research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-(benzo[d]thia­zol-2-yl)-1,2-di­methyl-1H-pyrazol-3(2H)-one

crossmark logo

aChemistry Department, Faculty of Science, Helwan University, Cairo, Egypt, and bInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-braunschweig.de

Edited by C. Schulzke, Universität Greifswald, Germany (Received 22 January 2024; accepted 7 February 2024; online 16 February 2024)

In the title compound, C12H11N3OS, the inter­planar angle between the pyrazole and benzo­thia­zole rings is 3.31 (7)°. In the three-dimensional mol­ecular packing, the carbonyl oxygen acts as acceptor to four C—H donors (with one H⋯O as short as 2.25 Å), while one methyl hydrogen is part of the three-centre system H⋯(S, O). A double layer structure parallel to ([\overline{1}]01) can be recognized as a subsection of the packing.

1. Chemical context

Many natural heterocyclic compounds and pharmaceuticals involve benzo­thia­zole moieties and derivatives thereof, which are among the most significant heterocyclic compounds utilized in medicinal chemistry (Bonde et al., 2015[Bonde, C., Vedala, D. & Bonde, S. (2015). J. Pharm. Res. 9, 573-580.]). In the search for novel and significant therapeutic drugs, benzo­thia­zoles have a wide range of established pharmacological properties (Wang et al., 2009[Wang, X., Sarris, K., Kage, K., Zhang, D., Brown, S. P., Kolasa, T., Surowy, C., El Kouhen, O. F., Muchmore, S. W., Brioni, J. D. & Stewart, A. O. (2009). J. Med. Chem. 52, 170-180.]), and their derivatives include several structural variants (Rana et al., 2008[Rana, A., Siddiqui, N., Khan, S. A., Ehtaishamul Haque, S. & Bhat, M. A. (2008). Eur. J. Med. Chem. 43, 1114-1122.]). The application of benzo­thia­zole derivatives in current research and related discoveries is a well-appreciated and quickly growing area of medicinal chemistry (Abdallah et al., 2023[Abdallah, A. E. M., Elgemeie, G. H. & Jones, P. G. (2023). Acta Cryst. E79, 441-445.]). As an example, several drugs based on benzo­thia­zole derivatives have been widely utilized in clinical practice to treat a variety of disorders, with a marked therapeutic efficacy (Huang et al., 2009[Huang, Q., Mao, J., Wan, B., Wang, Y., Brun, R., Franzblau, S. G. & Kozikowski, A. P. (2009). J. Med. Chem. 52, 6757-6767.]).

In the course of our studies, intended to develop syntheses of benzo­thia­zole-based heterocycles for use as pharmaceuticals and pigments (Ahmed et al., 2022[Ahmed, E. A., Elgemeie, G. H. & Ahmed, K. A. (2022). Pigm. Resin Technol. 51, 1-5.], 2023[Ahmed, E. A., Elgemeie, G. H. & Azzam, R. A. (2023). Synth. Commun. 53, 386-401.]), a variety of 2-pyrimidyl-, 2-pyridyl- and 2-thienyl-benzo­thia­zole compounds with encouraging cytotoxic action have recently been synthesized and their biological activity reported (Azzam et al., 2017[Azzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017). Acta Cryst. E73, 1820-1822.], 2019[Azzam, R. A., Elgemeie, G. H., Osman, R. R. & Jones, P. G. (2019). Acta Cryst. E75, 367-371.], 2022[Azzam, R. A., Elgemeie, G. H., Elsayed, R. E., Gad, N. M. & Jones, P. G. (2022). Acta Cryst. E78, 369-372.]).

[Scheme 1]

In line with these findings and our prior research (Metwally et al., 2022a[Metwally, N. H., Elgemeie, G. H. & Jones, P. G. (2022a). Acta Cryst. E78, 445-448.],b[Metwally, N. H., Elgemeie, G. H. & Fahmy, F. G. (2022b). Egypt. J. Chem. 65, 679-686.]), the aim of the current investigation was to design and create benzo­thia­zolyl-pyrazole hybrids. The reaction of 2-benzo­thia­zolyl acetohydrazide 1 with N,N-di­methyl­formamide dimethyl acetal 2 at room temperature led to the synthesis of the unexpected benzo­thia­zole-2-pyrazole derivative 3 in good yield (Fig. 1[link]). The mechanism for the formation of 3 is currently under investigation. In order to establish the structure of the product unambiguously, its crystal structure was determined and is reported here.

[Figure 1]
Figure 1
The synthesis of the title compound 3.

2. Structural commentary

The structure of compound 3 is shown in Fig. 2[link], with selected mol­ecular dimensions in Table 1[link]. These may be regarded as normal, within the constraints of linked five-membered rings that necessarily lead to narrow angles within the rings and wide exocyclic angles [up to 127.48 (11)° for C10—C8—C2]. The mol­ecule is essentially planar (except for the methyl hydrogens); the least-squares plane through all non-H atoms has an r.m.s.d. of only 0.037 Å. If the ring systems are regarded separately, the pyrazole and benzo­thia­zole rings have r.m.s.d. values of 0.006 and 0.017 Å, respectively, and an inter­planar angle of 3.31 (7)°. The coplanarity leads to a short intra­molecular contact S1⋯O1 = 2.9797 (10) Å.

Table 1
Selected geometric parameters (Å, °)

S1—C7A 1.7374 (13) N2—C10 1.3326 (16)
S1—C2 1.7673 (12) N3—C2 1.3051 (16)
O1—C9 1.2468 (15) N3—C3A 1.3879 (16)
N1—N2 1.3766 (14) C2—C8 1.4348 (17)
N1—C9 1.3772 (16) C3A—C7A 1.4058 (18)
       
C7A—S1—C2 88.85 (6) C7—C7A—S1 128.77 (11)
N2—N1—C9 109.59 (10) C3A—C7A—S1 109.37 (9)
C10—N2—N1 108.87 (10) C10—C8—C2 127.48 (11)
C2—N3—C3A 110.45 (11) C10—C8—C9 107.06 (11)
N3—C2—C8 124.55 (11) C2—C8—C9 125.46 (11)
N3—C2—S1 115.65 (9) O1—C9—N1 123.88 (11)
C8—C2—S1 119.80 (9) O1—C9—C8 130.92 (12)
N3—C3A—C4 125.04 (12) N1—C9—C8 105.19 (10)
N3—C3A—C7A 115.66 (11) N2—C10—C8 109.28 (11)
[Figure 2]
Figure 2
The structure of compound 3 in the crystal. Ellipsoids correspond to 50% probability levels.

3. Supra­molecular features

The mol­ecular packing involves five short contacts, four C—H⋯O1 and one C—H⋯S1, that are acceptably linear and may be regarded as `weak' hydrogen bonds (Table 2[link]). The donor atom H12B is part of a three-centre system with acceptors O1 and S1. The contact H12C⋯O1 is remarkably short at 2.25 Å. Additionally, there is a short contact S1⋯N1(x, [{3\over 2}] − y, [{1\over 2}] + z) = 3.4078 (11) Å. A section of the packing is shown in Fig. 3[link]; a ribbon parallel to the b axis and its anti­parallel counterpart are shown, which form a double layer parallel to ([\overline{1}]01). However, the mol­ecules are further linked parallel to the view direction to give a three-dimensional pattern. There are no CentCent contacts shorter than 3.75 Å and no H⋯Cent contacts shorter than 2.99 Å (Cent = ring centroids).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O1i 0.95 2.38 3.2055 (15) 145
C11—H11A⋯O1ii 0.98 2.51 3.4368 (16) 158
C12—H12B⋯S1i 0.98 2.86 3.7142 (13) 146
C12—H12B⋯O1i 0.98 2.60 3.4696 (16) 148
C12—H12C⋯O1ii 0.98 2.25 3.1966 (16) 163
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 3]
Figure 3
A section of the three-dimensional packing of compound 3: two anti­parallel ribbons viewed perpendicular to ([\overline{1}]01). Contacts to O1 are shown as thick dashed lines and those to S1 as thin dashed lines. Hydrogen atoms not involved in hydrogen bonding are omitted. The atom labels indicate the asymmetric unit.

4. Database survey

The search employed the routine ConQuest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]), part of Version 2023.3.0 of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]).

A search for other structures containing a linked pyrazolone/benzo­thia­zole unit as in 3 led to three hits: AZUPIV, with 1-Me, 2-Ph and 5-Me substituents on the pyrazolone ring (Chakib et al., 2011[Chakib, I., Zerzouf, A., Rodi, Y. K., Essassi, E. M. & Ng, S. W. (2011). Acta Cryst. E67, o2700.]), VABFIP (1-allyl, 2-Ph, 5-Me; Chakib et al., 2010a[Chakib, I., Zerzouf, A., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010a). Acta Cryst. E66, o2842.]) and VABFOV (1-propynyl, 2-Ph, 5-Me; Chakib et al., 2010b[Chakib, I., Zerzouf, A., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010b). Acta Cryst. E66, o2843.]). The inter­planar angles in these compounds are 6.1 (1), 7.9 (2) and 4.7 (1)°, respectively.

5. Synthesis and crystallization

A mixture of 2-benzo­thia­zolyl acetohydrazide 1 (0.01 mol) and N,N-di­methyl­formamide dimethyl acetal 2 (0.02 mol) was stirred at room temperature for 1 h. The excess acetal was distilled off under reduced pressure; the solid product was washed with a mixture of petroleum ether and diethyl ether (1:1) and then crystallized from ethanol.

Yellow solid; yield 85%; m.p. 414 K; IR (KBr, cm−1): ν 3068 (aromatic CH), 2930 (methyl CH), 1620 (C=O), 1598 (C=N); 1H NMR (400 MHz, DMSO-d6): δ 3.80 (s, 3H, CH3), 4.01 (s, 3H, CH3), 7.34 (t, J = 7.2 Hz, 1H, benzo­thia­zole H), 7.46 (t, J = 7.2 Hz, 1H, benzo­thia­zole H), 7.89 (d, J = 7.6 Hz, 1H, benzo­thia­zole H), 8.03 (d, J = 8.0 Hz, 1H, benzo­thia­zole H), 8.35 (s, 1H, pyrazolone H). Analysis calculated for C12H11N3OS (245.30): C 58.76, H 4.52, N 17.13, S 13.07. Found C 58.66, H 4.40, N 17.08, S 13.14%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The methyl groups were included as idealized rigid groups (C—H 0.98 Å, H—C—H 109.5°) allowed to rotate but not tip (command ‘AFIX 137’). Other hydrogen atoms were included using a riding model starting from calculated positions (C—H = 0.95 Å). The Uiso(H) values were fixed at 1.5 × Ueq of the parent carbon atoms for the methyl group and 1.2 × Ueq for other hydrogens. One reflection clearly in error (Fo2 >> Fc2) was omitted from the refinement.

Table 3
Experimental details

Crystal data
Chemical formula C12H11N3OS
Mr 245.30
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 8.78308 (12), 11.66215 (16), 11.00169 (15)
β (°) 97.9460 (12)
V3) 1116.08 (3)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.47
Crystal size (mm) 0.15 × 0.10 × 0.03
 
Data collection
Diffractometer XtaLAB Synergy
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.731, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 46018, 2367, 2280
Rint 0.037
(sin θ/λ)max−1) 0.634
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.081, 1.07
No. of reflections 2367
No. of parameters 156
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.28, −0.36
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and XP (Bruker, 1998[Bruker (1998). XP. Bruker Analytical X-Ray Instruments, Madison, Wisconsin, USA.]).

Supporting information


Computing details top

4-(Benzo[d]thiazol-2-yl)-1,2-dimethyl-1H-pyrazol-3(2H)-one top
Crystal data top
C12H11N3OSF(000) = 512
Mr = 245.30Dx = 1.460 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 8.78308 (12) ÅCell parameters from 32695 reflections
b = 11.66215 (16) Åθ = 5.1–77.4°
c = 11.00169 (15) ŵ = 2.47 mm1
β = 97.9460 (12)°T = 100 K
V = 1116.08 (3) Å3Plate, pale yellow
Z = 40.15 × 0.10 × 0.03 mm
Data collection top
XtaLAB Synergy
diffractometer
2367 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source2280 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.037
Detector resolution: 10.0000 pixels mm-1θmax = 77.6°, θmin = 5.1°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
k = 1414
Tmin = 0.731, Tmax = 1.000l = 1313
46018 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0434P)2 + 0.4017P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
2367 reflectionsΔρmax = 0.28 e Å3
156 parametersΔρmin = 0.36 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.63680 (4)0.71933 (2)0.56971 (3)0.02849 (11)
O10.40109 (11)0.79924 (7)0.36636 (8)0.0311 (2)
N10.33946 (12)0.67380 (9)0.20375 (9)0.0266 (2)
N20.39212 (12)0.56914 (8)0.16939 (9)0.0268 (2)
N30.73240 (12)0.52608 (9)0.48701 (10)0.0288 (2)
C20.63324 (14)0.60863 (10)0.45966 (11)0.0259 (2)
C3A0.82145 (14)0.54730 (11)0.59907 (12)0.0286 (3)
C40.94097 (16)0.47710 (12)0.65366 (13)0.0350 (3)
H40.9643870.4073420.6156760.042*
C51.02447 (16)0.51076 (13)0.76368 (13)0.0382 (3)
H51.1064430.4639640.8009050.046*
C60.98995 (16)0.61274 (13)0.82092 (13)0.0378 (3)
H61.0494790.6344610.8961260.045*
C70.87033 (16)0.68266 (12)0.76977 (12)0.0339 (3)
H70.8456880.7512230.8094200.041*
C7A0.78751 (14)0.64905 (11)0.65836 (11)0.0284 (3)
C80.52570 (14)0.61387 (10)0.34907 (11)0.0258 (2)
C90.42066 (14)0.70641 (10)0.31446 (11)0.0258 (2)
C100.50225 (14)0.53273 (10)0.25637 (11)0.0267 (3)
H100.5561980.4622390.2550400.032*
C110.22779 (15)0.74119 (11)0.12468 (12)0.0313 (3)
H11A0.2602320.7478130.0432430.047*
H11B0.2204120.8178290.1599250.047*
H11C0.1272220.7034880.1173980.047*
C120.32435 (15)0.51086 (11)0.05843 (12)0.0301 (3)
H12A0.2145160.4985380.0612180.045*
H12B0.3752580.4367170.0522790.045*
H12C0.3375150.5579480.0131580.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.03690 (19)0.02172 (17)0.02606 (17)0.00157 (11)0.00148 (12)0.00057 (10)
O10.0411 (5)0.0228 (4)0.0290 (4)0.0033 (4)0.0038 (4)0.0025 (3)
N10.0317 (5)0.0205 (5)0.0273 (5)0.0015 (4)0.0028 (4)0.0008 (4)
N20.0334 (5)0.0198 (5)0.0267 (5)0.0006 (4)0.0030 (4)0.0013 (4)
N30.0314 (5)0.0253 (5)0.0295 (5)0.0014 (4)0.0038 (4)0.0007 (4)
C20.0308 (6)0.0210 (5)0.0265 (6)0.0019 (4)0.0062 (5)0.0007 (4)
C3A0.0287 (6)0.0278 (6)0.0294 (6)0.0021 (5)0.0044 (5)0.0023 (5)
C40.0338 (6)0.0336 (7)0.0371 (7)0.0045 (5)0.0033 (5)0.0025 (5)
C50.0315 (7)0.0431 (8)0.0386 (7)0.0022 (6)0.0002 (5)0.0073 (6)
C60.0355 (7)0.0437 (8)0.0321 (7)0.0076 (6)0.0025 (5)0.0034 (6)
C70.0380 (7)0.0318 (7)0.0312 (6)0.0065 (5)0.0025 (5)0.0005 (5)
C7A0.0309 (6)0.0258 (6)0.0286 (6)0.0034 (5)0.0046 (5)0.0037 (5)
C80.0316 (6)0.0204 (5)0.0258 (6)0.0008 (4)0.0051 (5)0.0010 (4)
C90.0305 (6)0.0228 (6)0.0247 (6)0.0013 (4)0.0054 (5)0.0015 (4)
C100.0324 (6)0.0206 (6)0.0273 (6)0.0003 (5)0.0045 (5)0.0017 (5)
C110.0353 (7)0.0270 (6)0.0303 (6)0.0049 (5)0.0000 (5)0.0002 (5)
C120.0374 (7)0.0239 (6)0.0281 (6)0.0029 (5)0.0014 (5)0.0023 (5)
Geometric parameters (Å, º) top
S1—C7A1.7374 (13)C5—C61.398 (2)
S1—C21.7673 (12)C5—H50.9500
O1—C91.2468 (15)C6—C71.386 (2)
N1—N21.3766 (14)C6—H60.9500
N1—C91.3772 (16)C7—C7A1.3923 (18)
N1—C111.4493 (16)C7—H70.9500
N2—C101.3326 (16)C8—C101.3856 (17)
N2—C121.4511 (15)C8—C91.4365 (17)
N3—C21.3051 (16)C10—H100.9500
N3—C3A1.3879 (16)C11—H11A0.9800
C2—C81.4348 (17)C11—H11B0.9800
C3A—C41.3995 (18)C11—H11C0.9800
C3A—C7A1.4058 (18)C12—H12A0.9800
C4—C51.383 (2)C12—H12B0.9800
C4—H40.9500C12—H12C0.9800
C7A—S1—C288.85 (6)C7A—C7—H7121.1
N2—N1—C9109.59 (10)C7—C7A—C3A121.85 (12)
N2—N1—C11122.76 (10)C7—C7A—S1128.77 (11)
C9—N1—C11127.29 (10)C3A—C7A—S1109.37 (9)
C10—N2—N1108.87 (10)C10—C8—C2127.48 (11)
C10—N2—C12128.87 (10)C10—C8—C9107.06 (11)
N1—N2—C12122.15 (10)C2—C8—C9125.46 (11)
C2—N3—C3A110.45 (11)O1—C9—N1123.88 (11)
N3—C2—C8124.55 (11)O1—C9—C8130.92 (12)
N3—C2—S1115.65 (9)N1—C9—C8105.19 (10)
C8—C2—S1119.80 (9)N2—C10—C8109.28 (11)
N3—C3A—C4125.04 (12)N2—C10—H10125.4
N3—C3A—C7A115.66 (11)C8—C10—H10125.4
C4—C3A—C7A119.29 (12)N1—C11—H11A109.5
C5—C4—C3A119.03 (13)N1—C11—H11B109.5
C5—C4—H4120.5H11A—C11—H11B109.5
C3A—C4—H4120.5N1—C11—H11C109.5
C4—C5—C6120.93 (13)H11A—C11—H11C109.5
C4—C5—H5119.5H11B—C11—H11C109.5
C6—C5—H5119.5N2—C12—H12A109.5
C7—C6—C5121.11 (13)N2—C12—H12B109.5
C7—C6—H6119.4H12A—C12—H12B109.5
C5—C6—H6119.4N2—C12—H12C109.5
C6—C7—C7A117.78 (13)H12A—C12—H12C109.5
C6—C7—H7121.1H12B—C12—H12C109.5
C9—N1—N2—C101.41 (13)C4—C3A—C7A—S1179.30 (10)
C11—N1—N2—C10174.94 (11)C2—S1—C7A—C7177.82 (13)
C9—N1—N2—C12177.72 (11)C2—S1—C7A—C3A0.88 (9)
C11—N1—N2—C128.75 (17)N3—C2—C8—C103.3 (2)
C3A—N3—C2—C8178.92 (11)S1—C2—C8—C10176.73 (10)
C3A—N3—C2—S11.06 (13)N3—C2—C8—C9176.88 (11)
C7A—S1—C2—N31.17 (10)S1—C2—C8—C93.10 (17)
C7A—S1—C2—C8178.81 (10)N2—N1—C9—O1177.75 (11)
C2—N3—C3A—C4178.36 (12)C11—N1—C9—O14.6 (2)
C2—N3—C3A—C7A0.34 (15)N2—N1—C9—C81.34 (13)
N3—C3A—C4—C5177.54 (13)C11—N1—C9—C8174.50 (11)
C7A—C3A—C4—C51.12 (19)C10—C8—C9—O1178.19 (13)
C3A—C4—C5—C60.6 (2)C2—C8—C9—O11.9 (2)
C4—C5—C6—C70.5 (2)C10—C8—C9—N10.80 (13)
C5—C6—C7—C7A1.2 (2)C2—C8—C9—N1179.06 (11)
C6—C7—C7A—C3A0.65 (19)N1—N2—C10—C80.86 (13)
C6—C7—C7A—S1177.91 (10)C12—N2—C10—C8176.86 (12)
N3—C3A—C7A—C7178.29 (11)C2—C8—C10—N2179.88 (12)
C4—C3A—C7A—C70.49 (19)C9—C8—C10—N20.03 (14)
N3—C3A—C7A—S10.52 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O1i0.952.383.2055 (15)145
C11—H11A···O1ii0.982.513.4368 (16)158
C12—H12B···S1i0.982.863.7142 (13)146
C12—H12B···O1i0.982.603.4696 (16)148
C12—H12C···O1ii0.982.253.1966 (16)163
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+3/2, z1/2.
 

Acknowledgements

The authors acknowledge support by the Open Access Publication Funds of the Technical University of Braunschweig.

References

First citationAbdallah, A. E. M., Elgemeie, G. H. & Jones, P. G. (2023). Acta Cryst. E79, 441–445.  CSD CrossRef IUCr Journals Google Scholar
First citationAhmed, E. A., Elgemeie, G. H. & Ahmed, K. A. (2022). Pigm. Resin Technol. 51, 1–5.  Web of Science CrossRef CAS Google Scholar
First citationAhmed, E. A., Elgemeie, G. H. & Azzam, R. A. (2023). Synth. Commun. 53, 386–401.  CrossRef CAS Google Scholar
First citationAzzam, R. A., Elgemeie, G. H., Elsayed, R. E., Gad, N. M. & Jones, P. G. (2022). Acta Cryst. E78, 369–372.  CSD CrossRef IUCr Journals Google Scholar
First citationAzzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017). Acta Cryst. E73, 1820–1822.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAzzam, R. A., Elgemeie, G. H., Osman, R. R. & Jones, P. G. (2019). Acta Cryst. E75, 367–371.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBonde, C., Vedala, D. & Bonde, S. (2015). J. Pharm. Res. 9, 573–580.  CAS Google Scholar
First citationBruker (1998). XP. Bruker Analytical X–Ray Instruments, Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChakib, I., Zerzouf, A., Rodi, Y. K., Essassi, E. M. & Ng, S. W. (2011). Acta Cryst. E67, o2700.  CSD CrossRef IUCr Journals Google Scholar
First citationChakib, I., Zerzouf, A., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010a). Acta Cryst. E66, o2842.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChakib, I., Zerzouf, A., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010b). Acta Cryst. E66, o2843.  CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHuang, Q., Mao, J., Wan, B., Wang, Y., Brun, R., Franzblau, S. G. & Kozikowski, A. P. (2009). J. Med. Chem. 52, 6757–6767.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMetwally, N. H., Elgemeie, G. H. & Fahmy, F. G. (2022b). Egypt. J. Chem. 65, 679–686.  Google Scholar
First citationMetwally, N. H., Elgemeie, G. H. & Jones, P. G. (2022a). Acta Cryst. E78, 445–448.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRana, A., Siddiqui, N., Khan, S. A., Ehtaishamul Haque, S. & Bhat, M. A. (2008). Eur. J. Med. Chem. 43, 1114–1122.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, X., Sarris, K., Kage, K., Zhang, D., Brown, S. P., Kolasa, T., Surowy, C., El Kouhen, O. F., Muchmore, S. W., Brioni, J. D. & Stewart, A. O. (2009). J. Med. Chem. 52, 170–180.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds