research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 4-oxo-3-phenyl-2-sulfanyl­­idene-5-(thio­phen-2-yl)-3,4,7,8,9,10-hexa­hydro-2H-pyrido[1,6-a:2,3-d′]di­pyrimidine-6-carbo­nitrile

crossmark logo

aDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148, Baku, Azerbaijan, bPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow 117198, Russian Federation, cN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, eFaculty of Physics, Baku State University, Z. Khalilov str. 23, Az, 1148 Baku, Azerbaijan, fDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal, and g"Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan
*Correspondence e-mail: akkurt@erciyes.edu.tr, ajaya.bhattarai@mmamc.tu.edu.np

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 6 February 2024; accepted 19 February 2024; online 20 February 2024)

In the title compound, C21H15N5OS2, mol­ecular pairs are linked by N—H⋯N hydrogen bonds along the c-axis direction and C—H⋯S and C—H⋯O hydrogen bonds along the b-axis direction, with R22(12) and R22(16) motifs, respectively, thus forming layers parallel to the (10[\overline{4}]) plane. In addition, C=S⋯π and C≡N⋯π inter­actions between the layers ensure crystal cohesion. The Hirshfeld surface analysis indicates that the major contributions to the crystal packing are H⋯H (43.0%), C⋯H/H⋯C (16.9%), N⋯H/H⋯N (11.3%) and S⋯H/H⋯S (10.9%) inter­actions.

1. Chemical context

Heterocyclic systems are an important group of organic compounds. Synthetic chemistry has grown abundantly over the past few decades and recently developed heterocyclic systems have found diverse research and commercial applications, especially in the pharmaceutical and chemical industries (Maharramov et al., 2021[Maharramov, A. M., Shikhaliyev, N. G., Zeynalli, N. R., Niyazova, A. A., Garazade, Kh. A. & Shikhaliyeva, I. M. (2021). UNEC J. Eng. Appl. Sci. 1, 5-11.], 2022[Maharramov, A. M., Suleymanova, G. T., Qajar, A. M., Niyazova, A. A., Ahmadova, N. E., Shikhaliyeva, I. M., Garazade, Kh. A., Nenajdenko, V. G. & Shikaliyev, N. G. (2022). UNEC J. Eng. Appl. Sci. 2, 64-73.]; Erenler et al., 2022[Erenler, R., Dag, B. & Ozbek, B. B. (2022). UNEC J. Eng. Appl. Sci. 2, 26-32.]; Akkurt et al., 2023[Akkurt, M., Maharramov, A. M., Shikhaliyev, N. G., Qajar, A. M., Atakishiyeva, G., Shikhaliyeva, I. M., Niyazova, A. A. & Bhattarai, A. (2023). UNEC J. Eng. Appl. Sci. 3, 33-39.]). These compounds have also found wide implementations in diverse fields of chemical science, including in coordination chemistry (Gurbanov et al., 2021[Gurbanov, A. V., Mertsalov, D. F., Zubkov, F. I., Nadirova, M. A., Nikitina, E. V., Truong, H. H., Grigoriev, M. S., Zaytsev, V. P., Mahmudov, K. T. & Pombeiro, A. J. L. (2021). Crystals, 11, 112.]; Mahmoudi et al., 2021[Mahmoudi, G., Zangrando, E., Miroslaw, B., Gurbanov, A. V., Babashkina, M. G., Frontera, A. & Safin, D. A. (2021). Inorg. Chim. Acta, 519, 120279.]), medicinal chemistry (Dönmez & Türkyılmaz, 2022[Dönmez, M. & Türkyılmaz, M. (2022). UNEC J. Eng. Appl. Sci, 2, 43-48.]; Askerova, 2022[Askerova, U. F. (2022). UNEC J. Eng. Appl. Sci, 2, 58-64.]) and materials science (Velásquez et al., 2019[Velásquez, J. D., Mahmoudi, G., Zangrando, E., Gurbanov, A. V., Zubkov, F. I., Zorlu, Y., Masoudiasl, A. & Echeverría, J. (2019). CrystEngComm, 21, 6018-6025.]; Afkhami et al., 2019[Afkhami, F. A., Mahmoudi, G., Khandar, A. A., Franconetti, A., Zangrando, E., Qureshi, N., Lipkowski, J., Gurbanov, A. V. & Frontera, A. (2019). Eur. J. Inorg. Chem. 2019, 262-270.]). Pyridodi­pyrimidines are a specific group of heterocyclic systems that contain a fused tricyclic system with four or five nitro­gen atoms in their structure. These compounds are analogues of tetra- or penta-aza-anthracene or phenanthrene and usually exist in either a linear or an angular form. This moiety is present in drugs, and in recent years it has been studied in the development of new active compounds, as evidenced by numerous publications (Yousif et al., 2021[Yousif, M. N. M., El-Gazzar, A. B. A. & El-Enany, M. M. (2021). Mini-Rev. Org. Chem. 18, 43-54.]; Sobhi & Faisal, 2023[Sobhi, R. M. & Faisal, R. M. (2023). UNEC J. Eng. Appl. Sci. 3, 21-32.]). Derivatives comprising the pyridodi­pyrimidine skeleton show diverse biological activities, such as anti­tumour activity, inhibiting di­hydro­folate reductases or tyrosine kinases, anti-inflammatory activity, anti­hypertensive activity, anti­bacterial activity, anti­convulsant activity, calcium channel antagonist activity, etc. Historical and modern synthetic approaches for the preparation of these systems have been reviewed recently (Atalay et al., 2022[Atalay, V. E., Atish, I. S., Shahin, K. F., Kashikchi, E. S. & Karahan, M. (2022). UNEC J. Eng. Appl. Sci. 2, 33-40.]; Hammouda et al., 2023[Hammouda, M. M., Elattar, K. M., El-Khateeb, A. Y., Hamed, S. E. & Osman, A. M. A. (2023). Mol. Divers. 1, 1-38. https://doi.org/10.1007/s11030-023-10623-9]). Thus, in the framework of our studies in heterocyclic chemistry (Naghiyev et al., 2020[Naghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020). Acta Cryst. E76, 720-723.], 2021[Naghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 516-521.], 2022[Naghiyev, F. N., Khrustalev, V. N., Novikov, A. P., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, I. G. (2022). Acta Cryst. E78, 554-558.]; Khalilov et al., 2022[Khalilov, A. N., Khrustalev, V. N., Tereshina, T. A., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2022). Acta Cryst. E78, 525-529.]), we report the synthesis and characterization of the title compound, 4-oxo-3-phenyl-2-sulfanyl­idene-5-(thio­phen-2-yl)-3,4,7,8,9,10-hexa­hydro-2H-pyrido[1,6-a:2,3-d′]di­pyrimidine-6-carbo­nitrile.

[Scheme 1]

2. Structural commentary

The thio­phene ring (S2/C17–C20; Fig. 1[link]) in the title compound is disordered over two sites in a 0.787 (3):0.213 (3) ratio by an approximate rotation of 180° about the C5—C17 bond. The phenyl ring (C11-C16) is also disordered over two positions with the same ratio. In the 1,3-diazinane ring (N7/N11/C6A/C8–C10), the middle carbon atom (C9) is similarly disordered. The ten-membered 2,3,4,8-tetra­hydro­pyrido[2,3-d]pyrimidine ring system (N1/N3/N11/C1A/C2/C4/C4A/C5/C6/C6A) has a nearly planar conformation (r.m.s. deviation = 0.1183 Å). The dihedral angles between the major and minor components of the disordered phenyl (C11–C16 and C11/C12–C16A) and thio­phene (S2/C17–C20 and S2A/C17/C18A–C20A) rings are 20.3 (9) and 6.7 (7)°, respectively, and these disordered components make dihedral angles of 71.9 (3), 88.0 (4)° and 64.0 (2), 70.6 (4)°, respectively, with the ten-membered ring system. The geometric parameters are normal and comparable to those of related compounds described in the Database survey section.

[Figure 1]
Figure 1
The mol­ecular structure, showing the atom labelling and displacement ellipsoids drawn at the 30% probability level. Only the major component of the disorder is shown.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, mol­ecular pairs are linked by N—H⋯N hydrogen bonds along the c-axis direction and C—H⋯S and C—H⋯O hydrogen bonds along the b-axis direction, with [R_{2}^{2}](12) and [R_{2}^{2}](16) motifs, respectively (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]; Table 1[link]; Fig. 2[link]). They form layers parallel to the (10[\overline{4}]) plane. Crystal cohesion between the layers is ensured by C=S⋯π and C≡N⋯π inter­actions [(C2)S1⋯Cg6a = 3.4304 (9) Å, C2(S1)⋯Cg6a = 3.643 (2) Å, C2=S1⋯Cg6a = 83.57 (8)°; (C21)N21⋯Cg5b = 3.330 (4) Å, C21(N21)⋯Cg5b = 3.613 (4) Å, C21≡N21⋯Cg5b = 94.91 (15)°; symmetry codes: (a) −1 + x, y, z; (b) 2 − x, 1 − y, 2 − z; Cg5 and Cg6 are the centroids of the N7/N11/C6A/C8/C9A/C10 and N11/C1A/C4A/C5/C6/C6A rings] (Table 1[link]; Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7⋯N21i 0.89 (2) 2.14 (2) 2.976 (3) 157 (2)
C9—H9B⋯O1ii 0.99 2.34 3.197 (3) 144
C16—H16⋯S2Aiii 0.95 2.73 3.58 (2) 149
C19—H19⋯S1iv 0.95 2.76 3.652 (5) 156
Symmetry codes: (i) [-x+3, -y+1, -z+2]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x-1, y, z]; (iv) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
View of the N—H⋯N, C—H⋯O and C—H⋯S hydrogen bonds down the a-axis. Only the major component of the disorder and the H atoms involved are shown.
[Figure 3]
Figure 3
View of the ππ and C—N⋯π and C—S⋯π inter­actions down the b-axis. Only the major component of the disorder is shown. All H atoms are omitted for clarity.

Two-dimensional fingerprint plots and Hirshfeld surfaces were produced using Crystal Explorer 17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) to qu­antify the inter­molecular inter­actions. The dnorm surfaces are mapped over a fixed colour scale from −0.4663 (red) to +1.2045 (blue) a.u. Red spots on the surface corres­pond to N—H⋯N, C—H⋯O and C—H⋯S inter­actions (Tables 1[link] and 2[link]; Fig. 4[link]a,b). The most significant inter­atomic contact is H⋯H, because it contributes the most to the crystal packing (43.0%, Fig. 5[link]b). Other significant contributions are from C⋯H/H⋯C (16.9%, Fig. 5[link]c), N⋯H/H⋯N (11.3%, Fig. 5[link]d) and S⋯H/H⋯S (10.9%, Fig. 5[link]e) inter­actions. The following inter­actions have minor contributions: O⋯H/H⋯O (7.2%), C⋯C (3.4%), N⋯C/C⋯N (3.1%), S⋯C/C⋯S (2.0%), N⋯N (1.3%) and S⋯N/N⋯S (0.8%).

Table 2
Summary of short inter­atomic contacts (Å).

Atoms belonging to the minor disorder components are indicated by an asterisk (*).

*H16A⋯O1 2.34 −1 + x, y, z
*H9B⋯O1 2.34 [{3\over 2}] − x, [{1\over 2}] + y, [{3\over 2}] − z
*H9C⋯*H15 1.87 [{1\over 2}] − x, [{1\over 2}] + y, [{3\over 2}] − z
*H13⋯S1 2.93 x, 1 − y, 1 − z
*H18A⋯*H8D 1.87 2 − x, 1 − y, 2 − z
H7⋯N21 2.14 3 − x, 1 − y, 2 − z
*H13A⋯*H20 2.26 [{1\over 2}] + x, [{1\over 2}] − y, −[{1\over 2}] + z
*H20A⋯*H14 2.58 [{3\over 2}] + x, [{1\over 2}] − y, [{1\over 2}] + z
*H13A⋯*H12 2.46 1 − x, 1 − y, 1 − z
[Figure 4]
Figure 4
(a) Front and (b) back sides of the three-dimensional Hirshfeld surface of the compound mapped over dnorm.
[Figure 5]
Figure 5
The two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) N⋯H/H⋯N and (e) S⋯H/H⋯S inter­actions. [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.43, last update November 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the central ten-membered ring 2,3,4,8-tetra­hydro­pyrido[2,3-d]pyrimidine yielded four hits, viz. 11-(amino­methyl­idene)-8,9,10,11-tetra­hydro­pyrido[2′,3′:4,5]pyrimido[1,2-a]aze­pin-5(7H)-one (CSD refcode HECLUZ; Khodjaniyazov et al., 2017[Khodjaniyazov, K. U., Makhmudov, U. S., Turgunov, K. K. & Elmuradov, B. Z. (2017). Acta Cryst. E73, 1497-1500.]), 7-amino-1,3-dimethyl-5-(4-nitro­phen­yl)-2,4-dioxo-1,2,3,4-tetra­hydro­pyrido(2,3-d)pyrimidine-6-carbo­nitrile (NIFBUA; Zhou et al., 2007[Zhou, J.-X., Niu, L.-H., Li, X.-Y. & Shi, D.-Q. (2007). Acta Cryst. E63, o2667.]), 3-(4-fluoro­phen­yl)-1,5,7-tri­methyl-1,2,3,4-tetra­hydro­pyrido(2,3-d)pyrimidine-2,4-dione (Patel et al., 2007[Patel, U. H., Patel, P. D. & Thakker, N. (2007). Acta Cryst. C63, o337-o339.]) and 2-(4-chloro-3-methyl­phen­oxy)-3-(4-chloro­phen­yl)-5-methyl-8,9,10,11-tetra­hydro-1-benzothieno(2′,3′:2,3)pyrido(4,5-d)pyrimidin-4(3H)-one di­chloro­methane solvate (JAYKOK; Liu et al., 2005[Liu, J.-C., He, H.-W. & Ding, M.-W. (2005). Acta Cryst. E61, o3686-o3687.]). In HECLUZ, hydrogen bonds with a 16-membered ring and three chain motifs are generated by N—H⋯N and N—H⋯O contacts. The amino group is located close to the nitro­gen atoms N1 and N8 of an inversion-related mol­ecule, forming hydrogen bonds with R12(4) and [R_{2}^{2}](12) graph-set motifs. This amino group also forms a hydrogen bond with the C=O oxygen atom of a mol­ecule translated along the a-axis direction, which links the mol­ecules into R44(16) rings. Hydrogen-bonded chains are formed along [100] by alternating [R_{2}^{2}](12) and R44(16) rings. These chains are stabilized by inter­molecular ππ stacking inter­actions between the pyridine and pyrimidine rings [centroid–centroid distance = 3.669 (2) Å; symmetry operation 1 − x, 1 − y, 1 − z]. In NIFBUA, mol­ecules are linked by N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds, forming a three-dimensional network. In HIFREU, a diverse set of weak inter­molecular C—H⋯π, ππ and C—H⋯O inter­actions link the mol­ecules into sheets. The C—H⋯O inter­actions generate centrosymmetric rings with an [R_{2}^{2}](14) graph-set motif and chains with a C(8) motif. In JAYKOK, the mol­ecules are connected in the form of zigzag ribbons along the b-axis direction by C—H⋯π and C—Cl⋯π inter­actions. van der Waals inter­actions between the ribbons ensure the cohesion of the crystal structure.

5. Synthesis and crystallization

A solution of 6-amino-9-iso­cyano-8-(thio­phen-2-yl)-3,4-di­hydro-2H-pyrido[1,2-a]pyrimidine-7-carbo­nitrile (3.5 mmol) and potassium hydroxide (3.5 mmol) was stirred in DMF (25 mL) for 2 h at room temperature. Phenyl iso­thio­cyanate (3.5 mmol) was added dropwise to the reaction mixture and it was stirred for 2 h. The reaction mixture was kept for 48 h at room temperature and acidified with 5 mL (37% HCl) solution. The precipitate was filtered and recrystallized from an ethanol water (3:1 ratio) solution. The title compound was obtained in 77% yield, m.p. 469–470 K.

1H NMR (300 MHz, DMSO-d6, ppm.): 1.95 (m, 2H, CH2); 3.59 (t, 2H, CH2); 4.06 (t, 2H, CH2); 7.31–7.51 (m, 6H, 5CHarom. + 1H, thioph.); 7.54 (d, 1H, thioph.); 7.89 (d, 1H, thioph.); 8.40 (s, 1H, NH). 13C NMR (75 MHz, DMSO-d6, ppm): 19.84 (CH2), 41.22 (CH2), 43.68 (CH2), 53.58 (=Ctert.), 98.75 (=Ctert.), 119.67 (CN), 122.94 (2CHarom.), 126.28 (CHarom.), 126.91 (Cthioph.), 128.43 (CHthioph.), 129.29 (CHthioph.), 131.64 (CHthioph.), 132.72 (2CHarom.), 135.97 (Carom.), 147.11 (=Ctert.), 149.45 (=Ctert.), 152.32 (N—C=O), 161.60 (=Ctert.), 179.85 (N—C=S).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The thio­phene ring (S2/C17–C20) is disordered over two sites related by an approximate rotation of 180° about the C5—C17 bond in a 0.787 (3):0.213 (3) ratio. The phenyl ring (C11–C16) is also disordered over two sites in a 0.787 (3):0.213 (3) ratio. The minor occupancy component of the phenyl ring was restrained to be planar, using FLAT commands. The middle carbon atom (C9) in the 1,3-diazinane ring (N7/N11/C6A/C8–C10) is similarly disordered. EADP in SHELXL was used for the Uij values of equivalent atom pairs (e.g., S2 and S2A) and SADI was employed for the disordered components to restrain the bond lengths and angles of the major and minor components to be the same within an e.s.d. of 0.02 Å, to ensure chemically reasonable bond length and angle values. The C-bound H atoms were placed in calculated positions (0.95–0.99 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(C). The N-bound H atoms were located in a difference map and freely refined.

Table 3
Experimental details

Crystal data
Chemical formula C21H15N5OS2
Mr 417.50
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 5.63465 (3), 18.02763 (13), 18.40115 (12)
β (°) 97.1649 (6)
V3) 1854.58 (2)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.81
Crystal size (mm) 0.31 × 0.05 × 0.05
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.495, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 39427, 3946, 3842
Rint 0.032
(sin θ/λ)max−1) 0.634
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.130, 1.09
No. of reflections 3946
No. of parameters 299
No. of restraints 16
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.46, −0.35
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

4-Oxo-3-phenyl-2-sulfanylidene-5-(thiophen-2-yl)-3,4,7,8,9,10-hexahydro-2H-pyrido[1,6-a:2,3-d']dipyrimidine-6-carbonitrile top
Crystal data top
C21H15N5OS2F(000) = 864
Mr = 417.50Dx = 1.495 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 5.63465 (3) ÅCell parameters from 25424 reflections
b = 18.02763 (13) Åθ = 2.4–77.5°
c = 18.40115 (12) ŵ = 2.81 mm1
β = 97.1649 (6)°T = 100 K
V = 1854.58 (2) Å3Needle, orange
Z = 40.31 × 0.05 × 0.05 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
3842 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tubeRint = 0.032
φ and ω scansθmax = 77.8°, θmin = 3.5°
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2022)
h = 76
Tmin = 0.495, Tmax = 1.000k = 2222
39427 measured reflectionsl = 2323
3946 independent reflections
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: mixed
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0624P)2 + 1.7979P]
where P = (Fo2 + 2Fc2)/3
3946 reflections(Δ/σ)max = 0.003
299 parametersΔρmax = 0.46 e Å3
16 restraintsΔρmin = 0.34 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.02652 (9)0.56892 (3)0.69073 (3)0.03115 (15)
S20.72669 (14)0.28256 (5)0.87597 (5)0.0385 (3)0.787 (3)
S2A1.1539 (16)0.3143 (6)0.8247 (7)0.0342 (13)0.213 (3)
O10.5802 (3)0.35719 (8)0.72211 (8)0.0330 (3)
N10.4413 (3)0.57036 (9)0.77539 (9)0.0271 (4)
C1A0.6322 (3)0.53620 (11)0.80803 (10)0.0254 (4)
C20.2865 (4)0.53163 (11)0.72644 (11)0.0270 (4)
N30.3507 (3)0.46068 (10)0.70538 (9)0.0281 (4)
C40.5389 (4)0.41982 (11)0.74252 (11)0.0262 (4)
C4A0.6778 (3)0.45923 (11)0.80310 (10)0.0251 (4)
C50.8706 (3)0.42724 (11)0.84720 (11)0.0255 (4)
C61.0250 (3)0.47366 (11)0.89208 (11)0.0266 (4)
C6A0.9921 (4)0.55219 (11)0.89144 (10)0.0263 (4)
N71.1448 (3)0.59618 (10)0.93177 (10)0.0320 (4)
H71.278 (3)0.5768 (15)0.9549 (15)0.048 (8)*
C81.1322 (4)0.67714 (12)0.93061 (14)0.0378 (5)
H8A1.29510.69850.93900.045*0.915 (5)
H8B1.04050.69510.96970.045*0.915 (5)
H8C1.25300.69600.90050.045*0.085 (5)
H8D1.17680.69560.98120.045*0.085 (5)
C91.0108 (5)0.70013 (13)0.85711 (13)0.0335 (6)0.915 (5)
H9A1.10970.68550.81860.040*0.915 (5)
H9B0.99140.75470.85550.040*0.915 (5)
C9A0.899 (3)0.7088 (11)0.9022 (12)0.0335 (6)0.085 (5)
H9C0.92310.75920.88310.040*0.085 (5)
H9D0.80020.71340.94290.040*0.085 (5)
C100.7676 (4)0.66313 (11)0.84300 (12)0.0326 (5)
H10A0.66340.68140.87860.039*0.915 (5)
H10B0.69110.67560.79310.039*0.915 (5)
H10C0.82020.67840.79590.039*0.085 (5)
H10D0.59510.67490.84040.039*0.085 (5)
N110.7967 (3)0.58104 (9)0.85025 (9)0.0263 (4)
C110.2322 (4)0.42875 (12)0.63790 (12)0.0327 (5)
C120.2858 (14)0.4548 (5)0.5706 (3)0.0463 (17)0.596 (9)
H120.40750.49110.56920.056*0.596 (9)
C130.1650 (13)0.4288 (4)0.5059 (3)0.0523 (15)0.596 (9)
H130.20120.44740.46030.063*0.596 (9)
C140.0112 (19)0.3748 (6)0.5082 (14)0.0496 (16)0.596 (9)
H140.09370.35610.46380.060*0.596 (9)
C150.067 (4)0.3481 (8)0.5740 (11)0.0416 (17)0.596 (9)
H150.18550.31090.57530.050*0.596 (9)
C160.0531 (17)0.3765 (6)0.6387 (12)0.0348 (18)0.596 (9)
H160.01090.35970.68430.042*0.596 (9)
C12A0.358 (2)0.4353 (7)0.5772 (6)0.0463 (17)0.404 (9)
H12A0.50960.45890.58080.056*0.404 (9)
C13A0.253 (2)0.4061 (6)0.5123 (5)0.0523 (15)0.404 (9)
H13A0.32950.41150.46950.063*0.404 (9)
C14A0.036 (3)0.3687 (9)0.508 (2)0.0496 (16)0.404 (9)
H14A0.03600.34860.46270.060*0.404 (9)
C15A0.072 (6)0.3615 (12)0.5701 (17)0.0416 (17)0.404 (9)
H15A0.22060.33590.56680.050*0.404 (9)
C16A0.023 (3)0.3894 (10)0.6378 (19)0.0348 (18)0.404 (9)
H16A0.05130.38190.68080.042*0.404 (9)
C170.9179 (4)0.34677 (11)0.84955 (11)0.0281 (4)
C181.1076 (17)0.3082 (6)0.8292 (8)0.0342 (13)0.787 (3)
H181.23410.33380.81030.041*0.787 (3)
C191.1145 (8)0.2330 (3)0.8361 (3)0.0375 (9)0.787 (3)
H191.24000.20180.82420.045*0.787 (3)
C200.9166 (7)0.21043 (19)0.8622 (3)0.0430 (9)0.787 (3)
H200.88380.16000.87220.052*0.787 (3)
C18A0.781 (3)0.2960 (8)0.8922 (9)0.0385 (3)0.213 (3)
H18A0.66620.30940.92350.046*0.213 (3)
C19A0.853 (3)0.2263 (9)0.8774 (11)0.0430 (9)0.213 (3)
H19A0.76660.18270.88600.052*0.213 (3)
C20A1.060 (4)0.2264 (10)0.8495 (14)0.0375 (9)0.213 (3)
H20A1.14890.18250.84360.045*0.213 (3)
C211.2205 (4)0.44413 (11)0.94061 (11)0.0286 (4)
N211.3785 (3)0.42360 (10)0.98069 (11)0.0342 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0299 (3)0.0326 (3)0.0293 (3)0.00388 (19)0.00271 (19)0.00214 (18)
S20.0288 (5)0.0342 (5)0.0513 (5)0.0065 (3)0.0005 (3)0.0115 (3)
S2A0.017 (3)0.0302 (16)0.0576 (16)0.0004 (19)0.015 (2)0.0102 (12)
O10.0358 (8)0.0268 (7)0.0350 (8)0.0007 (6)0.0007 (6)0.0018 (6)
N10.0289 (8)0.0287 (8)0.0225 (8)0.0041 (6)0.0015 (6)0.0002 (6)
C1A0.0269 (9)0.0275 (10)0.0214 (8)0.0021 (7)0.0015 (7)0.0025 (7)
C20.0296 (9)0.0283 (10)0.0228 (9)0.0001 (8)0.0025 (7)0.0028 (7)
N30.0302 (8)0.0286 (8)0.0243 (8)0.0005 (7)0.0007 (6)0.0004 (6)
C40.0265 (9)0.0262 (9)0.0258 (9)0.0008 (7)0.0022 (7)0.0031 (7)
C4A0.0251 (9)0.0260 (9)0.0239 (9)0.0007 (7)0.0013 (7)0.0038 (7)
C50.0243 (9)0.0266 (9)0.0255 (9)0.0003 (7)0.0024 (7)0.0055 (7)
C60.0263 (9)0.0263 (10)0.0260 (9)0.0016 (7)0.0005 (7)0.0043 (7)
C6A0.0276 (9)0.0280 (10)0.0227 (9)0.0024 (8)0.0004 (7)0.0015 (7)
N70.0318 (9)0.0271 (9)0.0341 (9)0.0027 (7)0.0078 (7)0.0011 (7)
C80.0392 (12)0.0266 (11)0.0440 (12)0.0024 (9)0.0090 (10)0.0045 (9)
C90.0430 (13)0.0240 (11)0.0316 (12)0.0028 (9)0.0031 (9)0.0007 (9)
C9A0.0430 (13)0.0240 (11)0.0316 (12)0.0028 (9)0.0031 (9)0.0007 (9)
C100.0396 (11)0.0239 (10)0.0314 (10)0.0067 (8)0.0072 (8)0.0012 (8)
N110.0300 (8)0.0240 (8)0.0233 (8)0.0042 (6)0.0024 (6)0.0001 (6)
C110.0369 (11)0.0320 (11)0.0287 (10)0.0004 (8)0.0018 (9)0.0019 (8)
C120.051 (4)0.054 (4)0.0352 (18)0.016 (3)0.008 (2)0.004 (2)
C130.061 (4)0.067 (4)0.0287 (17)0.010 (3)0.003 (3)0.001 (2)
C140.056 (4)0.053 (2)0.0363 (13)0.010 (2)0.005 (4)0.007 (2)
C150.0428 (16)0.034 (5)0.045 (2)0.007 (4)0.0086 (15)0.004 (3)
C160.031 (3)0.037 (4)0.0352 (13)0.003 (3)0.001 (3)0.004 (4)
C12A0.051 (4)0.054 (4)0.0352 (18)0.016 (3)0.008 (2)0.004 (2)
C13A0.061 (4)0.067 (4)0.0287 (17)0.010 (3)0.003 (3)0.001 (2)
C14A0.056 (4)0.053 (2)0.0363 (13)0.010 (2)0.005 (4)0.007 (2)
C15A0.0428 (16)0.034 (5)0.045 (2)0.007 (4)0.0086 (15)0.004 (3)
C16A0.031 (3)0.037 (4)0.0352 (13)0.003 (3)0.001 (3)0.004 (4)
C170.0271 (9)0.0238 (9)0.0315 (10)0.0025 (7)0.0044 (8)0.0056 (8)
C180.017 (3)0.0302 (16)0.0576 (16)0.0004 (19)0.015 (2)0.0102 (12)
C190.042 (3)0.0268 (14)0.042 (3)0.0073 (15)0.0043 (15)0.0022 (13)
C200.043 (3)0.0223 (18)0.059 (2)0.0055 (14)0.0132 (18)0.0046 (15)
C18A0.0288 (5)0.0342 (5)0.0513 (5)0.0065 (3)0.0005 (3)0.0115 (3)
C19A0.043 (3)0.0223 (18)0.059 (2)0.0055 (14)0.0132 (18)0.0046 (15)
C20A0.042 (3)0.0268 (14)0.042 (3)0.0073 (15)0.0043 (15)0.0022 (13)
C210.0295 (10)0.0248 (9)0.0305 (10)0.0006 (8)0.0007 (8)0.0024 (8)
N210.0330 (9)0.0297 (9)0.0369 (10)0.0020 (7)0.0076 (8)0.0026 (7)
Geometric parameters (Å, º) top
S1—C21.670 (2)C10—H10C0.9900
S2—C171.693 (2)C10—H10D0.9900
S2—C201.723 (4)C11—C16A1.377 (13)
S2A—C171.572 (9)C11—C161.382 (9)
S2A—C20A1.750 (17)C11—C121.393 (7)
O1—C41.221 (2)C11—C12A1.400 (10)
N1—C1A1.318 (3)C12—C131.377 (7)
N1—C21.365 (3)C12—H120.9500
C1A—N111.392 (3)C13—C141.395 (9)
C1A—C4A1.416 (3)C13—H130.9500
C2—N31.397 (3)C14—C151.374 (9)
N3—C41.398 (3)C14—H140.9500
N3—C111.453 (3)C15—C161.391 (9)
C4—C4A1.464 (3)C15—H150.9500
C4A—C51.397 (3)C16—H160.9500
C5—C61.400 (3)C12A—C13A1.370 (11)
C5—C171.475 (3)C12A—H12A0.9500
C6—C6A1.428 (3)C13A—C14A1.389 (13)
C6—C211.431 (3)C13A—H13A0.9500
C6A—N71.327 (3)C14A—C15A1.369 (14)
C6A—N111.360 (2)C14A—H14A0.9500
N7—C81.461 (3)C15A—C16A1.386 (13)
N7—H70.888 (9)C15A—H15A0.9500
C8—C9A1.468 (16)C16A—H16A0.9500
C8—C91.496 (3)C17—C181.366 (10)
C8—H8A0.9900C17—C18A1.483 (14)
C8—H8B0.9900C18—C191.361 (11)
C8—H8C0.9900C18—H180.9500
C8—H8D0.9900C19—C201.332 (5)
C9—C101.517 (3)C19—H190.9500
C9—H9A0.9900C20—H200.9500
C9—H9B0.9900C18A—C19A1.359 (17)
C9A—C101.487 (16)C18A—H18A0.9500
C9A—H9C0.9900C19A—C20A1.329 (16)
C9A—H9D0.9900C19A—H19A0.9500
C10—N111.493 (3)C20A—H20A0.9500
C10—H10A0.9900C21—N211.145 (3)
C10—H10B0.9900
C17—S2—C2092.57 (16)H10C—C10—H10D107.3
C17—S2A—C20A88.1 (8)C6A—N11—C1A121.72 (17)
C1A—N1—C2118.67 (17)C6A—N11—C10120.07 (17)
N1—C1A—N11115.60 (17)C1A—N11—C10117.89 (16)
N1—C1A—C4A124.97 (18)C16—C11—C12118.6 (10)
N11—C1A—C4A119.43 (17)C16A—C11—C12A124.1 (15)
N1—C2—N3119.04 (17)C16A—C11—N3120.5 (14)
N1—C2—S1120.70 (15)C16—C11—N3121.3 (9)
N3—C2—S1120.25 (15)C12—C11—N3119.9 (4)
C2—N3—C4123.61 (17)C12A—C11—N3115.1 (5)
C2—N3—C11119.51 (17)C13—C12—C11121.0 (6)
C4—N3—C11116.66 (17)C13—C12—H12119.5
O1—C4—N3119.91 (18)C11—C12—H12119.5
O1—C4—C4A125.36 (18)C12—C13—C14119.2 (12)
N3—C4—C4A114.69 (17)C12—C13—H13120.4
C5—C4A—C1A120.10 (18)C14—C13—H13120.4
C5—C4A—C4123.05 (18)C15—C14—C13121 (2)
C1A—C4A—C4116.12 (17)C15—C14—H14119.6
C4A—C5—C6118.50 (18)C13—C14—H14119.6
C4A—C5—C17123.21 (18)C14—C15—C16119 (2)
C6—C5—C17118.29 (17)C14—C15—H15120.5
C5—C6—C6A121.15 (18)C16—C15—H15120.5
C5—C6—C21121.27 (18)C11—C16—C15121.3 (17)
C6A—C6—C21117.58 (18)C11—C16—H16119.3
N7—C6A—N11120.44 (18)C15—C16—H16119.3
N7—C6A—C6120.91 (18)C13A—C12A—C11117.1 (10)
N11—C6A—C6118.63 (18)C13A—C12A—H12A121.4
C6A—N7—C8124.19 (18)C11—C12A—H12A121.4
C6A—N7—H7119 (2)C12A—C13A—C14A121.3 (19)
C8—N7—H7116 (2)C12A—C13A—H13A119.3
N7—C8—C9A115.6 (8)C14A—C13A—H13A119.3
N7—C8—C9107.80 (18)C15A—C14A—C13A118 (3)
N7—C8—H8A110.1C15A—C14A—H14A120.8
C9—C8—H8A110.1C13A—C14A—H14A120.8
N7—C8—H8B110.1C14A—C15A—C16A124 (3)
C9—C8—H8B110.1C14A—C15A—H15A118.2
H8A—C8—H8B108.5C16A—C15A—H15A118.2
N7—C8—H8C108.4C11—C16A—C15A115 (3)
C9A—C8—H8C108.4C11—C16A—H16A122.5
N7—C8—H8D108.4C15A—C16A—H16A122.5
C9A—C8—H8D108.4C18—C17—C5129.6 (5)
H8C—C8—H8D107.4C5—C17—C18A121.3 (6)
C8—C9—C10109.5 (2)C5—C17—S2A120.9 (4)
C8—C9—H9A109.8C18A—C17—S2A116.0 (7)
C10—C9—H9A109.8C18—C17—S2106.2 (5)
C8—C9—H9B109.8C5—C17—S2124.18 (16)
C10—C9—H9B109.8C19—C18—C17119.7 (7)
H9A—C9—H9B108.2C19—C18—H18120.2
C8—C9A—C10112.8 (12)C17—C18—H18120.2
C8—C9A—H9C109.0C20—C19—C18108.8 (5)
C10—C9A—H9C109.0C20—C19—H19125.6
C8—C9A—H9D109.0C18—C19—H19125.6
C10—C9A—H9D109.0C19—C20—S2112.7 (3)
H9C—C9A—H9D107.8C19—C20—H20123.7
C9A—C10—N11116.4 (8)S2—C20—H20123.7
N11—C10—C9109.50 (17)C19A—C18A—C17106.0 (13)
N11—C10—H10A109.8C19A—C18A—H18A127.0
C9—C10—H10A109.8C17—C18A—H18A127.0
N11—C10—H10B109.8C20A—C19A—C18A112.1 (16)
C9—C10—H10B109.8C20A—C19A—H19A124.0
H10A—C10—H10B108.2C18A—C19A—H19A124.0
C9A—C10—H10C108.2C19A—C20A—S2A114.2 (15)
N11—C10—H10C108.2C19A—C20A—H20A122.9
C9A—C10—H10D108.2S2A—C20A—H20A122.9
N11—C10—H10D108.2N21—C21—C6177.0 (2)
C2—N1—C1A—N11172.45 (17)C4—N3—C11—C1683.5 (6)
C2—N1—C1A—C4A7.8 (3)C2—N3—C11—C1273.4 (5)
C1A—N1—C2—N38.3 (3)C4—N3—C11—C12101.4 (4)
C1A—N1—C2—S1172.92 (15)C2—N3—C11—C12A98.0 (6)
N1—C2—N3—C414.5 (3)C4—N3—C11—C12A76.8 (6)
S1—C2—N3—C4166.79 (15)C16A—C11—C12—C1314.0 (12)
N1—C2—N3—C11159.97 (18)C16—C11—C12—C130.6 (9)
S1—C2—N3—C1118.8 (3)C12A—C11—C12—C13101 (2)
C2—N3—C4—O1177.90 (19)N3—C11—C12—C13175.8 (4)
C11—N3—C4—O17.5 (3)C11—C12—C13—C140.9 (10)
C2—N3—C4—C4A4.2 (3)C12—C13—C14—C150.8 (11)
C11—N3—C4—C4A170.37 (17)C13—C14—C15—C160.8 (10)
N1—C1A—C4A—C5171.90 (19)C16A—C11—C16—C1587 (11)
N11—C1A—C4A—C57.8 (3)C12—C11—C16—C152.3 (10)
N1—C1A—C4A—C417.6 (3)C12A—C11—C16—C1523.3 (9)
N11—C1A—C4A—C4162.66 (17)N3—C11—C16—C15177.4 (6)
O1—C4—C4A—C53.1 (3)C14—C15—C16—C112.4 (11)
N3—C4—C4A—C5179.13 (18)C16A—C11—C12A—C13A6.1 (16)
O1—C4—C4A—C1A167.1 (2)C16—C11—C12A—C13A19.7 (10)
N3—C4—C4A—C1A10.7 (3)C12—C11—C12A—C13A71.8 (19)
C1A—C4A—C5—C64.3 (3)N3—C11—C12A—C13A179.9 (6)
C4—C4A—C5—C6165.48 (18)C11—C12A—C13A—C14A2.8 (7)
C1A—C4A—C5—C17174.88 (18)C12A—C13A—C14A—C15A0.01 (9)
C4—C4A—C5—C1715.3 (3)C13A—C14A—C15A—C16A0.0 (2)
C4A—C5—C6—C6A2.0 (3)C16—C11—C16A—C15A83 (11)
C17—C5—C6—C6A178.80 (18)C12—C11—C16A—C15A18.6 (12)
C4A—C5—C6—C21177.59 (19)C12A—C11—C16A—C15A6.0 (16)
C17—C5—C6—C211.7 (3)N3—C11—C16A—C15A179.7 (5)
C5—C6—C6A—N7177.14 (19)C14A—C15A—C16A—C112.9 (8)
C21—C6—C6A—N73.3 (3)C4A—C5—C17—C18115.8 (8)
C5—C6—C6A—N114.8 (3)C6—C5—C17—C1865.0 (8)
C21—C6—C6A—N11174.77 (18)C4A—C5—C17—C18A78.7 (8)
N11—C6A—N7—C86.0 (3)C6—C5—C17—C18A100.5 (8)
C6—C6A—N7—C8175.9 (2)C4A—C5—C17—S2A117.2 (6)
C6A—N7—C8—C9A20.3 (11)C6—C5—C17—S2A63.6 (6)
C6A—N7—C8—C926.7 (3)C4A—C5—C17—S261.0 (3)
N7—C8—C9—C1056.3 (3)C6—C5—C17—S2118.17 (19)
C9A—C8—C9—C1052.5 (11)C20A—S2A—C17—C1810 (7)
N7—C8—C9A—C1034 (2)C20A—S2A—C17—C5177.4 (9)
C9—C8—C9A—C1055.8 (12)C20A—S2A—C17—C18A12.5 (13)
C8—C9A—C10—N1136 (2)C20A—S2A—C17—S24.3 (11)
C8—C9A—C10—C955.6 (12)C20—S2—C17—C182.6 (7)
C8—C9—C10—C9A52.4 (11)C20—S2—C17—C5180.0 (2)
C8—C9—C10—N1155.8 (2)C20—S2—C17—C18A96 (2)
N7—C6A—N11—C1A179.30 (19)C20—S2—C17—S2A1.7 (6)
C6—C6A—N11—C1A1.2 (3)C5—C17—C18—C19179.9 (6)
N7—C6A—N11—C107.3 (3)C18A—C17—C18—C1913.1 (15)
C6—C6A—N11—C10174.60 (18)S2A—C17—C18—C19172 (8)
N1—C1A—N11—C6A174.77 (18)S2—C17—C18—C192.7 (13)
C4A—C1A—N11—C6A5.0 (3)C17—C18—C19—C201.2 (14)
N1—C1A—N11—C1011.7 (3)C18—C19—C20—S21.0 (9)
C4A—C1A—N11—C10168.53 (18)C17—S2—C20—C192.2 (4)
C9A—C10—N11—C6A23.0 (11)C18—C17—C18A—C19A17.0 (16)
C9—C10—N11—C6A23.9 (3)C5—C17—C18A—C19A174.7 (10)
C9A—C10—N11—C1A163.4 (11)S2A—C17—C18A—C19A20.5 (16)
C9—C10—N11—C1A149.71 (18)S2—C17—C18A—C19A69 (2)
C2—N3—C11—C16A87.8 (10)C17—C18A—C19A—C20A18 (2)
C4—N3—C11—C16A97.4 (10)C18A—C19A—C20A—S2A11 (3)
C2—N3—C11—C16101.7 (6)C17—S2A—C20A—C19A1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···N21i0.89 (2)2.14 (2)2.976 (3)157 (2)
C9—H9B···O1ii0.992.343.197 (3)144
C16—H16···S2Aiii0.952.733.58 (2)149
C19—H19···S1iv0.952.763.652 (5)156
Symmetry codes: (i) x+3, y+1, z+2; (ii) x+3/2, y+1/2, z+3/2; (iii) x1, y, z; (iv) x+3/2, y1/2, z+3/2.
Summary of short interatomic contacts (Å). top
Atoms belonging to the minor disorder components are indicated by an asterisk (*).
*H16A···O12.34-1 + x, y, z
*H9B···O12.343/2 - x, 1/2 + y, 3/2 - z
*H9C···*H151.871/2 - x, 1/2 + y, 3/2 - z
*H13···S12.93-x, 1 - y, 1 - z
*H18A···*H8D1.872 - x, 1 - y, 2 - z
H7···N212.143 - x, 1 - y, 2 - z
*H13A···*H202.26-1/2 + x, 1/2 - y, -1/2 + z
*H20A···*H142.583/2 + x, 1/2 - y, 1/2 + z
*H13A···*H122.461 - x, 1 - y, 1 - z
 

Acknowledgements

Authors contributions are as follows. Conceptualization, IGM, ANK and AMM; methodology, IB and MA; investigation, VNK and FNN; writing (original draft), MA, AB and ANK,; writing (review and editing of the manuscript), MA and ANK; visualization, MA, IGM and FNN; funding acquisition, HMM, AB and FNN; resources, AB, VNK and MA; supervision, MA and ANK.

Funding information

This paper was supported by Baku State University and the RUDN University Strategic Academic Leadership Program.

References

First citationAfkhami, F. A., Mahmoudi, G., Khandar, A. A., Franconetti, A., Zangrando, E., Qureshi, N., Lipkowski, J., Gurbanov, A. V. & Frontera, A. (2019). Eur. J. Inorg. Chem. 2019, 262–270.  Web of Science CSD CrossRef CAS Google Scholar
First citationAkkurt, M., Maharramov, A. M., Shikhaliyev, N. G., Qajar, A. M., Atakishiyeva, G., Shikhaliyeva, I. M., Niyazova, A. A. & Bhattarai, A. (2023). UNEC J. Eng. Appl. Sci. 3, 33–39.  CrossRef Google Scholar
First citationAskerova, U. F. (2022). UNEC J. Eng. Appl. Sci, 2, 58–64.  Google Scholar
First citationAtalay, V. E., Atish, I. S., Shahin, K. F., Kashikchi, E. S. & Karahan, M. (2022). UNEC J. Eng. Appl. Sci. 2, 33–40.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationDönmez, M. & Türkyılmaz, M. (2022). UNEC J. Eng. Appl. Sci, 2, 43–48.  Google Scholar
First citationErenler, R., Dag, B. & Ozbek, B. B. (2022). UNEC J. Eng. Appl. Sci. 2, 26–32.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Mertsalov, D. F., Zubkov, F. I., Nadirova, M. A., Nikitina, E. V., Truong, H. H., Grigoriev, M. S., Zaytsev, V. P., Mahmudov, K. T. & Pombeiro, A. J. L. (2021). Crystals, 11, 112.  Web of Science CSD CrossRef Google Scholar
First citationHammouda, M. M., Elattar, K. M., El-Khateeb, A. Y., Hamed, S. E. & Osman, A. M. A. (2023). Mol. Divers. 1, 1–38. https://doi.org/10.1007/s11030-023-10623-9  Google Scholar
First citationKhalilov, A. N., Khrustalev, V. N., Tereshina, T. A., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2022). Acta Cryst. E78, 525–529.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhodjaniyazov, K. U., Makhmudov, U. S., Turgunov, K. K. & Elmuradov, B. Z. (2017). Acta Cryst. E73, 1497–1500.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, J.-C., He, H.-W. & Ding, M.-W. (2005). Acta Cryst. E61, o3686–o3687.  CSD CrossRef IUCr Journals Google Scholar
First citationMaharramov, A. M., Shikhaliyev, N. G., Zeynalli, N. R., Niyazova, A. A., Garazade, Kh. A. & Shikhaliyeva, I. M. (2021). UNEC J. Eng. Appl. Sci. 1, 5–11.  Google Scholar
First citationMaharramov, A. M., Suleymanova, G. T., Qajar, A. M., Niyazova, A. A., Ahmadova, N. E., Shikhaliyeva, I. M., Garazade, Kh. A., Nenajdenko, V. G. & Shikaliyev, N. G. (2022). UNEC J. Eng. Appl. Sci. 2, 64–73.  Google Scholar
First citationMahmoudi, G., Zangrando, E., Miroslaw, B., Gurbanov, A. V., Babashkina, M. G., Frontera, A. & Safin, D. A. (2021). Inorg. Chim. Acta, 519, 120279.  Web of Science CSD CrossRef Google Scholar
First citationNaghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020). Acta Cryst. E76, 720–723.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Khrustalev, V. N., Novikov, A. P., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, I. G. (2022). Acta Cryst. E78, 554–558.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 516–521.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPatel, U. H., Patel, P. D. & Thakker, N. (2007). Acta Cryst. C63, o337–o339.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSobhi, R. M. & Faisal, R. M. (2023). UNEC J. Eng. Appl. Sci. 3, 21–32.  Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVelásquez, J. D., Mahmoudi, G., Zangrando, E., Gurbanov, A. V., Zubkov, F. I., Zorlu, Y., Masoudiasl, A. & Echeverría, J. (2019). CrystEngComm, 21, 6018–6025.  Google Scholar
First citationYousif, M. N. M., El-Gazzar, A. B. A. & El-Enany, M. M. (2021). Mini-Rev. Org. Chem. 18, 43–54.  CrossRef CAS Google Scholar
First citationZhou, J.-X., Niu, L.-H., Li, X.-Y. & Shi, D.-Q. (2007). Acta Cryst. E63, o2667.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds