research communications
and Hirshfeld surface analysis of 3-phenyl-1-{3-[(3-phenylquinoxalin-2-yl)oxy]propyl}-1,2-dihydroquinoxalin-2-one
aLaboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy Mohammed V University in Rabat, Morocco, bLaboratory of Heterocyclic Organic Chemistry, Faculty of Sciences, Mohammed V University, Rabat, Morocco, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, dLaboratory of Medicinal Chemistry, Faculty of Clinical Pharmacy, 21 September University, Yemen, eLaboratory of Heterocyclic Organic Chemistry Faculty of Sciences, Mohammed V University, Rabat, Morocco, fDepartment of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail, Assir, Saudi Arabia, and gMohammed VI Center for Research and Innovation (CM6), Rabat 10000, Morocco
*Correspondence e-mail: alsubaripharmaco@21umas.edu.ye, y.ramli@um5r.ac.ma
In the title compound, C31H24N4O2, the quinoxaline units are distinctly non-planar and twisted end-to-end. In the crystal, C—H⋯O and C—H⋯N hydrogen bonds link the molecules into chains extending along the a-axis direction. The chains are linked through π-stacking interactions between inversion-related quinoxaline moieties.
Keywords: crystal structure; quinoxaline; alkylation; hydrogen bond; π-stacking; Hirshfeld surface analysis.
CCDC reference: 2332949
1. Chemical context
The therapeutic and industrial importance of nitrogen-containing heterocyclic rings has attracted much attention. Among the various classes of nitrogen-containing ). Some analogs have been synthesized and evaluated for their industrial properties (e.g. Lgaz et al., 2015).
quinoxaline derivatives have an important role in medicinal chemistry and display a broad spectrum of biological and pharmacological activities such as antimicrobial, antiviral, anticancer, anti-inflammatory, anti-diabetic, anti-HIV, anti-tubercular and analgesic activities (Ramli & Essassi, 2015Our interest in quinoxalines results from their simple synthesis, and the ease with which X-ray quality crystals can be grown. Following this line of research, and as a continuation of our work in this area (e.g. Missioui et al., 2022), we report herein the synthesis of 3-phenyl-1-{3-[(3-phenylquinoxalin-2-yl)oxy]propyl}-1,2-dihydroquinoxalin-2-one obtained by an alkylation reaction of 3-phenylquinoxalin-2(1H)-one using 1,3-dibromopropane as an alkylating reagent and sodium hydroxide in the presence of tetra-n-butylammonium bromide as catalyst in A colorless plate-like specimen of the title compound was used for the X-ray crystallographic analysis (Fig. 1). A Hirshfeld surface analysis was performed to analyze the intermolecular hydrogen bonds.
2. Structural commentary
Neither quinoxaline unit is planar and in both instances, the heterocyclic ring has atoms deviating by 0.02–0.04 Å from the mean plane. Thus in the pyrazine ring containing N1, atom C7 is 0.0411 (7) Å from the mean plane and C8 is −0.0356 (7) Å from it (r.m.s. deviation of the fitted atoms = 0.0299 Å). The C1–C6 ring is inclined to the above plane by 4.99 (8)° while the dihedral angle subtended with the C9–C14 ring is 11.51 (7)°. The rotational orientation of the former ring is partially determined by the intramolecular C14—H14⋯O1 hydrogen bond (Table 1 and Fig. 1), while that of the latter ring may be influenced by a C27—H27⋯O2 hydrogen bond [H27⋯O2 = 2.448 (13) Å, C27⋯O2 = 2.8791 (14) Å], but with the C27—H27⋯O2 angle being only 106.1 (9)°, this is weak at best. At the other end, the pyrazine ring containing N3 is closer to planarity with displacements from the mean plane being 0.0174 (7) Å (N4) and −0.0195 (7) Å (C25) (r.m.s. deviation of the fitted atoms = 0.0150 Å). Here the dihedral angle to the C18–C23 plane is 2.85 (7)° and that to the C26–C31 ring is 38.75 (4)°. The linker between the quinoxaline units is rather kinked, as seen from the torsion angles in Table 2.
|
3. Supramolecular features
In the crystal, C15—H15B⋯O1, C17—H17B⋯O1, C21—H21⋯O1 and C17—H17A⋯N1 hydrogen bonds (Table 1) link the molecules into chains extending along the a-axis direction (Figs. 2 and 3). The chains are linked through π-stacking interactions between inversion-related quinoxaline moieties with centroid–centroid distances of 3.7756 (6) and 3.6440 (7) Å (Figs. 2 and 3).
4. Hirshfeld surface analysis
The intermolecular interactions in the crystal were quantified through a Hirshfeld Surface (HS) analysis using CrystalExplorer 21.5 (Spackman et al., (2021). Additional details of the interpretation of the results have been published (Tan et al., 2019). In the standard dnorm surface (Fig. 4a) the C—H⋯O and C—H⋯N hydrogen bonds to the closest neighboring molecules are depicted by green dashed lines. In Fig. 4b (shape-index) and 4c (curvedness), the π-stacking interactions involving the neighboring molecule that has the most overlap with the surface can be seen. This is particularly evident in Fig. 4c where the quinoxaline rings are separated by a significant flat region of the surface. A similar flat region appears on the left side of the surface in Fig. 4c. The overall two-dimensional fingerprint plot, Fig. 5a, and those delineated into specific intermolecular interaction types are shown in Fig. 5b–f. From these, H⋯H contacts account for 51.3% of the total, while C⋯H/H⋯C contribute another 24.2%. The remaining significant contacts are C⋯C (π-stacking, 9.0%), N⋯H/H⋯N (6.5%), O⋯H/H⋯O (5.0%) and C⋯N (π-stacking, 3.5%).
5. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.44, updated to November 2023; Groom et al., 2016) with the search fragment A (Fig. 6, R = C) yielded two hits with R = benzyl (FACPEI; Abad et al., 2020) and R = (oxazolidin-2-one-3-yl)ethyl (UREREP; Daouda et al., 2011). In the former, the r.m.s. deviation of the quinoxaline atoms from their mean plane is 0.001 Å, while the phenyl ring is inclined to this plane by 39.32 (5)o and the C—O—C—C torsion angle in the benzyloxy linker is 97.06 (11)o. In the latter, the quinoxaline ring atoms vary from 0.040 (3) to −0.047 (2) Å from the mean plane in one independent molecule and 0.046 (4) to −0.075 (3) Å in the other. The phenyl ring is inclined to the mean quinoxaline plane by 38.44 (14)o in the first and 38.97 (14)o in the second.
Using the fragment B (Fig. 6), fifteen hits were returned with R = –(CH2)7Me (AZAZEC; Abad et al., 2021d), Me (BUDMAP; Benzeid et al., 2009a), ethyl (1H-1,2,3-triazol-1-yl)methyl acetate (ECUCOY; Abad et al., 2022), –(CH2)2OC=O)Me (ESUKUB; Abad et al., 2021a), (1-hexyl-1H-1,2,3-triazol-5-yl)methyl (FOFCIQ; Abad et al., 2023a), (oxazolidin-2-one-3-yl)ethyl (IDOSUR; Al Ati et al., 2021), [3-(4-methylphenyl)-4,5-dihydro-1,2-oxazol-5-yl]methyl (ILIRED; Abad et al., 2021b), Et (MAGBIJ; Al Ati et al., 2021), (oxirane-2-yl)methyl (NIBXEE; Abad et al., 2018a), benzyl (PUGGII; Benzeid et al., 2009b), –(CH2)2CH2OH (RIRBOM; Abad et al., 2018b), –(CH2)8Me (UDAMIZ; Abad et al., 2021c), –(CH2)4Me (UFITEM; Abad et al., 2023b), –(CH2)2CO2Et (XEXWIJ; Abad et al., 2018c) and allyl (YAJGEX; Benzeid et al., 2011). Three of these structures feature two independent molecules in the (see Table 3). For these last fifteen structures, Table 3 lists the largest distance of an atom in the quinoxaline moiety from its mean plane (dmax) and the dihedral angle between the mean planes of the quinoxaline moiety and the attached phenyl ring (α). From these, it can be concluded that the deviation from planarity of the quinoxaline rings in the present structure is comparable to that in the related molecules, while the rotation of the phenyl ring out of the plane of the quinoxaline is at the low end of the observed dihedral angles. Also presented in Table 3 are torsion angles for parts of the related molecules corresponding to N2—C15—C16—C17 in the present structure.
|
6. Synthesis and crystallization
To a solution of 3-phenylquinoxalin-2(1H)-one (0.5 g, 2.25 mmol) in N,N-dimethylformamide (15 ml) were added 1,3-dibromopropane (0.12 ml, 1.125 mmol), sodium hydroxide (0.1 g, 2.25 mmol) and a catalytic quantity of tetra-n-butylammonium bromide. The reaction mixture was stirred at room temperature for 24 h. The solution was filtered and the solvent removed under reduced pressure. The residue obtained was chromatographed on a silica gel column using a hexane/ethyl acetate 9:1 mixture as and the solid obtained upon solvent removal was recrystallized from ethanol to afford colorless plate-like crystals of the title compound. 1H NMR (300 MHz, CDCl3) δ ppm: 1.95–2.03 (quin, 2H, CH2); 3.53 (t, 2H, N-CH2, J = 6Hz); 4.44 (t, 2H, O-CH2, J = 6Hz); 7.30–8.23 (m, 18H, CHarom). 13C NMR (75 MHz, CDCl3) δ ppm: 26.66 (CH2); 40.27 (N—CH2); 64.28(O—CH2); 113.36–130.76 (CHarom); 132.47–154.01 (Cq); 154.48 (C—O); 155.22 (C=O); 155.22 (C—O).
7. Refinement
Crystal data, data collection and structure . Hydrogen atoms were refined isotropically.
details are summarized in Table 4
|
Supporting information
CCDC reference: 2332949
https://doi.org/10.1107/S2056989024001518/vm2295sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024001518/vm2295Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989024001518/vm2295Isup3.cml
C31H24N4O2 | Z = 2 |
Mr = 484.54 | F(000) = 508 |
Triclinic, P1 | Dx = 1.347 Mg m−3 |
a = 8.8038 (6) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.2277 (7) Å | Cell parameters from 8578 reflections |
c = 14.0937 (10) Å | θ = 2.5–29.0° |
α = 90.262 (1)° | µ = 0.09 mm−1 |
β = 96.630 (1)° | T = 120 K |
γ = 108.395 (1)° | Plate, colourless |
V = 1195.00 (14) Å3 | 0.41 × 0.34 × 0.10 mm |
Bruker SMART APEX CCD diffractometer | 6292 independent reflections |
Radiation source: fine-focus sealed tube | 4672 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 29.1°, θmin = 2.1° |
φ and ω scans | h = −11→11 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −13→13 |
Tmin = 0.84, Tmax = 0.99 | l = −19→19 |
22697 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.129 | All H-atom parameters refined |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0859P)2] where P = (Fo2 + 2Fc2)/3 |
6292 reflections | (Δ/σ)max < 0.001 |
430 parameters | Δρmax = 0.40 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 15 sec/frame. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.44841 (10) | 0.63740 (8) | 0.58310 (5) | 0.02992 (19) | |
O2 | 0.83077 (9) | 0.71124 (8) | 0.31407 (5) | 0.02503 (18) | |
N1 | 0.22753 (10) | 0.87022 (9) | 0.52543 (6) | 0.0235 (2) | |
N2 | 0.43848 (10) | 0.75671 (9) | 0.44934 (6) | 0.02157 (19) | |
N3 | 1.01284 (10) | 0.59246 (9) | 0.31524 (6) | 0.0239 (2) | |
H3 | 0.3852 (17) | 1.0016 (15) | 0.1911 (11) | 0.051 (4)* | |
N4 | 1.01195 (11) | 0.63096 (9) | 0.11706 (6) | 0.0258 (2) | |
C1 | 0.37800 (12) | 0.84656 (11) | 0.39487 (7) | 0.0229 (2) | |
C2 | 0.42362 (15) | 0.88805 (12) | 0.30498 (8) | 0.0301 (3) | |
H2 | 0.5105 (16) | 0.8643 (14) | 0.2796 (9) | 0.036 (3)* | |
C3 | 0.35202 (16) | 0.97177 (13) | 0.25365 (9) | 0.0362 (3) | |
C4 | 0.23277 (16) | 1.01518 (13) | 0.28870 (9) | 0.0349 (3) | |
H4 | 0.1835 (16) | 1.0778 (14) | 0.2494 (10) | 0.041 (4)* | |
C5 | 0.19108 (14) | 0.97842 (11) | 0.37813 (8) | 0.0287 (2) | |
H5 | 0.1082 (17) | 1.0078 (14) | 0.4048 (9) | 0.040 (4)* | |
C6 | 0.26590 (12) | 0.89688 (11) | 0.43344 (7) | 0.0233 (2) | |
C7 | 0.29185 (12) | 0.79293 (10) | 0.57833 (7) | 0.0211 (2) | |
C8 | 0.39776 (12) | 0.72245 (11) | 0.53976 (7) | 0.0217 (2) | |
C9 | 0.25817 (12) | 0.77893 (11) | 0.67950 (7) | 0.0229 (2) | |
C10 | 0.17893 (14) | 0.86482 (13) | 0.71543 (8) | 0.0313 (3) | |
H10 | 0.1495 (15) | 0.9312 (13) | 0.6724 (9) | 0.030 (3)* | |
C11 | 0.14777 (16) | 0.85979 (15) | 0.80948 (9) | 0.0374 (3) | |
H11 | 0.0946 (18) | 0.9227 (16) | 0.8322 (11) | 0.053 (4)* | |
C12 | 0.19357 (14) | 0.76913 (13) | 0.87067 (8) | 0.0329 (3) | |
H12 | 0.1671 (15) | 0.7634 (13) | 0.9406 (9) | 0.034 (3)* | |
C13 | 0.27219 (13) | 0.68479 (12) | 0.83650 (8) | 0.0290 (2) | |
H13 | 0.3018 (16) | 0.6197 (14) | 0.8811 (10) | 0.040 (4)* | |
C14 | 0.30485 (13) | 0.68925 (11) | 0.74210 (8) | 0.0253 (2) | |
H14 | 0.3544 (16) | 0.6243 (14) | 0.7217 (9) | 0.035 (3)* | |
C15 | 0.54524 (12) | 0.68814 (12) | 0.41224 (8) | 0.0232 (2) | |
H15A | 0.5299 (14) | 0.6874 (12) | 0.3405 (9) | 0.025 (3)* | |
H15B | 0.5145 (14) | 0.5943 (13) | 0.4317 (8) | 0.024 (3)* | |
C16 | 0.72111 (12) | 0.75993 (12) | 0.45135 (8) | 0.0239 (2) | |
H16A | 0.7551 (14) | 0.8581 (14) | 0.4330 (9) | 0.032 (3)* | |
H16B | 0.7306 (14) | 0.7557 (12) | 0.5222 (9) | 0.025 (3)* | |
C17 | 0.83182 (13) | 0.68895 (12) | 0.41570 (7) | 0.0247 (2) | |
H17A | 0.9421 (15) | 0.7312 (12) | 0.4463 (9) | 0.028 (3)* | |
H17B | 0.7929 (14) | 0.5849 (13) | 0.4237 (8) | 0.028 (3)* | |
C18 | 1.10461 (13) | 0.56007 (11) | 0.16404 (8) | 0.0253 (2) | |
C19 | 1.19802 (14) | 0.50343 (12) | 0.11175 (9) | 0.0306 (3) | |
H19 | 1.1921 (16) | 0.5151 (14) | 0.0421 (10) | 0.040 (4)* | |
C20 | 1.28637 (14) | 0.42787 (12) | 0.15725 (9) | 0.0334 (3) | |
H20 | 1.3517 (17) | 0.3897 (14) | 0.1214 (10) | 0.044 (4)* | |
C21 | 1.28456 (13) | 0.40650 (12) | 0.25544 (9) | 0.0330 (3) | |
H21 | 1.3445 (16) | 0.3504 (14) | 0.2869 (9) | 0.037 (3)* | |
C22 | 1.19463 (13) | 0.46076 (12) | 0.30774 (9) | 0.0294 (3) | |
H22 | 1.1904 (15) | 0.4469 (13) | 0.3764 (9) | 0.033 (3)* | |
C23 | 1.10319 (12) | 0.53882 (11) | 0.26299 (8) | 0.0243 (2) | |
C24 | 0.92400 (12) | 0.65636 (11) | 0.26811 (7) | 0.0221 (2) | |
C25 | 0.91928 (12) | 0.67574 (11) | 0.16611 (7) | 0.0228 (2) | |
C26 | 0.81246 (13) | 0.74470 (11) | 0.11251 (7) | 0.0234 (2) | |
C27 | 0.65431 (13) | 0.72358 (12) | 0.13098 (8) | 0.0288 (2) | |
H27 | 0.6113 (15) | 0.6636 (13) | 0.1822 (9) | 0.033 (3)* | |
C28 | 0.55596 (14) | 0.78379 (13) | 0.07494 (8) | 0.0315 (3) | |
H28 | 0.4445 (16) | 0.7639 (13) | 0.0886 (9) | 0.036 (3)* | |
C29 | 0.61433 (14) | 0.86632 (12) | 0.00127 (8) | 0.0300 (3) | |
H29 | 0.5435 (15) | 0.9110 (13) | −0.0411 (9) | 0.034 (3)* | |
C30 | 0.77094 (15) | 0.88709 (12) | −0.01796 (8) | 0.0300 (3) | |
H30 | 0.8131 (15) | 0.9449 (13) | −0.0704 (9) | 0.035 (3)* | |
C31 | 0.86847 (14) | 0.82589 (12) | 0.03672 (8) | 0.0272 (2) | |
H31 | 0.9791 (16) | 0.8377 (13) | 0.0246 (9) | 0.032 (3)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0366 (4) | 0.0343 (4) | 0.0290 (4) | 0.0232 (4) | 0.0106 (3) | 0.0100 (3) |
O2 | 0.0259 (4) | 0.0336 (4) | 0.0206 (4) | 0.0158 (3) | 0.0055 (3) | 0.0026 (3) |
N1 | 0.0238 (4) | 0.0232 (5) | 0.0249 (5) | 0.0102 (4) | 0.0006 (3) | −0.0003 (4) |
N2 | 0.0226 (4) | 0.0230 (4) | 0.0222 (4) | 0.0108 (3) | 0.0052 (3) | 0.0029 (3) |
N3 | 0.0208 (4) | 0.0257 (5) | 0.0261 (5) | 0.0087 (4) | 0.0026 (3) | −0.0001 (4) |
N4 | 0.0253 (5) | 0.0282 (5) | 0.0261 (5) | 0.0112 (4) | 0.0039 (4) | −0.0007 (4) |
C1 | 0.0235 (5) | 0.0211 (5) | 0.0232 (5) | 0.0066 (4) | 0.0000 (4) | 0.0020 (4) |
C2 | 0.0317 (6) | 0.0332 (6) | 0.0269 (6) | 0.0116 (5) | 0.0053 (4) | 0.0055 (5) |
C3 | 0.0443 (7) | 0.0375 (7) | 0.0272 (6) | 0.0140 (6) | 0.0025 (5) | 0.0085 (5) |
C4 | 0.0446 (7) | 0.0305 (6) | 0.0305 (6) | 0.0173 (5) | −0.0065 (5) | 0.0041 (5) |
C5 | 0.0323 (6) | 0.0246 (6) | 0.0305 (6) | 0.0138 (5) | −0.0041 (5) | −0.0021 (4) |
C6 | 0.0248 (5) | 0.0200 (5) | 0.0250 (5) | 0.0084 (4) | −0.0011 (4) | −0.0005 (4) |
C7 | 0.0189 (5) | 0.0208 (5) | 0.0246 (5) | 0.0078 (4) | 0.0026 (4) | −0.0004 (4) |
C8 | 0.0209 (5) | 0.0221 (5) | 0.0240 (5) | 0.0093 (4) | 0.0045 (4) | 0.0028 (4) |
C9 | 0.0188 (5) | 0.0246 (5) | 0.0251 (5) | 0.0062 (4) | 0.0038 (4) | −0.0011 (4) |
C10 | 0.0316 (6) | 0.0372 (7) | 0.0315 (6) | 0.0191 (5) | 0.0061 (5) | 0.0015 (5) |
C11 | 0.0356 (7) | 0.0482 (8) | 0.0361 (7) | 0.0228 (6) | 0.0086 (5) | −0.0046 (6) |
C12 | 0.0295 (6) | 0.0435 (7) | 0.0264 (6) | 0.0113 (5) | 0.0072 (4) | −0.0031 (5) |
C13 | 0.0293 (6) | 0.0314 (6) | 0.0263 (6) | 0.0086 (5) | 0.0059 (4) | 0.0031 (5) |
C14 | 0.0243 (5) | 0.0260 (6) | 0.0271 (5) | 0.0091 (4) | 0.0066 (4) | 0.0015 (4) |
C15 | 0.0226 (5) | 0.0264 (6) | 0.0241 (5) | 0.0121 (4) | 0.0050 (4) | 0.0004 (4) |
C16 | 0.0236 (5) | 0.0272 (6) | 0.0224 (5) | 0.0097 (4) | 0.0044 (4) | 0.0005 (4) |
C17 | 0.0222 (5) | 0.0333 (6) | 0.0206 (5) | 0.0113 (4) | 0.0040 (4) | 0.0030 (4) |
C18 | 0.0218 (5) | 0.0258 (5) | 0.0288 (6) | 0.0085 (4) | 0.0029 (4) | −0.0024 (4) |
C19 | 0.0284 (6) | 0.0344 (6) | 0.0315 (6) | 0.0131 (5) | 0.0050 (5) | −0.0047 (5) |
C20 | 0.0249 (5) | 0.0343 (6) | 0.0436 (7) | 0.0140 (5) | 0.0021 (5) | −0.0099 (5) |
C21 | 0.0248 (6) | 0.0311 (6) | 0.0447 (7) | 0.0143 (5) | −0.0043 (5) | −0.0045 (5) |
C22 | 0.0247 (5) | 0.0313 (6) | 0.0329 (6) | 0.0119 (5) | −0.0021 (4) | −0.0010 (5) |
C23 | 0.0201 (5) | 0.0238 (5) | 0.0283 (5) | 0.0070 (4) | 0.0007 (4) | −0.0024 (4) |
C24 | 0.0205 (5) | 0.0236 (5) | 0.0228 (5) | 0.0071 (4) | 0.0045 (4) | −0.0001 (4) |
C25 | 0.0223 (5) | 0.0234 (5) | 0.0229 (5) | 0.0074 (4) | 0.0034 (4) | 0.0006 (4) |
C26 | 0.0267 (5) | 0.0247 (5) | 0.0206 (5) | 0.0109 (4) | 0.0023 (4) | −0.0012 (4) |
C27 | 0.0269 (5) | 0.0351 (6) | 0.0255 (6) | 0.0111 (5) | 0.0037 (4) | 0.0047 (5) |
C28 | 0.0259 (6) | 0.0412 (7) | 0.0299 (6) | 0.0146 (5) | 0.0021 (4) | 0.0025 (5) |
C29 | 0.0350 (6) | 0.0307 (6) | 0.0269 (6) | 0.0158 (5) | −0.0012 (4) | −0.0004 (5) |
C30 | 0.0384 (6) | 0.0290 (6) | 0.0245 (5) | 0.0128 (5) | 0.0052 (5) | 0.0030 (5) |
C31 | 0.0298 (6) | 0.0293 (6) | 0.0254 (5) | 0.0123 (5) | 0.0065 (4) | 0.0017 (4) |
O1—C8 | 1.2309 (12) | C13—H13 | 0.991 (13) |
O2—C24 | 1.3484 (12) | C14—H14 | 0.961 (13) |
O2—C17 | 1.4509 (12) | C15—C16 | 1.5238 (15) |
N1—C7 | 1.3007 (12) | C15—H15A | 1.005 (12) |
N1—C6 | 1.3841 (13) | C15—H15B | 0.962 (12) |
N2—C8 | 1.3804 (13) | C16—C17 | 1.5119 (15) |
N2—C1 | 1.3922 (12) | C16—H16A | 0.997 (13) |
N2—C15 | 1.4748 (13) | C16—H16B | 0.995 (12) |
N3—C24 | 1.2987 (12) | C17—H17A | 0.976 (13) |
N3—C23 | 1.3722 (13) | C17—H17B | 1.021 (12) |
N4—C25 | 1.3102 (13) | C18—C19 | 1.4113 (15) |
N4—C18 | 1.3721 (13) | C18—C23 | 1.4132 (15) |
C1—C2 | 1.4005 (15) | C19—C20 | 1.3720 (16) |
C1—C6 | 1.4057 (15) | C19—H19 | 0.987 (14) |
C2—C3 | 1.3766 (16) | C20—C21 | 1.4031 (18) |
C2—H2 | 0.976 (14) | C20—H20 | 0.972 (15) |
C3—C4 | 1.3983 (18) | C21—C22 | 1.3735 (16) |
C3—H3 | 0.980 (15) | C21—H21 | 0.972 (13) |
C4—C5 | 1.3743 (17) | C22—C23 | 1.4057 (14) |
C4—H4 | 1.014 (13) | C22—H22 | 0.982 (13) |
C5—C6 | 1.4040 (14) | C24—C25 | 1.4497 (14) |
C5—H5 | 0.982 (14) | C25—C26 | 1.4873 (14) |
C7—C9 | 1.4881 (15) | C26—C31 | 1.3946 (16) |
C7—C8 | 1.4907 (14) | C26—C27 | 1.3955 (15) |
C9—C14 | 1.3964 (14) | C27—C28 | 1.3913 (15) |
C9—C10 | 1.4068 (15) | C27—H27 | 0.980 (13) |
C10—C11 | 1.3822 (17) | C28—C29 | 1.3828 (17) |
C10—H10 | 0.987 (12) | C28—H28 | 0.979 (13) |
C11—C12 | 1.3889 (18) | C29—C30 | 1.3862 (17) |
C11—H11 | 0.979 (16) | C29—H29 | 1.025 (13) |
C12—C13 | 1.3803 (16) | C30—C31 | 1.3834 (15) |
C12—H12 | 1.036 (13) | C30—H30 | 0.981 (13) |
C13—C14 | 1.3912 (15) | C31—H31 | 0.978 (13) |
C24—O2—C17 | 116.19 (8) | C17—C16—C15 | 111.90 (9) |
C7—N1—C6 | 120.18 (9) | C17—C16—H16A | 109.3 (7) |
C8—N2—C1 | 122.21 (8) | C15—C16—H16A | 110.2 (7) |
C8—N2—C15 | 115.91 (8) | C17—C16—H16B | 107.8 (7) |
C1—N2—C15 | 121.84 (8) | C15—C16—H16B | 107.8 (7) |
C24—N3—C23 | 116.53 (9) | H16A—C16—H16B | 109.8 (10) |
C25—N4—C18 | 118.08 (9) | O2—C17—C16 | 106.67 (8) |
N2—C1—C2 | 123.22 (10) | O2—C17—H17A | 107.9 (7) |
N2—C1—C6 | 117.35 (9) | C16—C17—H17A | 110.4 (7) |
C2—C1—C6 | 119.43 (10) | O2—C17—H17B | 107.4 (7) |
C3—C2—C1 | 119.53 (11) | C16—C17—H17B | 112.7 (7) |
C3—C2—H2 | 118.9 (7) | H17A—C17—H17B | 111.5 (10) |
C1—C2—H2 | 121.5 (7) | N4—C18—C19 | 119.25 (10) |
C2—C3—C4 | 121.45 (11) | N4—C18—C23 | 121.00 (9) |
C2—C3—H3 | 119.3 (8) | C19—C18—C23 | 119.71 (10) |
C4—C3—H3 | 119.2 (8) | C20—C19—C18 | 119.79 (11) |
C5—C4—C3 | 119.29 (11) | C20—C19—H19 | 121.9 (8) |
C5—C4—H4 | 121.2 (8) | C18—C19—H19 | 118.2 (8) |
C3—C4—H4 | 119.4 (8) | C19—C20—C21 | 120.47 (11) |
C4—C5—C6 | 120.49 (11) | C19—C20—H20 | 119.8 (8) |
C4—C5—H5 | 121.1 (8) | C21—C20—H20 | 119.7 (8) |
C6—C5—H5 | 118.4 (8) | C22—C21—C20 | 120.72 (11) |
N1—C6—C5 | 118.29 (9) | C22—C21—H21 | 119.1 (8) |
N1—C6—C1 | 122.12 (9) | C20—C21—H21 | 120.1 (8) |
C5—C6—C1 | 119.59 (10) | C21—C22—C23 | 120.01 (11) |
N1—C7—C9 | 117.64 (9) | C21—C22—H22 | 122.5 (7) |
N1—C7—C8 | 121.39 (9) | C23—C22—H22 | 117.4 (7) |
C9—C7—C8 | 120.97 (9) | N3—C23—C22 | 119.95 (10) |
O1—C8—N2 | 119.63 (9) | N3—C23—C18 | 120.75 (9) |
O1—C8—C7 | 124.16 (9) | C22—C23—C18 | 119.30 (10) |
N2—C8—C7 | 116.22 (8) | N3—C24—O2 | 120.23 (9) |
C14—C9—C10 | 117.79 (10) | N3—C24—C25 | 123.76 (9) |
C14—C9—C7 | 124.24 (9) | O2—C24—C25 | 116.00 (9) |
C10—C9—C7 | 117.93 (9) | N4—C25—C24 | 119.73 (9) |
C11—C10—C9 | 120.94 (11) | N4—C25—C26 | 117.14 (9) |
C11—C10—H10 | 120.7 (7) | C24—C25—C26 | 123.13 (9) |
C9—C10—H10 | 118.3 (7) | C31—C26—C27 | 118.68 (10) |
C10—C11—C12 | 120.62 (11) | C31—C26—C25 | 118.79 (10) |
C10—C11—H11 | 118.5 (9) | C27—C26—C25 | 122.38 (10) |
C12—C11—H11 | 120.9 (9) | C28—C27—C26 | 120.18 (11) |
C13—C12—C11 | 119.04 (11) | C28—C27—H27 | 119.9 (7) |
C13—C12—H12 | 120.4 (7) | C26—C27—H27 | 119.9 (7) |
C11—C12—H12 | 120.6 (7) | C29—C28—C27 | 120.44 (11) |
C12—C13—C14 | 120.89 (11) | C29—C28—H28 | 121.7 (7) |
C12—C13—H13 | 117.6 (8) | C27—C28—H28 | 117.8 (7) |
C14—C13—H13 | 121.5 (8) | C28—C29—C30 | 119.74 (10) |
C13—C14—C9 | 120.71 (10) | C28—C29—H29 | 121.6 (7) |
C13—C14—H14 | 116.8 (8) | C30—C29—H29 | 118.6 (7) |
C9—C14—H14 | 122.4 (8) | C31—C30—C29 | 120.03 (11) |
N2—C15—C16 | 111.24 (9) | C31—C30—H30 | 119.7 (7) |
N2—C15—H15A | 108.8 (7) | C29—C30—H30 | 120.3 (7) |
C16—C15—H15A | 110.8 (7) | C30—C31—C26 | 120.91 (11) |
N2—C15—H15B | 108.6 (7) | C30—C31—H31 | 122.1 (7) |
C16—C15—H15B | 108.8 (7) | C26—C31—H31 | 117.0 (7) |
H15A—C15—H15B | 108.5 (10) | ||
C8—N2—C1—C2 | 176.79 (10) | N2—C15—C16—C17 | 178.73 (8) |
C15—N2—C1—C2 | −5.61 (16) | C24—O2—C17—C16 | 179.54 (8) |
C8—N2—C1—C6 | −3.17 (15) | C15—C16—C17—O2 | 68.47 (12) |
C15—N2—C1—C6 | 174.43 (9) | C25—N4—C18—C19 | 176.17 (10) |
N2—C1—C2—C3 | 176.76 (10) | C25—N4—C18—C23 | −1.52 (15) |
C6—C1—C2—C3 | −3.29 (17) | N4—C18—C19—C20 | −177.53 (10) |
C1—C2—C3—C4 | −0.84 (19) | C23—C18—C19—C20 | 0.19 (17) |
C2—C3—C4—C5 | 2.87 (19) | C18—C19—C20—C21 | −0.02 (18) |
C3—C4—C5—C6 | −0.71 (18) | C19—C20—C21—C22 | −0.04 (18) |
C7—N1—C6—C5 | 178.67 (9) | C20—C21—C22—C23 | −0.08 (18) |
C7—N1—C6—C1 | −2.17 (15) | C24—N3—C23—C22 | −176.01 (9) |
C4—C5—C6—N1 | 175.80 (10) | C24—N3—C23—C18 | 3.45 (15) |
C4—C5—C6—C1 | −3.38 (16) | C21—C22—C23—N3 | 179.71 (10) |
N2—C1—C6—N1 | 6.18 (15) | C21—C22—C23—C18 | 0.24 (16) |
C2—C1—C6—N1 | −173.78 (10) | N4—C18—C23—N3 | −2.09 (16) |
N2—C1—C6—C5 | −174.66 (9) | C19—C18—C23—N3 | −179.76 (9) |
C2—C1—C6—C5 | 5.38 (15) | N4—C18—C23—C22 | 177.37 (9) |
C6—N1—C7—C9 | 174.31 (9) | C19—C18—C23—C22 | −0.30 (16) |
C6—N1—C7—C8 | −4.74 (15) | C23—N3—C24—O2 | 179.55 (9) |
C1—N2—C8—O1 | 176.52 (9) | C23—N3—C24—C25 | −1.49 (15) |
C15—N2—C8—O1 | −1.21 (14) | C17—O2—C24—N3 | −2.55 (14) |
C1—N2—C8—C7 | −3.15 (14) | C17—O2—C24—C25 | 178.42 (9) |
C15—N2—C8—C7 | 179.12 (9) | C18—N4—C25—C24 | 3.46 (15) |
N1—C7—C8—O1 | −172.29 (10) | C18—N4—C25—C26 | −176.34 (9) |
C9—C7—C8—O1 | 8.70 (16) | N3—C24—C25—N4 | −2.08 (16) |
N1—C7—C8—N2 | 7.37 (15) | O2—C24—C25—N4 | 176.92 (9) |
C9—C7—C8—N2 | −171.65 (9) | N3—C24—C25—C26 | 177.71 (10) |
N1—C7—C9—C14 | 173.29 (10) | O2—C24—C25—C26 | −3.30 (15) |
C8—C7—C9—C14 | −7.66 (16) | N4—C25—C26—C31 | −35.53 (14) |
N1—C7—C9—C10 | −8.94 (15) | C24—C25—C26—C31 | 144.68 (10) |
C8—C7—C9—C10 | 170.12 (10) | N4—C25—C26—C27 | 139.95 (11) |
C14—C9—C10—C11 | −0.34 (18) | C24—C25—C26—C27 | −39.84 (15) |
C7—C9—C10—C11 | −178.26 (11) | C31—C26—C27—C28 | −0.54 (16) |
C9—C10—C11—C12 | −0.3 (2) | C25—C26—C27—C28 | −176.02 (10) |
C10—C11—C12—C13 | 0.6 (2) | C26—C27—C28—C29 | −0.78 (17) |
C11—C12—C13—C14 | −0.34 (18) | C27—C28—C29—C30 | 1.20 (18) |
C12—C13—C14—C9 | −0.27 (18) | C28—C29—C30—C31 | −0.29 (17) |
C10—C9—C14—C13 | 0.60 (16) | C29—C30—C31—C26 | −1.05 (17) |
C7—C9—C14—C13 | 178.38 (10) | C27—C26—C31—C30 | 1.45 (17) |
C8—N2—C15—C16 | −81.23 (11) | C25—C26—C31—C30 | 177.10 (10) |
C1—N2—C15—C16 | 101.04 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H14···O1 | 0.961 (14) | 2.197 (13) | 2.8225 (14) | 121.7 (10) |
C15—H15B···O1i | 0.962 (12) | 2.503 (12) | 3.3484 (13) | 146.6 (9) |
C17—H17A···N1ii | 0.976 (13) | 2.581 (13) | 3.5523 (14) | 173.3 (10) |
C17—H17B···O1i | 1.021 (12) | 2.568 (13) | 3.4700 (15) | 147.1 (9) |
C21—H21···O1iii | 0.971 (14) | 2.404 (14) | 3.2166 (15) | 140.9 (11) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z; (iii) −x+2, −y+1, −z+1. |
Refcode | dmax | r.m.s.d. | αa | N—Cα—Cβ—Xb |
AZAZEC | 0.031 (1) | 0.001 | 13.25 (4) | -171.93 (8) |
BUDMAPc | 0.043 (1) | 0.002 | 30.44 (7) | – |
0.023 (2) | 0.002 | 19.31 (7) | – | |
ECUCOY | 0.064 (1) | 0.001 | 9.39 (6) | -76.77 (15) |
IDOSUR | 0.055 (2) | 0.002 | 30.77 (8) | 66.3 (2) |
ESUKUB | 0.030 (1) | 0.001 | 12.04 (5) | -178.70 (9) |
FOFCIQ | 0.052 (1) | 0.002 | 22.82 (10) | -115.4 (2) |
ILIRED | 0.030 (2) | 0.002 | 18.75 (10) | 179.86 (18) |
NIBXEEc | 0.038 (5) | 0.002 | 28.4 (2) | 156.3 (5) |
0.38 (5) | 0.002 | 23.1 (2) | -154.2 (5) | |
PUGGII | 0.035 (1) | 0.002 | 28.39 (11) | 178.12 (13) |
RIRBOM | 0.039 (1) | 0.001 | 44.46 (4) | -168.64 (8) |
UDAMIZ | 0.060 (2) | 0.002 | 20.39 (4) | 171.2 (2) |
UFITEM | 0.063 (1) | 0.001 | 34.67 (6) | 176.19 (11) |
XEXWIJ | 0.022 (2) | 0.002 | 19.63 (7) | -179.37 (14) |
YAJGEXc | 0.023 (1) | 0.002 | 38.27 (10) | 136.6 (2) |
0.037 (1) | 0.002 | 37.14 (8) | -132.6 (2) |
Notes: (a) Dihedral angle between mean planes of quinoxaline and attached phenyl rings; (b) torsion angle for first three atoms of chain attached to quinoxaline ring nitrogen; (c) Z = 2. |
Acknowledgements
JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. The contributions of the authors are as follows: conceptualization, YR; methodology, NA and AS; investigation, MM; writing (original draft), JTM and YR; writing (review and editing of the manuscript), YR; formal analysis, EME and YR; supervision, YR;
determination and validation, JTM; resources, AYAA.References
Abad, N., Al-Ostoot, F. H., Ashraf, S., Karim, K., Aljohani, M. S., Alharbi, H. Y., Buhlak, S., El Hafi, M., Van Meervelt, L., Al-Maswari, B. M., Essassi, E. M. & Youssef Ramli, Y. (2023a). Heliyon 9, e21312. https://doi.org/10.1016/j.heliyon.2023.e21312. Google Scholar
Abad, N., Chkirate, K., Al-Ostoot, F. H., Van Meervelt, L., Lahmidi, S., Ferfra, S., Ramli, Y. & Essassi, E. M. (2021c). Acta Cryst. E77, 1037–1042. CSD CrossRef IUCr Journals Google Scholar
Abad, N., El Bakri, Y., Sebhaoui, J., Ramli, Y., Essassi, E. M. & Mague, J. T. (2018a). IUCrData, 3, x180610. Google Scholar
Abad, N., El Bakri, Y., Sebhaoui, J., Ramli, Y., Essassi, E. M. & Mague, J. T. (2018c). IUCrData, 3, x180519. Google Scholar
Abad, N., El Ghayati, L., Kalonji Mubengayi, C., Essassi, E. M., Kaya, S., Mague, J. T. & Ramli, Y. (2021a). Acta Cryst. E77, 643–646. CSD CrossRef IUCr Journals Google Scholar
Abad, N., Ferfra, S., Essassi, E. M., Mague, J. T. & Ramli, Y. (2021d). Z. Krist. New Cryst. Struct. 236, 173. Google Scholar
Abad, N., Guelmami, L., Haouas, A., Hajji, M., Hafi, M. E., Sebhaoui, J., Guerfel, T., Mague, J. T., Essassi, E. M. & Ramli, Y. (2023b). J. Mol. Struct. 1286, 135622. CSD CrossRef Google Scholar
Abad, N., Lgaz, H., Atioglu, Z., Akkurt, M., Mague, J. T., Ali, I. H., Chung, I.-M., Salghi, R., Essassi, E. M. & Ramli, Y. (2020). J. Mol. Struct. 1221, 128727. CSD CrossRef Google Scholar
Abad, N., Missioui, M., Alsubari, A., Mague, J. T., Essassi, E. M. & Ramli, Y. (2022). IUCrData, 7, x220693. Google Scholar
Abad, N., Ramli, Y., Lahmidi, S., El Hafi, M., Essassi, E. M. & Mague, J. T. (2018b). IUCrData, 3, x181633. Google Scholar
Abad, N., Sallam, H. H., Al-Ostoot, F. H., Khamees, H. A., Al-horaibi, S. A., Khanum, S. A., Madegowda, M., Hafi, M. E., Mague, J. T., Essassi, E. M. & Ramli, Y. (2021b). J. Mol. Struct. 1232, 130004. CSD CrossRef Google Scholar
Al Ati, G., Chkirate, K., Mashrai, A., Mague, J. T., Ramli, Y., Achour, R. & Essassi, E. M. (2021). Acta Cryst. E77, 18–22. Web of Science CSD CrossRef IUCr Journals Google Scholar
Benzeid, H., Bouhfid, R., Massip, S., Leger, J. M. & Essassi, E. M. (2011). Acta Cryst. E67, o2990. Web of Science CSD CrossRef IUCr Journals Google Scholar
Benzeid, H., Essassi, E. M., Saffon, N., Garrigues, B. & Ng, S. W. (2009a). Acta Cryst. E65, o2323. CSD CrossRef IUCr Journals Google Scholar
Benzeid, H., Saffon, N., Garrigues, B., Essassi, E. M. & Ng, S. W. (2009b). Acta Cryst. E65, o2685. Web of Science CSD CrossRef IUCr Journals Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Daouda, B., Brelot, L., Doumbia, M. L., Essassi, E. M. & Ng, S. W. (2011). Acta Cryst. E67, o1235. Web of Science CSD CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Lgaz, H., ELaoufir, Y., Ramli, Y., Larouj, M., Zarrok, H., Salghi, R., Zarrouk, A., Elmidaoui, A., Guenbour, A., Essassi, E. M. & Oudda, H. (2015). Der. Pharma Chem. 7, 36–45. CAS Google Scholar
Missioui, M., Said, M., Demirtaş, G., Mague, J. T. & Ramli, Y. (2022). J. Mol. Struct. 1247, 131420. CSD CrossRef Google Scholar
Ramli, Y. & Essassi, E. M. (2015). Adv. Chem. Res. 27, 109–160. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.