research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (Z)-N-{chloro­[(4-ferrocenylphen­yl)imino]­meth­yl}-4-ferrocenylaniline N,N-di­methyl­formamide monosolvate

crossmark logo

aLaboratory of Applied Organic Chemistry, Sidi Mohamed Ben Abdellah University, Faculty of Science And Technology, Road Immouzer, BP 2202 Fez, Morocco, bScience and Technology of Lille USR 3290, Villeneuve d'ascq cedex, France, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, dDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Türkiye, eLaboratory of Organic and Physical Chemistry, Applied Bioorganic Chemistry Team, Faculty of Sciences, Ibnou Zohr University, Agadir, Morocco, and fLaboratory of Plant Chemistry, Organic and Bioorganic Synthesis, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta BP 1014 RP, Rabat, Morocco
*Correspondence e-mail: n.sebbar@uiz.ac.ma

Edited by Y. Ozawa, University of Hyogo, Japan (Received 4 December 2023; accepted 29 January 2024; online 2 February 2024)

This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.

The title mol­ecule, [Fe2(C5H5)2(C23H17ClN2)]·C3H7NO, is twisted end to end and the central N/C/N unit is disordered. In the crystal, several C—H⋯π(ring) inter­actions lead to the formation of layers, which are connected by further C—H⋯π(ring) inter­actions. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (60.2%) and H⋯C/C⋯H (27.0%) inter­actions. Hydrogen bonding, C—H⋯π(ring) inter­actions and van der Waals inter­actions dominate the crystal packing.

1. Chemical context

Organometallic compounds have been studied for almost 250 years and have proved to be bioactive mol­ecules with a wide range of applications (Krause et al., 2012[Krause, N., Aksin-Artok, Ö., Asikainen, M., Breker, V., Deutsch, C., Erdsack, J., Fan, H. T., Gockel, B., Minkler, S., Poonoth, M., Sawama, Y., Sawama, Y., Sun, T., Volz, F. & Winter, C. (2012). J. Organomet. Chem. 704, 1-8.]; Parveen et al., 2019[Parveen, S., Arjmand, F. & Tabassum, S. (2019). Eur. J. Med. Chem. 175, 269-286.]; Li et al., 2008[Li, B. J., Tian, S. L., Fang, Z. & Shi, Z. J. (2008). Angew. Chem. Int. Ed. 47, 1115-1118.]). They are characterized by their metal–carbon covalent bonds as well as their kinetic stability, non-chargeability, lipophilicity, and low metal oxidation states (Herrmann, 1988[Herrmann, W. A. (1988). Comments Inorg. Chem. 7, 73-107.]; Alama et al., 2009[Alama, A., Tasso, B., Novelli, F. & Sparatore, F. (2009). Drug Discovery Today, 14, 500-508.]). A number of organometallic compounds are useful starting reagents for organic and organometallic synthesis. Metallocenes are an important and well-known class of organometallic compounds that offer new possibilities in the design of catalytic, biosensing, and medicinal compounds (Gasser et al., 2011[Gasser, G., Ott, I. & Metzler-Nolte, N. (2011). J. Med. Chem. 54, 3-25.]; Gasser & Metzler-Nolte, 2012[Gasser, G. & Metzler-Nolte, N. (2012). Curr. Opin. Chem. Biol. 16, 84-91.]; Ong & Gasser, 2020[Ong, Y. C. & Gasser, G. (2020). Drug. Discov. Today: Technol. 37, 117-124.]). Their chemical richness is caused by the variation in electron density in the valence shell. Ferrocene, one of the most prominent metallocene derivatives, is a fascinating target in a variety of fields, including electrochemistry, biochemistry, and drug design (Togni, 1996[Togni, A. (1996). Angew. Chem. Int. Ed. Engl. 35, 1475-1477.]; Tsukazaki et al., 1996[Tsukazaki, M., Tinkl, M., Roglans, A., Chapell, B. J., Taylor, N. J. & Snieckus, V. J. (1996). J. Am. Chem. Soc. 118, 685-686.]; Nishibayashi et al., 1996[Nishibayashi, Y., Arikawa, Y., Ohe, K. & Uemura, S. (1996). J. Org. Chem. 61, 1172-1174.]) and mediators of protein redox reactions (Dai et al., 2007[Dai, Z., Ni, J., Huang, X. H., Lu, G. & Bao, J. (2007). Bioelectrochemistry, 70, 250-256.]). Due to the chemical richness of the iron(II) center, its stability in aqueous and aerobic environments and its aromatic properties, ferrocene has attracted considerable inter­est (Ibrahim, 2001[Ibrahim, M. S. (2001). Anal. Chim. Acta, 443, 63-72.]). In addition to possessing a wide range of derivatives, these compounds are easily oxidized. Ferrocene derivatives have been reported to have anti­tumor, anti­malarial, anti­convulsant, anti­oxidant, anti­microbial and DNA-cleaving activities among their biological activities, and have attracted particular attention as anti­tumor and anti­malarial agents including the drugs tamoxifen, ferroquine and ferrocifen (Top et al., 2003[Top, S., Vessières, A., Leclercq, G., Quivy, J., Tang, J., Vaissermann, J., Huché, M. & Jaouen, G. (2003). Chem. Eur. J. 9, 5223-5236.]). These drugs are excellent preventive agents against cancer and malaria, and their biological uses have been the subject of much research. The derivatization of ferrocene has been extensively studied (Rehmani et al., 2010[Rehmani, F. S., Shafique, A., Tanoli, S. A. K., Ambreen, S., Inam-Ul-Haq, M., Rashid, S. & Abbas, S. S. (2010). J. Chem. Soc. Pak. 32, 467-470.]). Amines, carbonyls and carb­oxy­lic acid functionalities can be introduced to derivatize ferrocene (Langeroodi, 2010[Langeroodi, N. S. (2010). J. Chem. Soc. Pak. 32, 125-128.]). Ferrocenyl aniline can be synthesized by reducing nitro­phenyl ferrocene. There is an inter­mediary in the synthesis of ferrocene-containing liquid crystals, ferrocene-containing Schiff bases. In our research on the development of new substituted ferrocenyl derivatives, we synthesized N,N-bis­(4-ferrocenylphen­yl)carbamimidic dichloride by reacting 4-ferrocenyl aniline with (4-ferrocenylphen­yl)carbonimidic dichloride with potassium carbonate as a base and tetra­butyl­ammonium bromide as a catalyst. In this paper, we present the synthesis and detailed examination of the mol­ecular and crystal structures of the title compound, including by Hirshfeld surface analysis.

[Scheme 1]

2. Structural commentary

In the crystal, the mol­ecule is disordered in essentially equal amounts such that a hydrogen atom appears on both N1 and N2 and the C17—N1 and C17—N2 distances appear equivalent at 1.365 (3) and 1.366 (3) Å, respectively. The ferrocenyl groups are nearly perpendicular to one another as indicated by the dihedral angle of 82.05 (9)° between the C1–C5 and C29–C33 cyclo­penta­dienyl rings. The cyclo­penta­dienyl rings attached to Fe1 are parallel within experimental error [dihedral angle = 0.14 (18)°] while those attached to Fe2 are not [dihedral angle = 2.03 (19)°]. The mol­ecule is twisted along its length (Fig. 1[link]), as indicated by the dihedral angles listed in Table 1[link]. The smaller values for the last two entries in the table are due, in part, to the intra­molecular C23—H23⋯Cl1 hydrogen bond (Table 2[link]). With the exception of the two C—N distances affected by the disorder, all bond distances and inter­bond angles appear as expected for the given formulation.

Table 1
Dihedral angles (°) between planes

Planes Dihedral angle
C6–C10 vs C11–C16 23.37 (12)
C11–C16 vs N1/C17/N2/C11 45.39 (7)
N1/C17/N2/C11 vs C18–C23 9.09 (13)
C18–C23 vs C24–C28 9.08 (15)

Table 2
Hydrogen-bond geometry (Å, °)

Cg2, Cg4, Cg5 and Cg6 are the centroids of the C6–C10, C29–C23 C11–C16 and C18–C23 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.91 (1) 1.98 (2) 2.862 (3) 163 (5)
C7—H7⋯Cg6i 1.00 2.63 3.569 (3) 157
C19—H19⋯Cg5ii 0.95 2.63 3.286 (3) 126
C23—H23⋯Cl1 0.95 2.55 3.219 (2) 127
C25—H25⋯Cg2ii 1.00 2.94 3.913 (3) 163
C34—H34⋯Cg5i 0.95 2.71 3.632 (3) 164
C35—H35CCg4iii 0.98 2.97 3.624 (3) 125
Symmetry codes: (i) [-x+2, -y+1, -z+1]; (ii) [-x+1, -y+1, -z+1]; (iii) [x+1, y-1, z].
[Figure 1]
Figure 1
The title mol­ecule with the labeling scheme and 50% probability ellipsoids. Only one component of the disordered N—H group is shown. The C—H⋯Cl and N—H⋯O hydrogen bonds are depicted, respectively, by black and violet dashed lines.

3. Supra­molecular features

In the crystal, the DMF solvent mol­ecule is bound to the main mol­ecule by an N1—H1⋯O1 hydrogen bond and these units are formed into corrugated layers parallel to (010) by C7—H7⋯Cg6, C19—H19⋯Cg5, C25—H25⋯Cg2 and C34—H34⋯Cg5 inter­actions, while the layers are connected by C35—H35CCg4 inter­actions (Table 2[link] and Fig. 2[link]) where Cg2, Cg4, Cg5 and Cg6 are the centroids of the C6–C10, C29–C23 C11–C16 and C18–C23 rings, respectively.

[Figure 2]
Figure 2
Packing viewed along the b-axis direction with N—H⋯O hydrogen bonds and C—H⋯π(ring) inter­actions depicted, respectively, by violet and blue dashed lines.

4. Hirshfeld surface analysis

In order to visualize the inter­molecular inter­actions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out using Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). In the HS plotted over dnorm (Fig. 3[link]), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colors indicate distances shorter (in close contact) or longer (distinct contact) than the sum of van der Waals radii, respectively (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625-636.]). The bright-red spots indicate the respective donors (C14) and/or acceptors (H5 and H19). The shape-index of the HS is a tool to visualize the ππ stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no ππ inter­actions. Fig. 4[link] clearly suggests that there are no ππ inter­actions present.

[Figure 3]
Figure 3
View of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm.
[Figure 4]
Figure 4
Hirshfeld surface of the title compound plotted over shape-index.

The overall two-dimensional fingerprint plot is shown in Fig. 5[link]a, and those delineated into H⋯H, H⋯C/C⋯H, H⋯Cl/Cl⋯H, H⋯N/ N⋯H, H⋯O/O⋯H, C⋯C, C⋯O/O⋯C and N⋯O/O⋯N (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Fig. 5[link]bi, respectively, together with their relative contributions to the Hirshfeld surface. The most abundant inter­action is H⋯H, contributing 60.2% to the overall crystal packing, which is reflected in Fig. 5[link]b as the widely scattered points of high density due to the large hydrogen content of the mol­ecule with the tip at de = di = 1.16 Å. As a result of the presence of C—H⋯π inter­actions, the H⋯C/C⋯H contacts contribute 27.0% to the overall crystal packing and are shown in Fig. 5[link]c with the tips at de + di = 2.51 Å. The pair of characteristic wings in the fingerprint plot delineated into H⋯Cl/Cl⋯H contacts (Fig. 5[link]d) with the tips at de + di = 2.86 Å contribute 7.4% to the HS. The pair of wings in the fingerprint plot delineated into H⋯N/N⋯H contacts (Fig. 5[link]e) with a 2.3% contribution to the HS is seen with the tips at de + di = 2.98 Å while the H⋯O/O⋯H (Fig. 5[link]f) contacts with a 1.4% contribution to the HS are viewed as pairs of wings with the tips at de + di = 2.86 Å and de + di = 3.00Å for the long and short ones, respectively. Finally, the C⋯C (Fig. 5[link]g), C⋯O/O⋯C (Fig. 5[link]h) and N⋯O/O⋯N (Fig. 5[link]i) contacts with 0.7%, 0.5% and 0.5% contributions, respectively, to the HS have very low distributions of points. The Hirshfeld surface representations as fragment patches plotted onto the surface are shown for the H⋯H and H⋯C/C⋯H inter­actions in Fig. 6[link]ab, respectively. The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H and H⋯C/C⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

[Figure 5]
Figure 5
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯Cl/Cl⋯H, (e) H⋯N/N⋯H, (f) H⋯O/O⋯H, (g) C⋯C, (h) C⋯O/O⋯C and (i) N⋯O/O⋯N inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.
[Figure 6]
Figure 6
The Hirshfeld surface representations as fragment patches plotted onto the surface for (a) H⋯H and (b) H⋯C/C⋯H inter­actions.

5. Database survey

A survey of the Cambridge Structural Database (CSD version, updated to November 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) with the search fragment I (R = R′ = nothing) yielded five hits, all of which contain only one ferrocenyl group and the first four have a trans disposition of R and R′. These structures include ones with R = 2-ClC6H4NH, R′ = PhC(=O) (DEZHUN; Gul et al., 2013a[Gul, R., Khan, A., Badshah, A., Rauf, M. K., Shah, A., Zia-ur-Rehman, Bano, A., Naz, R. & Tahir, M. N. (2013a). J. Coord. Chem. 66, 1959-1973.]); R = 3-NO2-4-ClC6H3NH; R′ = 3-ClC6H4C(=O) (JARZUB; Ozdemir, 2021[Ozdemir, N. (2021). CSD Communication (refcode JARZUB). CCDC, Cambridge, England.]); R = 3,4-Cl2C6H3NH, R′ = 3-ClC6H4C(=O) (NIKQOP; Gul et al., 2013b[Gul, R., Khan, A., Badshah, A. & Tahir, M. N. (2013b). Acta Cryst. E69, m486.]); R = 3-CF3C6H4NH, R′ = PhC(=O) (QAGTEA; Gul et al., 2014[Gul, R., Rauf, M. K., Badshah, A., Azam, S. S., Tahir, M. N. & Khan, A. (2014). Eur. J. Med. Chem. 85, 438-449.]) and R = p-tolNH, R′ = PhC(=O) (QAHWAZ; Gul et al., 2014[Gul, R., Rauf, M. K., Badshah, A., Azam, S. S., Tahir, M. N. & Khan, A. (2014). Eur. J. Med. Chem. 85, 438-449.]).

[Scheme 2]

6. Synthesis and crystallization

4-Ferrocenyl aniline was synthesized using a previously described procedure (Adil et al., 2018[Adil, S., Khan, A. U., Badshah, H., Asghar, F., Usman, M., Badshah, A. & Ali, S. (2018). Drug Dev. Res. 79, 184-197.]). In a 100 ml flask, 4-ferrocenyl aniline (1 mmol) and 4-ferrocenylphenyl carbonimidic dichloride (1 mmol) were dissolved in DMF (20 mL) to which potassium carbonate (2 mmol) and tetra-n-butyl ammonium bromide (0.20 mmol) were added. The reaction mixture was stirred at reflux for 12 h. The DMF was removed by rotary evaporation and distilled water was added to the residue, which was then extracted with di­chloro­methane. The organic phase was dried with Na2SO4, filtered and evaporated under reduced pressure. The residue was then purified by silica column chromatography, eluting with a mixture of hexa­ne/ethyl acetate (4/1) and the solid obtained upon evaporation of the eluant was recrystallized from ethanol (yield: 92%, m.p. 258 K).

[Scheme 3]

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms attached to carbon were placed in idealized positions with isotropic displacement parameters tied to those of the attached atoms. The two components of the disordered hydrogen attached to nitro­gen were located in a difference map and refined with a DFIX 0.91 0.01 instruction with isotropic displacement parameters 1.2 times that of the attached nitro­gen and equal occupancies.

Table 3
Experimental details

Crystal data
Chemical formula [Fe2(C5H5)2(C23H17ClN2)]
Mr 671.81
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 8.0175 (10), 11.3134 (14), 17.408 (2)
α, β, γ (°) 95.099 (2), 99.963 (2), 96.414 (2)
V3) 1536.0 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.07
Crystal size (mm) 0.35 × 0.30 × 0.03
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON 3 diffractometer
Absorption correction Numerical (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.71, 0.96
No. of measured, independent and observed [I > 2σ(I)] reflections 19205, 9949, 7143
Rint 0.034
(sin θ/λ)max−1) 0.737
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.131, 1.03
No. of reflections 9949
No. of parameters 396
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.54, −0.85
Computer programs: APEX4 and SAINT (Bruker, 2021[Bruker (2021). APEX4 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL-2019/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

(Z)-N-[Chloro[(4-ferrocenylphenyl)imino]methyl]-\ 4-ferrocenylaniline N,N-dimethylformamide monosolvate top
Crystal data top
[Fe2(C5H5)2(C23H17ClN2)]Z = 2
Mr = 671.81F(000) = 696
Triclinic, P1Dx = 1.453 Mg m3
a = 8.0175 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.3134 (14) ÅCell parameters from 9233 reflections
c = 17.408 (2) Åθ = 2.3–31.6°
α = 95.099 (2)°µ = 1.07 mm1
β = 99.963 (2)°T = 150 K
γ = 96.414 (2)°Plate, orange
V = 1536.0 (3) Å30.35 × 0.30 × 0.03 mm
Data collection top
Bruker D8 QUEST PHOTON 3
diffractometer
9949 independent reflections
Radiation source: fine-focus sealed tube7143 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 7.3910 pixels mm-1θmax = 31.6°, θmin = 2.3°
φ and ω scansh = 1111
Absorption correction: numerical
(SADABS; Krause et al., 2015)
k = 1616
Tmin = 0.71, Tmax = 0.96l = 2525
19205 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: mixed
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0573P)2 + 0.8875P]
where P = (Fo2 + 2Fc2)/3
9949 reflections(Δ/σ)max = 0.001
396 parametersΔρmax = 0.54 e Å3
2 restraintsΔρmin = 0.85 e Å3
Special details top

Experimental. The diffraction data were collected in three sets of 363 frames (0.5° width in ω) at φ = 0, 120 and 240°. A scan time of 20 sec/frame was used.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 1.00 Å) and were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. Those attached to nitrogen were placed in locations derived from a difference map and refined with a DFIX 0.91 0.01 instruction. The central {NH—C(Cl)N} portion is disordered in essentially equal amounts leading to two locations for the hydrogen atom and equal NC distances. Two reflections affected by the beamstop were omitted from the final refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe11.37373 (4)0.63325 (3)0.87322 (2)0.02325 (8)
Fe20.07704 (4)0.90503 (3)0.14060 (2)0.02200 (8)
Cl10.81676 (8)0.78250 (5)0.48737 (4)0.03526 (14)
N10.7405 (2)0.55410 (16)0.51322 (11)0.0235 (4)
H10.695 (6)0.4785 (19)0.492 (3)0.028*0.5
N20.5880 (2)0.60294 (17)0.40311 (11)0.0250 (4)
H1B0.545 (7)0.5247 (16)0.401 (3)0.030*0.5
C11.6276 (3)0.6844 (3)0.8766 (2)0.0520 (9)
H1A1.7193990.6311600.8827880.062*
C21.5318 (4)0.7073 (3)0.8050 (2)0.0458 (7)
H21.5437020.6733730.7514910.055*
C31.4175 (3)0.7870 (2)0.82208 (16)0.0360 (6)
H31.3330010.8187480.7825170.043*
C41.4400 (3)0.8136 (2)0.90388 (17)0.0360 (6)
H41.3752590.8678080.9325010.043*
C51.5711 (4)0.7501 (3)0.93865 (19)0.0453 (7)
H51.6162040.7517660.9960660.054*
C61.1536 (3)0.53288 (19)0.81168 (13)0.0218 (4)
C71.2867 (3)0.45906 (19)0.82827 (13)0.0233 (4)
H71.3346930.4107000.7884540.028*
C81.3395 (3)0.4672 (2)0.91084 (14)0.0286 (5)
H81.4312070.4254950.9391740.034*
C91.2413 (3)0.5455 (2)0.94644 (14)0.0290 (5)
H91.2512270.5680801.0040550.035*
C101.1260 (3)0.5865 (2)0.88539 (13)0.0249 (4)
H101.0412970.6430430.8928160.030*
C111.0568 (3)0.54542 (19)0.73328 (12)0.0213 (4)
C121.0447 (3)0.4563 (2)0.67087 (13)0.0233 (4)
H121.1059040.3897110.6783420.028*
C130.9452 (3)0.4631 (2)0.59827 (13)0.0241 (4)
H130.9393040.4016140.5566650.029*
C140.8535 (3)0.56001 (19)0.58587 (13)0.0223 (4)
C150.8653 (3)0.65036 (19)0.64720 (13)0.0243 (4)
H150.8043540.7170180.6395630.029*
C160.9662 (3)0.64274 (19)0.71946 (13)0.0238 (4)
H160.9740380.7052190.7606650.029*
C170.7107 (3)0.64420 (19)0.46750 (13)0.0224 (4)
C180.5173 (3)0.65737 (19)0.33737 (13)0.0215 (4)
C190.3789 (3)0.5892 (2)0.28742 (14)0.0260 (4)
H190.3394750.5118290.2993580.031*
C200.2979 (3)0.6318 (2)0.22089 (13)0.0255 (4)
H200.2036110.5833990.1879160.031*
C210.3523 (3)0.74514 (18)0.20122 (13)0.0209 (4)
C220.4938 (3)0.8110 (2)0.25035 (14)0.0267 (5)
H220.5354240.8873110.2374830.032*
C230.5765 (3)0.7693 (2)0.31754 (14)0.0272 (5)
H230.6728210.8166350.3497910.033*
C240.2600 (3)0.79388 (19)0.13310 (13)0.0216 (4)
C250.0994 (3)0.7426 (2)0.08542 (14)0.0255 (4)
H250.0331790.6645610.0911330.031*
C260.0495 (3)0.8218 (2)0.02916 (14)0.0277 (5)
H260.0576110.8092020.0113380.033*
C270.1775 (3)0.9230 (2)0.04117 (14)0.0270 (5)
H270.1759950.9938030.0106490.032*
C280.3065 (3)0.9062 (2)0.10470 (13)0.0252 (4)
H280.4115160.9637040.1266660.030*
C290.1556 (3)0.9466 (2)0.15862 (16)0.0346 (5)
H290.2659620.9265450.1204770.041*
C300.0392 (3)1.0524 (2)0.16516 (15)0.0325 (5)
H300.0526901.1201350.1323170.039*
C310.1004 (4)1.0450 (2)0.22600 (15)0.0339 (5)
H310.2026441.1066230.2436020.041*
C320.0705 (4)0.9344 (3)0.25732 (15)0.0364 (6)
H320.1474940.9047720.3009420.044*
C330.0878 (4)0.8739 (3)0.21588 (17)0.0379 (6)
H330.1421460.7936810.2249870.045*
O10.5848 (2)0.33700 (16)0.41848 (12)0.0377 (4)
N30.6722 (3)0.15580 (18)0.39189 (13)0.0327 (5)
C340.6909 (3)0.2730 (2)0.40136 (16)0.0350 (6)
H340.7970020.3128780.3943210.042*
C350.8031 (3)0.0875 (2)0.37001 (17)0.0354 (6)
H35A0.8313260.0320170.4089750.053*
H35B0.9055490.1423110.3679380.053*
H35C0.7607210.0422400.3183420.053*
C360.5091 (5)0.0882 (3)0.3964 (3)0.0859 (16)
H36A0.5288890.0235360.4294130.129*
H36B0.4509620.0540330.3435330.129*
H36C0.4378520.1415060.4191120.129*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01885 (15)0.02022 (16)0.02790 (17)0.00233 (11)0.00133 (12)0.00034 (12)
Fe20.02162 (15)0.01953 (15)0.02435 (16)0.00175 (11)0.00369 (12)0.00191 (11)
Cl10.0389 (3)0.0267 (3)0.0347 (3)0.0060 (2)0.0032 (2)0.0059 (2)
N10.0256 (9)0.0188 (8)0.0239 (9)0.0004 (7)0.0005 (7)0.0016 (7)
N20.0263 (9)0.0211 (9)0.0252 (9)0.0009 (7)0.0007 (7)0.0049 (7)
C10.0189 (12)0.0305 (14)0.104 (3)0.0030 (10)0.0082 (14)0.0055 (16)
C20.0434 (16)0.0371 (15)0.0573 (19)0.0146 (12)0.0282 (14)0.0042 (13)
C30.0358 (14)0.0278 (12)0.0413 (15)0.0080 (10)0.0044 (11)0.0079 (11)
C40.0383 (14)0.0216 (11)0.0458 (15)0.0070 (10)0.0115 (12)0.0030 (10)
C50.0377 (15)0.0356 (15)0.0491 (17)0.0186 (12)0.0144 (12)0.0045 (12)
C60.0190 (9)0.0199 (9)0.0248 (10)0.0025 (7)0.0028 (8)0.0018 (8)
C70.0219 (10)0.0188 (10)0.0266 (11)0.0012 (7)0.0015 (8)0.0004 (8)
C80.0279 (11)0.0253 (11)0.0295 (12)0.0006 (9)0.0019 (9)0.0055 (9)
C90.0276 (11)0.0316 (12)0.0253 (11)0.0034 (9)0.0033 (9)0.0019 (9)
C100.0210 (10)0.0258 (11)0.0260 (11)0.0021 (8)0.0036 (8)0.0009 (8)
C110.0196 (9)0.0210 (10)0.0221 (10)0.0018 (7)0.0031 (8)0.0022 (8)
C120.0225 (10)0.0225 (10)0.0248 (10)0.0034 (8)0.0036 (8)0.0022 (8)
C130.0260 (10)0.0210 (10)0.0234 (10)0.0013 (8)0.0023 (8)0.0010 (8)
C140.0219 (10)0.0216 (10)0.0227 (10)0.0009 (8)0.0045 (8)0.0030 (8)
C150.0252 (10)0.0193 (10)0.0282 (11)0.0029 (8)0.0043 (9)0.0037 (8)
C160.0252 (10)0.0181 (10)0.0267 (11)0.0006 (8)0.0044 (8)0.0006 (8)
C170.0200 (9)0.0223 (10)0.0244 (10)0.0011 (8)0.0033 (8)0.0036 (8)
C180.0206 (9)0.0207 (10)0.0231 (10)0.0020 (7)0.0036 (8)0.0029 (8)
C190.0237 (10)0.0218 (10)0.0308 (12)0.0042 (8)0.0043 (9)0.0050 (8)
C200.0223 (10)0.0232 (10)0.0278 (11)0.0047 (8)0.0002 (8)0.0036 (8)
C210.0195 (9)0.0195 (9)0.0240 (10)0.0020 (7)0.0050 (8)0.0026 (8)
C220.0276 (11)0.0192 (10)0.0308 (12)0.0038 (8)0.0013 (9)0.0052 (8)
C230.0248 (11)0.0229 (11)0.0302 (12)0.0038 (8)0.0013 (9)0.0042 (9)
C240.0204 (9)0.0188 (9)0.0261 (10)0.0028 (7)0.0051 (8)0.0030 (8)
C250.0261 (11)0.0196 (10)0.0290 (11)0.0019 (8)0.0030 (9)0.0012 (8)
C260.0285 (11)0.0281 (11)0.0245 (11)0.0048 (9)0.0004 (9)0.0013 (9)
C270.0284 (11)0.0282 (11)0.0260 (11)0.0045 (9)0.0064 (9)0.0075 (9)
C280.0224 (10)0.0257 (11)0.0279 (11)0.0014 (8)0.0056 (8)0.0061 (9)
C290.0264 (12)0.0400 (14)0.0390 (14)0.0102 (10)0.0080 (10)0.0019 (11)
C300.0404 (14)0.0267 (12)0.0328 (13)0.0127 (10)0.0086 (11)0.0015 (9)
C310.0391 (14)0.0301 (12)0.0302 (12)0.0065 (10)0.0036 (10)0.0063 (10)
C320.0452 (15)0.0407 (14)0.0275 (12)0.0175 (12)0.0105 (11)0.0040 (10)
C330.0392 (14)0.0380 (14)0.0431 (15)0.0072 (11)0.0226 (12)0.0083 (12)
O10.0391 (10)0.0233 (9)0.0504 (11)0.0015 (7)0.0127 (9)0.0026 (8)
N30.0327 (11)0.0233 (10)0.0435 (12)0.0002 (8)0.0136 (9)0.0027 (9)
C340.0342 (13)0.0248 (12)0.0447 (15)0.0042 (10)0.0123 (11)0.0030 (10)
C350.0308 (13)0.0270 (12)0.0465 (15)0.0022 (10)0.0055 (11)0.0014 (11)
C360.061 (2)0.0351 (18)0.173 (5)0.0037 (16)0.064 (3)0.000 (2)
Geometric parameters (Å, º) top
Fe1—C12.042 (3)C12—C131.386 (3)
Fe1—C22.044 (3)C12—H120.9500
Fe1—C32.046 (2)C13—C141.398 (3)
Fe1—C52.047 (3)C13—H130.9500
Fe1—C42.048 (2)C14—C151.394 (3)
Fe1—C92.048 (2)C15—C161.388 (3)
Fe1—C82.049 (2)C15—H150.9500
Fe1—C102.049 (2)C16—H160.9500
Fe1—C72.053 (2)C18—C191.392 (3)
Fe1—C62.058 (2)C18—C231.396 (3)
Fe2—C252.038 (2)C19—C201.380 (3)
Fe2—C322.040 (3)C19—H190.9500
Fe2—C332.041 (3)C20—C211.399 (3)
Fe2—C282.042 (2)C20—H200.9500
Fe2—C312.042 (2)C21—C221.391 (3)
Fe2—C292.043 (2)C21—C241.470 (3)
Fe2—C262.044 (2)C22—C231.389 (3)
Fe2—C302.047 (2)C22—H220.9500
Fe2—C272.048 (2)C23—H230.9500
Fe2—C242.050 (2)C24—C251.436 (3)
Cl1—C171.672 (2)C24—C281.438 (3)
N1—C171.365 (3)C25—C261.423 (3)
N1—C141.414 (3)C25—H251.0000
N1—H10.908 (10)C26—C271.424 (3)
N2—C171.366 (3)C26—H261.0000
N2—C181.410 (3)C27—C281.419 (3)
N2—H1B0.909 (10)C27—H271.0000
C1—C21.407 (5)C28—H281.0000
C1—C51.423 (5)C29—C301.417 (4)
C1—H1A1.0000C29—C331.423 (4)
C2—C31.404 (4)C29—H291.0000
C2—H21.0000C30—C311.417 (4)
C3—C41.405 (4)C30—H301.0000
C3—H31.0000C31—C321.420 (4)
C4—C51.419 (4)C31—H311.0000
C4—H41.0000C32—C331.414 (4)
C5—H51.0000C32—H321.0000
C6—C101.433 (3)C33—H331.0000
C6—C71.434 (3)O1—C341.234 (3)
C6—C111.475 (3)N3—C341.310 (3)
C7—C81.418 (3)N3—C351.452 (3)
C7—H71.0000N3—C361.457 (4)
C8—C91.420 (4)C34—H340.9500
C8—H81.0000C35—H35A0.9800
C9—C101.429 (3)C35—H35B0.9800
C9—H91.0000C35—H35C0.9800
C10—H101.0000C36—H36A0.9800
C11—C121.398 (3)C36—H36B0.9800
C11—C161.401 (3)C36—H36C0.9800
C1—Fe1—C240.28 (14)Fe1—C7—H7125.9
C1—Fe1—C367.51 (12)C7—C8—C9108.5 (2)
C2—Fe1—C340.15 (12)C7—C8—Fe169.91 (13)
C1—Fe1—C540.74 (14)C9—C8—Fe169.71 (14)
C2—Fe1—C568.17 (13)C7—C8—H8125.8
C3—Fe1—C567.77 (11)C9—C8—H8125.8
C1—Fe1—C468.04 (12)Fe1—C8—H8125.8
C2—Fe1—C467.86 (11)C8—C9—C10107.9 (2)
C3—Fe1—C440.13 (11)C8—C9—Fe169.75 (14)
C5—Fe1—C440.54 (12)C10—C9—Fe169.61 (13)
C1—Fe1—C9133.24 (13)C8—C9—H9126.0
C2—Fe1—C9172.21 (12)C10—C9—H9126.0
C3—Fe1—C9146.77 (11)Fe1—C9—H9126.0
C5—Fe1—C9109.48 (11)C9—C10—C6108.1 (2)
C4—Fe1—C9115.59 (11)C9—C10—Fe169.56 (13)
C1—Fe1—C8109.76 (11)C6—C10—Fe169.91 (12)
C2—Fe1—C8132.96 (12)C9—C10—H10126.0
C3—Fe1—C8171.90 (11)C6—C10—H10126.0
C5—Fe1—C8115.58 (11)Fe1—C10—H10126.0
C4—Fe1—C8146.98 (11)C12—C11—C16117.50 (19)
C9—Fe1—C840.54 (10)C12—C11—C6120.7 (2)
C1—Fe1—C10172.56 (13)C16—C11—C6121.8 (2)
C2—Fe1—C10146.10 (12)C13—C12—C11121.3 (2)
C3—Fe1—C10115.30 (10)C13—C12—H12119.4
C5—Fe1—C10132.83 (12)C11—C12—H12119.4
C4—Fe1—C10109.28 (10)C12—C13—C14120.5 (2)
C9—Fe1—C1040.83 (9)C12—C13—H13119.8
C8—Fe1—C1068.41 (10)C14—C13—H13119.8
C1—Fe1—C7115.15 (11)C15—C14—C13119.1 (2)
C2—Fe1—C7109.26 (11)C15—C14—N1123.6 (2)
C3—Fe1—C7132.87 (10)C13—C14—N1117.03 (19)
C5—Fe1—C7146.57 (11)C16—C15—C14119.9 (2)
C4—Fe1—C7171.80 (10)C16—C15—H15120.1
C9—Fe1—C768.31 (10)C14—C15—H15120.1
C8—Fe1—C740.45 (9)C15—C16—C11121.8 (2)
C10—Fe1—C768.51 (9)C15—C16—H16119.1
C1—Fe1—C6146.01 (12)C11—C16—H16119.1
C2—Fe1—C6114.71 (11)N1—C17—N2109.99 (19)
C3—Fe1—C6109.19 (10)N1—C17—Cl1123.90 (17)
C5—Fe1—C6171.99 (12)N2—C17—Cl1126.07 (17)
C4—Fe1—C6132.48 (10)C19—C18—C23118.5 (2)
C9—Fe1—C668.68 (9)C19—C18—N2115.36 (19)
C8—Fe1—C668.48 (9)C23—C18—N2126.1 (2)
C10—Fe1—C640.84 (9)C20—C19—C18121.3 (2)
C7—Fe1—C640.83 (9)C20—C19—H19119.4
C25—Fe2—C32123.61 (10)C18—C19—H19119.4
C25—Fe2—C33106.62 (11)C19—C20—C21121.1 (2)
C32—Fe2—C3340.56 (12)C19—C20—H20119.5
C25—Fe2—C2868.76 (9)C21—C20—H20119.5
C32—Fe2—C28119.74 (11)C22—C21—C20117.1 (2)
C33—Fe2—C28154.51 (11)C22—C21—C24121.61 (19)
C25—Fe2—C31160.99 (10)C20—C21—C24121.25 (19)
C32—Fe2—C3140.72 (11)C23—C22—C21122.4 (2)
C33—Fe2—C3168.25 (11)C23—C22—H22118.8
C28—Fe2—C31107.53 (10)C21—C22—H22118.8
C25—Fe2—C29120.65 (10)C22—C23—C18119.6 (2)
C32—Fe2—C2968.48 (11)C22—C23—H23120.2
C33—Fe2—C2940.78 (11)C18—C23—H23120.2
C28—Fe2—C29163.14 (10)C25—C24—C28106.56 (19)
C31—Fe2—C2968.25 (11)C25—C24—C21126.56 (19)
C25—Fe2—C2640.80 (9)C28—C24—C21126.74 (19)
C32—Fe2—C26161.42 (11)C25—C24—Fe268.99 (12)
C33—Fe2—C26125.31 (11)C28—C24—Fe269.14 (12)
C28—Fe2—C2668.49 (9)C21—C24—Fe2123.44 (15)
C31—Fe2—C26156.89 (10)C26—C25—C24108.57 (19)
C29—Fe2—C26108.59 (10)C26—C25—Fe269.84 (13)
C25—Fe2—C30156.43 (10)C24—C25—Fe269.87 (12)
C32—Fe2—C3068.44 (10)C26—C25—H25125.7
C33—Fe2—C3068.33 (11)C24—C25—H25125.7
C28—Fe2—C30125.81 (10)Fe2—C25—H25125.7
C31—Fe2—C3040.55 (10)C25—C26—C27108.1 (2)
C29—Fe2—C3040.53 (11)C25—C26—Fe269.37 (13)
C26—Fe2—C30122.09 (10)C27—C26—Fe269.78 (13)
C25—Fe2—C2768.68 (10)C25—C26—H26125.9
C32—Fe2—C27155.59 (11)C27—C26—H26125.9
C33—Fe2—C27163.08 (11)Fe2—C26—H26125.9
C28—Fe2—C2740.62 (9)C28—C27—C26107.9 (2)
C31—Fe2—C27121.45 (11)C28—C27—Fe269.47 (13)
C29—Fe2—C27126.45 (10)C26—C27—Fe269.50 (13)
C26—Fe2—C2740.72 (9)C28—C27—H27126.0
C30—Fe2—C27109.09 (10)C26—C27—H27126.0
C25—Fe2—C2441.13 (9)Fe2—C27—H27126.0
C32—Fe2—C24105.37 (10)C27—C28—C24108.8 (2)
C33—Fe2—C24118.80 (10)C27—C28—Fe269.91 (13)
C28—Fe2—C2441.16 (8)C24—C28—Fe269.71 (12)
C31—Fe2—C24123.86 (10)C27—C28—H28125.6
C29—Fe2—C24154.87 (10)C24—C28—H28125.6
C26—Fe2—C2469.09 (9)Fe2—C28—H28125.6
C30—Fe2—C24161.86 (10)C30—C29—C33107.9 (2)
C27—Fe2—C2469.09 (9)C30—C29—Fe269.92 (14)
C17—N1—C14128.02 (18)C33—C29—Fe269.55 (14)
C17—N1—H1117 (3)C30—C29—H29126.0
C14—N1—H1114 (3)C33—C29—H29126.0
C17—N2—C18132.46 (19)Fe2—C29—H29126.0
C17—N2—H1B114 (3)C29—C30—C31107.9 (2)
C18—N2—H1B113 (3)C29—C30—Fe269.55 (14)
C2—C1—C5108.2 (3)C31—C30—Fe269.53 (14)
C2—C1—Fe169.94 (15)C29—C30—H30126.0
C5—C1—Fe169.83 (16)C31—C30—H30126.0
C2—C1—H1A125.9Fe2—C30—H30126.0
C5—C1—H1A125.9C30—C31—C32108.2 (2)
Fe1—C1—H1A125.9C30—C31—Fe269.92 (14)
C3—C2—C1107.8 (3)C32—C31—Fe269.56 (14)
C3—C2—Fe170.00 (15)C30—C31—H31125.9
C1—C2—Fe169.79 (17)C32—C31—H31125.9
C3—C2—H2126.1Fe2—C31—H31125.9
C1—C2—H2126.1C33—C32—C31107.8 (2)
Fe1—C2—H2126.1C33—C32—Fe269.75 (15)
C2—C3—C4108.8 (3)C31—C32—Fe269.72 (14)
C2—C3—Fe169.85 (16)C33—C32—H32126.1
C4—C3—Fe170.02 (15)C31—C32—H32126.1
C2—C3—H3125.6Fe2—C32—H32126.1
C4—C3—H3125.6C32—C33—C29108.1 (2)
Fe1—C3—H3125.6C32—C33—Fe269.70 (15)
C3—C4—C5107.8 (3)C29—C33—Fe269.67 (14)
C3—C4—Fe169.85 (14)C32—C33—H33125.9
C5—C4—Fe169.69 (15)C29—C33—H33125.9
C3—C4—H4126.1Fe2—C33—H33125.9
C5—C4—H4126.1C34—N3—C35123.0 (2)
Fe1—C4—H4126.1C34—N3—C36120.0 (2)
C4—C5—C1107.3 (3)C35—N3—C36116.8 (2)
C4—C5—Fe169.77 (14)O1—C34—N3126.7 (2)
C1—C5—Fe169.44 (15)O1—C34—H34116.6
C4—C5—H5126.4N3—C34—H34116.6
C1—C5—H5126.4N3—C35—H35A109.5
Fe1—C5—H5126.4N3—C35—H35B109.5
C10—C6—C7107.30 (19)H35A—C35—H35B109.5
C10—C6—C11126.6 (2)N3—C35—H35C109.5
C7—C6—C11126.0 (2)H35A—C35—H35C109.5
C10—C6—Fe169.26 (12)H35B—C35—H35C109.5
C7—C6—Fe169.39 (12)N3—C36—H36A109.5
C11—C6—Fe1129.10 (15)N3—C36—H36B109.5
C8—C7—C6108.2 (2)H36A—C36—H36B109.5
C8—C7—Fe169.64 (13)N3—C36—H36C109.5
C6—C7—Fe169.79 (12)H36A—C36—H36C109.5
C8—C7—H7125.9H36B—C36—H36C109.5
C6—C7—H7125.9
C5—C1—C2—C30.4 (3)C18—N2—C17—Cl10.8 (4)
Fe1—C1—C2—C359.91 (18)C17—N2—C18—C19173.0 (2)
C5—C1—C2—Fe159.55 (19)C17—N2—C18—C239.1 (4)
C1—C2—C3—C40.4 (3)C23—C18—C19—C201.9 (3)
Fe1—C2—C3—C459.35 (18)N2—C18—C19—C20179.9 (2)
C1—C2—C3—Fe159.77 (18)C18—C19—C20—C210.1 (4)
C2—C3—C4—C50.3 (3)C19—C20—C21—C221.7 (3)
Fe1—C3—C4—C559.57 (17)C19—C20—C21—C24176.2 (2)
C2—C3—C4—Fe159.25 (18)C20—C21—C22—C231.8 (3)
C3—C4—C5—C10.1 (3)C24—C21—C22—C23176.1 (2)
Fe1—C4—C5—C159.57 (18)C21—C22—C23—C180.0 (4)
C3—C4—C5—Fe159.67 (17)C19—C18—C23—C221.8 (3)
C2—C1—C5—C40.2 (3)N2—C18—C23—C22179.6 (2)
Fe1—C1—C5—C459.78 (18)C22—C21—C24—C25170.1 (2)
C2—C1—C5—Fe159.62 (18)C20—C21—C24—C257.7 (3)
C10—C6—C7—C80.1 (2)C22—C21—C24—C285.0 (3)
C11—C6—C7—C8176.8 (2)C20—C21—C24—C28177.1 (2)
Fe1—C6—C7—C859.21 (15)C22—C21—C24—Fe282.7 (2)
C10—C6—C7—Fe159.10 (14)C20—C21—C24—Fe295.1 (2)
C11—C6—C7—Fe1124.0 (2)C28—C24—C25—C260.1 (3)
C6—C7—C8—C90.1 (3)C21—C24—C25—C26176.1 (2)
Fe1—C7—C8—C959.25 (16)Fe2—C24—C25—C2659.31 (16)
C6—C7—C8—Fe159.31 (15)C28—C24—C25—Fe259.19 (15)
C7—C8—C9—C100.0 (3)C21—C24—C25—Fe2116.8 (2)
Fe1—C8—C9—C1059.35 (16)C24—C25—C26—C270.1 (3)
C7—C8—C9—Fe159.37 (16)Fe2—C25—C26—C2759.21 (17)
C8—C9—C10—C60.1 (3)C24—C25—C26—Fe259.33 (16)
Fe1—C9—C10—C659.53 (15)C25—C26—C27—C280.1 (3)
C8—C9—C10—Fe159.44 (16)Fe2—C26—C27—C2859.03 (16)
C7—C6—C10—C90.1 (2)C25—C26—C27—Fe258.95 (16)
C11—C6—C10—C9176.7 (2)C26—C27—C28—C240.0 (3)
Fe1—C6—C10—C959.31 (15)Fe2—C27—C28—C2459.04 (16)
C7—C6—C10—Fe159.19 (14)C26—C27—C28—Fe259.04 (17)
C11—C6—C10—Fe1124.0 (2)C25—C24—C28—C270.1 (3)
C10—C6—C11—C12153.8 (2)C21—C24—C28—C27176.0 (2)
C7—C6—C11—C1222.5 (3)Fe2—C24—C28—C2759.17 (16)
Fe1—C6—C11—C12114.2 (2)C25—C24—C28—Fe259.10 (15)
C10—C6—C11—C1622.6 (3)C21—C24—C28—Fe2116.8 (2)
C7—C6—C11—C16161.1 (2)C33—C29—C30—C310.2 (3)
Fe1—C6—C11—C1669.4 (3)Fe2—C29—C30—C3159.14 (18)
C16—C11—C12—C130.8 (3)C33—C29—C30—Fe259.39 (17)
C6—C11—C12—C13175.8 (2)C29—C30—C31—C320.1 (3)
C11—C12—C13—C140.2 (3)Fe2—C30—C31—C3259.22 (17)
C12—C13—C14—C150.8 (3)C29—C30—C31—Fe259.16 (17)
C12—C13—C14—N1173.2 (2)C30—C31—C32—C330.1 (3)
C17—N1—C14—C1546.0 (3)Fe2—C31—C32—C3359.58 (18)
C17—N1—C14—C13140.3 (2)C30—C31—C32—Fe259.45 (17)
C13—C14—C15—C160.4 (3)C31—C32—C33—C290.3 (3)
N1—C14—C15—C16173.2 (2)Fe2—C32—C33—C2959.28 (18)
C14—C15—C16—C110.6 (3)C31—C32—C33—Fe259.56 (18)
C12—C11—C16—C151.2 (3)C30—C29—C33—C320.3 (3)
C6—C11—C16—C15175.3 (2)Fe2—C29—C33—C3259.29 (18)
C14—N1—C17—N2177.9 (2)C30—C29—C33—Fe259.62 (18)
C14—N1—C17—Cl14.2 (3)C35—N3—C34—O1178.6 (3)
C18—N2—C17—N1177.0 (2)C36—N3—C34—O14.2 (5)
Hydrogen-bond geometry (Å, º) top
Cg2, Cg4, Cg5 and Cg6 are the centroids of the C6–C10, C29–C23 C11–C16 and C18–C23 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.91 (1)1.98 (2)2.862 (3)163 (5)
C7—H7···Cg6i1.002.633.569 (3)157
C19—H19···Cg5ii0.952.633.286 (3)126
C23—H23···Cl10.952.553.219 (2)127
C25—H25···Cg2ii1.002.943.913 (3)163
C34—H34···Cg5i0.952.713.632 (3)164
C35—H35C···Cg4iii0.982.973.624 (3)125
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y1, z.
Dihedral angles (°) between planes top
PlanesDihedral angle
C6–C10 vs C11–C1623.37 (12)
C11–C16 vs N1/C17/N2/C1145.39 (7)
N1/C17/N2/C11 vs C18–C239.09 (13)
C18–C23 vs C24–C289.08 (15)
 

Funding information

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

References

First citationAdil, S., Khan, A. U., Badshah, H., Asghar, F., Usman, M., Badshah, A. & Ali, S. (2018). Drug Dev. Res. 79, 184–197.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAlama, A., Tasso, B., Novelli, F. & Sparatore, F. (2009). Drug Discovery Today, 14, 500–508.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2021). APEX4 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA.  Google Scholar
First citationDai, Z., Ni, J., Huang, X. H., Lu, G. & Bao, J. (2007). Bioelectrochemistry, 70, 250–256.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGasser, G. & Metzler-Nolte, N. (2012). Curr. Opin. Chem. Biol. 16, 84–91.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGasser, G., Ott, I. & Metzler-Nolte, N. (2011). J. Med. Chem. 54, 3–25.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGul, R., Khan, A., Badshah, A., Rauf, M. K., Shah, A., Zia-ur-Rehman, Bano, A., Naz, R. & Tahir, M. N. (2013a). J. Coord. Chem. 66, 1959–1973.  Web of Science CSD CrossRef CAS Google Scholar
First citationGul, R., Khan, A., Badshah, A. & Tahir, M. N. (2013b). Acta Cryst. E69, m486.  CSD CrossRef IUCr Journals Google Scholar
First citationGul, R., Rauf, M. K., Badshah, A., Azam, S. S., Tahir, M. N. & Khan, A. (2014). Eur. J. Med. Chem. 85, 438–449.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHerrmann, W. A. (1988). Comments Inorg. Chem. 7, 73–107.  CrossRef CAS Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationIbrahim, M. S. (2001). Anal. Chim. Acta, 443, 63–72.  Web of Science CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKrause, N., Aksin-Artok, Ö., Asikainen, M., Breker, V., Deutsch, C., Erdsack, J., Fan, H. T., Gockel, B., Minkler, S., Poonoth, M., Sawama, Y., Sawama, Y., Sun, T., Volz, F. & Winter, C. (2012). J. Organomet. Chem. 704, 1–8.  Web of Science CrossRef CAS Google Scholar
First citationLangeroodi, N. S. (2010). J. Chem. Soc. Pak. 32, 125–128.  CAS Google Scholar
First citationLi, B. J., Tian, S. L., Fang, Z. & Shi, Z. J. (2008). Angew. Chem. Int. Ed. 47, 1115–1118.  Web of Science CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationNishibayashi, Y., Arikawa, Y., Ohe, K. & Uemura, S. (1996). J. Org. Chem. 61, 1172–1174.  CrossRef CAS Web of Science Google Scholar
First citationOng, Y. C. & Gasser, G. (2020). Drug. Discov. Today: Technol. 37, 117–124.  Google Scholar
First citationOzdemir, N. (2021). CSD Communication (refcode JARZUB). CCDC, Cambridge, England.  Google Scholar
First citationParveen, S., Arjmand, F. & Tabassum, S. (2019). Eur. J. Med. Chem. 175, 269–286.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRehmani, F. S., Shafique, A., Tanoli, S. A. K., Ambreen, S., Inam-Ul-Haq, M., Rashid, S. & Abbas, S. S. (2010). J. Chem. Soc. Pak. 32, 467–470.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTogni, A. (1996). Angew. Chem. Int. Ed. Engl. 35, 1475–1477.  CrossRef CAS Web of Science Google Scholar
First citationTop, S., Vessières, A., Leclercq, G., Quivy, J., Tang, J., Vaissermann, J., Huché, M. & Jaouen, G. (2003). Chem. Eur. J. 9, 5223–5236.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationTsukazaki, M., Tinkl, M., Roglans, A., Chapell, B. J., Taylor, N. J. & Snieckus, V. J. (1996). J. Am. Chem. Soc. 118, 685–686.  CSD CrossRef CAS Web of Science Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds