research communications
Z)-N-{chloro[(4-ferrocenylphenyl)imino]methyl}-4-ferrocenylaniline N,N-dimethylformamide monosolvate
and Hirshfeld surface analysis of (aLaboratory of Applied Organic Chemistry, Sidi Mohamed Ben Abdellah University, Faculty of Science And Technology, Road Immouzer, BP 2202 Fez, Morocco, bScience and Technology of Lille USR 3290, Villeneuve d'ascq cedex, France, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, dDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Türkiye, eLaboratory of Organic and Physical Chemistry, Applied Bioorganic Chemistry Team, Faculty of Sciences, Ibnou Zohr University, Agadir, Morocco, and fLaboratory of Plant Chemistry, Organic and Bioorganic Synthesis, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta BP 1014 RP, Rabat, Morocco
*Correspondence e-mail: n.sebbar@uiz.ac.ma
This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.
The title molecule, [Fe2(C5H5)2(C23H17ClN2)]·C3H7NO, is twisted end to end and the central N/C/N unit is disordered. In the crystal, several C—H⋯π(ring) interactions lead to the formation of layers, which are connected by further C—H⋯π(ring) interactions. A Hirshfeld surface analysis of the indicates that the most important contributions for the crystal packing are from H⋯H (60.2%) and H⋯C/C⋯H (27.0%) interactions. Hydrogen bonding, C—H⋯π(ring) interactions and van der Waals interactions dominate the crystal packing.
Keywords: crystal structure; ferrocene; carbamidic chloride; hydrogen bond; C—H⋯π(ring) interactions.
CCDC reference: 2329443
1. Chemical context
Organometallic compounds have been studied for almost 250 years and have proved to be bioactive molecules with a wide range of applications (Krause et al., 2012; Parveen et al., 2019; Li et al., 2008). They are characterized by their metal–carbon covalent bonds as well as their kinetic stability, non-chargeability, and low metal oxidation states (Herrmann, 1988; Alama et al., 2009). A number of organometallic compounds are useful starting reagents for organic and organometallic synthesis. are an important and well-known class of organometallic compounds that offer new possibilities in the design of catalytic, biosensing, and medicinal compounds (Gasser et al., 2011; Gasser & Metzler-Nolte, 2012; Ong & Gasser, 2020). Their chemical richness is caused by the variation in electron density in the valence shell. Ferrocene, one of the most prominent metallocene derivatives, is a fascinating target in a variety of fields, including electrochemistry, biochemistry, and drug design (Togni, 1996; Tsukazaki et al., 1996; Nishibayashi et al., 1996) and mediators of protein redox reactions (Dai et al., 2007). Due to the chemical richness of the iron(II) center, its stability in aqueous and aerobic environments and its aromatic properties, ferrocene has attracted considerable interest (Ibrahim, 2001). In addition to possessing a wide range of derivatives, these compounds are easily oxidized. Ferrocene derivatives have been reported to have antitumor, antimalarial, anticonvulsant, antioxidant, antimicrobial and DNA-cleaving activities among their biological activities, and have attracted particular attention as antitumor and antimalarial agents including the drugs tamoxifen, ferroquine and ferrocifen (Top et al., 2003). These drugs are excellent preventive agents against cancer and malaria, and their biological uses have been the subject of much research. The derivatization of ferrocene has been extensively studied (Rehmani et al., 2010). carbonyls and carboxylic acid functionalities can be introduced to derivatize ferrocene (Langeroodi, 2010). Ferrocenyl aniline can be synthesized by reducing nitrophenyl ferrocene. There is an intermediary in the synthesis of ferrocene-containing liquid crystals, ferrocene-containing In our research on the development of new substituted ferrocenyl derivatives, we synthesized N,N-bis(4-ferrocenylphenyl)carbamimidic dichloride by reacting 4-ferrocenyl aniline with (4-ferrocenylphenyl)carbonimidic dichloride with potassium carbonate as a base and tetrabutylammonium bromide as a catalyst. In this paper, we present the synthesis and detailed examination of the molecular and crystal structures of the title compound, including by Hirshfeld surface analysis.
2. Structural commentary
In the crystal, the molecule is disordered in essentially equal amounts such that a hydrogen atom appears on both N1 and N2 and the C17—N1 and C17—N2 distances appear equivalent at 1.365 (3) and 1.366 (3) Å, respectively. The ferrocenyl groups are nearly perpendicular to one another as indicated by the dihedral angle of 82.05 (9)° between the C1–C5 and C29–C33 cyclopentadienyl rings. The cyclopentadienyl rings attached to Fe1 are parallel within experimental error [dihedral angle = 0.14 (18)°] while those attached to Fe2 are not [dihedral angle = 2.03 (19)°]. The molecule is twisted along its length (Fig. 1), as indicated by the dihedral angles listed in Table 1. The smaller values for the last two entries in the table are due, in part, to the intramolecular C23—H23⋯Cl1 hydrogen bond (Table 2). With the exception of the two C—N distances affected by the disorder, all bond distances and interbond angles appear as expected for the given formulation.
|
3. Supramolecular features
In the crystal, the DMF solvent molecule is bound to the main molecule by an N1—H1⋯O1 hydrogen bond and these units are formed into corrugated layers parallel to (010) by C7—H7⋯Cg6, C19—H19⋯Cg5, C25—H25⋯Cg2 and C34—H34⋯Cg5 interactions, while the layers are connected by C35—H35C⋯Cg4 interactions (Table 2 and Fig. 2) where Cg2, Cg4, Cg5 and Cg6 are the centroids of the C6–C10, C29–C23 C11–C16 and C18–C23 rings, respectively.
4. Hirshfeld surface analysis
In order to visualize the intermolecular interactions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out using Crystal Explorer 17.5 (Turner et al., 2017). In the HS plotted over dnorm (Fig. 3), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colors indicate distances shorter (in close contact) or longer (distinct contact) than the sum of van der Waals radii, respectively (Venkatesan et al., 2016). The bright-red spots indicate the respective donors (C14) and/or acceptors (H5 and H19). The shape-index of the HS is a tool to visualize the π–π stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π–π interactions. Fig. 4 clearly suggests that there are no π–π interactions present.
The overall two-dimensional fingerprint plot is shown in Fig. 5a, and those delineated into H⋯H, H⋯C/C⋯H, H⋯Cl/Cl⋯H, H⋯N/ N⋯H, H⋯O/O⋯H, C⋯C, C⋯O/O⋯C and N⋯O/O⋯N (McKinnon et al., 2007) are illustrated in Fig. 5b–i, respectively, together with their relative contributions to the Hirshfeld surface. The most abundant interaction is H⋯H, contributing 60.2% to the overall crystal packing, which is reflected in Fig. 5b as the widely scattered points of high density due to the large hydrogen content of the molecule with the tip at de = di = 1.16 Å. As a result of the presence of C—H⋯π interactions, the H⋯C/C⋯H contacts contribute 27.0% to the overall crystal packing and are shown in Fig. 5c with the tips at de + di = 2.51 Å. The pair of characteristic wings in the fingerprint plot delineated into H⋯Cl/Cl⋯H contacts (Fig. 5d) with the tips at de + di = 2.86 Å contribute 7.4% to the HS. The pair of wings in the fingerprint plot delineated into H⋯N/N⋯H contacts (Fig. 5e) with a 2.3% contribution to the HS is seen with the tips at de + di = 2.98 Å while the H⋯O/O⋯H (Fig. 5f) contacts with a 1.4% contribution to the HS are viewed as pairs of wings with the tips at de + di = 2.86 Å and de + di = 3.00Å for the long and short ones, respectively. Finally, the C⋯C (Fig. 5g), C⋯O/O⋯C (Fig. 5h) and N⋯O/O⋯N (Fig. 5i) contacts with 0.7%, 0.5% and 0.5% contributions, respectively, to the HS have very low distributions of points. The Hirshfeld surface representations as fragment patches plotted onto the surface are shown for the H⋯H and H⋯C/C⋯H interactions in Fig. 6a–b, respectively. The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H and H⋯C/C⋯H interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).
5. Database survey
A survey of the Cambridge Structural Database (CSD version, updated to November 2023; Groom et al., 2016) with the search fragment I (R = R′ = nothing) yielded five hits, all of which contain only one ferrocenyl group and the first four have a trans disposition of R and R′. These structures include ones with R = 2-ClC6H4NH, R′ = PhC(=O) (DEZHUN; Gul et al., 2013a); R = 3-NO2-4-ClC6H3NH; R′ = 3-ClC6H4C(=O) (JARZUB; Ozdemir, 2021); R = 3,4-Cl2C6H3NH, R′ = 3-ClC6H4C(=O) (NIKQOP; Gul et al., 2013b); R = 3-CF3C6H4NH, R′ = PhC(=O) (QAGTEA; Gul et al., 2014) and R = p-tolNH, R′ = PhC(=O) (QAHWAZ; Gul et al., 2014).
6. Synthesis and crystallization
4-Ferrocenyl aniline was synthesized using a previously described procedure (Adil et al., 2018). In a 100 ml flask, 4-ferrocenyl aniline (1 mmol) and 4-ferrocenylphenyl carbonimidic dichloride (1 mmol) were dissolved in DMF (20 mL) to which potassium carbonate (2 mmol) and tetra-n-butyl ammonium bromide (0.20 mmol) were added. The reaction mixture was stirred at reflux for 12 h. The DMF was removed by rotary evaporation and distilled water was added to the residue, which was then extracted with dichloromethane. The organic phase was dried with Na2SO4, filtered and evaporated under reduced pressure. The residue was then purified by silica eluting with a mixture of hexane/ethyl acetate (4/1) and the solid obtained upon evaporation of the eluant was recrystallized from ethanol (yield: 92%, m.p. 258 K).
7. Refinement
Crystal data, data collection and structure . Hydrogen atoms attached to carbon were placed in idealized positions with isotropic displacement parameters tied to those of the attached atoms. The two components of the disordered hydrogen attached to nitrogen were located in a difference map and refined with a DFIX 0.91 0.01 instruction with isotropic displacement parameters 1.2 times that of the attached nitrogen and equal occupancies.
details are summarized in Table 3
|
Supporting information
CCDC reference: 2329443
https://doi.org/10.1107/S2056989024001002/ox2002sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024001002/ox2002Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989024001002/ox2002Isup3.cdx
[Fe2(C5H5)2(C23H17ClN2)] | Z = 2 |
Mr = 671.81 | F(000) = 696 |
Triclinic, P1 | Dx = 1.453 Mg m−3 |
a = 8.0175 (10) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.3134 (14) Å | Cell parameters from 9233 reflections |
c = 17.408 (2) Å | θ = 2.3–31.6° |
α = 95.099 (2)° | µ = 1.07 mm−1 |
β = 99.963 (2)° | T = 150 K |
γ = 96.414 (2)° | Plate, orange |
V = 1536.0 (3) Å3 | 0.35 × 0.30 × 0.03 mm |
Bruker D8 QUEST PHOTON 3 diffractometer | 9949 independent reflections |
Radiation source: fine-focus sealed tube | 7143 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
Detector resolution: 7.3910 pixels mm-1 | θmax = 31.6°, θmin = 2.3° |
φ and ω scans | h = −11→11 |
Absorption correction: numerical (SADABS; Krause et al., 2015) | k = −16→16 |
Tmin = 0.71, Tmax = 0.96 | l = −25→25 |
19205 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.047 | Hydrogen site location: mixed |
wR(F2) = 0.131 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0573P)2 + 0.8875P] where P = (Fo2 + 2Fc2)/3 |
9949 reflections | (Δ/σ)max = 0.001 |
396 parameters | Δρmax = 0.54 e Å−3 |
2 restraints | Δρmin = −0.85 e Å−3 |
Experimental. The diffraction data were collected in three sets of 363 frames (0.5° width in ω) at φ = 0, 120 and 240°. A scan time of 20 sec/frame was used. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 1.00 Å) and were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. Those attached to nitrogen were placed in locations derived from a difference map and refined with a DFIX 0.91 0.01 instruction. The central {NH—C(Cl)═N} portion is disordered in essentially equal amounts leading to two locations for the hydrogen atom and equal NC distances. Two reflections affected by the beamstop were omitted from the final refinement. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Fe1 | 1.37373 (4) | 0.63325 (3) | 0.87322 (2) | 0.02325 (8) | |
Fe2 | 0.07704 (4) | 0.90503 (3) | 0.14060 (2) | 0.02200 (8) | |
Cl1 | 0.81676 (8) | 0.78250 (5) | 0.48737 (4) | 0.03526 (14) | |
N1 | 0.7405 (2) | 0.55410 (16) | 0.51322 (11) | 0.0235 (4) | |
H1 | 0.695 (6) | 0.4785 (19) | 0.492 (3) | 0.028* | 0.5 |
N2 | 0.5880 (2) | 0.60294 (17) | 0.40311 (11) | 0.0250 (4) | |
H1B | 0.545 (7) | 0.5247 (16) | 0.401 (3) | 0.030* | 0.5 |
C1 | 1.6276 (3) | 0.6844 (3) | 0.8766 (2) | 0.0520 (9) | |
H1A | 1.719399 | 0.631160 | 0.882788 | 0.062* | |
C2 | 1.5318 (4) | 0.7073 (3) | 0.8050 (2) | 0.0458 (7) | |
H2 | 1.543702 | 0.673373 | 0.751491 | 0.055* | |
C3 | 1.4175 (3) | 0.7870 (2) | 0.82208 (16) | 0.0360 (6) | |
H3 | 1.333001 | 0.818748 | 0.782517 | 0.043* | |
C4 | 1.4400 (3) | 0.8136 (2) | 0.90388 (17) | 0.0360 (6) | |
H4 | 1.375259 | 0.867808 | 0.932501 | 0.043* | |
C5 | 1.5711 (4) | 0.7501 (3) | 0.93865 (19) | 0.0453 (7) | |
H5 | 1.616204 | 0.751766 | 0.996066 | 0.054* | |
C6 | 1.1536 (3) | 0.53288 (19) | 0.81168 (13) | 0.0218 (4) | |
C7 | 1.2867 (3) | 0.45906 (19) | 0.82827 (13) | 0.0233 (4) | |
H7 | 1.334693 | 0.410700 | 0.788454 | 0.028* | |
C8 | 1.3395 (3) | 0.4672 (2) | 0.91084 (14) | 0.0286 (5) | |
H8 | 1.431207 | 0.425495 | 0.939174 | 0.034* | |
C9 | 1.2413 (3) | 0.5455 (2) | 0.94644 (14) | 0.0290 (5) | |
H9 | 1.251227 | 0.568080 | 1.004055 | 0.035* | |
C10 | 1.1260 (3) | 0.5865 (2) | 0.88539 (13) | 0.0249 (4) | |
H10 | 1.041297 | 0.643043 | 0.892816 | 0.030* | |
C11 | 1.0568 (3) | 0.54542 (19) | 0.73328 (12) | 0.0213 (4) | |
C12 | 1.0447 (3) | 0.4563 (2) | 0.67087 (13) | 0.0233 (4) | |
H12 | 1.105904 | 0.389711 | 0.678342 | 0.028* | |
C13 | 0.9452 (3) | 0.4631 (2) | 0.59827 (13) | 0.0241 (4) | |
H13 | 0.939304 | 0.401614 | 0.556665 | 0.029* | |
C14 | 0.8535 (3) | 0.56001 (19) | 0.58587 (13) | 0.0223 (4) | |
C15 | 0.8653 (3) | 0.65036 (19) | 0.64720 (13) | 0.0243 (4) | |
H15 | 0.804354 | 0.717018 | 0.639563 | 0.029* | |
C16 | 0.9662 (3) | 0.64274 (19) | 0.71946 (13) | 0.0238 (4) | |
H16 | 0.974038 | 0.705219 | 0.760665 | 0.029* | |
C17 | 0.7107 (3) | 0.64420 (19) | 0.46750 (13) | 0.0224 (4) | |
C18 | 0.5173 (3) | 0.65737 (19) | 0.33737 (13) | 0.0215 (4) | |
C19 | 0.3789 (3) | 0.5892 (2) | 0.28742 (14) | 0.0260 (4) | |
H19 | 0.339475 | 0.511829 | 0.299358 | 0.031* | |
C20 | 0.2979 (3) | 0.6318 (2) | 0.22089 (13) | 0.0255 (4) | |
H20 | 0.203611 | 0.583399 | 0.187916 | 0.031* | |
C21 | 0.3523 (3) | 0.74514 (18) | 0.20122 (13) | 0.0209 (4) | |
C22 | 0.4938 (3) | 0.8110 (2) | 0.25035 (14) | 0.0267 (5) | |
H22 | 0.535424 | 0.887311 | 0.237483 | 0.032* | |
C23 | 0.5765 (3) | 0.7693 (2) | 0.31754 (14) | 0.0272 (5) | |
H23 | 0.672821 | 0.816635 | 0.349791 | 0.033* | |
C24 | 0.2600 (3) | 0.79388 (19) | 0.13310 (13) | 0.0216 (4) | |
C25 | 0.0994 (3) | 0.7426 (2) | 0.08542 (14) | 0.0255 (4) | |
H25 | 0.033179 | 0.664561 | 0.091133 | 0.031* | |
C26 | 0.0495 (3) | 0.8218 (2) | 0.02916 (14) | 0.0277 (5) | |
H26 | −0.057611 | 0.809202 | −0.011338 | 0.033* | |
C27 | 0.1775 (3) | 0.9230 (2) | 0.04117 (14) | 0.0270 (5) | |
H27 | 0.175995 | 0.993803 | 0.010649 | 0.032* | |
C28 | 0.3065 (3) | 0.9062 (2) | 0.10470 (13) | 0.0252 (4) | |
H28 | 0.411516 | 0.963704 | 0.126666 | 0.030* | |
C29 | −0.1556 (3) | 0.9466 (2) | 0.15862 (16) | 0.0346 (5) | |
H29 | −0.265962 | 0.926545 | 0.120477 | 0.041* | |
C30 | −0.0392 (3) | 1.0524 (2) | 0.16516 (15) | 0.0325 (5) | |
H30 | −0.052690 | 1.120135 | 0.132317 | 0.039* | |
C31 | 0.1004 (4) | 1.0450 (2) | 0.22600 (15) | 0.0339 (5) | |
H31 | 0.202644 | 1.106623 | 0.243602 | 0.041* | |
C32 | 0.0705 (4) | 0.9344 (3) | 0.25732 (15) | 0.0364 (6) | |
H32 | 0.147494 | 0.904772 | 0.300942 | 0.044* | |
C33 | −0.0878 (4) | 0.8739 (3) | 0.21588 (17) | 0.0379 (6) | |
H33 | −0.142146 | 0.793681 | 0.224987 | 0.045* | |
O1 | 0.5848 (2) | 0.33700 (16) | 0.41848 (12) | 0.0377 (4) | |
N3 | 0.6722 (3) | 0.15580 (18) | 0.39189 (13) | 0.0327 (5) | |
C34 | 0.6909 (3) | 0.2730 (2) | 0.40136 (16) | 0.0350 (6) | |
H34 | 0.797002 | 0.312878 | 0.394321 | 0.042* | |
C35 | 0.8031 (3) | 0.0875 (2) | 0.37001 (17) | 0.0354 (6) | |
H35A | 0.831326 | 0.032017 | 0.408975 | 0.053* | |
H35B | 0.905549 | 0.142311 | 0.367938 | 0.053* | |
H35C | 0.760721 | 0.042240 | 0.318342 | 0.053* | |
C36 | 0.5091 (5) | 0.0882 (3) | 0.3964 (3) | 0.0859 (16) | |
H36A | 0.528889 | 0.023536 | 0.429413 | 0.129* | |
H36B | 0.450962 | 0.054033 | 0.343533 | 0.129* | |
H36C | 0.437852 | 0.141506 | 0.419112 | 0.129* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.01885 (15) | 0.02022 (16) | 0.02790 (17) | −0.00233 (11) | 0.00133 (12) | −0.00034 (12) |
Fe2 | 0.02162 (15) | 0.01953 (15) | 0.02435 (16) | 0.00175 (11) | 0.00369 (12) | 0.00191 (11) |
Cl1 | 0.0389 (3) | 0.0267 (3) | 0.0347 (3) | −0.0060 (2) | −0.0032 (2) | 0.0059 (2) |
N1 | 0.0256 (9) | 0.0188 (8) | 0.0239 (9) | 0.0004 (7) | 0.0005 (7) | 0.0016 (7) |
N2 | 0.0263 (9) | 0.0211 (9) | 0.0252 (9) | −0.0009 (7) | −0.0007 (7) | 0.0049 (7) |
C1 | 0.0189 (12) | 0.0305 (14) | 0.104 (3) | −0.0030 (10) | 0.0082 (14) | 0.0055 (16) |
C2 | 0.0434 (16) | 0.0371 (15) | 0.0573 (19) | −0.0146 (12) | 0.0282 (14) | −0.0042 (13) |
C3 | 0.0358 (14) | 0.0278 (12) | 0.0413 (15) | −0.0080 (10) | 0.0044 (11) | 0.0079 (11) |
C4 | 0.0383 (14) | 0.0216 (11) | 0.0458 (15) | −0.0070 (10) | 0.0115 (12) | −0.0030 (10) |
C5 | 0.0377 (15) | 0.0356 (15) | 0.0491 (17) | −0.0186 (12) | −0.0144 (12) | 0.0045 (12) |
C6 | 0.0190 (9) | 0.0199 (9) | 0.0248 (10) | −0.0025 (7) | 0.0028 (8) | 0.0018 (8) |
C7 | 0.0219 (10) | 0.0188 (10) | 0.0266 (11) | −0.0012 (7) | 0.0015 (8) | 0.0004 (8) |
C8 | 0.0279 (11) | 0.0253 (11) | 0.0295 (12) | −0.0006 (9) | −0.0019 (9) | 0.0055 (9) |
C9 | 0.0276 (11) | 0.0316 (12) | 0.0253 (11) | −0.0034 (9) | 0.0033 (9) | 0.0019 (9) |
C10 | 0.0210 (10) | 0.0258 (11) | 0.0260 (11) | −0.0021 (8) | 0.0036 (8) | 0.0009 (8) |
C11 | 0.0196 (9) | 0.0210 (10) | 0.0221 (10) | −0.0018 (7) | 0.0031 (8) | 0.0022 (8) |
C12 | 0.0225 (10) | 0.0225 (10) | 0.0248 (10) | 0.0034 (8) | 0.0036 (8) | 0.0022 (8) |
C13 | 0.0260 (10) | 0.0210 (10) | 0.0234 (10) | 0.0013 (8) | 0.0023 (8) | −0.0010 (8) |
C14 | 0.0219 (10) | 0.0216 (10) | 0.0227 (10) | −0.0009 (8) | 0.0045 (8) | 0.0030 (8) |
C15 | 0.0252 (10) | 0.0193 (10) | 0.0282 (11) | 0.0029 (8) | 0.0043 (9) | 0.0037 (8) |
C16 | 0.0252 (10) | 0.0181 (10) | 0.0267 (11) | −0.0006 (8) | 0.0044 (8) | −0.0006 (8) |
C17 | 0.0200 (9) | 0.0223 (10) | 0.0244 (10) | 0.0011 (8) | 0.0033 (8) | 0.0036 (8) |
C18 | 0.0206 (9) | 0.0207 (10) | 0.0231 (10) | 0.0020 (7) | 0.0036 (8) | 0.0029 (8) |
C19 | 0.0237 (10) | 0.0218 (10) | 0.0308 (12) | −0.0042 (8) | 0.0043 (9) | 0.0050 (8) |
C20 | 0.0223 (10) | 0.0232 (10) | 0.0278 (11) | −0.0047 (8) | 0.0002 (8) | 0.0036 (8) |
C21 | 0.0195 (9) | 0.0195 (9) | 0.0240 (10) | 0.0020 (7) | 0.0050 (8) | 0.0026 (8) |
C22 | 0.0276 (11) | 0.0192 (10) | 0.0308 (12) | −0.0038 (8) | 0.0013 (9) | 0.0052 (8) |
C23 | 0.0248 (11) | 0.0229 (11) | 0.0302 (12) | −0.0038 (8) | −0.0013 (9) | 0.0042 (9) |
C24 | 0.0204 (9) | 0.0188 (9) | 0.0261 (10) | 0.0028 (7) | 0.0051 (8) | 0.0030 (8) |
C25 | 0.0261 (11) | 0.0196 (10) | 0.0290 (11) | 0.0019 (8) | 0.0030 (9) | −0.0012 (8) |
C26 | 0.0285 (11) | 0.0281 (11) | 0.0245 (11) | 0.0048 (9) | 0.0004 (9) | −0.0013 (9) |
C27 | 0.0284 (11) | 0.0282 (11) | 0.0260 (11) | 0.0045 (9) | 0.0064 (9) | 0.0075 (9) |
C28 | 0.0224 (10) | 0.0257 (11) | 0.0279 (11) | 0.0014 (8) | 0.0056 (8) | 0.0061 (9) |
C29 | 0.0264 (12) | 0.0400 (14) | 0.0390 (14) | 0.0102 (10) | 0.0080 (10) | 0.0019 (11) |
C30 | 0.0404 (14) | 0.0267 (12) | 0.0328 (13) | 0.0127 (10) | 0.0086 (11) | 0.0015 (9) |
C31 | 0.0391 (14) | 0.0301 (12) | 0.0302 (12) | 0.0065 (10) | 0.0036 (10) | −0.0063 (10) |
C32 | 0.0452 (15) | 0.0407 (14) | 0.0275 (12) | 0.0175 (12) | 0.0105 (11) | 0.0040 (10) |
C33 | 0.0392 (14) | 0.0380 (14) | 0.0431 (15) | 0.0072 (11) | 0.0226 (12) | 0.0083 (12) |
O1 | 0.0391 (10) | 0.0233 (9) | 0.0504 (11) | 0.0015 (7) | 0.0127 (9) | −0.0026 (8) |
N3 | 0.0327 (11) | 0.0233 (10) | 0.0435 (12) | 0.0002 (8) | 0.0136 (9) | 0.0027 (9) |
C34 | 0.0342 (13) | 0.0248 (12) | 0.0447 (15) | −0.0042 (10) | 0.0123 (11) | −0.0030 (10) |
C35 | 0.0308 (13) | 0.0270 (12) | 0.0465 (15) | 0.0022 (10) | 0.0055 (11) | −0.0014 (11) |
C36 | 0.061 (2) | 0.0351 (18) | 0.173 (5) | −0.0037 (16) | 0.064 (3) | 0.000 (2) |
Fe1—C1 | 2.042 (3) | C12—C13 | 1.386 (3) |
Fe1—C2 | 2.044 (3) | C12—H12 | 0.9500 |
Fe1—C3 | 2.046 (2) | C13—C14 | 1.398 (3) |
Fe1—C5 | 2.047 (3) | C13—H13 | 0.9500 |
Fe1—C4 | 2.048 (2) | C14—C15 | 1.394 (3) |
Fe1—C9 | 2.048 (2) | C15—C16 | 1.388 (3) |
Fe1—C8 | 2.049 (2) | C15—H15 | 0.9500 |
Fe1—C10 | 2.049 (2) | C16—H16 | 0.9500 |
Fe1—C7 | 2.053 (2) | C18—C19 | 1.392 (3) |
Fe1—C6 | 2.058 (2) | C18—C23 | 1.396 (3) |
Fe2—C25 | 2.038 (2) | C19—C20 | 1.380 (3) |
Fe2—C32 | 2.040 (3) | C19—H19 | 0.9500 |
Fe2—C33 | 2.041 (3) | C20—C21 | 1.399 (3) |
Fe2—C28 | 2.042 (2) | C20—H20 | 0.9500 |
Fe2—C31 | 2.042 (2) | C21—C22 | 1.391 (3) |
Fe2—C29 | 2.043 (2) | C21—C24 | 1.470 (3) |
Fe2—C26 | 2.044 (2) | C22—C23 | 1.389 (3) |
Fe2—C30 | 2.047 (2) | C22—H22 | 0.9500 |
Fe2—C27 | 2.048 (2) | C23—H23 | 0.9500 |
Fe2—C24 | 2.050 (2) | C24—C25 | 1.436 (3) |
Cl1—C17 | 1.672 (2) | C24—C28 | 1.438 (3) |
N1—C17 | 1.365 (3) | C25—C26 | 1.423 (3) |
N1—C14 | 1.414 (3) | C25—H25 | 1.0000 |
N1—H1 | 0.908 (10) | C26—C27 | 1.424 (3) |
N2—C17 | 1.366 (3) | C26—H26 | 1.0000 |
N2—C18 | 1.410 (3) | C27—C28 | 1.419 (3) |
N2—H1B | 0.909 (10) | C27—H27 | 1.0000 |
C1—C2 | 1.407 (5) | C28—H28 | 1.0000 |
C1—C5 | 1.423 (5) | C29—C30 | 1.417 (4) |
C1—H1A | 1.0000 | C29—C33 | 1.423 (4) |
C2—C3 | 1.404 (4) | C29—H29 | 1.0000 |
C2—H2 | 1.0000 | C30—C31 | 1.417 (4) |
C3—C4 | 1.405 (4) | C30—H30 | 1.0000 |
C3—H3 | 1.0000 | C31—C32 | 1.420 (4) |
C4—C5 | 1.419 (4) | C31—H31 | 1.0000 |
C4—H4 | 1.0000 | C32—C33 | 1.414 (4) |
C5—H5 | 1.0000 | C32—H32 | 1.0000 |
C6—C10 | 1.433 (3) | C33—H33 | 1.0000 |
C6—C7 | 1.434 (3) | O1—C34 | 1.234 (3) |
C6—C11 | 1.475 (3) | N3—C34 | 1.310 (3) |
C7—C8 | 1.418 (3) | N3—C35 | 1.452 (3) |
C7—H7 | 1.0000 | N3—C36 | 1.457 (4) |
C8—C9 | 1.420 (4) | C34—H34 | 0.9500 |
C8—H8 | 1.0000 | C35—H35A | 0.9800 |
C9—C10 | 1.429 (3) | C35—H35B | 0.9800 |
C9—H9 | 1.0000 | C35—H35C | 0.9800 |
C10—H10 | 1.0000 | C36—H36A | 0.9800 |
C11—C12 | 1.398 (3) | C36—H36B | 0.9800 |
C11—C16 | 1.401 (3) | C36—H36C | 0.9800 |
C1—Fe1—C2 | 40.28 (14) | Fe1—C7—H7 | 125.9 |
C1—Fe1—C3 | 67.51 (12) | C7—C8—C9 | 108.5 (2) |
C2—Fe1—C3 | 40.15 (12) | C7—C8—Fe1 | 69.91 (13) |
C1—Fe1—C5 | 40.74 (14) | C9—C8—Fe1 | 69.71 (14) |
C2—Fe1—C5 | 68.17 (13) | C7—C8—H8 | 125.8 |
C3—Fe1—C5 | 67.77 (11) | C9—C8—H8 | 125.8 |
C1—Fe1—C4 | 68.04 (12) | Fe1—C8—H8 | 125.8 |
C2—Fe1—C4 | 67.86 (11) | C8—C9—C10 | 107.9 (2) |
C3—Fe1—C4 | 40.13 (11) | C8—C9—Fe1 | 69.75 (14) |
C5—Fe1—C4 | 40.54 (12) | C10—C9—Fe1 | 69.61 (13) |
C1—Fe1—C9 | 133.24 (13) | C8—C9—H9 | 126.0 |
C2—Fe1—C9 | 172.21 (12) | C10—C9—H9 | 126.0 |
C3—Fe1—C9 | 146.77 (11) | Fe1—C9—H9 | 126.0 |
C5—Fe1—C9 | 109.48 (11) | C9—C10—C6 | 108.1 (2) |
C4—Fe1—C9 | 115.59 (11) | C9—C10—Fe1 | 69.56 (13) |
C1—Fe1—C8 | 109.76 (11) | C6—C10—Fe1 | 69.91 (12) |
C2—Fe1—C8 | 132.96 (12) | C9—C10—H10 | 126.0 |
C3—Fe1—C8 | 171.90 (11) | C6—C10—H10 | 126.0 |
C5—Fe1—C8 | 115.58 (11) | Fe1—C10—H10 | 126.0 |
C4—Fe1—C8 | 146.98 (11) | C12—C11—C16 | 117.50 (19) |
C9—Fe1—C8 | 40.54 (10) | C12—C11—C6 | 120.7 (2) |
C1—Fe1—C10 | 172.56 (13) | C16—C11—C6 | 121.8 (2) |
C2—Fe1—C10 | 146.10 (12) | C13—C12—C11 | 121.3 (2) |
C3—Fe1—C10 | 115.30 (10) | C13—C12—H12 | 119.4 |
C5—Fe1—C10 | 132.83 (12) | C11—C12—H12 | 119.4 |
C4—Fe1—C10 | 109.28 (10) | C12—C13—C14 | 120.5 (2) |
C9—Fe1—C10 | 40.83 (9) | C12—C13—H13 | 119.8 |
C8—Fe1—C10 | 68.41 (10) | C14—C13—H13 | 119.8 |
C1—Fe1—C7 | 115.15 (11) | C15—C14—C13 | 119.1 (2) |
C2—Fe1—C7 | 109.26 (11) | C15—C14—N1 | 123.6 (2) |
C3—Fe1—C7 | 132.87 (10) | C13—C14—N1 | 117.03 (19) |
C5—Fe1—C7 | 146.57 (11) | C16—C15—C14 | 119.9 (2) |
C4—Fe1—C7 | 171.80 (10) | C16—C15—H15 | 120.1 |
C9—Fe1—C7 | 68.31 (10) | C14—C15—H15 | 120.1 |
C8—Fe1—C7 | 40.45 (9) | C15—C16—C11 | 121.8 (2) |
C10—Fe1—C7 | 68.51 (9) | C15—C16—H16 | 119.1 |
C1—Fe1—C6 | 146.01 (12) | C11—C16—H16 | 119.1 |
C2—Fe1—C6 | 114.71 (11) | N1—C17—N2 | 109.99 (19) |
C3—Fe1—C6 | 109.19 (10) | N1—C17—Cl1 | 123.90 (17) |
C5—Fe1—C6 | 171.99 (12) | N2—C17—Cl1 | 126.07 (17) |
C4—Fe1—C6 | 132.48 (10) | C19—C18—C23 | 118.5 (2) |
C9—Fe1—C6 | 68.68 (9) | C19—C18—N2 | 115.36 (19) |
C8—Fe1—C6 | 68.48 (9) | C23—C18—N2 | 126.1 (2) |
C10—Fe1—C6 | 40.84 (9) | C20—C19—C18 | 121.3 (2) |
C7—Fe1—C6 | 40.83 (9) | C20—C19—H19 | 119.4 |
C25—Fe2—C32 | 123.61 (10) | C18—C19—H19 | 119.4 |
C25—Fe2—C33 | 106.62 (11) | C19—C20—C21 | 121.1 (2) |
C32—Fe2—C33 | 40.56 (12) | C19—C20—H20 | 119.5 |
C25—Fe2—C28 | 68.76 (9) | C21—C20—H20 | 119.5 |
C32—Fe2—C28 | 119.74 (11) | C22—C21—C20 | 117.1 (2) |
C33—Fe2—C28 | 154.51 (11) | C22—C21—C24 | 121.61 (19) |
C25—Fe2—C31 | 160.99 (10) | C20—C21—C24 | 121.25 (19) |
C32—Fe2—C31 | 40.72 (11) | C23—C22—C21 | 122.4 (2) |
C33—Fe2—C31 | 68.25 (11) | C23—C22—H22 | 118.8 |
C28—Fe2—C31 | 107.53 (10) | C21—C22—H22 | 118.8 |
C25—Fe2—C29 | 120.65 (10) | C22—C23—C18 | 119.6 (2) |
C32—Fe2—C29 | 68.48 (11) | C22—C23—H23 | 120.2 |
C33—Fe2—C29 | 40.78 (11) | C18—C23—H23 | 120.2 |
C28—Fe2—C29 | 163.14 (10) | C25—C24—C28 | 106.56 (19) |
C31—Fe2—C29 | 68.25 (11) | C25—C24—C21 | 126.56 (19) |
C25—Fe2—C26 | 40.80 (9) | C28—C24—C21 | 126.74 (19) |
C32—Fe2—C26 | 161.42 (11) | C25—C24—Fe2 | 68.99 (12) |
C33—Fe2—C26 | 125.31 (11) | C28—C24—Fe2 | 69.14 (12) |
C28—Fe2—C26 | 68.49 (9) | C21—C24—Fe2 | 123.44 (15) |
C31—Fe2—C26 | 156.89 (10) | C26—C25—C24 | 108.57 (19) |
C29—Fe2—C26 | 108.59 (10) | C26—C25—Fe2 | 69.84 (13) |
C25—Fe2—C30 | 156.43 (10) | C24—C25—Fe2 | 69.87 (12) |
C32—Fe2—C30 | 68.44 (10) | C26—C25—H25 | 125.7 |
C33—Fe2—C30 | 68.33 (11) | C24—C25—H25 | 125.7 |
C28—Fe2—C30 | 125.81 (10) | Fe2—C25—H25 | 125.7 |
C31—Fe2—C30 | 40.55 (10) | C25—C26—C27 | 108.1 (2) |
C29—Fe2—C30 | 40.53 (11) | C25—C26—Fe2 | 69.37 (13) |
C26—Fe2—C30 | 122.09 (10) | C27—C26—Fe2 | 69.78 (13) |
C25—Fe2—C27 | 68.68 (10) | C25—C26—H26 | 125.9 |
C32—Fe2—C27 | 155.59 (11) | C27—C26—H26 | 125.9 |
C33—Fe2—C27 | 163.08 (11) | Fe2—C26—H26 | 125.9 |
C28—Fe2—C27 | 40.62 (9) | C28—C27—C26 | 107.9 (2) |
C31—Fe2—C27 | 121.45 (11) | C28—C27—Fe2 | 69.47 (13) |
C29—Fe2—C27 | 126.45 (10) | C26—C27—Fe2 | 69.50 (13) |
C26—Fe2—C27 | 40.72 (9) | C28—C27—H27 | 126.0 |
C30—Fe2—C27 | 109.09 (10) | C26—C27—H27 | 126.0 |
C25—Fe2—C24 | 41.13 (9) | Fe2—C27—H27 | 126.0 |
C32—Fe2—C24 | 105.37 (10) | C27—C28—C24 | 108.8 (2) |
C33—Fe2—C24 | 118.80 (10) | C27—C28—Fe2 | 69.91 (13) |
C28—Fe2—C24 | 41.16 (8) | C24—C28—Fe2 | 69.71 (12) |
C31—Fe2—C24 | 123.86 (10) | C27—C28—H28 | 125.6 |
C29—Fe2—C24 | 154.87 (10) | C24—C28—H28 | 125.6 |
C26—Fe2—C24 | 69.09 (9) | Fe2—C28—H28 | 125.6 |
C30—Fe2—C24 | 161.86 (10) | C30—C29—C33 | 107.9 (2) |
C27—Fe2—C24 | 69.09 (9) | C30—C29—Fe2 | 69.92 (14) |
C17—N1—C14 | 128.02 (18) | C33—C29—Fe2 | 69.55 (14) |
C17—N1—H1 | 117 (3) | C30—C29—H29 | 126.0 |
C14—N1—H1 | 114 (3) | C33—C29—H29 | 126.0 |
C17—N2—C18 | 132.46 (19) | Fe2—C29—H29 | 126.0 |
C17—N2—H1B | 114 (3) | C29—C30—C31 | 107.9 (2) |
C18—N2—H1B | 113 (3) | C29—C30—Fe2 | 69.55 (14) |
C2—C1—C5 | 108.2 (3) | C31—C30—Fe2 | 69.53 (14) |
C2—C1—Fe1 | 69.94 (15) | C29—C30—H30 | 126.0 |
C5—C1—Fe1 | 69.83 (16) | C31—C30—H30 | 126.0 |
C2—C1—H1A | 125.9 | Fe2—C30—H30 | 126.0 |
C5—C1—H1A | 125.9 | C30—C31—C32 | 108.2 (2) |
Fe1—C1—H1A | 125.9 | C30—C31—Fe2 | 69.92 (14) |
C3—C2—C1 | 107.8 (3) | C32—C31—Fe2 | 69.56 (14) |
C3—C2—Fe1 | 70.00 (15) | C30—C31—H31 | 125.9 |
C1—C2—Fe1 | 69.79 (17) | C32—C31—H31 | 125.9 |
C3—C2—H2 | 126.1 | Fe2—C31—H31 | 125.9 |
C1—C2—H2 | 126.1 | C33—C32—C31 | 107.8 (2) |
Fe1—C2—H2 | 126.1 | C33—C32—Fe2 | 69.75 (15) |
C2—C3—C4 | 108.8 (3) | C31—C32—Fe2 | 69.72 (14) |
C2—C3—Fe1 | 69.85 (16) | C33—C32—H32 | 126.1 |
C4—C3—Fe1 | 70.02 (15) | C31—C32—H32 | 126.1 |
C2—C3—H3 | 125.6 | Fe2—C32—H32 | 126.1 |
C4—C3—H3 | 125.6 | C32—C33—C29 | 108.1 (2) |
Fe1—C3—H3 | 125.6 | C32—C33—Fe2 | 69.70 (15) |
C3—C4—C5 | 107.8 (3) | C29—C33—Fe2 | 69.67 (14) |
C3—C4—Fe1 | 69.85 (14) | C32—C33—H33 | 125.9 |
C5—C4—Fe1 | 69.69 (15) | C29—C33—H33 | 125.9 |
C3—C4—H4 | 126.1 | Fe2—C33—H33 | 125.9 |
C5—C4—H4 | 126.1 | C34—N3—C35 | 123.0 (2) |
Fe1—C4—H4 | 126.1 | C34—N3—C36 | 120.0 (2) |
C4—C5—C1 | 107.3 (3) | C35—N3—C36 | 116.8 (2) |
C4—C5—Fe1 | 69.77 (14) | O1—C34—N3 | 126.7 (2) |
C1—C5—Fe1 | 69.44 (15) | O1—C34—H34 | 116.6 |
C4—C5—H5 | 126.4 | N3—C34—H34 | 116.6 |
C1—C5—H5 | 126.4 | N3—C35—H35A | 109.5 |
Fe1—C5—H5 | 126.4 | N3—C35—H35B | 109.5 |
C10—C6—C7 | 107.30 (19) | H35A—C35—H35B | 109.5 |
C10—C6—C11 | 126.6 (2) | N3—C35—H35C | 109.5 |
C7—C6—C11 | 126.0 (2) | H35A—C35—H35C | 109.5 |
C10—C6—Fe1 | 69.26 (12) | H35B—C35—H35C | 109.5 |
C7—C6—Fe1 | 69.39 (12) | N3—C36—H36A | 109.5 |
C11—C6—Fe1 | 129.10 (15) | N3—C36—H36B | 109.5 |
C8—C7—C6 | 108.2 (2) | H36A—C36—H36B | 109.5 |
C8—C7—Fe1 | 69.64 (13) | N3—C36—H36C | 109.5 |
C6—C7—Fe1 | 69.79 (12) | H36A—C36—H36C | 109.5 |
C8—C7—H7 | 125.9 | H36B—C36—H36C | 109.5 |
C6—C7—H7 | 125.9 | ||
C5—C1—C2—C3 | 0.4 (3) | C18—N2—C17—Cl1 | 0.8 (4) |
Fe1—C1—C2—C3 | 59.91 (18) | C17—N2—C18—C19 | −173.0 (2) |
C5—C1—C2—Fe1 | −59.55 (19) | C17—N2—C18—C23 | 9.1 (4) |
C1—C2—C3—C4 | −0.4 (3) | C23—C18—C19—C20 | −1.9 (3) |
Fe1—C2—C3—C4 | 59.35 (18) | N2—C18—C19—C20 | −179.9 (2) |
C1—C2—C3—Fe1 | −59.77 (18) | C18—C19—C20—C21 | 0.1 (4) |
C2—C3—C4—C5 | 0.3 (3) | C19—C20—C21—C22 | 1.7 (3) |
Fe1—C3—C4—C5 | 59.57 (17) | C19—C20—C21—C24 | −176.2 (2) |
C2—C3—C4—Fe1 | −59.25 (18) | C20—C21—C22—C23 | −1.8 (3) |
C3—C4—C5—C1 | −0.1 (3) | C24—C21—C22—C23 | 176.1 (2) |
Fe1—C4—C5—C1 | 59.57 (18) | C21—C22—C23—C18 | 0.0 (4) |
C3—C4—C5—Fe1 | −59.67 (17) | C19—C18—C23—C22 | 1.8 (3) |
C2—C1—C5—C4 | −0.2 (3) | N2—C18—C23—C22 | 179.6 (2) |
Fe1—C1—C5—C4 | −59.78 (18) | C22—C21—C24—C25 | −170.1 (2) |
C2—C1—C5—Fe1 | 59.62 (18) | C20—C21—C24—C25 | 7.7 (3) |
C10—C6—C7—C8 | 0.1 (2) | C22—C21—C24—C28 | 5.0 (3) |
C11—C6—C7—C8 | −176.8 (2) | C20—C21—C24—C28 | −177.1 (2) |
Fe1—C6—C7—C8 | 59.21 (15) | C22—C21—C24—Fe2 | −82.7 (2) |
C10—C6—C7—Fe1 | −59.10 (14) | C20—C21—C24—Fe2 | 95.1 (2) |
C11—C6—C7—Fe1 | 124.0 (2) | C28—C24—C25—C26 | 0.1 (3) |
C6—C7—C8—C9 | −0.1 (3) | C21—C24—C25—C26 | 176.1 (2) |
Fe1—C7—C8—C9 | 59.25 (16) | Fe2—C24—C25—C26 | 59.31 (16) |
C6—C7—C8—Fe1 | −59.31 (15) | C28—C24—C25—Fe2 | −59.19 (15) |
C7—C8—C9—C10 | 0.0 (3) | C21—C24—C25—Fe2 | 116.8 (2) |
Fe1—C8—C9—C10 | 59.35 (16) | C24—C25—C26—C27 | −0.1 (3) |
C7—C8—C9—Fe1 | −59.37 (16) | Fe2—C25—C26—C27 | 59.21 (17) |
C8—C9—C10—C6 | 0.1 (3) | C24—C25—C26—Fe2 | −59.33 (16) |
Fe1—C9—C10—C6 | 59.53 (15) | C25—C26—C27—C28 | 0.1 (3) |
C8—C9—C10—Fe1 | −59.44 (16) | Fe2—C26—C27—C28 | 59.03 (16) |
C7—C6—C10—C9 | −0.1 (2) | C25—C26—C27—Fe2 | −58.95 (16) |
C11—C6—C10—C9 | 176.7 (2) | C26—C27—C28—C24 | 0.0 (3) |
Fe1—C6—C10—C9 | −59.31 (15) | Fe2—C27—C28—C24 | 59.04 (16) |
C7—C6—C10—Fe1 | 59.19 (14) | C26—C27—C28—Fe2 | −59.04 (17) |
C11—C6—C10—Fe1 | −124.0 (2) | C25—C24—C28—C27 | −0.1 (3) |
C10—C6—C11—C12 | −153.8 (2) | C21—C24—C28—C27 | −176.0 (2) |
C7—C6—C11—C12 | 22.5 (3) | Fe2—C24—C28—C27 | −59.17 (16) |
Fe1—C6—C11—C12 | 114.2 (2) | C25—C24—C28—Fe2 | 59.10 (15) |
C10—C6—C11—C16 | 22.6 (3) | C21—C24—C28—Fe2 | −116.8 (2) |
C7—C6—C11—C16 | −161.1 (2) | C33—C29—C30—C31 | 0.2 (3) |
Fe1—C6—C11—C16 | −69.4 (3) | Fe2—C29—C30—C31 | −59.14 (18) |
C16—C11—C12—C13 | −0.8 (3) | C33—C29—C30—Fe2 | 59.39 (17) |
C6—C11—C12—C13 | 175.8 (2) | C29—C30—C31—C32 | −0.1 (3) |
C11—C12—C13—C14 | −0.2 (3) | Fe2—C30—C31—C32 | −59.22 (17) |
C12—C13—C14—C15 | 0.8 (3) | C29—C30—C31—Fe2 | 59.16 (17) |
C12—C13—C14—N1 | −173.2 (2) | C30—C31—C32—C33 | −0.1 (3) |
C17—N1—C14—C15 | 46.0 (3) | Fe2—C31—C32—C33 | −59.58 (18) |
C17—N1—C14—C13 | −140.3 (2) | C30—C31—C32—Fe2 | 59.45 (17) |
C13—C14—C15—C16 | −0.4 (3) | C31—C32—C33—C29 | 0.3 (3) |
N1—C14—C15—C16 | 173.2 (2) | Fe2—C32—C33—C29 | −59.28 (18) |
C14—C15—C16—C11 | −0.6 (3) | C31—C32—C33—Fe2 | 59.56 (18) |
C12—C11—C16—C15 | 1.2 (3) | C30—C29—C33—C32 | −0.3 (3) |
C6—C11—C16—C15 | −175.3 (2) | Fe2—C29—C33—C32 | 59.29 (18) |
C14—N1—C17—N2 | −177.9 (2) | C30—C29—C33—Fe2 | −59.62 (18) |
C14—N1—C17—Cl1 | 4.2 (3) | C35—N3—C34—O1 | 178.6 (3) |
C18—N2—C17—N1 | −177.0 (2) | C36—N3—C34—O1 | 4.2 (5) |
Cg2, Cg4, Cg5 and Cg6 are the centroids of the C6–C10, C29–C23 C11–C16 and C18–C23 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1 | 0.91 (1) | 1.98 (2) | 2.862 (3) | 163 (5) |
C7—H7···Cg6i | 1.00 | 2.63 | 3.569 (3) | 157 |
C19—H19···Cg5ii | 0.95 | 2.63 | 3.286 (3) | 126 |
C23—H23···Cl1 | 0.95 | 2.55 | 3.219 (2) | 127 |
C25—H25···Cg2ii | 1.00 | 2.94 | 3.913 (3) | 163 |
C34—H34···Cg5i | 0.95 | 2.71 | 3.632 (3) | 164 |
C35—H35C···Cg4iii | 0.98 | 2.97 | 3.624 (3) | 125 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+1, −z+1; (iii) x+1, y−1, z. |
Planes | Dihedral angle |
C6–C10 vs C11–C16 | 23.37 (12) |
C11–C16 vs N1/C17/N2/C11 | 45.39 (7) |
N1/C17/N2/C11 vs C18–C23 | 9.09 (13) |
C18–C23 vs C24–C28 | 9.08 (15) |
Funding information
JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).
References
Adil, S., Khan, A. U., Badshah, H., Asghar, F., Usman, M., Badshah, A. & Ali, S. (2018). Drug Dev. Res. 79, 184–197. Web of Science CrossRef CAS PubMed Google Scholar
Alama, A., Tasso, B., Novelli, F. & Sparatore, F. (2009). Drug Discovery Today, 14, 500–508. Web of Science CrossRef PubMed CAS Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2021). APEX4 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA. Google Scholar
Dai, Z., Ni, J., Huang, X. H., Lu, G. & Bao, J. (2007). Bioelectrochemistry, 70, 250–256. Web of Science CrossRef PubMed CAS Google Scholar
Gasser, G. & Metzler-Nolte, N. (2012). Curr. Opin. Chem. Biol. 16, 84–91. Web of Science CrossRef CAS PubMed Google Scholar
Gasser, G., Ott, I. & Metzler-Nolte, N. (2011). J. Med. Chem. 54, 3–25. Web of Science CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gul, R., Khan, A., Badshah, A., Rauf, M. K., Shah, A., Zia-ur-Rehman, Bano, A., Naz, R. & Tahir, M. N. (2013a). J. Coord. Chem. 66, 1959–1973. Web of Science CSD CrossRef CAS Google Scholar
Gul, R., Khan, A., Badshah, A. & Tahir, M. N. (2013b). Acta Cryst. E69, m486. CSD CrossRef IUCr Journals Google Scholar
Gul, R., Rauf, M. K., Badshah, A., Azam, S. S., Tahir, M. N. & Khan, A. (2014). Eur. J. Med. Chem. 85, 438–449. Web of Science CSD CrossRef CAS PubMed Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Herrmann, W. A. (1988). Comments Inorg. Chem. 7, 73–107. CrossRef CAS Google Scholar
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Ibrahim, M. S. (2001). Anal. Chim. Acta, 443, 63–72. Web of Science CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Krause, N., Aksin-Artok, Ö., Asikainen, M., Breker, V., Deutsch, C., Erdsack, J., Fan, H. T., Gockel, B., Minkler, S., Poonoth, M., Sawama, Y., Sawama, Y., Sun, T., Volz, F. & Winter, C. (2012). J. Organomet. Chem. 704, 1–8. Web of Science CrossRef CAS Google Scholar
Langeroodi, N. S. (2010). J. Chem. Soc. Pak. 32, 125–128. CAS Google Scholar
Li, B. J., Tian, S. L., Fang, Z. & Shi, Z. J. (2008). Angew. Chem. Int. Ed. 47, 1115–1118. Web of Science CrossRef CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Nishibayashi, Y., Arikawa, Y., Ohe, K. & Uemura, S. (1996). J. Org. Chem. 61, 1172–1174. CrossRef CAS Web of Science Google Scholar
Ong, Y. C. & Gasser, G. (2020). Drug. Discov. Today: Technol. 37, 117–124. Google Scholar
Ozdemir, N. (2021). CSD Communication (refcode JARZUB). CCDC, Cambridge, England. Google Scholar
Parveen, S., Arjmand, F. & Tabassum, S. (2019). Eur. J. Med. Chem. 175, 269–286. Web of Science CrossRef CAS PubMed Google Scholar
Rehmani, F. S., Shafique, A., Tanoli, S. A. K., Ambreen, S., Inam-Ul-Haq, M., Rashid, S. & Abbas, S. S. (2010). J. Chem. Soc. Pak. 32, 467–470. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Togni, A. (1996). Angew. Chem. Int. Ed. Engl. 35, 1475–1477. CrossRef CAS Web of Science Google Scholar
Top, S., Vessières, A., Leclercq, G., Quivy, J., Tang, J., Vaissermann, J., Huché, M. & Jaouen, G. (2003). Chem. Eur. J. 9, 5223–5236. Web of Science CSD CrossRef PubMed CAS Google Scholar
Tsukazaki, M., Tinkl, M., Roglans, A., Chapell, B. J., Taylor, N. J. & Snieckus, V. J. (1996). J. Am. Chem. Soc. 118, 685–686. CSD CrossRef CAS Web of Science Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.