research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 3-phenyl-1-{3-[(3-phenyl­quinoxalin-2-yl)­­oxy]prop­yl}-1,2-di­hydro­quinoxalin-2-one

crossmark logo

aLaboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy Mohammed V University in Rabat, Morocco, bLaboratory of Heterocyclic Organic Chemistry, Faculty of Sciences, Mohammed V University, Rabat, Morocco, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, dLaboratory of Medicinal Chemistry, Faculty of Clinical Pharmacy, 21 September University, Yemen, eLaboratory of Heterocyclic Organic Chemistry Faculty of Sciences, Mohammed V University, Rabat, Morocco, fDepartment of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail, Assir, Saudi Arabia, and gMohammed VI Center for Research and Innovation (CM6), Rabat 10000, Morocco
*Correspondence e-mail: alsubaripharmaco@21umas.edu.ye, y.ramli@um5r.ac.ma

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 1 February 2024; accepted 14 February 2024; online 20 February 2024)

In the title compound, C31H24N4O2, the quinoxaline units are distinctly non-planar and twisted end-to-end. In the crystal, C—H⋯O and C—H⋯N hydrogen bonds link the mol­ecules into chains extending along the a-axis direction. The chains are linked through π-stacking inter­actions between inversion-related quinoxaline moieties.

1. Chemical context

The therapeutic and industrial importance of nitro­gen-containing heterocyclic rings has attracted much attention. Among the various classes of nitro­gen-containing heterocyclic compounds, quinoxaline derivatives have an important role in medicinal chemistry and display a broad spectrum of biological and pharmacological activities such as anti­microbial, anti­viral, anti­cancer, anti-inflammatory, anti-diabetic, anti-HIV, anti-tubercular and analgesic activities (Ramli & Essassi, 2015[Ramli, Y. & Essassi, E. M. (2015). Adv. Chem. Res. 27, 109-160.]). Some analogs have been synthesized and evaluated for their industrial properties (e.g. Lgaz et al., 2015[Lgaz, H., ELaoufir, Y., Ramli, Y., Larouj, M., Zarrok, H., Salghi, R., Zarrouk, A., Elmidaoui, A., Guenbour, A., Essassi, E. M. & Oudda, H. (2015). Der. Pharma Chem. 7, 36-45.]).

[Scheme 1]

Our inter­est in quinoxalines results from their simple synthesis, and the ease with which X-ray quality crystals can be grown. Following this line of research, and as a continuation of our work in this area (e.g. Missioui et al., 2022[Missioui, M., Said, M., Demirtaş, G., Mague, J. T. & Ramli, Y. (2022). J. Mol. Struct. 1247, 131420.]), we report herein the synthesis of 3-phenyl-1-{3-[(3-phenyl­quinoxalin-2-yl)­oxy]prop­yl}-1,2-di­hydro­quinoxalin-2-one obtained by an alkyl­ation reaction of 3-phenyl­quinoxalin-2(1H)-one using 1,3-di­bromo­propane as an alkyl­ating reagent and sodium hydroxide in the presence of tetra-n-butyl­ammonium bromide as catalyst in phase-transfer catalysis. A colorless plate-like specimen of the title compound was used for the X-ray crystallographic analysis (Fig. 1[link]). A Hirshfeld surface analysis was performed to analyze the inter­molecular hydrogen bonds.

[Figure 1]
Figure 1
The title mol­ecule with the labeling scheme and 50% probability ellipsoids.

2. Structural commentary

Neither quinoxaline unit is planar and in both instances, the heterocyclic ring has atoms deviating by 0.02–0.04 Å from the mean plane. Thus in the pyrazine ring containing N1, atom C7 is 0.0411 (7) Å from the mean plane and C8 is −0.0356 (7) Å from it (r.m.s. deviation of the fitted atoms = 0.0299 Å). The C1–C6 ring is inclined to the above plane by 4.99 (8)° while the dihedral angle subtended with the C9–C14 ring is 11.51 (7)°. The rotational orientation of the former ring is partially determined by the intra­molecular C14—H14⋯O1 hydrogen bond (Table 1[link] and Fig. 1[link]), while that of the latter ring may be influenced by a C27—H27⋯O2 hydrogen bond [H27⋯O2 = 2.448 (13) Å, C27⋯O2 = 2.8791 (14) Å], but with the C27—H27⋯O2 angle being only 106.1 (9)°, this is weak at best. At the other end, the pyrazine ring containing N3 is closer to planarity with displacements from the mean plane being 0.0174 (7) Å (N4) and −0.0195 (7) Å (C25) (r.m.s. deviation of the fitted atoms = 0.0150 Å). Here the dihedral angle to the C18–C23 plane is 2.85 (7)° and that to the C26–C31 ring is 38.75 (4)°. The linker between the quinoxaline units is rather kinked, as seen from the torsion angles in Table 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O1 0.961 (14) 2.197 (13) 2.8225 (14) 121.7 (10)
C15—H15B⋯O1i 0.962 (12) 2.503 (12) 3.3484 (13) 146.6 (9)
C17—H17A⋯N1ii 0.976 (13) 2.581 (13) 3.5523 (14) 173.3 (10)
C17—H17B⋯O1i 1.021 (12) 2.568 (13) 3.4700 (15) 147.1 (9)
C21—H21⋯O1iii 0.971 (14) 2.404 (14) 3.2166 (15) 140.9 (11)
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [x+1, y, z]; (iii) [-x+2, -y+1, -z+1].

Table 2
Selected torsion angles (°)

C1—N2—C15—C16 101.04 (11) C15—C16—C17—O2 68.47 (12)
N2—C15—C16—C17 178.73 (8) C17—O2—C24—N3 −2.55 (14)
C24—O2—C17—C16 179.54 (8)    

3. Supra­molecular features

In the crystal, C15—H15B⋯O1, C17—H17B⋯O1, C21—H21⋯O1 and C17—H17A⋯N1 hydrogen bonds (Table 1[link]) link the mol­ecules into chains extending along the a-axis direction (Figs. 2[link] and 3[link]). The chains are linked through π-stacking inter­actions between inversion-related quinoxaline moieties with centroid–centroid distances of 3.7756 (6) and 3.6440 (7) Å (Figs. 2[link] and 3[link]).

[Figure 2]
Figure 2
Packing viewed along the a-axis direction. C—H⋯O and C—H⋯N hydrogen bonds are indicated by black and light-purple dashed lines, respectively. The π-stacking inter­action is indicated by an orange dashed line.
[Figure 3]
Figure 3
Packing viewed along the c-axis direction with inter­molecular inter­actions depicted as in Fig. 2[link].

4. Hirshfeld surface analysis

The inter­molecular inter­actions in the crystal were qu­anti­fied through a Hirshfeld Surface (HS) analysis using CrystalExplorer 21.5 (Spackman et al., (2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). Additional details of the inter­pretation of the results have been published (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]). In the standard dnorm surface (Fig. 4[link]a) the C—H⋯O and C—H⋯N hydrogen bonds to the closest neighboring mol­ecules are depicted by green dashed lines. In Fig. 4[link]b (shape-index) and 4c (curvedness), the π-stacking inter­actions involving the neighboring mol­ecule that has the most overlap with the surface can be seen. This is particularly evident in Fig. 4[link]c where the quinoxaline rings are separated by a significant flat region of the surface. A similar flat region appears on the left side of the surface in Fig. 4[link]c. The overall two-dimensional fingerprint plot, Fig. 5[link]a, and those delineated into specific inter­molecular inter­action types are shown in Fig. 5[link]bf. From these, H⋯H contacts account for 51.3% of the total, while C⋯H/H⋯C contribute another 24.2%. The remaining significant contacts are C⋯C (π-stacking, 9.0%), N⋯H/H⋯N (6.5%), O⋯H/H⋯O (5.0%) and C⋯N (π-stacking, 3.5%).

[Figure 4]
Figure 4
The Hirshfeld surfaces (a) dnorm, (b) shape index and (c) curvedness with three neighboring mol­ecules showing the C—H⋯O and C—H⋯N hydrogen bonds (dashed lines).
[Figure 5]
Figure 5
Two-dimensional fingerprint plots showing (a) all inter­molecular inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) C⋯C, (e) N⋯H/H⋯N and (f) O⋯H/H⋯O contacts.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.44, updated to November 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) with the search fragment A (Fig. 6[link], R = C) yielded two hits with R = benzyl (FACPEI; Abad et al., 2020[Abad, N., Lgaz, H., Atioglu, Z., Akkurt, M., Mague, J. T., Ali, I. H., Chung, I.-M., Salghi, R., Essassi, E. M. & Ramli, Y. (2020). J. Mol. Struct. 1221, 128727.]) and R = (oxazolidin-2-one-3-yl)ethyl (UREREP; Daouda et al., 2011[Daouda, B., Brelot, L., Doumbia, M. L., Essassi, E. M. & Ng, S. W. (2011). Acta Cryst. E67, o1235.]). In the former, the r.m.s. deviation of the quinoxaline atoms from their mean plane is 0.001 Å, while the phenyl ring is inclined to this plane by 39.32 (5)o and the C—O—C—C torsion angle in the benz­yloxy linker is 97.06 (11)o. In the latter, the quinoxaline ring atoms vary from 0.040 (3) to −0.047 (2) Å from the mean plane in one independent mol­ecule and 0.046 (4) to −0.075 (3) Å in the other. The phenyl ring is inclined to the mean quinoxaline plane by 38.44 (14)o in the first and 38.97 (14)o in the second.

[Figure 6]
Figure 6
CSD search fragments.

Using the fragment B (Fig. 6[link]), fifteen hits were returned with R = –(CH2)7Me (AZAZEC; Abad et al., 2021d[Abad, N., Ferfra, S., Essassi, E. M., Mague, J. T. & Ramli, Y. (2021d). Z. Krist. New Cryst. Struct. 236, 173.]), Me (BUDMAP; Benzeid et al., 2009a[Benzeid, H., Essassi, E. M., Saffon, N., Garrigues, B. & Ng, S. W. (2009a). Acta Cryst. E65, o2323.]), ethyl (1H-1,2,3-triazol-1-yl)methyl acetate (ECUCOY; Abad et al., 2022[Abad, N., Missioui, M., Alsubari, A., Mague, J. T., Essassi, E. M. & Ramli, Y. (2022). IUCrData, 7, x220693.]), –(CH2)2OC=O)Me (ESUKUB; Abad et al., 2021a[Abad, N., El Ghayati, L., Kalonji Mubengayi, C., Essassi, E. M., Kaya, S., Mague, J. T. & Ramli, Y. (2021a). Acta Cryst. E77, 643-646.]), (1-hexyl-1H-1,2,3-triazol-5-yl)methyl (FOFCIQ; Abad et al., 2023a[Abad, N., Al-Ostoot, F. H., Ashraf, S., Karim, K., Aljohani, M. S., Alharbi, H. Y., Buhlak, S., El Hafi, M., Van Meervelt, L., Al-Maswari, B. M., Essassi, E. M. & Youssef Ramli, Y. (2023a). Heliyon 9, e21312. https://doi.org/10.1016/j.heliyon.2023.e21312.]), (oxazolidin-2-one-3-yl)ethyl (IDOSUR; Al Ati et al., 2021[Al Ati, G., Chkirate, K., Mashrai, A., Mague, J. T., Ramli, Y., Achour, R. & Essassi, E. M. (2021). Acta Cryst. E77, 18-22.]), [3-(4-methyl­phen­yl)-4,5-di­hydro-1,2-oxazol-5-yl]methyl (ILI­RED; Abad et al., 2021b[Abad, N., Sallam, H. H., Al-Ostoot, F. H., Khamees, H. A., Al-horaibi, S. A., Khanum, S. A., Madegowda, M., Hafi, M. E., Mague, J. T., Essassi, E. M. & Ramli, Y. (2021b). J. Mol. Struct. 1232, 130004.]), Et (MAGBIJ; Al Ati et al., 2021[Al Ati, G., Chkirate, K., Mashrai, A., Mague, J. T., Ramli, Y., Achour, R. & Essassi, E. M. (2021). Acta Cryst. E77, 18-22.]), (oxirane-2-yl)methyl (NIBXEE; Abad et al., 2018a[Abad, N., El Bakri, Y., Sebhaoui, J., Ramli, Y., Essassi, E. M. & Mague, J. T. (2018a). IUCrData, 3, x180610.]), benzyl (PUGGII; Benzeid et al., 2009b[Benzeid, H., Saffon, N., Garrigues, B., Essassi, E. M. & Ng, S. W. (2009b). Acta Cryst. E65, o2685.]), –(CH2)2CH2OH (RIRBOM; Abad et al., 2018b[Abad, N., Ramli, Y., Lahmidi, S., El Hafi, M., Essassi, E. M. & Mague, J. T. (2018b). IUCrData, 3, x181633.]), –(CH2)8Me (UDAMIZ; Abad et al., 2021c[Abad, N., Chkirate, K., Al-Ostoot, F. H., Van Meervelt, L., Lahmidi, S., Ferfra, S., Ramli, Y. & Essassi, E. M. (2021c). Acta Cryst. E77, 1037-1042.]), –(CH2)4Me (UFITEM; Abad et al., 2023b[Abad, N., Guelmami, L., Haouas, A., Hajji, M., Hafi, M. E., Sebhaoui, J., Guerfel, T., Mague, J. T., Essassi, E. M. & Ramli, Y. (2023b). J. Mol. Struct. 1286, 135622.]), –(CH2)2CO2Et (XEXWIJ; Abad et al., 2018c[Abad, N., El Bakri, Y., Sebhaoui, J., Ramli, Y., Essassi, E. M. & Mague, J. T. (2018c). IUCrData, 3, x180519.]) and allyl (YAJGEX; Benzeid et al., 2011[Benzeid, H., Bouhfid, R., Massip, S., Leger, J. M. & Essassi, E. M. (2011). Acta Cryst. E67, o2990.]). Three of these structures feature two independent mol­ecules in the asymmetric unit (see Table 3[link]). For these last fifteen structures, Table 3[link] lists the largest distance of an atom in the quinoxaline moiety from its mean plane (dmax) and the dihedral angle between the mean planes of the quinoxaline moiety and the attached phenyl ring (α). From these, it can be concluded that the deviation from planarity of the quinoxaline rings in the present structure is comparable to that in the related mol­ecules, while the rotation of the phenyl ring out of the plane of the quinoxaline is at the low end of the observed dihedral angles. Also presented in Table 3[link] are torsion angles for parts of the related mol­ecules corresponding to N2—C15—C16—C17 in the present structure.

Table 3
Selected geometrical parameters (Å, °) for related mol­ecules

Refcode dmax r.m.s.d. αa N—Cα—CβXb
AZAZEC 0.031 (1) 0.001 13.25 (4) −171.93 (8)
BUDMAPc 0.043 (1) 0.002 30.44 (7)
  0.023 (2) 0.002 19.31 (7)
ECUCOY 0.064 (1) 0.001 9.39 (6) −76.77 (15)
IDOSUR 0.055 (2) 0.002 30.77 (8) 66.3 (2)
ESUKUB 0.030 (1) 0.001 12.04 (5) −178.70 (9)
FOFCIQ 0.052 (1) 0.002 22.82 (10) −115.4 (2)
ILIRED 0.030 (2) 0.002 18.75 (10) 179.86 (18)
NIBXEEc 0.038 (5) 0.002 28.4 (2) 156.3 (5)
  0.38 (5) 0.002 23.1 (2) −154.2 (5)
PUGGII 0.035 (1) 0.002 28.39 (11) 178.12 (13)
RIRBOM 0.039 (1) 0.001 44.46 (4) −168.64 (8)
UDAMIZ 0.060 (2) 0.002 20.39 (4) 171.2 (2)
UFITEM 0.063 (1) 0.001 34.67 (6) 176.19 (11)
XEXWIJ 0.022 (2) 0.002 19.63 (7) −179.37 (14)
YAJGEXc 0.023 (1) 0.002 38.27 (10) 136.6 (2)
  0.037 (1) 0.002 37.14 (8) −132.6 (2)
Notes: (a) Dihedral angle between mean planes of quinoxaline and attached phenyl rings; (b) torsion angle for first three atoms of chain attached to quinoxaline ring nitro­gen; (c) Z = 2.

6. Synthesis and crystallization

To a solution of 3-phenyl­quinoxalin-2(1H)-one (0.5 g, 2.25 mmol) in N,N-dimethylformamide (15 ml) were added 1,3-di­bromo­propane (0.12 ml, 1.125 mmol), sodium hydroxide (0.1 g, 2.25 mmol) and a catalytic qu­antity of tetra-n-butyl­ammonium bromide. The reaction mixture was stirred at room temperature for 24 h. The solution was filtered and the solvent removed under reduced pressure. The residue obtained was chromatographed on a silica gel column using a hexa­ne/ethyl acetate 9:1 mixture as eluent and the solid obtained upon solvent removal was recrystallized from ethanol to afford colorless plate-like crystals of the title compound. 1H NMR (300 MHz, CDCl3) δ ppm: 1.95–2.03 (quin, 2H, CH2); 3.53 (t, 2H, N-CH2, J = 6Hz); 4.44 (t, 2H, O-CH2, J = 6Hz); 7.30–8.23 (m, 18H, CHarom). 13C NMR (75 MHz, CDCl3) δ ppm: 26.66 (CH2); 40.27 (N—CH2); 64.28(O—CH2); 113.36–130.76 (CHarom); 132.47–154.01 (Cq); 154.48 (C—O); 155.22 (C=O); 155.22 (C—O).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. Hydrogen atoms were refined isotropically.

Table 4
Experimental details

Crystal data
Chemical formula C31H24N4O2
Mr 484.54
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 120
a, b, c (Å) 8.8038 (6), 10.2277 (7), 14.0937 (10)
α, β, γ (°) 90.262 (1), 96.630 (1), 108.395 (1)
V3) 1195.00 (14)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.41 × 0.34 × 0.10
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.84, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 22697, 6292, 4672
Rint 0.029
(sin θ/λ)max−1) 0.685
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.129, 1.02
No. of reflections 6292
No. of parameters 430
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.40, −0.22
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

3-Phenyl-1-{3-[(3-phenylquinoxalin-2-yl)oxy]propyl}-1,2-dihydroquinoxalin-2-one top
Crystal data top
C31H24N4O2Z = 2
Mr = 484.54F(000) = 508
Triclinic, P1Dx = 1.347 Mg m3
a = 8.8038 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.2277 (7) ÅCell parameters from 8578 reflections
c = 14.0937 (10) Åθ = 2.5–29.0°
α = 90.262 (1)°µ = 0.09 mm1
β = 96.630 (1)°T = 120 K
γ = 108.395 (1)°Plate, colourless
V = 1195.00 (14) Å30.41 × 0.34 × 0.10 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
6292 independent reflections
Radiation source: fine-focus sealed tube4672 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 8.3333 pixels mm-1θmax = 29.1°, θmin = 2.1°
φ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1313
Tmin = 0.84, Tmax = 0.99l = 1919
22697 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: difference Fourier map
wR(F2) = 0.129All H-atom parameters refined
S = 1.01 w = 1/[σ2(Fo2) + (0.0859P)2]
where P = (Fo2 + 2Fc2)/3
6292 reflections(Δ/σ)max < 0.001
430 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.22 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 15 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.44841 (10)0.63740 (8)0.58310 (5)0.02992 (19)
O20.83077 (9)0.71124 (8)0.31407 (5)0.02503 (18)
N10.22753 (10)0.87022 (9)0.52543 (6)0.0235 (2)
N20.43848 (10)0.75671 (9)0.44934 (6)0.02157 (19)
N31.01284 (10)0.59246 (9)0.31524 (6)0.0239 (2)
H30.3852 (17)1.0016 (15)0.1911 (11)0.051 (4)*
N41.01195 (11)0.63096 (9)0.11706 (6)0.0258 (2)
C10.37800 (12)0.84656 (11)0.39487 (7)0.0229 (2)
C20.42362 (15)0.88805 (12)0.30498 (8)0.0301 (3)
H20.5105 (16)0.8643 (14)0.2796 (9)0.036 (3)*
C30.35202 (16)0.97177 (13)0.25365 (9)0.0362 (3)
C40.23277 (16)1.01518 (13)0.28870 (9)0.0349 (3)
H40.1835 (16)1.0778 (14)0.2494 (10)0.041 (4)*
C50.19108 (14)0.97842 (11)0.37813 (8)0.0287 (2)
H50.1082 (17)1.0078 (14)0.4048 (9)0.040 (4)*
C60.26590 (12)0.89688 (11)0.43344 (7)0.0233 (2)
C70.29185 (12)0.79293 (10)0.57833 (7)0.0211 (2)
C80.39776 (12)0.72245 (11)0.53976 (7)0.0217 (2)
C90.25817 (12)0.77893 (11)0.67950 (7)0.0229 (2)
C100.17893 (14)0.86482 (13)0.71543 (8)0.0313 (3)
H100.1495 (15)0.9312 (13)0.6724 (9)0.030 (3)*
C110.14777 (16)0.85979 (15)0.80948 (9)0.0374 (3)
H110.0946 (18)0.9227 (16)0.8322 (11)0.053 (4)*
C120.19357 (14)0.76913 (13)0.87067 (8)0.0329 (3)
H120.1671 (15)0.7634 (13)0.9406 (9)0.034 (3)*
C130.27219 (13)0.68479 (12)0.83650 (8)0.0290 (2)
H130.3018 (16)0.6197 (14)0.8811 (10)0.040 (4)*
C140.30485 (13)0.68925 (11)0.74210 (8)0.0253 (2)
H140.3544 (16)0.6243 (14)0.7217 (9)0.035 (3)*
C150.54524 (12)0.68814 (12)0.41224 (8)0.0232 (2)
H15A0.5299 (14)0.6874 (12)0.3405 (9)0.025 (3)*
H15B0.5145 (14)0.5943 (13)0.4317 (8)0.024 (3)*
C160.72111 (12)0.75993 (12)0.45135 (8)0.0239 (2)
H16A0.7551 (14)0.8581 (14)0.4330 (9)0.032 (3)*
H16B0.7306 (14)0.7557 (12)0.5222 (9)0.025 (3)*
C170.83182 (13)0.68895 (12)0.41570 (7)0.0247 (2)
H17A0.9421 (15)0.7312 (12)0.4463 (9)0.028 (3)*
H17B0.7929 (14)0.5849 (13)0.4237 (8)0.028 (3)*
C181.10461 (13)0.56007 (11)0.16404 (8)0.0253 (2)
C191.19802 (14)0.50343 (12)0.11175 (9)0.0306 (3)
H191.1921 (16)0.5151 (14)0.0421 (10)0.040 (4)*
C201.28637 (14)0.42787 (12)0.15725 (9)0.0334 (3)
H201.3517 (17)0.3897 (14)0.1214 (10)0.044 (4)*
C211.28456 (13)0.40650 (12)0.25544 (9)0.0330 (3)
H211.3445 (16)0.3504 (14)0.2869 (9)0.037 (3)*
C221.19463 (13)0.46076 (12)0.30774 (9)0.0294 (3)
H221.1904 (15)0.4469 (13)0.3764 (9)0.033 (3)*
C231.10319 (12)0.53882 (11)0.26299 (8)0.0243 (2)
C240.92400 (12)0.65636 (11)0.26811 (7)0.0221 (2)
C250.91928 (12)0.67574 (11)0.16611 (7)0.0228 (2)
C260.81246 (13)0.74470 (11)0.11251 (7)0.0234 (2)
C270.65431 (13)0.72358 (12)0.13098 (8)0.0288 (2)
H270.6113 (15)0.6636 (13)0.1822 (9)0.033 (3)*
C280.55596 (14)0.78379 (13)0.07494 (8)0.0315 (3)
H280.4445 (16)0.7639 (13)0.0886 (9)0.036 (3)*
C290.61433 (14)0.86632 (12)0.00127 (8)0.0300 (3)
H290.5435 (15)0.9110 (13)0.0411 (9)0.034 (3)*
C300.77094 (15)0.88709 (12)0.01796 (8)0.0300 (3)
H300.8131 (15)0.9449 (13)0.0704 (9)0.035 (3)*
C310.86847 (14)0.82589 (12)0.03672 (8)0.0272 (2)
H310.9791 (16)0.8377 (13)0.0246 (9)0.032 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0366 (4)0.0343 (4)0.0290 (4)0.0232 (4)0.0106 (3)0.0100 (3)
O20.0259 (4)0.0336 (4)0.0206 (4)0.0158 (3)0.0055 (3)0.0026 (3)
N10.0238 (4)0.0232 (5)0.0249 (5)0.0102 (4)0.0006 (3)0.0003 (4)
N20.0226 (4)0.0230 (4)0.0222 (4)0.0108 (3)0.0052 (3)0.0029 (3)
N30.0208 (4)0.0257 (5)0.0261 (5)0.0087 (4)0.0026 (3)0.0001 (4)
N40.0253 (5)0.0282 (5)0.0261 (5)0.0112 (4)0.0039 (4)0.0007 (4)
C10.0235 (5)0.0211 (5)0.0232 (5)0.0066 (4)0.0000 (4)0.0020 (4)
C20.0317 (6)0.0332 (6)0.0269 (6)0.0116 (5)0.0053 (4)0.0055 (5)
C30.0443 (7)0.0375 (7)0.0272 (6)0.0140 (6)0.0025 (5)0.0085 (5)
C40.0446 (7)0.0305 (6)0.0305 (6)0.0173 (5)0.0065 (5)0.0041 (5)
C50.0323 (6)0.0246 (6)0.0305 (6)0.0138 (5)0.0041 (5)0.0021 (4)
C60.0248 (5)0.0200 (5)0.0250 (5)0.0084 (4)0.0011 (4)0.0005 (4)
C70.0189 (5)0.0208 (5)0.0246 (5)0.0078 (4)0.0026 (4)0.0004 (4)
C80.0209 (5)0.0221 (5)0.0240 (5)0.0093 (4)0.0045 (4)0.0028 (4)
C90.0188 (5)0.0246 (5)0.0251 (5)0.0062 (4)0.0038 (4)0.0011 (4)
C100.0316 (6)0.0372 (7)0.0315 (6)0.0191 (5)0.0061 (5)0.0015 (5)
C110.0356 (7)0.0482 (8)0.0361 (7)0.0228 (6)0.0086 (5)0.0046 (6)
C120.0295 (6)0.0435 (7)0.0264 (6)0.0113 (5)0.0072 (4)0.0031 (5)
C130.0293 (6)0.0314 (6)0.0263 (6)0.0086 (5)0.0059 (4)0.0031 (5)
C140.0243 (5)0.0260 (6)0.0271 (5)0.0091 (4)0.0066 (4)0.0015 (4)
C150.0226 (5)0.0264 (6)0.0241 (5)0.0121 (4)0.0050 (4)0.0004 (4)
C160.0236 (5)0.0272 (6)0.0224 (5)0.0097 (4)0.0044 (4)0.0005 (4)
C170.0222 (5)0.0333 (6)0.0206 (5)0.0113 (4)0.0040 (4)0.0030 (4)
C180.0218 (5)0.0258 (5)0.0288 (6)0.0085 (4)0.0029 (4)0.0024 (4)
C190.0284 (6)0.0344 (6)0.0315 (6)0.0131 (5)0.0050 (5)0.0047 (5)
C200.0249 (5)0.0343 (6)0.0436 (7)0.0140 (5)0.0021 (5)0.0099 (5)
C210.0248 (6)0.0311 (6)0.0447 (7)0.0143 (5)0.0043 (5)0.0045 (5)
C220.0247 (5)0.0313 (6)0.0329 (6)0.0119 (5)0.0021 (4)0.0010 (5)
C230.0201 (5)0.0238 (5)0.0283 (5)0.0070 (4)0.0007 (4)0.0024 (4)
C240.0205 (5)0.0236 (5)0.0228 (5)0.0071 (4)0.0045 (4)0.0001 (4)
C250.0223 (5)0.0234 (5)0.0229 (5)0.0074 (4)0.0034 (4)0.0006 (4)
C260.0267 (5)0.0247 (5)0.0206 (5)0.0109 (4)0.0023 (4)0.0012 (4)
C270.0269 (5)0.0351 (6)0.0255 (6)0.0111 (5)0.0037 (4)0.0047 (5)
C280.0259 (6)0.0412 (7)0.0299 (6)0.0146 (5)0.0021 (4)0.0025 (5)
C290.0350 (6)0.0307 (6)0.0269 (6)0.0158 (5)0.0012 (4)0.0004 (5)
C300.0384 (6)0.0290 (6)0.0245 (5)0.0128 (5)0.0052 (5)0.0030 (5)
C310.0298 (6)0.0293 (6)0.0254 (5)0.0123 (5)0.0065 (4)0.0017 (4)
Geometric parameters (Å, º) top
O1—C81.2309 (12)C13—H130.991 (13)
O2—C241.3484 (12)C14—H140.961 (13)
O2—C171.4509 (12)C15—C161.5238 (15)
N1—C71.3007 (12)C15—H15A1.005 (12)
N1—C61.3841 (13)C15—H15B0.962 (12)
N2—C81.3804 (13)C16—C171.5119 (15)
N2—C11.3922 (12)C16—H16A0.997 (13)
N2—C151.4748 (13)C16—H16B0.995 (12)
N3—C241.2987 (12)C17—H17A0.976 (13)
N3—C231.3722 (13)C17—H17B1.021 (12)
N4—C251.3102 (13)C18—C191.4113 (15)
N4—C181.3721 (13)C18—C231.4132 (15)
C1—C21.4005 (15)C19—C201.3720 (16)
C1—C61.4057 (15)C19—H190.987 (14)
C2—C31.3766 (16)C20—C211.4031 (18)
C2—H20.976 (14)C20—H200.972 (15)
C3—C41.3983 (18)C21—C221.3735 (16)
C3—H30.980 (15)C21—H210.972 (13)
C4—C51.3743 (17)C22—C231.4057 (14)
C4—H41.014 (13)C22—H220.982 (13)
C5—C61.4040 (14)C24—C251.4497 (14)
C5—H50.982 (14)C25—C261.4873 (14)
C7—C91.4881 (15)C26—C311.3946 (16)
C7—C81.4907 (14)C26—C271.3955 (15)
C9—C141.3964 (14)C27—C281.3913 (15)
C9—C101.4068 (15)C27—H270.980 (13)
C10—C111.3822 (17)C28—C291.3828 (17)
C10—H100.987 (12)C28—H280.979 (13)
C11—C121.3889 (18)C29—C301.3862 (17)
C11—H110.979 (16)C29—H291.025 (13)
C12—C131.3803 (16)C30—C311.3834 (15)
C12—H121.036 (13)C30—H300.981 (13)
C13—C141.3912 (15)C31—H310.978 (13)
C24—O2—C17116.19 (8)C17—C16—C15111.90 (9)
C7—N1—C6120.18 (9)C17—C16—H16A109.3 (7)
C8—N2—C1122.21 (8)C15—C16—H16A110.2 (7)
C8—N2—C15115.91 (8)C17—C16—H16B107.8 (7)
C1—N2—C15121.84 (8)C15—C16—H16B107.8 (7)
C24—N3—C23116.53 (9)H16A—C16—H16B109.8 (10)
C25—N4—C18118.08 (9)O2—C17—C16106.67 (8)
N2—C1—C2123.22 (10)O2—C17—H17A107.9 (7)
N2—C1—C6117.35 (9)C16—C17—H17A110.4 (7)
C2—C1—C6119.43 (10)O2—C17—H17B107.4 (7)
C3—C2—C1119.53 (11)C16—C17—H17B112.7 (7)
C3—C2—H2118.9 (7)H17A—C17—H17B111.5 (10)
C1—C2—H2121.5 (7)N4—C18—C19119.25 (10)
C2—C3—C4121.45 (11)N4—C18—C23121.00 (9)
C2—C3—H3119.3 (8)C19—C18—C23119.71 (10)
C4—C3—H3119.2 (8)C20—C19—C18119.79 (11)
C5—C4—C3119.29 (11)C20—C19—H19121.9 (8)
C5—C4—H4121.2 (8)C18—C19—H19118.2 (8)
C3—C4—H4119.4 (8)C19—C20—C21120.47 (11)
C4—C5—C6120.49 (11)C19—C20—H20119.8 (8)
C4—C5—H5121.1 (8)C21—C20—H20119.7 (8)
C6—C5—H5118.4 (8)C22—C21—C20120.72 (11)
N1—C6—C5118.29 (9)C22—C21—H21119.1 (8)
N1—C6—C1122.12 (9)C20—C21—H21120.1 (8)
C5—C6—C1119.59 (10)C21—C22—C23120.01 (11)
N1—C7—C9117.64 (9)C21—C22—H22122.5 (7)
N1—C7—C8121.39 (9)C23—C22—H22117.4 (7)
C9—C7—C8120.97 (9)N3—C23—C22119.95 (10)
O1—C8—N2119.63 (9)N3—C23—C18120.75 (9)
O1—C8—C7124.16 (9)C22—C23—C18119.30 (10)
N2—C8—C7116.22 (8)N3—C24—O2120.23 (9)
C14—C9—C10117.79 (10)N3—C24—C25123.76 (9)
C14—C9—C7124.24 (9)O2—C24—C25116.00 (9)
C10—C9—C7117.93 (9)N4—C25—C24119.73 (9)
C11—C10—C9120.94 (11)N4—C25—C26117.14 (9)
C11—C10—H10120.7 (7)C24—C25—C26123.13 (9)
C9—C10—H10118.3 (7)C31—C26—C27118.68 (10)
C10—C11—C12120.62 (11)C31—C26—C25118.79 (10)
C10—C11—H11118.5 (9)C27—C26—C25122.38 (10)
C12—C11—H11120.9 (9)C28—C27—C26120.18 (11)
C13—C12—C11119.04 (11)C28—C27—H27119.9 (7)
C13—C12—H12120.4 (7)C26—C27—H27119.9 (7)
C11—C12—H12120.6 (7)C29—C28—C27120.44 (11)
C12—C13—C14120.89 (11)C29—C28—H28121.7 (7)
C12—C13—H13117.6 (8)C27—C28—H28117.8 (7)
C14—C13—H13121.5 (8)C28—C29—C30119.74 (10)
C13—C14—C9120.71 (10)C28—C29—H29121.6 (7)
C13—C14—H14116.8 (8)C30—C29—H29118.6 (7)
C9—C14—H14122.4 (8)C31—C30—C29120.03 (11)
N2—C15—C16111.24 (9)C31—C30—H30119.7 (7)
N2—C15—H15A108.8 (7)C29—C30—H30120.3 (7)
C16—C15—H15A110.8 (7)C30—C31—C26120.91 (11)
N2—C15—H15B108.6 (7)C30—C31—H31122.1 (7)
C16—C15—H15B108.8 (7)C26—C31—H31117.0 (7)
H15A—C15—H15B108.5 (10)
C8—N2—C1—C2176.79 (10)N2—C15—C16—C17178.73 (8)
C15—N2—C1—C25.61 (16)C24—O2—C17—C16179.54 (8)
C8—N2—C1—C63.17 (15)C15—C16—C17—O268.47 (12)
C15—N2—C1—C6174.43 (9)C25—N4—C18—C19176.17 (10)
N2—C1—C2—C3176.76 (10)C25—N4—C18—C231.52 (15)
C6—C1—C2—C33.29 (17)N4—C18—C19—C20177.53 (10)
C1—C2—C3—C40.84 (19)C23—C18—C19—C200.19 (17)
C2—C3—C4—C52.87 (19)C18—C19—C20—C210.02 (18)
C3—C4—C5—C60.71 (18)C19—C20—C21—C220.04 (18)
C7—N1—C6—C5178.67 (9)C20—C21—C22—C230.08 (18)
C7—N1—C6—C12.17 (15)C24—N3—C23—C22176.01 (9)
C4—C5—C6—N1175.80 (10)C24—N3—C23—C183.45 (15)
C4—C5—C6—C13.38 (16)C21—C22—C23—N3179.71 (10)
N2—C1—C6—N16.18 (15)C21—C22—C23—C180.24 (16)
C2—C1—C6—N1173.78 (10)N4—C18—C23—N32.09 (16)
N2—C1—C6—C5174.66 (9)C19—C18—C23—N3179.76 (9)
C2—C1—C6—C55.38 (15)N4—C18—C23—C22177.37 (9)
C6—N1—C7—C9174.31 (9)C19—C18—C23—C220.30 (16)
C6—N1—C7—C84.74 (15)C23—N3—C24—O2179.55 (9)
C1—N2—C8—O1176.52 (9)C23—N3—C24—C251.49 (15)
C15—N2—C8—O11.21 (14)C17—O2—C24—N32.55 (14)
C1—N2—C8—C73.15 (14)C17—O2—C24—C25178.42 (9)
C15—N2—C8—C7179.12 (9)C18—N4—C25—C243.46 (15)
N1—C7—C8—O1172.29 (10)C18—N4—C25—C26176.34 (9)
C9—C7—C8—O18.70 (16)N3—C24—C25—N42.08 (16)
N1—C7—C8—N27.37 (15)O2—C24—C25—N4176.92 (9)
C9—C7—C8—N2171.65 (9)N3—C24—C25—C26177.71 (10)
N1—C7—C9—C14173.29 (10)O2—C24—C25—C263.30 (15)
C8—C7—C9—C147.66 (16)N4—C25—C26—C3135.53 (14)
N1—C7—C9—C108.94 (15)C24—C25—C26—C31144.68 (10)
C8—C7—C9—C10170.12 (10)N4—C25—C26—C27139.95 (11)
C14—C9—C10—C110.34 (18)C24—C25—C26—C2739.84 (15)
C7—C9—C10—C11178.26 (11)C31—C26—C27—C280.54 (16)
C9—C10—C11—C120.3 (2)C25—C26—C27—C28176.02 (10)
C10—C11—C12—C130.6 (2)C26—C27—C28—C290.78 (17)
C11—C12—C13—C140.34 (18)C27—C28—C29—C301.20 (18)
C12—C13—C14—C90.27 (18)C28—C29—C30—C310.29 (17)
C10—C9—C14—C130.60 (16)C29—C30—C31—C261.05 (17)
C7—C9—C14—C13178.38 (10)C27—C26—C31—C301.45 (17)
C8—N2—C15—C1681.23 (11)C25—C26—C31—C30177.10 (10)
C1—N2—C15—C16101.04 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O10.961 (14)2.197 (13)2.8225 (14)121.7 (10)
C15—H15B···O1i0.962 (12)2.503 (12)3.3484 (13)146.6 (9)
C17—H17A···N1ii0.976 (13)2.581 (13)3.5523 (14)173.3 (10)
C17—H17B···O1i1.021 (12)2.568 (13)3.4700 (15)147.1 (9)
C21—H21···O1iii0.971 (14)2.404 (14)3.2166 (15)140.9 (11)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x+2, y+1, z+1.
Selected geometrical parameters (Å, °) for related molecules top
Refcodedmaxr.m.s.d.αaN—Cα—CβXb
AZAZEC0.031 (1)0.00113.25 (4)-171.93 (8)
BUDMAPc0.043 (1)0.00230.44 (7)
0.023 (2)0.00219.31 (7)
ECUCOY0.064 (1)0.0019.39 (6)-76.77 (15)
IDOSUR0.055 (2)0.00230.77 (8)66.3 (2)
ESUKUB0.030 (1)0.00112.04 (5)-178.70 (9)
FOFCIQ0.052 (1)0.00222.82 (10)-115.4 (2)
ILIRED0.030 (2)0.00218.75 (10)179.86 (18)
NIBXEEc0.038 (5)0.00228.4 (2)156.3 (5)
0.38 (5)0.00223.1 (2)-154.2 (5)
PUGGII0.035 (1)0.00228.39 (11)178.12 (13)
RIRBOM0.039 (1)0.00144.46 (4)-168.64 (8)
UDAMIZ0.060 (2)0.00220.39 (4)171.2 (2)
UFITEM0.063 (1)0.00134.67 (6)176.19 (11)
XEXWIJ0.022 (2)0.00219.63 (7)-179.37 (14)
YAJGEXc0.023 (1)0.00238.27 (10)136.6 (2)
0.037 (1)0.00237.14 (8)-132.6 (2)
Notes: (a) Dihedral angle between mean planes of quinoxaline and attached phenyl rings; (b) torsion angle for first three atoms of chain attached to quinoxaline ring nitrogen; (c) Z = 2.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. The contributions of the authors are as follows: conceptualization, YR; methodology, NA and AS; investigation, MM; writing (original draft), JTM and YR; writing (review and editing of the manuscript), YR; formal analysis, EME and YR; supervision, YR; crystal structure determination and validation, JTM; resources, AYAA.

References

First citationAbad, N., Al-Ostoot, F. H., Ashraf, S., Karim, K., Aljohani, M. S., Alharbi, H. Y., Buhlak, S., El Hafi, M., Van Meervelt, L., Al-Maswari, B. M., Essassi, E. M. & Youssef Ramli, Y. (2023a). Heliyon 9, e21312. https://doi.org/10.1016/j.heliyon.2023.e21312.  Google Scholar
First citationAbad, N., Chkirate, K., Al-Ostoot, F. H., Van Meervelt, L., Lahmidi, S., Ferfra, S., Ramli, Y. & Essassi, E. M. (2021c). Acta Cryst. E77, 1037–1042.  CSD CrossRef IUCr Journals Google Scholar
First citationAbad, N., El Bakri, Y., Sebhaoui, J., Ramli, Y., Essassi, E. M. & Mague, J. T. (2018a). IUCrData, 3, x180610.  Google Scholar
First citationAbad, N., El Bakri, Y., Sebhaoui, J., Ramli, Y., Essassi, E. M. & Mague, J. T. (2018c). IUCrData, 3, x180519.  Google Scholar
First citationAbad, N., El Ghayati, L., Kalonji Mubengayi, C., Essassi, E. M., Kaya, S., Mague, J. T. & Ramli, Y. (2021a). Acta Cryst. E77, 643–646.  CSD CrossRef IUCr Journals Google Scholar
First citationAbad, N., Ferfra, S., Essassi, E. M., Mague, J. T. & Ramli, Y. (2021d). Z. Krist. New Cryst. Struct. 236, 173.  Google Scholar
First citationAbad, N., Guelmami, L., Haouas, A., Hajji, M., Hafi, M. E., Sebhaoui, J., Guerfel, T., Mague, J. T., Essassi, E. M. & Ramli, Y. (2023b). J. Mol. Struct. 1286, 135622.  CSD CrossRef Google Scholar
First citationAbad, N., Lgaz, H., Atioglu, Z., Akkurt, M., Mague, J. T., Ali, I. H., Chung, I.-M., Salghi, R., Essassi, E. M. & Ramli, Y. (2020). J. Mol. Struct. 1221, 128727.  CSD CrossRef Google Scholar
First citationAbad, N., Missioui, M., Alsubari, A., Mague, J. T., Essassi, E. M. & Ramli, Y. (2022). IUCrData, 7, x220693.  Google Scholar
First citationAbad, N., Ramli, Y., Lahmidi, S., El Hafi, M., Essassi, E. M. & Mague, J. T. (2018b). IUCrData, 3, x181633.  Google Scholar
First citationAbad, N., Sallam, H. H., Al-Ostoot, F. H., Khamees, H. A., Al-horaibi, S. A., Khanum, S. A., Madegowda, M., Hafi, M. E., Mague, J. T., Essassi, E. M. & Ramli, Y. (2021b). J. Mol. Struct. 1232, 130004.  CSD CrossRef Google Scholar
First citationAl Ati, G., Chkirate, K., Mashrai, A., Mague, J. T., Ramli, Y., Achour, R. & Essassi, E. M. (2021). Acta Cryst. E77, 18–22.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBenzeid, H., Bouhfid, R., Massip, S., Leger, J. M. & Essassi, E. M. (2011). Acta Cryst. E67, o2990.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBenzeid, H., Essassi, E. M., Saffon, N., Garrigues, B. & Ng, S. W. (2009a). Acta Cryst. E65, o2323.  CSD CrossRef IUCr Journals Google Scholar
First citationBenzeid, H., Saffon, N., Garrigues, B., Essassi, E. M. & Ng, S. W. (2009b). Acta Cryst. E65, o2685.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDaouda, B., Brelot, L., Doumbia, M. L., Essassi, E. M. & Ng, S. W. (2011). Acta Cryst. E67, o1235.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLgaz, H., ELaoufir, Y., Ramli, Y., Larouj, M., Zarrok, H., Salghi, R., Zarrouk, A., Elmidaoui, A., Guenbour, A., Essassi, E. M. & Oudda, H. (2015). Der. Pharma Chem. 7, 36–45.  CAS Google Scholar
First citationMissioui, M., Said, M., Demirtaş, G., Mague, J. T. & Ramli, Y. (2022). J. Mol. Struct. 1247, 131420.  CSD CrossRef Google Scholar
First citationRamli, Y. & Essassi, E. M. (2015). Adv. Chem. Res. 27, 109–160.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds