research communications
d]thiazol-2-yl)-1,2-dimethyl-1H-pyrazol-3(2H)-one
of 4-(benzo[aChemistry Department, Faculty of Science, Helwan University, Cairo, Egypt, and bInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-braunschweig.de
In the title compound, C12H11N3OS, the interplanar angle between the pyrazole and benzothiazole rings is 3.31 (7)°. In the three-dimensional molecular packing, the carbonyl oxygen acts as acceptor to four C—H donors (with one H⋯O as short as 2.25 Å), while one methyl hydrogen is part of the three-centre system H⋯(S, O). A double layer structure parallel to (01) can be recognized as a subsection of the packing.
Keywords: crystal structure; benzothiazole; pyrazolone; weak hydrogen bonds.
CCDC reference: 2331586
1. Chemical context
Many natural et al., 2015). In the search for novel and significant therapeutic drugs, benzothiazoles have a wide range of established pharmacological properties (Wang et al., 2009), and their derivatives include several structural variants (Rana et al., 2008). The application of benzothiazole derivatives in current research and related discoveries is a well-appreciated and quickly growing area of medicinal chemistry (Abdallah et al., 2023). As an example, several drugs based on benzothiazole derivatives have been widely utilized in clinical practice to treat a variety of disorders, with a marked therapeutic efficacy (Huang et al., 2009).
and pharmaceuticals involve benzothiazole moieties and derivatives thereof, which are among the most significant utilized in medicinal chemistry (BondeIn the course of our studies, intended to develop syntheses of benzothiazole-based heterocycles for use as pharmaceuticals and pigments (Ahmed et al., 2022, 2023), a variety of 2-pyrimidyl-, 2-pyridyl- and 2-thienyl-benzothiazole compounds with encouraging cytotoxic action have recently been synthesized and their biological activity reported (Azzam et al., 2017, 2019, 2022).
In line with these findings and our prior research (Metwally et al., 2022a,b), the aim of the current investigation was to design and create benzothiazolyl-pyrazole hybrids. The reaction of 2-benzothiazolyl acetohydrazide 1 with N,N-dimethylformamide dimethyl acetal 2 at room temperature led to the synthesis of the unexpected benzothiazole-2-pyrazole derivative 3 in good yield (Fig. 1). The mechanism for the formation of 3 is currently under investigation. In order to establish the structure of the product unambiguously, its was determined and is reported here.
2. Structural commentary
The structure of compound 3 is shown in Fig. 2, with selected molecular dimensions in Table 1. These may be regarded as normal, within the constraints of linked five-membered rings that necessarily lead to narrow angles within the rings and wide exocyclic angles [up to 127.48 (11)° for C10—C8—C2]. The molecule is essentially planar (except for the methyl hydrogens); the least-squares plane through all non-H atoms has an r.m.s.d. of only 0.037 Å. If the ring systems are regarded separately, the pyrazole and benzothiazole rings have r.m.s.d. values of 0.006 and 0.017 Å, respectively, and an interplanar angle of 3.31 (7)°. The coplanarity leads to a short intramolecular contact S1⋯O1 = 2.9797 (10) Å.
|
3. Supramolecular features
The molecular packing involves five short contacts, four C—H⋯O1 and one C—H⋯S1, that are acceptably linear and may be regarded as `weak' hydrogen bonds (Table 2). The donor atom H12B is part of a three-centre system with acceptors O1 and S1. The contact H12C⋯O1 is remarkably short at 2.25 Å. Additionally, there is a short contact S1⋯N1(x, − y, + z) = 3.4078 (11) Å. A section of the packing is shown in Fig. 3; a ribbon parallel to the b axis and its antiparallel counterpart are shown, which form a double layer parallel to (01). However, the molecules are further linked parallel to the view direction to give a three-dimensional pattern. There are no Cent–Cent contacts shorter than 3.75 Å and no H⋯Cent contacts shorter than 2.99 Å (Cent = ring centroids).
4. Database survey
The search employed the routine ConQuest (Bruno et al., 2002), part of Version 2023.3.0 of the Cambridge Structural Database (Groom et al., 2016).
A search for other structures containing a linked pyrazolone/benzothiazole unit as in 3 led to three hits: AZUPIV, with 1-Me, 2-Ph and 5-Me substituents on the pyrazolone ring (Chakib et al., 2011), VABFIP (1-allyl, 2-Ph, 5-Me; Chakib et al., 2010a) and VABFOV (1-propynyl, 2-Ph, 5-Me; Chakib et al., 2010b). The interplanar angles in these compounds are 6.1 (1), 7.9 (2) and 4.7 (1)°, respectively.
5. Synthesis and crystallization
A mixture of 2-benzothiazolyl acetohydrazide 1 (0.01 mol) and N,N-dimethylformamide dimethyl acetal 2 (0.02 mol) was stirred at room temperature for 1 h. The excess acetal was distilled off under reduced pressure; the solid product was washed with a mixture of petroleum ether and diethyl ether (1:1) and then crystallized from ethanol.
Yellow solid; yield 85%; m.p. 414 K; IR (KBr, cm−1): ν 3068 (aromatic CH), 2930 (methyl CH), 1620 (C=O), 1598 (C=N); 1H NMR (400 MHz, DMSO-d6): δ 3.80 (s, 3H, CH3), 4.01 (s, 3H, CH3), 7.34 (t, J = 7.2 Hz, 1H, benzothiazole H), 7.46 (t, J = 7.2 Hz, 1H, benzothiazole H), 7.89 (d, J = 7.6 Hz, 1H, benzothiazole H), 8.03 (d, J = 8.0 Hz, 1H, benzothiazole H), 8.35 (s, 1H, pyrazolone H). Analysis calculated for C12H11N3OS (245.30): C 58.76, H 4.52, N 17.13, S 13.07. Found C 58.66, H 4.40, N 17.08, S 13.14%.
6. Refinement
Crystal data, data collection and structure . The methyl groups were included as idealized rigid groups (C—H 0.98 Å, H—C—H 109.5°) allowed to rotate but not tip (command ‘AFIX 137’). Other hydrogen atoms were included using a riding model starting from calculated positions (C—H = 0.95 Å). The Uiso(H) values were fixed at 1.5 × Ueq of the parent carbon atoms for the methyl group and 1.2 × Ueq for other hydrogens. One reflection clearly in error (Fo2 >> Fc2) was omitted from the refinement.
details are summarized in Table 3Supporting information
CCDC reference: 2331586
https://doi.org/10.1107/S2056989024001257/yz2050sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024001257/yz2050Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989024001257/yz2050Isup3.cml
C12H11N3OS | F(000) = 512 |
Mr = 245.30 | Dx = 1.460 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
a = 8.78308 (12) Å | Cell parameters from 32695 reflections |
b = 11.66215 (16) Å | θ = 5.1–77.4° |
c = 11.00169 (15) Å | µ = 2.47 mm−1 |
β = 97.9460 (12)° | T = 100 K |
V = 1116.08 (3) Å3 | Plate, pale yellow |
Z = 4 | 0.15 × 0.10 × 0.03 mm |
XtaLAB Synergy diffractometer | 2367 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source | 2280 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.037 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 77.6°, θmin = 5.1° |
ω scans | h = −11→11 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) | k = −14→14 |
Tmin = 0.731, Tmax = 1.000 | l = −13→13 |
46018 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.030 | H-atom parameters constrained |
wR(F2) = 0.081 | w = 1/[σ2(Fo2) + (0.0434P)2 + 0.4017P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.001 |
2367 reflections | Δρmax = 0.28 e Å−3 |
156 parameters | Δρmin = −0.36 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.63680 (4) | 0.71933 (2) | 0.56971 (3) | 0.02849 (11) | |
O1 | 0.40109 (11) | 0.79924 (7) | 0.36636 (8) | 0.0311 (2) | |
N1 | 0.33946 (12) | 0.67380 (9) | 0.20375 (9) | 0.0266 (2) | |
N2 | 0.39212 (12) | 0.56914 (8) | 0.16939 (9) | 0.0268 (2) | |
N3 | 0.73240 (12) | 0.52608 (9) | 0.48701 (10) | 0.0288 (2) | |
C2 | 0.63324 (14) | 0.60863 (10) | 0.45966 (11) | 0.0259 (2) | |
C3A | 0.82145 (14) | 0.54730 (11) | 0.59907 (12) | 0.0286 (3) | |
C4 | 0.94097 (16) | 0.47710 (12) | 0.65366 (13) | 0.0350 (3) | |
H4 | 0.964387 | 0.407342 | 0.615676 | 0.042* | |
C5 | 1.02447 (16) | 0.51076 (13) | 0.76368 (13) | 0.0382 (3) | |
H5 | 1.106443 | 0.463964 | 0.800905 | 0.046* | |
C6 | 0.98995 (16) | 0.61274 (13) | 0.82092 (13) | 0.0378 (3) | |
H6 | 1.049479 | 0.634461 | 0.896126 | 0.045* | |
C7 | 0.87033 (16) | 0.68266 (12) | 0.76977 (12) | 0.0339 (3) | |
H7 | 0.845688 | 0.751223 | 0.809420 | 0.041* | |
C7A | 0.78751 (14) | 0.64905 (11) | 0.65836 (11) | 0.0284 (3) | |
C8 | 0.52570 (14) | 0.61387 (10) | 0.34907 (11) | 0.0258 (2) | |
C9 | 0.42066 (14) | 0.70641 (10) | 0.31446 (11) | 0.0258 (2) | |
C10 | 0.50225 (14) | 0.53273 (10) | 0.25637 (11) | 0.0267 (3) | |
H10 | 0.556198 | 0.462239 | 0.255040 | 0.032* | |
C11 | 0.22779 (15) | 0.74119 (11) | 0.12468 (12) | 0.0313 (3) | |
H11A | 0.260232 | 0.747813 | 0.043243 | 0.047* | |
H11B | 0.220412 | 0.817829 | 0.159925 | 0.047* | |
H11C | 0.127222 | 0.703488 | 0.117398 | 0.047* | |
C12 | 0.32435 (15) | 0.51086 (11) | 0.05843 (12) | 0.0301 (3) | |
H12A | 0.214516 | 0.498538 | 0.061218 | 0.045* | |
H12B | 0.375258 | 0.436717 | 0.052279 | 0.045* | |
H12C | 0.337515 | 0.557948 | −0.013158 | 0.045* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.03690 (19) | 0.02172 (17) | 0.02606 (17) | 0.00157 (11) | 0.00148 (12) | −0.00057 (10) |
O1 | 0.0411 (5) | 0.0228 (4) | 0.0290 (4) | 0.0033 (4) | 0.0038 (4) | −0.0025 (3) |
N1 | 0.0317 (5) | 0.0205 (5) | 0.0273 (5) | 0.0015 (4) | 0.0028 (4) | −0.0008 (4) |
N2 | 0.0334 (5) | 0.0198 (5) | 0.0267 (5) | 0.0006 (4) | 0.0030 (4) | −0.0013 (4) |
N3 | 0.0314 (5) | 0.0253 (5) | 0.0295 (5) | 0.0014 (4) | 0.0038 (4) | 0.0007 (4) |
C2 | 0.0308 (6) | 0.0210 (5) | 0.0265 (6) | −0.0019 (4) | 0.0062 (5) | 0.0007 (4) |
C3A | 0.0287 (6) | 0.0278 (6) | 0.0294 (6) | −0.0021 (5) | 0.0044 (5) | 0.0023 (5) |
C4 | 0.0338 (6) | 0.0336 (7) | 0.0371 (7) | 0.0045 (5) | 0.0033 (5) | 0.0025 (5) |
C5 | 0.0315 (7) | 0.0431 (8) | 0.0386 (7) | 0.0022 (6) | −0.0002 (5) | 0.0073 (6) |
C6 | 0.0355 (7) | 0.0437 (8) | 0.0321 (7) | −0.0076 (6) | −0.0025 (5) | 0.0034 (6) |
C7 | 0.0380 (7) | 0.0318 (7) | 0.0312 (6) | −0.0065 (5) | 0.0025 (5) | 0.0005 (5) |
C7A | 0.0309 (6) | 0.0258 (6) | 0.0286 (6) | −0.0034 (5) | 0.0046 (5) | 0.0037 (5) |
C8 | 0.0316 (6) | 0.0204 (5) | 0.0258 (6) | −0.0008 (4) | 0.0051 (5) | 0.0010 (4) |
C9 | 0.0305 (6) | 0.0228 (6) | 0.0247 (6) | −0.0013 (4) | 0.0054 (5) | 0.0015 (4) |
C10 | 0.0324 (6) | 0.0206 (6) | 0.0273 (6) | 0.0003 (5) | 0.0045 (5) | 0.0017 (5) |
C11 | 0.0353 (7) | 0.0270 (6) | 0.0303 (6) | 0.0049 (5) | 0.0000 (5) | −0.0002 (5) |
C12 | 0.0374 (7) | 0.0239 (6) | 0.0281 (6) | −0.0029 (5) | 0.0014 (5) | −0.0023 (5) |
S1—C7A | 1.7374 (13) | C5—C6 | 1.398 (2) |
S1—C2 | 1.7673 (12) | C5—H5 | 0.9500 |
O1—C9 | 1.2468 (15) | C6—C7 | 1.386 (2) |
N1—N2 | 1.3766 (14) | C6—H6 | 0.9500 |
N1—C9 | 1.3772 (16) | C7—C7A | 1.3923 (18) |
N1—C11 | 1.4493 (16) | C7—H7 | 0.9500 |
N2—C10 | 1.3326 (16) | C8—C10 | 1.3856 (17) |
N2—C12 | 1.4511 (15) | C8—C9 | 1.4365 (17) |
N3—C2 | 1.3051 (16) | C10—H10 | 0.9500 |
N3—C3A | 1.3879 (16) | C11—H11A | 0.9800 |
C2—C8 | 1.4348 (17) | C11—H11B | 0.9800 |
C3A—C4 | 1.3995 (18) | C11—H11C | 0.9800 |
C3A—C7A | 1.4058 (18) | C12—H12A | 0.9800 |
C4—C5 | 1.383 (2) | C12—H12B | 0.9800 |
C4—H4 | 0.9500 | C12—H12C | 0.9800 |
C7A—S1—C2 | 88.85 (6) | C7A—C7—H7 | 121.1 |
N2—N1—C9 | 109.59 (10) | C7—C7A—C3A | 121.85 (12) |
N2—N1—C11 | 122.76 (10) | C7—C7A—S1 | 128.77 (11) |
C9—N1—C11 | 127.29 (10) | C3A—C7A—S1 | 109.37 (9) |
C10—N2—N1 | 108.87 (10) | C10—C8—C2 | 127.48 (11) |
C10—N2—C12 | 128.87 (10) | C10—C8—C9 | 107.06 (11) |
N1—N2—C12 | 122.15 (10) | C2—C8—C9 | 125.46 (11) |
C2—N3—C3A | 110.45 (11) | O1—C9—N1 | 123.88 (11) |
N3—C2—C8 | 124.55 (11) | O1—C9—C8 | 130.92 (12) |
N3—C2—S1 | 115.65 (9) | N1—C9—C8 | 105.19 (10) |
C8—C2—S1 | 119.80 (9) | N2—C10—C8 | 109.28 (11) |
N3—C3A—C4 | 125.04 (12) | N2—C10—H10 | 125.4 |
N3—C3A—C7A | 115.66 (11) | C8—C10—H10 | 125.4 |
C4—C3A—C7A | 119.29 (12) | N1—C11—H11A | 109.5 |
C5—C4—C3A | 119.03 (13) | N1—C11—H11B | 109.5 |
C5—C4—H4 | 120.5 | H11A—C11—H11B | 109.5 |
C3A—C4—H4 | 120.5 | N1—C11—H11C | 109.5 |
C4—C5—C6 | 120.93 (13) | H11A—C11—H11C | 109.5 |
C4—C5—H5 | 119.5 | H11B—C11—H11C | 109.5 |
C6—C5—H5 | 119.5 | N2—C12—H12A | 109.5 |
C7—C6—C5 | 121.11 (13) | N2—C12—H12B | 109.5 |
C7—C6—H6 | 119.4 | H12A—C12—H12B | 109.5 |
C5—C6—H6 | 119.4 | N2—C12—H12C | 109.5 |
C6—C7—C7A | 117.78 (13) | H12A—C12—H12C | 109.5 |
C6—C7—H7 | 121.1 | H12B—C12—H12C | 109.5 |
C9—N1—N2—C10 | 1.41 (13) | C4—C3A—C7A—S1 | 179.30 (10) |
C11—N1—N2—C10 | 174.94 (11) | C2—S1—C7A—C7 | 177.82 (13) |
C9—N1—N2—C12 | 177.72 (11) | C2—S1—C7A—C3A | −0.88 (9) |
C11—N1—N2—C12 | −8.75 (17) | N3—C2—C8—C10 | 3.3 (2) |
C3A—N3—C2—C8 | 178.92 (11) | S1—C2—C8—C10 | −176.73 (10) |
C3A—N3—C2—S1 | −1.06 (13) | N3—C2—C8—C9 | −176.88 (11) |
C7A—S1—C2—N3 | 1.17 (10) | S1—C2—C8—C9 | 3.10 (17) |
C7A—S1—C2—C8 | −178.81 (10) | N2—N1—C9—O1 | 177.75 (11) |
C2—N3—C3A—C4 | −178.36 (12) | C11—N1—C9—O1 | 4.6 (2) |
C2—N3—C3A—C7A | 0.34 (15) | N2—N1—C9—C8 | −1.34 (13) |
N3—C3A—C4—C5 | 177.54 (13) | C11—N1—C9—C8 | −174.50 (11) |
C7A—C3A—C4—C5 | −1.12 (19) | C10—C8—C9—O1 | −178.19 (13) |
C3A—C4—C5—C6 | 0.6 (2) | C2—C8—C9—O1 | 1.9 (2) |
C4—C5—C6—C7 | 0.5 (2) | C10—C8—C9—N1 | 0.80 (13) |
C5—C6—C7—C7A | −1.2 (2) | C2—C8—C9—N1 | −179.06 (11) |
C6—C7—C7A—C3A | 0.65 (19) | N1—N2—C10—C8 | −0.86 (13) |
C6—C7—C7A—S1 | −177.91 (10) | C12—N2—C10—C8 | −176.86 (12) |
N3—C3A—C7A—C7 | −178.29 (11) | C2—C8—C10—N2 | 179.88 (12) |
C4—C3A—C7A—C7 | 0.49 (19) | C9—C8—C10—N2 | 0.03 (14) |
N3—C3A—C7A—S1 | 0.52 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10···O1i | 0.95 | 2.38 | 3.2055 (15) | 145 |
C11—H11A···O1ii | 0.98 | 2.51 | 3.4368 (16) | 158 |
C12—H12B···S1i | 0.98 | 2.86 | 3.7142 (13) | 146 |
C12—H12B···O1i | 0.98 | 2.60 | 3.4696 (16) | 148 |
C12—H12C···O1ii | 0.98 | 2.25 | 3.1966 (16) | 163 |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x, −y+3/2, z−1/2. |
Acknowledgements
The authors acknowledge support by the Open Access Publication Funds of the Technical University of Braunschweig.
References
Abdallah, A. E. M., Elgemeie, G. H. & Jones, P. G. (2023). Acta Cryst. E79, 441–445. CSD CrossRef IUCr Journals Google Scholar
Ahmed, E. A., Elgemeie, G. H. & Ahmed, K. A. (2022). Pigm. Resin Technol. 51, 1–5. Web of Science CrossRef CAS Google Scholar
Ahmed, E. A., Elgemeie, G. H. & Azzam, R. A. (2023). Synth. Commun. 53, 386–401. CrossRef CAS Google Scholar
Azzam, R. A., Elgemeie, G. H., Elsayed, R. E., Gad, N. M. & Jones, P. G. (2022). Acta Cryst. E78, 369–372. CSD CrossRef IUCr Journals Google Scholar
Azzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017). Acta Cryst. E73, 1820–1822. Web of Science CSD CrossRef IUCr Journals Google Scholar
Azzam, R. A., Elgemeie, G. H., Osman, R. R. & Jones, P. G. (2019). Acta Cryst. E75, 367–371. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bonde, C., Vedala, D. & Bonde, S. (2015). J. Pharm. Res. 9, 573–580. CAS Google Scholar
Bruker (1998). XP. Bruker Analytical X–Ray Instruments, Madison, Wisconsin, USA. Google Scholar
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. Web of Science CrossRef CAS IUCr Journals Google Scholar
Chakib, I., Zerzouf, A., Rodi, Y. K., Essassi, E. M. & Ng, S. W. (2011). Acta Cryst. E67, o2700. CSD CrossRef IUCr Journals Google Scholar
Chakib, I., Zerzouf, A., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010a). Acta Cryst. E66, o2842. Web of Science CSD CrossRef IUCr Journals Google Scholar
Chakib, I., Zerzouf, A., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010b). Acta Cryst. E66, o2843. CSD CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Huang, Q., Mao, J., Wan, B., Wang, Y., Brun, R., Franzblau, S. G. & Kozikowski, A. P. (2009). J. Med. Chem. 52, 6757–6767. Web of Science CrossRef PubMed CAS Google Scholar
Metwally, N. H., Elgemeie, G. H. & Fahmy, F. G. (2022b). Egypt. J. Chem. 65, 679–686. Google Scholar
Metwally, N. H., Elgemeie, G. H. & Jones, P. G. (2022a). Acta Cryst. E78, 445–448. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rana, A., Siddiqui, N., Khan, S. A., Ehtaishamul Haque, S. & Bhat, M. A. (2008). Eur. J. Med. Chem. 43, 1114–1122. Web of Science CrossRef PubMed CAS Google Scholar
Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Wang, X., Sarris, K., Kage, K., Zhang, D., Brown, S. P., Kolasa, T., Surowy, C., El Kouhen, O. F., Muchmore, S. W., Brioni, J. D. & Stewart, A. O. (2009). J. Med. Chem. 52, 170–180. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.