 (3)0.029 (4)0.004 (3)0.014 (3)0.005 (3)
C260.013 (3)0.021 (3)0.022 (3)0.002 (3)0.005 (3)0.005 (3)
C140.014 (3)0.018 (3)0.025 (4)0.002 (3)0.009 (3)0.005 (3)
C50.013 (3)0.017 (3)0.030 (4)0.003 (3)0.005 (3)0.001 (3)
C280.021 (4)0.037 (4)0.050 (5)0.008 (3)0.024 (4)0.010 (4)
C90.028 (4)0.023 (4)0.034 (4)0.006 (3)0.016 (4)0.013 (3)
C10.029 (4)0.015 (3)0.021 (4)0.002 (3)0.013 (3)0.004 (3)
C20.018 (3)0.018 (3)0.022 (4)0.000 (3)0.011 (3)0.001 (3)
C110.022 (4)0.019 (4)0.029 (4)0.004 (3)0.005 (3)0.005 (3)
C100.021 (4)0.018 (3)0.024 (4)0.000 (3)0.008 (3)0.002 (3)
C160.039 (4)0.022 (4)0.013 (3)0.002 (3)0.015 (3)0.009 (3)
C120.022 (4)0.018 (4)0.046 (5)0.007 (3)0.016 (4)0.002 (3)
C320.026 (4)0.041 (5)0.016 (4)0.007 (3)0.002 (3)0.005 (3)
C130.026 (4)0.018 (3)0.029 (4)0.000 (3)0.017 (3)0.004 (3)
C270.029 (4)0.034 (4)0.042 (5)0.007 (3)0.024 (4)0.000 (4)
C80.036 (5)0.041 (5)0.037 (5)0.016 (4)0.013 (4)0.011 (4)
C240.024 (4)0.026 (4)0.037 (4)0.001 (3)0.015 (4)0.005 (3)
Geometric parameters (Å, º) top
Sm1—Na23.742 (2)C6—C51.368 (9)
Sm1—Na2i3.652 (2)C21—H210.9500
Sm1—O112.343 (4)C21—C201.404 (10)
Sm1—O82.346 (4)C7—C21.424 (9)
Sm1—O52.355 (4)C23—C181.417 (9)
Sm1—O22.323 (4)C18—C171.444 (9)
Sm1—O102.435 (4)C30—C311.427 (9)
Sm1—O72.446 (5)C30—C291.366 (9)
Sm1—O12.464 (4)C25—H250.9500
Sm1—O42.454 (5)C25—C261.442 (9)
Na2—O11ii2.561 (5)C31—C261.419 (9)
Na2—O9ii2.530 (5)C17—H170.9500
Na2—O62.386 (5)C20—H200.9500
Na2—O8ii2.496 (5)C29—H290.9500
Na2—O52.468 (5)C29—C281.405 (10)
Na2—O102.463 (5)C3—H30.9500
Na2—O72.720 (5)C3—C21.424 (9)
Na2—O1ii2.622 (5)C26—C271.412 (9)
O11—C311.288 (7)C14—C131.371 (9)
O9—C221.367 (8)C5—H50.9500
O9—C241.433 (8)C28—H280.9500
O6—C141.372 (8)C28—C271.361 (11)
O6—C161.430 (7)C9—H90.9500
O3—C61.373 (8)C9—C101.429 (10)
O3—C81.436 (8)C1—H10.9500
O8—C231.286 (8)C1—C21.418 (9)
O12—C301.365 (8)C11—H110.9500
O12—C321.437 (8)C11—C101.409 (9)
O5—C151.300 (7)C11—C121.369 (10)
O2—C71.286 (7)C16—H16A0.9800
O10—C251.251 (8)C16—H16B0.9800
O7—C171.245 (8)C16—H16C0.9800
O1—C11.239 (8)C12—H120.9500
O4—C91.243 (8)C12—C131.404 (10)
C19—H190.9500C32—H32A0.9800
C19—C181.415 (9)C32—H32B0.9800
C19—C201.356 (10)C32—H32C0.9800
C4—H40.9500C13—H130.9500
C4—C31.360 (10)C27—H270.9500
C4—C51.411 (10)C8—H8A0.9800
C22—C211.376 (9)C8—H8B0.9800
C22—C231.434 (9)C8—H8C0.9800
C15—C141.431 (9)C24—H24A0.9800
C15—C101.418 (9)C24—H24B0.9800
C6—C71.444 (9)C24—H24C0.9800
Na2i—Sm1—Na2132.39 (3)C17—O7—Na2130.1 (4)
O11—Sm1—Na2110.43 (11)Sm1—O1—Na2i91.74 (16)
O11—Sm1—Na2i44.20 (11)C1—O1—Sm1133.1 (4)
O11—Sm1—O876.94 (16)C1—O1—Na2i116.9 (4)
O11—Sm1—O5117.89 (15)C9—O4—Sm1133.9 (5)
O11—Sm1—O1070.90 (15)C18—C19—H19119.7
O11—Sm1—O7131.50 (15)C20—C19—H19119.7
O11—Sm1—O173.70 (15)C20—C19—C18120.6 (7)
O11—Sm1—O481.87 (16)C3—C4—H4120.1
O8—Sm1—Na2i42.62 (12)C3—C4—C5119.8 (6)
O8—Sm1—Na2102.02 (12)C5—C4—H4120.1
O8—Sm1—O5141.38 (16)O9—C22—C21125.5 (6)
O8—Sm1—O1085.20 (15)O9—C22—C23112.5 (6)
O8—Sm1—O770.62 (15)C21—C22—C23122.0 (6)
O8—Sm1—O171.81 (16)O5—C15—C14119.3 (6)
O8—Sm1—O4147.48 (15)O5—C15—C10124.2 (6)
O5—Sm1—Na2i161.47 (12)C10—C15—C14116.5 (6)
O5—Sm1—Na240.22 (11)O3—C6—C7113.5 (5)
O5—Sm1—O1069.04 (15)C5—C6—O3124.8 (6)
O5—Sm1—O774.01 (15)C5—C6—C7121.6 (6)
O5—Sm1—O1144.62 (16)C22—C21—H21120.0
O5—Sm1—O470.78 (15)C22—C21—C20120.0 (6)
O2—Sm1—Na2i109.28 (11)C20—C21—H21120.0
O2—Sm1—Na2105.73 (11)O2—C7—C6120.3 (6)
O2—Sm1—O11143.78 (15)O2—C7—C2124.0 (6)
O2—Sm1—O897.74 (16)C2—C7—C6115.7 (5)
O2—Sm1—O588.81 (15)O8—C23—C22119.4 (6)
O2—Sm1—O10145.08 (16)O8—C23—C18124.9 (6)
O2—Sm1—O776.86 (16)C18—C23—C22115.7 (6)
O2—Sm1—O170.67 (15)C19—C18—C23121.2 (6)
O2—Sm1—O485.02 (17)C19—C18—C17117.6 (6)
O10—Sm1—Na2i96.41 (11)C23—C18—C17121.0 (6)
O10—Sm1—Na240.45 (11)O12—C30—C31113.4 (6)
O10—Sm1—O771.35 (16)O12—C30—C29124.3 (6)
O10—Sm1—O1141.24 (15)C29—C30—C31122.3 (6)
O10—Sm1—O4110.82 (16)O10—C25—H25117.1
O7—Sm1—Na246.55 (12)O10—C25—C26125.8 (6)
O7—Sm1—Na2i113.18 (11)C26—C25—H25117.1
O7—Sm1—O1125.48 (16)O11—C31—C30121.0 (6)
O7—Sm1—O4140.51 (15)O11—C31—C26124.1 (6)
O1—Sm1—Na2i45.86 (12)C26—C31—C30114.9 (6)
O1—Sm1—Na2171.95 (12)O7—C17—C18126.5 (6)
O4—Sm1—Na2108.40 (11)O7—C17—H17116.8
O4—Sm1—Na2i105.84 (12)C18—C17—H17116.8
O4—Sm1—O178.76 (16)C19—C20—C21120.3 (7)
Sm1ii—Na2—Sm1142.49 (7)C19—C20—H20119.9
O11ii—Na2—Sm1135.37 (13)C21—C20—H20119.9
O11ii—Na2—Sm1ii39.63 (10)C30—C29—H29119.6
O11ii—Na2—O7155.90 (17)C30—C29—C28120.9 (7)
O11ii—Na2—O1ii67.62 (14)C28—C29—H29119.6
O9ii—Na2—Sm199.88 (12)C4—C3—H3119.8
O9ii—Na2—Sm1ii101.57 (13)C4—C3—C2120.3 (7)
O9ii—Na2—O11ii124.54 (17)C2—C3—H3119.8
O9ii—Na2—O769.09 (15)C31—C26—C25122.1 (6)
O9ii—Na2—O1ii113.80 (18)C27—C26—C25115.0 (6)
O6—Na2—Sm1102.78 (13)C27—C26—C31122.6 (6)
O6—Na2—Sm1ii112.76 (13)O6—C14—C15113.2 (5)
O6—Na2—O11ii87.83 (16)C13—C14—O6125.5 (6)
O6—Na2—O9ii72.92 (17)C13—C14—C15121.3 (6)
O6—Na2—O8ii98.17 (17)C4—C5—H5119.4
O6—Na2—O565.02 (16)C6—C5—C4121.1 (6)
O6—Na2—O10124.32 (18)C6—C5—H5119.4
O6—Na2—O7116.13 (17)C29—C28—H28120.1
O6—Na2—O1ii154.16 (17)C27—C28—C29119.8 (7)
O8ii—Na2—Sm1146.68 (14)C27—C28—H28120.1
O8ii—Na2—Sm1ii39.52 (11)O4—C9—H9115.7
O8ii—Na2—O11ii70.44 (15)O4—C9—C10128.7 (7)
O8ii—Na2—O9ii62.06 (15)C10—C9—H9115.7
O8ii—Na2—O7106.41 (17)O1—C1—H1115.6
O8ii—Na2—O1ii66.87 (16)O1—C1—C2128.8 (6)
O5—Na2—Sm1ii164.45 (14)C2—C1—H1115.6
O5—Na2—Sm138.03 (11)C7—C2—C3121.4 (6)
O5—Na2—O11ii125.80 (18)C1—C2—C7120.8 (6)
O5—Na2—O9ii92.53 (17)C1—C2—C3117.7 (6)
O5—Na2—O8ii153.53 (19)C10—C11—H11120.2
O5—Na2—O767.52 (15)C12—C11—H11120.2
O5—Na2—O1ii136.04 (17)C12—C11—C10119.6 (7)
O10—Na2—Sm139.91 (10)C15—C10—C9121.0 (6)
O10—Na2—Sm1ii106.15 (12)C11—C10—C15121.5 (6)
O10—Na2—O11ii98.71 (16)C11—C10—C9117.5 (6)
O10—Na2—O9ii135.31 (18)O6—C16—H16A109.5
O10—Na2—O8ii136.24 (18)O6—C16—H16B109.5
O10—Na2—O566.83 (15)O6—C16—H16C109.5
O10—Na2—O766.42 (16)H16A—C16—H16B109.5
O10—Na2—O1ii69.82 (15)H16A—C16—H16C109.5
O7—Na2—Sm1ii123.68 (13)H16B—C16—H16C109.5
O7—Na2—Sm140.76 (11)C11—C12—H12119.7
O1ii—Na2—Sm1100.53 (11)C11—C12—C13120.6 (6)
O1ii—Na2—Sm1ii42.40 (10)C13—C12—H12119.7
O1ii—Na2—O788.94 (15)O12—C32—H32A109.5
Sm1—O11—Na2i96.18 (16)O12—C32—H32B109.5
C31—O11—Sm1139.3 (4)O12—C32—H32C109.5
C31—O11—Na2i112.8 (4)H32A—C32—H32B109.5
C22—O9—Na2i121.2 (4)H32A—C32—H32C109.5
C22—O9—C24118.7 (5)H32B—C32—H32C109.5
C24—O9—Na2i119.6 (4)C14—C13—C12120.4 (6)
C14—O6—Na2121.3 (4)C14—C13—H13119.8
C14—O6—C16117.4 (5)C12—C13—H13119.8
C16—O6—Na2120.7 (4)C26—C27—H27120.2
C6—O3—C8115.9 (5)C28—C27—C26119.6 (7)
Sm1—O8—Na2i97.86 (17)C28—C27—H27120.2
C23—O8—Sm1137.3 (4)O3—C8—H8A109.5
C23—O8—Na2i122.0 (4)O3—C8—H8B109.5
C30—O12—C32115.9 (5)O3—C8—H8C109.5
Sm1—O5—Na2101.75 (17)H8A—C8—H8B109.5
C15—O5—Sm1139.7 (4)H8A—C8—H8C109.5
C15—O5—Na2117.6 (4)H8B—C8—H8C109.5
C7—O2—Sm1139.6 (4)O9—C24—H24A109.5
Sm1—O10—Na299.63 (17)O9—C24—H24B109.5
C25—O10—Sm1135.6 (4)O9—C24—H24C109.5
C25—O10—Na2119.4 (4)H24A—C24—H24B109.5
Sm1—O7—Na292.68 (16)H24A—C24—H24C109.5
C17—O7—Sm1132.7 (4)H24B—C24—H24C109.5
Sm1—O11—C31—C30171.4 (4)O4—C9—C10—C151.8 (12)
Sm1—O11—C31—C269.0 (10)O4—C9—C10—C11177.4 (7)
Sm1—O8—C23—C22169.3 (4)C19—C18—C17—O7177.7 (6)
Sm1—O8—C23—C1813.0 (10)C4—C3—C2—C70.4 (10)
Sm1—O5—C15—C14177.5 (4)C4—C3—C2—C1179.3 (6)
Sm1—O5—C15—C104.2 (10)C22—C21—C20—C191.8 (10)
Sm1—O2—C7—C6163.9 (5)C22—C23—C18—C195.4 (9)
Sm1—O2—C7—C215.2 (11)C22—C23—C18—C17169.0 (6)
Sm1—O10—C25—C2610.9 (10)C15—C14—C13—C121.3 (10)
Sm1—O7—C17—C1822.4 (10)C6—C7—C2—C31.5 (9)
Sm1—O1—C1—C29.8 (11)C6—C7—C2—C1178.2 (6)
Sm1—O4—C9—C1014.5 (11)C21—C22—C23—O8177.2 (6)
Na2i—O11—C31—C3056.8 (7)C21—C22—C23—C185.0 (9)
Na2i—O11—C31—C26122.8 (6)C7—C6—C5—C40.9 (10)
Na2i—O9—C22—C21163.7 (5)C23—C22—C21—C201.5 (10)
Na2i—O9—C22—C2314.4 (7)C23—C18—C17—O73.1 (10)
Na2—O6—C14—C1514.1 (7)C18—C19—C20—C211.3 (10)
Na2—O6—C14—C13166.7 (5)C30—C31—C26—C25174.4 (6)
Na2i—O8—C23—C2213.1 (8)C30—C31—C26—C271.1 (10)
Na2i—O8—C23—C18169.2 (5)C30—C29—C28—C271.3 (11)
Na2—O5—C15—C1415.7 (7)C25—C26—C27—C28175.8 (7)
Na2—O5—C15—C10162.7 (5)C31—C30—C29—C280.4 (11)
Na2—O10—C25—C26158.9 (5)C31—C26—C27—C282.1 (11)
Na2—O7—C17—C18126.9 (6)C20—C19—C18—C232.5 (10)
Na2i—O1—C1—C2131.2 (6)C20—C19—C18—C17172.1 (6)
O11—C31—C26—C255.3 (10)C29—C30—C31—O11179.4 (6)
O11—C31—C26—C27178.6 (6)C29—C30—C31—C260.3 (9)
O9—C22—C21—C20179.4 (6)C29—C28—C27—C262.1 (11)
O9—C22—C23—O81.1 (8)C3—C4—C5—C60.3 (10)
O9—C22—C23—C18176.8 (5)C14—C15—C10—C9174.6 (6)
O6—C14—C13—C12179.6 (6)C14—C15—C10—C114.5 (9)
O3—C6—C7—O20.9 (9)C5—C4—C3—C20.5 (10)
O3—C6—C7—C2179.9 (6)C5—C6—C7—O2177.5 (6)
O3—C6—C5—C4179.1 (6)C5—C6—C7—C21.7 (9)
O8—C23—C18—C19176.8 (6)C11—C12—C13—C141.0 (11)
O8—C23—C18—C178.8 (10)C10—C15—C14—O6176.8 (5)
O12—C30—C31—O111.3 (9)C10—C15—C14—C133.9 (9)
O12—C30—C31—C26178.4 (5)C10—C11—C12—C130.4 (11)
O12—C30—C29—C28178.3 (6)C16—O6—C14—C15174.3 (5)
O5—C15—C14—O61.7 (8)C16—O6—C14—C134.9 (9)
O5—C15—C14—C13177.5 (6)C12—C11—C10—C152.5 (10)
O5—C15—C10—C93.9 (10)C12—C11—C10—C9176.7 (7)
O5—C15—C10—C11177.0 (6)C32—O12—C30—C31176.9 (6)
O2—C7—C2—C3177.7 (6)C32—O12—C30—C295.1 (10)
O2—C7—C2—C12.6 (10)C8—O3—C6—C7174.9 (6)
O10—C25—C26—C313.8 (11)C8—O3—C6—C56.8 (10)
O10—C25—C26—C27177.6 (7)C24—O9—C22—C217.8 (9)
O1—C1—C2—C74.1 (11)C24—O9—C22—C23174.1 (5)
O1—C1—C2—C3176.2 (7)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+3/2, z+1/2.
Atom pairs and distances (Å) top
Atom pairDistance
C11—H11···C42.716
C16—H16B···C122.851
C16—H16B···C132.888
 

Footnotes

Current affiliation: Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.

§These authors contributed equally to this work.

Acknowledgements

The authors thank Dr Aaron D. Nicholas for his feedback in preparing this manuscript.

Funding information

The primary funding mechanism for this study was the Laboratory Directed Research and Development program at Pacific Northwest National Laboratory, a multiprogram national laboratory operated by Battelle for the Department of Energy. AW and AA are grateful for support from the Linus Pauling Distinguished Postdoctoral Fellowship. RGS was supported by the US Department of Energy Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences, Heavy Element Chemistry program, FWP 73200. AMH was supported by the Department of Energy, National Nuclear Security Administration under award No. DE-NA0003763, the Arthur J. Schmitt Leadership Fellowship at the University of Notre Dame, and the postdoctoral program at Lawrence Livermore National Laboratory.

References

First citationAlbrecht, M. (2001). Chem. Rev. 101, 3457–3498.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAndruh, M. (2015). Dalton Trans. 44, 16633–16653.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2014). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBünzli, J. G. & Piguet, C. (2002). Chem. Rev. 102, 1897–1928.  Web of Science PubMed Google Scholar
First citationChaudhari, A. K., Joarder, B., Rivière, E., Rogez, G. & Ghosh, S. K. (2012). Inorg. Chem. 51, 9159–9161.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationCheng, J.-W. & Yang, G.-Y. (2017). Recent Development in Clusters of Rare Earths and Actinides: Chemistry and Materials, edited by Z. Zheng, pp. 97–119. Berlin, Heidelberg: Springer Berlin Heidelberg.  Google Scholar
First citationCostes, J., Dahan, F., Duhayon, C. & Mota, A. J. (2015). Polyhedron, 96, 51–56.  Web of Science CSD CrossRef CAS Google Scholar
First citationCostes, J., Dahan, F., Vendier, L., Shova, S., Lorusso, G. & Evangelisti, M. (2018). Dalton Trans. 47, 1106–1116.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGriffiths, K., Kumar, P., Mattock, J. D., Abdul-Sada, A., Pitak, M. B., Coles, S. J., Navarro, O., Vargas, A. & Kostakis, G. E. (2016). Inorg. Chem. 55, 6988–6994.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHeuer-Jungemann, A., Feliu, N., Bakaimi, I., Hamaly, M., Alkilany, A., Chakraborty, I., Masood, A., Casula, M. F., Kostopoulou, A., Oh, E., Susumu, K., Stewart, M. H., Medintz, I. L., Stratakis, E., Parak, W. J. & Kanaras, A. G. (2019). Chem. Rev. 119, 97–119.  Google Scholar
First citationKırpık, H., Kose, M., Elsegood, M. & Carpenter-Warren, C. L. (2019). J. Mol. Struct. 1175, 882–888.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLi, X., Zhao, L., Wu, J., Shi, W., Struch, N., Lutzen, A., Powell, A. K., Cheng, P. & Tang, J. (2022). Chem. Sci. 13, 10048–10056.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMa, J., Ma, T., Qian, R., Zhou, L., Guo, Q., Yang, J. & Yang, Q. (2021). Inorg. Chem. 60, 7937–7951.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNovitchi, G., Pilet, G., Ungur, L., Moshchalkov, V. V., Wernsdorfer, W., Chibotaru, L. F., Luneau, D. & Powell, A. K. (2012). Chem. Sci. 3, 1169–1176.  Web of Science CSD CrossRef CAS Google Scholar
First citationPeng, G., Ma, L., Cai, J., Liang, L., Deng, H. & Kostakis, G. E. (2011). Cryst. Growth Des. 11, 2485–2492.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSong, X., Liu, P., Wang, C., Liu, Y., Liu, W. & Zhang, M. (2017). RSC Adv. 7, 22692–22698.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYee, T. A., Suescun, L. & Rabuffetti, F. A. (2019). J. Solid State Chem. 270, 242–246.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds