research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis and DFT study of N-(2-nitro­phen­yl)male­imide

crossmark logo

aGrupo de Investigación en Fotocatálisis y Estado Sólido GIFES, Escuela de Química, Universidad Tecnológica de Pereira, Carrera 27 10-02, Pereira, Colombia, and bFacultad de Ciencias Naturales, Exactas y de la Educación, Departamento de Química, Universidad del Cauca, Calle 5 4-70, Popayán, Colombia
*Correspondence e-mail: hvalencia@utp.edu.co

Edited by F. Di Salvo, University of Buenos Aires, Argentina (Received 21 November 2023; accepted 25 January 2024; online 2 February 2024)

The title compound [systematic name: 1-(2-nitro­phen­yl)pyrrole-2,5-dione], C10H6N2O4, crystallizes in the monoclinic system (space group P21/n) with two mol­ecules in the asymmetric unit, which are linked by C—H⋯O hydrogen bonds. Hirshfeld surface analysis showed that the most significant contributions to the crystal packing are from H⋯O/O⋯H, H⋯C/C⋯H and H⋯H inter­actions, which contribute 54.7%, 15.2% and 15.6%, respectively. A DFT study was conducted using three different levels of theory [(B3LYP/6–311+G(d,p), wB97XD/Def2TZVPP and LC-wpbe/6–311(2 d,2p)] in order to determine the stability, structural and electronic properties of the title mol­ecule with a view to its potential applications and photochemical and copolymer properties.

1. Chemical context

1-(2-Nitro­phen­yl)pyrrole-2,5-dione is a compound derived from N-aryl male­imide (cyclic N-imides), with the –CO—N(R)—CO– functional group, where R is an aryl group (Hargreaves et al., 1970[Hargreaves, M. K., Pritchard, J. G. & Dave, H. R. (1970). Chem. Rev. 70, 439-469.]) . N-phenyl­male­imides substituted by the N atom present various reactivity and photochemical properties that depend on the substituent group and the torsion angle between imide and benzene rings. These mol­ecules have been used as a copolymer, providing greater structural rigidity, increase in dielectric properties and thermal stability compared to the unreacted polymer (Mejia et al., 2021[Mejia, G., Wang, Y., Huang, Z., Shi, Q. & Zhang, Z. (2021). Chin. J. Chem. 39, 3177-3187.]; Shi et al., 2020[Shi, Q., Zhang, Y., Huang, Z., Zhou, N., Zhang, Z. & Zhu, X. (2020). Polym. J. 52, 21-31.]). The importance of these mol­ecules is due to the potential reactivity of the double bonds that act as dienophiles, promoting Diels–Alder reactions for the formation of new organic mol­ecules (Galkin et al., 2022[Galkin, K. I., Sandulenko, I. V. & Polezhaev, A. V. (2022). Processes, 10, 30, 1-19.]; Bastin et al., 2019[Bastin, L. D., Nigam, M., Martinus, S., Maloney, J. E., Benyack, L. L. & Gainer, B. (2019). Green Chemistry Letters and Reviews, 12, 2, 127-135.]). Likewise, these families of compounds present good fungicidal properties against human pathogenic fungi, anti-leukemia activity, and differential cytotoxicity against cancer cells, among other biological activities (Paprocka et al. 2022[Paprocka, R., Pazderski, L., Mazur, L., Wiese-Szadkowska, M., Kutkowska, J., Nowak, M. & Helmin-Basa, A. (2022). Molecules, 27, 2891, 1-18.]; Mutlaq et al., 2021[Mutlaq, D. Z., Ali, A. A. A.-S. & Al-Asadi, R. H. (2021). Egypt. Pharm. J. 20, 303-312.]; Ali et al., 2017[Ali, B., Kanda Kupa, L. D., Heluany, C. S., Drewes, C. C., Vasconcelos, S. N. S., Farsky, S. H. P. & Stefani, H. A. (2017). Bioorg. Chem. 72, 199-207.]; Chen et al., 2017[Chen, C. Y., Chang, P. C., Wang, T. H. & Wang, T. V. (2017). Leuk. Res. 62, 64-69.]).

[Scheme 1]

N-2-nitro­phenyl­male­imide [1-(2-nitro­phen­yl)pyrrole-2,5-dione], commonly called N-ortho-nitro­phenyl­male­imide, is used in homopolymers and copolymers with methyl methacrylate with excellent thermal stability, high polydispersity, and solubility in non-polar and moderately polar solvents. However, the substitution of the nitro group in the ortho position causes intra­molecular ring repulsion or steric hindrance with the male­imide ring (Kumar & Jagrati, 2023[Kumar, M. S. & Jagrati, M. (2023). J. Adv. Sci. Res. 14, 02, 55-70.]; Kumar 2022[Kumar, M. S. (2022). International Journal of Engineering Research & Technology (IJERT), 11, 12, 1-9.]). Recently, in our group, a new water-friendly supra­molecular polymeric material obtained from the blend of isomers of nitro­phenyl­male­imide and carb­oxy-methyl­cellulose (CMC) was reported (García et al., 2023[García, M. M., Yepes, P. M., Sánchez, H. V. & Hernández, H. C. (2023). Heliyon. 9, e16108.]). The polymers obtained present inter­esting properties such as high viscosity, resistance to acids, bases, and oxidant substances; also, this material presents an increase in thermal properties compared to CMC, and good biodegradability. However, among the polymers obtained, those synthesized from ortho-male­imides do not show good properties because of the repulsion of the nitro group with the imide ring, which affects the formation of hydrogen bonds (García et al., 2023[García, M. M., Yepes, P. M., Sánchez, H. V. & Hernández, H. C. (2023). Heliyon. 9, e16108.]). Likewise, in a theoretical study of 43 mol­ecules of substituted N-phenyl­male­imides (including 2-nitro­phenyl­male­imide) in different positions using the B3LYP/ 6-311+G (d,p) method, it was found that the torsion angle affects the structural, electronic and energetic properties. Besides, the values of the global and local reactivity descriptors depend on the type of substituent (electron donor or acceptor groups). The substitution of the nitro group in the ortho position has greater global hardness and lower electrophilicity values than the meta and para isomers, suggesting a lower reactivity than for its isomers (Cortes & Castro, 2016[Cortes Hernandez, H. F. & Castro, M. (2016). J. Mol. Struct. 1125, 79-92.]). Continuing with the development of the synthetic methodology for obtaining all the isomers of nitro­phenyl­male­imide (Cortes & Castro, 2016[Cortes Hernandez, H. F. & Castro, M. (2016). J. Mol. Struct. 1125, 79-92.]; Moreno-Fuquen et al., 2003[Moreno-Fuquen, R., Valencia, H., Abonia, R., Kennedy, A. R. & Graham, D. (2003). Acta Cryst. E59, o1717-o1718.], 2006[Moreno-Fuquen, R., Valencia, H., Pardo, Z. D., D'Vries, R. & Kennedy, A. R. (2006). Acta Cryst. E62, o2734-o2735.]), this work presents the synthesis, characterization by single-crystal X-ray diffraction, and analysis of supra­molecular inter­actions by Hirshfeld surface analysis from the structural data. In addition, theoretical calculations of structural and electronic properties were performed by density functional theory (DFT). Finally, the effect of the repulsion of the nitro group that affects the physical and chemical properties was examined.

2. Structural commentary

The asymmetric unit is formed by two independent mol­ecules (Fig. 1[link]). Each mol­ecule consists of fused benzene and male­imide rings. In both conformers, a large dihedral angle is subtended between the rings with values of 73.94 (2)° for the C1–C6 and N1/C7–C10 rings and 55.02 (2)° for the C11–C16 and N2/C17–C20rings. A slight difference is observed in the torsion angle between the aromatic ring and the nitro group in the two conformers with values of 37.8 (3) and 38.8 (2)° for C2—C3—N3—O3 and C12—C13—N4—O8, respectively.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Only one component of the disordered O4 atom is shown for clarity.

3. Supra­molecular features

In the crystal, the two conformers are arranged in lamellae in the (110) plane, with conformers A being linked along the a- and b-axis directions by C2—H2⋯O1, C6—H6⋯O1 and C8—H8⋯O2 hydrogen bonds. Conformers B are linked along the a- and b-axis directions through C15—H15⋯O5, C18—H18⋯O5 and C12—H12⋯O7 inter­actions (Fig. 2[link], Table 1[link]). The formed layers are joined by C5—H5⋯O7 and C19—H19⋯O2 hydrogen bonds.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O7i 0.93 2.64 3.457 (3) 148
C18—H18⋯O5ii 0.93 2.61 3.343 (3) 136
C16—H16⋯O3iii 0.93 2.79 3.210 (3) 109
C15—H15⋯O5iv 0.93 2.68 3.455 (3) 142
C19—H19⋯O2v 0.93 2.61 3.362 (3) 139
C19—H19⋯O6vi 0.93 2.61 3.388 (3) 141
C2—H2⋯O1vii 0.93 2.66 3.358 (3) 133
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, -y+2, -z+1]; (iv) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) [-x+1, -y+1, -z]; (vii) [-x+1, -y+1, -z+1].
[Figure 2]
Figure 2
Conformers A and B of o-nitro­phenyl­male­imide.

4. Hirshfeld surface analysis

A Hirshfeld surface analysis was performed using CrystalExplorer 17.5 software (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). Fig. 3[link] shows the Hirshfeld surface mapped over dnorm for the title compound, where red denotes shorter contacts (shorter than the sum of the van der Waals radii), blue denotes longer contacts (longer than the sum of the van der Waals radii), and white regions indicate contacts equal to the sum of the van der Waals radii. The red region in Fig. 3[link] represents the strongest and most important contacts represented by inter­molecular C—H⋯O hydrogen bonds. To qu­antify the supra­molecular inter­actions that give rise to crystal packing, two-dimensional fingerprint plots (FPP) were generated and these are shown in in Fig. 4[link]. The FPP analysis reveals that H⋯O/O⋯H (54.7%) H⋯C/C⋯H (15.2%), and H⋯H (15.6%) are the most important inter­actions responsible for the largest contributions to the crystal packing of the title compound.

[Figure 3]
Figure 3
The Hirshfeld surface of the title compound mapped over dnorm.
[Figure 4]
Figure 4
The fingerprint plots of the title compound delineated into the various labeled contacts.

5. Computational details and DFT calculations

Computational quantum chemistry calculations were performed for 1-(2-nitro­phen­yl)pyrrole-2,5-dione using density functional theory (DFT). The following levels of theory were used to compare the change in stability, structural and electronic properties: B3LYP/6-311+G(d,p) (Clark et al., 1983[Clark, T., Chandrasekhar, J., Spitznagel, G. W. & Schleyer, P. V. R. (1983). J. Comput. Chem. 4, 294-301.]; Lee & Yang, 1988[Lee, C. R. G. P., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785-789.]; Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]), wB97XD/Def2TZVPP (Weigend, & Ahlrichs, 2005[Weigend, F. & Ahlrichs, R. (2005). Phys. Chem. Chem. Phys. 7, 3297-3305.]; Chai & Head-Gordon, 2008[Chai, J. D. & Head-Gordon, M. (2008). Phys. Chem. Chem. Phys. 10, 6615-6620.]), and LC-wpbe/6-311g(2d,2p) (Clark et al., 1983[Clark, T., Chandrasekhar, J., Spitznagel, G. W. & Schleyer, P. V. R. (1983). J. Comput. Chem. 4, 294-301.]; Vydrov et al., 2006[Vydrov, O. A., Heyd, J., Krukau, A. V. & Scuseria, G. E. (2006). J. Chem. Phys. 125, 074106.]). For all calculations, the quantum chemistry Gaussian 16 (Frisch et al., 2019[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. (2019). Gaussian 16. Revision C. 01, Gaussian, Inc., Wallingford CT, 2019.]) software was employed. The mol­ecular geometries were fully optimized with a threshold of 10−5 a.u. for RMS forces. The optimized structures were confirmed to be true local minima by estimating the normal vibrations. Additionally, for 1-(2-nitro­phen­yl)pyrrole-2,5-dione, the potential energy curve was inspected through variations of the dihedral angle (C, N imide ring and C, C phenyl ring) at inter­vals of 15°, with the reference energy being the angle of 0° between the male­imide and benzene ring. At each point, the three levels of theory were used. The optimized geometry of 1-(2-nitro­phen­yl)pyrrole-2,5-dione is shown in Fig. 5[link]. Some of the structural parameters such as bond lengths, bond angles, and the dihedral angle between the imide and phenyl rings are summarized in Table 2[link].

Table 2
Experimental and calculated bond lengths and angles (Å, °) of 1-(2-nitro­phen­yl)pyrrole-2,5-dione

The numbering scheme used is that shown in Fig. 6[link].

Structural parameter Calculation Method     Experimental
  B3LYP/6–311+G (d,p) wB97XD/Def2TZVPP LC-wpbe/6–311g(2d,2p)  
Bond lengths        
C8—C9, C18—C19 1.332 1.324 1.319 1.304, 1.308
C4—N1, C14—N2 1.416 1.409 1.409 1.416, 1.420
C7—O2, C10—O1, C20—O6, C17—O5 1.204, 1.205 1.197 1.198, 1200 1.200, 1.207
C3—N3, C13—N4 1.480 1.472 1.465 1.460, 1.465
N3—O3, N3—O4, N4—O7, N4—O8 1.221,1.225 1.209, 1.213 1.209, 1.212 1.261, 1.230, 1.222, 1.215
N1—C7, N1—C10, N2—C20, N2—C17 1.411, 1.412 1.399, 1.400 1.394, 1.395 1.388, 1.389, 1.392, 1.394
Mean percentage error (MPE) 0.949 0.516 0.283  
Bond angles        
C4—N1—C7, C4—N1—C10, C14—N2—C20, C14—N2—C17 124.7, 124.9 124.5, 124.7 124.9, 125.0 123.9, 125.6, 124.8, 125.2
O1—C10—C9, O2—C7—C8, O6—C20—C19, O5—C17—C18 128.6, 128.3 128.3, 128.5 128.5, 128.8 129.3, 129.5, 129.1, 129.2
C10—N1—C7, C20—N2—C17 110.2 110.4 110.1 109.6, 109.9
O3—N3—O4, O7—N4—O8 124.9 125.1 124.6 121.4.0, 124.0
N1—C4—C3, N2—C14—C13 123.0 122.7 122.5 122.7, 122.5
N1—C4—C5, N2—C14—C15 118.9 118.9 119.2 119.5, 119.2
Mean percentage error (MPE) 0.354 0.384 0.163  
Torsion angles        
C7—N1—C4—C3, C20—N2—C14—C15 123.2 124.6 125.6 100.0, 126.2
Mean percentage error (MPE) 2.377 1.268 0.475  
[Figure 5]
Figure 5
The optimized geometry of 1-(2-nitro­phen­yl)pyrrole-2,5-dione by (a) B3LYP/6–311+G (d,p); (b) wB97XD/Def2TZVPP and (c) LC-wpbe/6–311 g(2d,2p).

The structures present MPEs (Mean Percentage Errors) lower than 2.5% for the mean of the parameters compared to the three levels of theory evaluated. However, some values show a higher difference. For example, the C=C bond length of the male­imide ring is 0.024–0.011 Å longer compared to the experimental value. This discrepancy can be attributed to the presence of hydrogen-bonding inter­actions in the crystal structure of these mol­ecules. The dihedral angle is a crucial parameter that affects the properties of N-phenyl­male­imide derivatives (Cortes & Castro, 2016[Cortes Hernandez, H. F. & Castro, M. (2016). J. Mol. Struct. 1125, 79-92.]). For this structural parameter, a small difference was observed between the experimental angle and those obtained by DFT calculations. From the results obtained, it is concluded that the calculated structural parameters (lengths, bond angles and dihedral angle) using different levels of DFT theory agree excellently with the experimental data. Moreover, functionals including dispersion (wB97XD) and long-range correction (LC-wpbe) show values closer to those obtained experimentally.

In 1-(2-nitro­phen­yl)pyrrole-2,5-dione, a repulsion is observed between the nitro group (NO2) and the oxygen atoms of the carbonyl group (C=O) of the male­imide ring, leading to a high value of the dihedral angle. To investigate this, the dihedral angle (C20—N2—C14—C15) of N-2-nitro­phenyl­male­imide was varied and the potential energy surface (PES) was determined using the three levels of theory. Fig. 6[link] illustrates a similar trend in the electronic energy values and zero-point energy corrections (ZPE) for all functionals used. For 1-(2-nitro­phen­yl)pyrrole-2,5-dione, a rotational barrier of approximately 150 kcal mol−1 determined with all three functionals was observed. This indicates the presence of a repulsive effect between NO2 and CO, resulting in rotamers with increased stability at specific spatial orientations. Inter­estingly, the angles observed in the crystalline dimers align with the most energetically stable rotamers calculated. Furthermore, the levels of theory incorporating including dispersion and long-range correction exhibit lower energetic values for each rotamer calculated (Fig. 5[link]). These results are in agreement with previous studies using DFT methods (Cortes & Castro, 2016[Cortes Hernandez, H. F. & Castro, M. (2016). J. Mol. Struct. 1125, 79-92.]; Mao et al., 2011[Mao, M., England, J. & Turner, S. (2011). Polymer, 52, 4498-4502.]).

[Figure 6]
Figure 6
PES for 1-(2-nitro­phen­yl)pyrrole-2,5-dione with three DFT methods.

6. Synthesis and crystallization

The synthesis of o-nitro­phenyl­maleimide was performed following the procedure described by Cava et al. (1961[Cava, M. P., Deana, A. A., Muth, K. & Mitchell, M. J. (1961). Org. Synth. 41, 93.]), which involves two steps (Fig. 7[link]). In the first step, 2-nitro­(N-phen­yl)maleanilic acid was obtained by mixing 1.30 g of maleic anhydride and 25 mL of ethyl ether as solvent. Once the maleic anhydride was dissolved, a solution of o-nitro­aniline (1.83 g) in 5 mL of ether was added dropwise through the burette under constant stirring. The reaction mixture was stirred at room temperature for 1 h and then cooled in an ice bath. The product was obtained by vacuum filtration and used for the subsequent step of the synthesis. The reaction yield in the first step was 92%.

[Figure 7]
Figure 7
Reaction scheme for the synthesis of the title compound.

In the second step, N-(2-nitro­phen­yl)male­imide was obtained. In an Erlenmeyer flask, 16 mL of acetic anhydride and 1.30 g of sodium acetate anhydride were mixed. The previously obtained maleanilic acid (2.88 g) was then added to the reaction mixture under constant stirring and heating for 30 min. The reaction mixture was cooled to room temperature. The resulting solid was removed by vacuum filtration, washed three times with 5 mL portions of cool water and 5 mL of petroleum ether. 2.02 g of the compound were obtained in a yield in the second step of 76%. The final percentage yield in the synthesis was 69.85%.

Recrystallization was carried out using chloro­form, resulting in the formation of yellow prismatic crystals.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms were positioned geometrically and refined using a riding model [C—H = 0.93 Å, Uiso(H) = 1.2Ueq(C)]. The positional disorder observed in the nitro group (O4A, O4B) was modeled by setting the occupancy factor to 0.5 for each atom.

Table 3
Experimental details

Crystal data
Chemical formula C10H6N2O4
Mr 218.17
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 14.331 (5), 7.769 (5), 17.558 (5)
β (°) 91.969 (5)
V3) 1953.7 (15)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.12
Crystal size (mm) 0.60 × 0.51 × 0.36
 
Data collection
Diffractometer Xcalibur, Atlas, Gemini
Absorption correction Analytical (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.983, 0.988
No. of measured, independent and observed [I > 2σ(I)] reflections 8808, 5183, 2815
Rint 0.020
(sin θ/λ)max−1) 0.681
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.122, 1.02
No. of reflections 4548
No. of parameters 299
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.21, −0.19
Computer programs: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

1-(2-Nitrophenyl)pyrrole-2,5-dione top
Crystal data top
C10H6N2O4F(000) = 896
Mr = 218.17Dx = 1.483 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 14.331 (5) ÅCell parameters from 2214 reflections
b = 7.769 (5) Åθ = 3.6–29.5°
c = 17.558 (5) ŵ = 0.12 mm1
β = 91.969 (5)°T = 293 K
V = 1953.7 (15) Å3Needle, clear yellow
Z = 80.60 × 0.51 × 0.36 mm
Data collection top
Xcalibur, Atlas, Gemini
diffractometer
Rint = 0.020
Radiation source: Enhance (Mo) X-ray Sourceθmax = 29.0°, θmin = 3.6°
ω scansh = 1817
Absorption correction: analytical
(CrysAlisPro; Agilent, 2012)
k = 710
Tmin = 0.983, Tmax = 0.988l = 1623
8808 measured reflections3 standard reflections every 60 min
5183 independent reflections intensity decay: none
2815 reflections with I > 2σ(I)
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.048 w = 1/[σ2(Fo2) + (0.0388P)2 + 0.6076P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.122(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.21 e Å3
4548 reflectionsΔρmin = 0.19 e Å3
299 parametersExtinction correction: SHELXL2016/6 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0083 (8)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N20.57741 (10)0.7048 (2)0.17503 (8)0.0448 (4)
O60.47003 (10)0.6430 (2)0.07816 (8)0.0720 (5)
O80.42833 (12)0.53297 (19)0.23870 (10)0.0726 (5)
N10.23720 (10)0.4967 (2)0.46284 (9)0.0476 (4)
O50.70442 (11)0.6767 (2)0.25807 (9)0.0809 (5)
N40.38702 (12)0.6666 (2)0.22501 (9)0.0521 (4)
O20.11155 (11)0.4289 (2)0.53495 (10)0.0818 (5)
O70.30425 (11)0.6748 (2)0.20630 (10)0.0807 (5)
O10.33431 (11)0.6568 (3)0.38930 (11)0.0936 (6)
C130.43816 (12)0.8286 (2)0.23277 (10)0.0389 (4)
C140.53010 (12)0.8421 (2)0.21045 (10)0.0396 (4)
N30.37727 (17)0.6062 (3)0.57413 (12)0.0727 (6)
O4A0.3015 (11)0.6806 (17)0.5880 (10)0.129 (5)0.5
C40.30211 (13)0.3785 (3)0.49581 (10)0.0458 (5)
C120.39261 (14)0.9659 (2)0.26434 (11)0.0493 (5)
H120.3305970.9554470.2776130.059*
C150.57553 (14)0.9976 (3)0.22127 (11)0.0505 (5)
H150.6365911.0107330.2059350.061*
C200.54333 (14)0.6143 (3)0.11138 (11)0.0514 (5)
C170.66103 (13)0.6319 (3)0.20183 (12)0.0531 (5)
C30.37054 (14)0.4268 (3)0.54888 (11)0.0523 (5)
C70.14624 (14)0.5155 (3)0.48641 (12)0.0538 (5)
C110.43925 (16)1.1178 (3)0.27605 (12)0.0573 (5)
H110.4094831.2105440.2983100.069*
C160.53049 (16)1.1328 (3)0.25470 (12)0.0598 (6)
H160.5621291.2360080.2630280.072*
C100.25829 (15)0.6291 (3)0.41321 (12)0.0579 (6)
O30.45594 (16)0.6661 (3)0.58559 (13)0.1184 (8)
C190.61368 (15)0.4812 (3)0.09608 (13)0.0609 (6)
H190.6106240.4031190.0559280.073*
C90.17067 (16)0.7259 (3)0.40028 (13)0.0652 (6)
H90.1626900.8192450.3675190.078*
C50.29837 (16)0.2077 (3)0.47417 (13)0.0640 (6)
H50.2538710.1719060.4377460.077*
C180.68104 (16)0.4907 (3)0.14809 (13)0.0639 (6)
H180.7333520.4198270.1509020.077*
C80.10613 (15)0.6601 (3)0.44202 (13)0.0652 (6)
H80.0447190.6983400.4435100.078*
C20.43382 (16)0.3107 (4)0.57970 (13)0.0720 (7)
H20.4806230.3463760.6141460.086*
C10.42634 (19)0.1411 (4)0.55849 (16)0.0805 (8)
H10.4670450.0601910.5801550.097*
C60.3598 (2)0.0902 (3)0.50596 (16)0.0802 (8)
H60.3559320.0247940.4915430.096*
O4B0.3109 (8)0.6914 (10)0.5784 (7)0.076 (2)0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0371 (8)0.0495 (9)0.0474 (9)0.0031 (7)0.0032 (6)0.0111 (8)
O60.0586 (9)0.0980 (13)0.0582 (9)0.0062 (9)0.0134 (7)0.0229 (9)
O80.0853 (12)0.0376 (8)0.0959 (12)0.0044 (8)0.0160 (9)0.0038 (8)
N10.0399 (9)0.0537 (10)0.0494 (9)0.0047 (7)0.0030 (7)0.0106 (8)
O50.0592 (9)0.1078 (14)0.0739 (10)0.0278 (9)0.0224 (8)0.0266 (10)
N40.0487 (10)0.0508 (11)0.0569 (10)0.0118 (8)0.0034 (8)0.0013 (8)
O20.0567 (10)0.0974 (13)0.0925 (12)0.0001 (9)0.0200 (8)0.0336 (11)
O70.0474 (9)0.0968 (13)0.0973 (12)0.0276 (9)0.0077 (8)0.0006 (10)
O10.0575 (10)0.1259 (16)0.0987 (13)0.0074 (10)0.0215 (9)0.0615 (12)
C130.0386 (9)0.0354 (9)0.0425 (9)0.0017 (8)0.0025 (7)0.0041 (8)
C140.0363 (9)0.0416 (10)0.0405 (9)0.0002 (8)0.0027 (7)0.0025 (8)
N30.0769 (15)0.0820 (16)0.0584 (12)0.0005 (14)0.0112 (11)0.0154 (11)
O4A0.135 (9)0.133 (9)0.119 (7)0.036 (6)0.025 (5)0.042 (6)
C40.0436 (10)0.0491 (11)0.0451 (10)0.0054 (9)0.0065 (8)0.0069 (9)
C120.0442 (11)0.0474 (11)0.0566 (12)0.0075 (9)0.0058 (9)0.0066 (10)
C150.0451 (11)0.0543 (12)0.0522 (11)0.0121 (10)0.0026 (8)0.0039 (10)
C200.0498 (11)0.0568 (12)0.0476 (11)0.0055 (10)0.0018 (9)0.0089 (10)
C170.0433 (11)0.0624 (13)0.0533 (12)0.0083 (10)0.0013 (9)0.0057 (10)
C30.0533 (12)0.0610 (13)0.0428 (10)0.0100 (10)0.0022 (9)0.0003 (10)
C70.0421 (11)0.0620 (13)0.0575 (12)0.0005 (10)0.0046 (9)0.0073 (11)
C110.0709 (14)0.0407 (11)0.0609 (13)0.0093 (11)0.0090 (11)0.0009 (10)
C160.0753 (15)0.0423 (11)0.0618 (13)0.0159 (11)0.0035 (11)0.0075 (10)
C100.0515 (12)0.0702 (14)0.0520 (12)0.0017 (11)0.0024 (9)0.0176 (11)
O30.1028 (16)0.1317 (19)0.1193 (17)0.0274 (14)0.0180 (13)0.0397 (14)
C190.0650 (14)0.0576 (13)0.0609 (13)0.0005 (11)0.0105 (11)0.0191 (11)
C90.0606 (14)0.0675 (15)0.0669 (14)0.0084 (12)0.0075 (11)0.0223 (12)
C50.0690 (15)0.0547 (13)0.0681 (14)0.0004 (11)0.0015 (11)0.0029 (12)
C180.0601 (14)0.0630 (14)0.0690 (14)0.0163 (11)0.0096 (11)0.0083 (12)
C80.0474 (12)0.0747 (15)0.0735 (14)0.0156 (12)0.0007 (11)0.0109 (13)
C20.0615 (14)0.100 (2)0.0540 (13)0.0235 (14)0.0013 (10)0.0112 (14)
C10.0797 (18)0.086 (2)0.0766 (17)0.0393 (16)0.0147 (14)0.0276 (16)
C60.095 (2)0.0514 (14)0.0954 (19)0.0169 (14)0.0168 (16)0.0094 (14)
O4B0.081 (5)0.040 (3)0.106 (6)0.015 (3)0.021 (4)0.014 (3)
Geometric parameters (Å, º) top
N2—C141.419 (2)C15—H150.9300
N2—C201.394 (2)C15—C161.375 (3)
N2—C171.393 (2)C20—C191.475 (3)
O6—C201.205 (2)C17—C181.481 (3)
O8—N41.215 (2)C3—C21.377 (3)
N1—C41.416 (2)C7—C81.473 (3)
N1—C71.389 (2)C11—H110.9300
N1—C101.388 (3)C11—C161.377 (3)
O5—C171.200 (2)C16—H160.9300
N4—O71.222 (2)C10—C91.475 (3)
N4—C131.460 (2)C19—H190.9300
O2—C71.207 (2)C19—C181.308 (3)
O1—C101.200 (2)C9—H90.9300
C13—C141.391 (2)C9—C81.304 (3)
C13—C121.377 (3)C5—H50.9300
C14—C151.382 (3)C5—C61.373 (3)
N3—O4A1.261 (15)C18—H180.9300
N3—C31.465 (3)C8—H80.9300
N3—O31.230 (3)C2—H20.9300
N3—O4B1.164 (11)C2—C11.372 (4)
C4—C31.381 (3)C1—H10.9300
C4—C51.381 (3)C1—C61.362 (4)
C12—H120.9300C6—H60.9300
C12—C111.369 (3)
C20—N2—C14124.81 (15)C2—C3—C4122.0 (2)
C17—N2—C14125.19 (15)N1—C7—C8106.01 (18)
C17—N2—C20109.84 (16)O2—C7—N1124.43 (19)
C7—N1—C4123.81 (16)O2—C7—C8129.5 (2)
C10—N1—C4125.65 (16)C12—C11—H11120.2
C10—N1—C7109.61 (16)C12—C11—C16119.69 (19)
O8—N4—O7124.03 (18)C16—C11—H11120.2
O8—N4—C13118.58 (16)C15—C16—C11121.02 (19)
O7—N4—C13117.37 (18)C15—C16—H16119.5
C14—C13—N4121.04 (16)C11—C16—H16119.5
C12—C13—N4117.50 (16)N1—C10—C9105.79 (18)
C12—C13—C14121.45 (17)O1—C10—N1124.88 (19)
C13—C14—N2122.56 (16)O1—C10—C9129.3 (2)
C15—C14—N2119.17 (16)C20—C19—H19125.5
C15—C14—C13118.24 (17)C18—C19—C20109.02 (19)
O4A—N3—C3116.5 (7)C18—C19—H19125.5
O3—N3—O4A125.8 (7)C10—C9—H9125.4
O3—N3—C3117.4 (2)C8—C9—C10109.3 (2)
O4B—N3—C3121.0 (4)C8—C9—H9125.4
O4B—N3—O3121.4 (5)C4—C5—H5119.7
C3—C4—N1122.75 (18)C6—C5—C4120.6 (2)
C5—C4—N1119.45 (18)C6—C5—H5119.7
C5—C4—C3117.80 (19)C17—C18—H18125.3
C13—C12—H12120.2C19—C18—C17109.39 (19)
C11—C12—C13119.52 (18)C19—C18—H18125.3
C11—C12—H12120.2C7—C8—H8125.5
C14—C15—H15120.0C9—C8—C7108.97 (19)
C16—C15—C14120.04 (19)C9—C8—H8125.5
C16—C15—H15120.0C3—C2—H2120.7
N2—C20—C19106.06 (17)C1—C2—C3118.6 (2)
O6—C20—N2124.78 (19)C1—C2—H2120.7
O6—C20—C19129.16 (19)C2—C1—H1119.7
N2—C17—C18105.62 (17)C6—C1—C2120.6 (2)
O5—C17—N2125.12 (19)C6—C1—H1119.7
O5—C17—C18129.25 (19)C5—C6—H6119.8
C4—C3—N3120.01 (19)C1—C6—C5120.4 (2)
C2—C3—N3118.0 (2)C1—C6—H6119.8
N2—C14—C15—C16179.26 (18)C4—N1—C10—C9174.82 (18)
N2—C20—C19—C181.9 (3)C4—C3—C2—C12.1 (3)
N2—C17—C18—C191.3 (3)C4—C5—C6—C11.1 (4)
O6—C20—C19—C18177.2 (2)C12—C13—C14—N2177.44 (17)
O8—N4—C13—C1438.8 (2)C12—C13—C14—C150.5 (3)
O8—N4—C13—C12139.90 (19)C12—C11—C16—C150.4 (3)
N1—C4—C3—N30.9 (3)C20—N2—C14—C1351.8 (3)
N1—C4—C3—C2179.20 (19)C20—N2—C14—C15126.1 (2)
N1—C4—C5—C6179.2 (2)C20—N2—C17—O5176.2 (2)
N1—C7—C8—C93.9 (3)C20—N2—C17—C182.5 (2)
N1—C10—C9—C83.0 (3)C20—C19—C18—C170.4 (3)
O5—C17—C18—C19177.4 (3)C17—N2—C14—C13123.1 (2)
N4—C13—C14—N23.9 (3)C17—N2—C14—C1559.0 (3)
N4—C13—C14—C15178.18 (16)C17—N2—C20—O6176.4 (2)
N4—C13—C12—C11176.92 (17)C17—N2—C20—C192.8 (2)
O2—C7—C8—C9174.7 (2)C3—C4—C5—C61.3 (3)
O7—N4—C13—C14142.47 (18)C3—C2—C1—C62.4 (4)
O7—N4—C13—C1238.8 (2)C7—N1—C4—C3100.0 (2)
O1—C10—C9—C8174.7 (3)C7—N1—C4—C580.6 (3)
C13—C14—C15—C161.3 (3)C7—N1—C10—O1172.4 (2)
C13—C12—C11—C161.3 (3)C7—N1—C10—C95.5 (2)
C14—N2—C20—O60.9 (3)C10—N1—C4—C367.8 (3)
C14—N2—C20—C19178.29 (17)C10—N1—C4—C5111.6 (2)
C14—N2—C17—O50.7 (3)C10—N1—C7—O2172.8 (2)
C14—N2—C17—C18178.04 (18)C10—N1—C7—C85.9 (2)
C14—C13—C12—C111.8 (3)C10—C9—C8—C70.5 (3)
C14—C15—C16—C111.7 (3)O3—N3—C3—C4142.3 (2)
N3—C3—C2—C1177.8 (2)O3—N3—C3—C237.8 (3)
O4A—N3—C3—C443.2 (9)C5—C4—C3—N3179.7 (2)
O4A—N3—C3—C2136.7 (9)C5—C4—C3—C20.2 (3)
C4—N1—C7—O23.3 (3)C2—C1—C6—C50.9 (4)
C4—N1—C7—C8175.37 (18)O4B—N3—C3—C432.9 (8)
C4—N1—C10—O13.1 (4)O4B—N3—C3—C2147.0 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O7i0.932.643.457 (3)148
C18—H18···O5ii0.932.613.343 (3)136
C16—H16···O3iii0.932.793.210 (3)109
C15—H15···O5iv0.932.683.455 (3)142
C19—H19···O2v0.932.613.362 (3)139
C19—H19···O6vi0.932.613.388 (3)141
C2—H2···O1vii0.932.663.358 (3)133
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2; (iii) x+1, y+2, z+1; (iv) x+3/2, y+1/2, z+1/2; (v) x+1/2, y+1/2, z1/2; (vi) x+1, y+1, z; (vii) x+1, y+1, z+1.
Experimental and calculated bond lengths and angles (Å, °) of 1-(2-nitrophenyl)pyrrole-2,5-dione top
The numbering scheme used is that shown in Fig 6.
Structural parameterCalculation MethodExperimental
B3LYP/6-311+G (d,p)wB97XD/Def2TZVPPLC-wpbe/6-311g(2d,2p)
Bond lengths
C8—C9, C18—C191.3321.3241.3191.304, 1.308
C4—N1, C14—N21.4161.4091.4091.416, 1.420
C7—O2, C10—O1, C20—O6, C17—O51.204, 1.2051.1971.198, 12001.200, 1.207
C3—N3, C13—N41.4801.4721.4651.460, 1.465
N3—O3, N3—O4, N4—O7, N4—O81.221,1.2251.209, 1.2131.209, 1.2121.261, 1.230, 1.222, 1.215
N1—C7, N1—C7, N2—C20, N2—C171.411, 1.4121.399, 1.4001.394, 1.3951.388, 1.389, 1.392, 1.394
Mean percentage error (MPE)0.9490.5160.283
Bond angles
C4—N1—C7, C4—N1—C10, C14—N2—C20, C14—N2—C17124.7, 124.9124.5, 124.7124.9, 125.0123.9, 125.6, 124.8, 125.2
O1—C10—C9, O2—C7—C8, O6—C20—C19, O5—C17—C18128.6, 128.3128.3, 128.5128.5, 128.8129.3, 129.5, 129.1, 129.2
C10—N1—C7, C20—N2—C17110.2110.4110.1109.6, 109.9
O3—N3—O4, O7—N4—O8124.9125.1124.6121.4.0, 124.0
N1—C4—C3, N2—C14—C13123.0122.7122.5122.7, 122.5
N1—C4—C5, N2—C14—C15118.9118.9119.2119.5, 119.2
Mean percentage error (MPE)0.3540.3840.163
Torsion angles
C7—N1—C4—C3, C20—N2—C14—C15123.2124.6125.6100.0, 126.2
Mean percentage error (MPE)2.3771.2680.475
 

Acknowledgements

The authors acknowledge the Universidad Tecnologica de Pereira (UTP) and Vicerrectoria de Investigaciónes, Innovación y Extensión from UTP for support of project 9–23-1. RD is grateful to the Universidad del Cauca for support.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAli, B., Kanda Kupa, L. D., Heluany, C. S., Drewes, C. C., Vasconcelos, S. N. S., Farsky, S. H. P. & Stefani, H. A. (2017). Bioorg. Chem. 72, 199–207.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBastin, L. D., Nigam, M., Martinus, S., Maloney, J. E., Benyack, L. L. & Gainer, B. (2019). Green Chemistry Letters and Reviews, 12, 2, 127–135.  Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationCava, M. P., Deana, A. A., Muth, K. & Mitchell, M. J. (1961). Org. Synth. 41, 93.  Google Scholar
First citationChai, J. D. & Head-Gordon, M. (2008). Phys. Chem. Chem. Phys. 10, 6615–6620.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChen, C. Y., Chang, P. C., Wang, T. H. & Wang, T. V. (2017). Leuk. Res. 62, 64–69.  Web of Science CrossRef CAS PubMed Google Scholar
First citationClark, T., Chandrasekhar, J., Spitznagel, G. W. & Schleyer, P. V. R. (1983). J. Comput. Chem. 4, 294–301.  CrossRef CAS Web of Science Google Scholar
First citationCortes Hernandez, H. F. & Castro, M. (2016). J. Mol. Struct. 1125, 79–92.  Web of Science CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. (2019). Gaussian 16. Revision C. 01, Gaussian, Inc., Wallingford CT, 2019.  Google Scholar
First citationGalkin, K. I., Sandulenko, I. V. & Polezhaev, A. V. (2022). Processes, 10, 30, 1–19.  Google Scholar
First citationGarcía, M. M., Yepes, P. M., Sánchez, H. V. & Hernández, H. C. (2023). Heliyon. 9, e16108.  Web of Science PubMed Google Scholar
First citationHargreaves, M. K., Pritchard, J. G. & Dave, H. R. (1970). Chem. Rev. 70, 439–469.  CrossRef CAS Web of Science Google Scholar
First citationKumar, M. S. (2022). International Journal of Engineering Research & Technology (IJERT), 11, 12, 1–9.  Google Scholar
First citationKumar, M. S. & Jagrati, M. (2023). J. Adv. Sci. Res. 14, 02, 55–70.  Google Scholar
First citationLee, C. R. G. P., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785–789.  CrossRef CAS Web of Science Google Scholar
First citationMao, M., England, J. & Turner, S. (2011). Polymer, 52, 4498–4502.  Web of Science CrossRef CAS Google Scholar
First citationMejia, G., Wang, Y., Huang, Z., Shi, Q. & Zhang, Z. (2021). Chin. J. Chem. 39, 3177–3187.  Web of Science CrossRef CAS Google Scholar
First citationMoreno-Fuquen, R., Valencia, H., Abonia, R., Kennedy, A. R. & Graham, D. (2003). Acta Cryst. E59, o1717–o1718.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoreno-Fuquen, R., Valencia, H., Pardo, Z. D., D'Vries, R. & Kennedy, A. R. (2006). Acta Cryst. E62, o2734–o2735.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMutlaq, D. Z., Ali, A. A. A.-S. & Al-Asadi, R. H. (2021). Egypt. Pharm. J. 20, 303–312.  Google Scholar
First citationPaprocka, R., Pazderski, L., Mazur, L., Wiese-Szadkowska, M., Kutkowska, J., Nowak, M. & Helmin-Basa, A. (2022). Molecules, 27, 2891, 1–18.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, Q., Zhang, Y., Huang, Z., Zhou, N., Zhang, Z. & Zhu, X. (2020). Polym. J. 52, 21–31.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVydrov, O. A., Heyd, J., Krukau, A. V. & Scuseria, G. E. (2006). J. Chem. Phys. 125, 074106.  Web of Science CrossRef PubMed Google Scholar
First citationWeigend, F. & Ahlrichs, R. (2005). Phys. Chem. Chem. Phys. 7, 3297–3305.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds