research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of tetra­phenyl phosphate tetra­kis­[di­methyl (2,2,2-tri­chloro­acet­yl)phos­pho­ramidato]lutetium(III), PPh4[LuL4]

crossmark logo

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv 01601, Ukraine, and bFaculty of Chemistry, University of Wroclaw, 14 F. Joliot-Curie Street, 50-383, Wroclaw, Poland
*Correspondence e-mail: mariya.strugatskaya@gmail.com

Edited by G. Diaz de Delgado, Universidad de Los Andes Mérida, Venezuela (Received 23 October 2023; accepted 3 March 2024; online 12 March 2024)

A lutetium(III) complex based on the anion of the ligand dimethyl (2,2,2-tri­chloro­acet­yl)phospho­ramidate (HL) and tetra­phenylphosphonium, of composition PPh4[LuL4] (L = CAPh = carbacyl­amido­phosphate), or (C24H20)[Lu(C4H6Cl3NO4P)4], has been synthesized and structurally characterized. The X-ray diffraction study of the compound revealed that the lutetium ion is surrounded by four bis-chelating CAPh ligands, forming the complex anion [LuL4] with a coordination number of 8[O] for LuIII, while PPh4+ serves as a counter-ion. The coordination geometry around the Lu3+ ion was determined to be a nearly perfect triangular dodeca­hedron. The complex crystallizes in the monoclinic crystal system, space group P21/c, with four mol­ecules in the unit cell. Weak hydrogen bonds O⋯HC(Ph), Cl⋯HC(Ph) and N⋯HC(Ph) are formed between the cations and anions. For a comparative study, HL-based structures were retrieved from the Cambridge Structural Database (CSD) and their geometries and conformations are discussed. A Hirshfeld surface analysis was also performed.

1. Chemical context

Luminescent coordination compounds of lanthanides have attracted significant attention due to their diverse potential applications in lighting technology, including fluorescent lamps, LEDs, displays, telecommunications, lasers, sensors, luminescent probes for biological applications, for solar energy conversion and photocatalysis (Binnemans, 2009[Binnemans, K. (2009). Chem. Rev. 109, 4283-4374.]). Some of the extensively investigated ligands used for binding lanthanide(III) ions include β-diketones and compounds structurally akin to them (Nehra et al., 2022[Nehra, K., Dalal, A., Anjli, H., Shri, B., Raman, S., Bernabé, M. S., Sumit, K. & Devender, S. (2022). J. Mol. Struct. 1249, 1-10.]; Duan et al., 2022[Duan, Y.-Y., Wu, D. F., Chen, H.-H., Wang, Y.-J., Li, L., Gao, H.-L. & Cui, J.-Z. (2022). Polyhedron, 225, 1-10.]; Magennis et al., 1999[Magennis, S. W., Parsons, S., Pikramenou, Z., Corval, A. & Derek Woollins, J. (1999). Chem. Commun. pp. 61-62.]). Within this category, a noteworthy subset comprises ligands known as carbacyl­amido­phosphates (CAPhs), which incorporate a functional unit C(O)NHP(O), and enable bidentate chelation upon coordination. The inclusion of the phosphoryl group in CAPhs imparts a strong affinity for lanthanides (Amirkhanov et al., 2014[Amirkhanov, V., Ovchynnikov, V., Trush, V., Gawryszewska, P. & Jerzykiewicz, L. B. (2014). Ligands. Synthesis, Characterization and Role in Biotechnology, edited by P. Gawryszewska & P. Smolenski, ch. 7, pp. 199-248. New York: Nova Science Publishers.]). In this work, we intended to design a new lutetium(III) CAPh-based tetra­kis complex with a bulk cation in order to obtain it in a crystalline form and investigate a quite rare example of a lutetium complex structure. From this idea, the compound PPh4[LuL4] was synthesized in high yield via reaction between lutetium nitrate, tetra­phenyl­phospho­nium bromide and the sodium salt of the ligand NaL.

[Scheme 1]

2. Structural commentary

The title compound (C24H20P)[Lu(C4H6Cl3NO4P)4] crystallizes in the monoclinic system in space group P21/c with four mol­ecules in the unit cell. All four ligands are coordinated in a bidentate chelate manner through the oxygen atoms of the carbonyl and phosphoryl groups. The complex comprises the [LuL4] anion and the PPh4+ counter-ion, which are inter­connected by hydrogen bonds (Table 1[link]) and weak inter­molecular inter­actions. The mol­ecular structure of the complex is shown in Fig. 1[link] and the coordination polyhedron in Fig. 2[link]. The coordination polyhedron of the Lu3+ ion was determined to be a nearly perfect triangular dodeca­hedron formed by the eight O atoms of the bidentate CAPh ligands. The calculation was carried out using SHAPE 2.1 (Llunell et al., 2013[Llunell, M., Casanova, D., Cirera, J., Alemany, P. & Alvarez, S. (2013). SHAPE. Barcelona, Spain.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C26—H26A⋯O44 0.95 2.56 3.402 (6) 148
C14—H14B⋯O22 0.98 2.61 3.561 (5) 164
C43B—H43E⋯Cl12 0.98 2.93 3.73 (6) 140
C20—H20A⋯Cl1A 0.95 2.83 3.694 (5) 152
C34—H34B⋯O31 0.98 2.36 2.887 (6) 113
C19—H19A⋯O21 0.95 2.56 3.479 (6) 162
C43B—H43D⋯Cl32i 0.98 2.86 3.37 (2) 113
C40—H40A⋯Cl11ii 0.95 2.94 3.676 (4) 135
C23—H23A⋯Cl3Aiii 0.98 2.99 3.768 (5) 137
C33—H33A⋯Cl33iv 0.98 2.89 3.597 (5) 130
C50—H50A⋯O23v 0.95 2.56 3.355 (5) 142
C49—H49A⋯N2v 0.95 2.71 3.540 (6) 146
C49—H49A⋯Cl21v 0.95 2.99 3.795 (5) 143
C17—H17A⋯O33vi 0.95 2.88 3.383 (6) 114
C17—H17A⋯N3vi 0.95 2.68 3.424 (6) 136
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x, -y+1, -z]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vi) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Alkyl groups of the ligand and hydrogen atoms are omitted for clarity.
[Figure 2]
Figure 2
Coordination environment of the lutetium(III) ion.

The average Lu—O bond length in PPh4[LuL4] is 2.3116 Å, which is longer than in {Lu2L6·μ-(γ, γ′-dipy)} (2.2403 Å; Trush et al., 2001[Trush, V. A., Swiatek-Kozlowska, J., Skopenko, V. V. & Amyrkhanov, V. M. (2001). Z. Naturforsch. B, 56, 249-254.]). The Lu—O(C) bond lengths [2.348 (3)–2.411 (2) Å] are all longer than the Lu—O(P) bonds [2.236 (3)–2.267 (3) Å], which is explained by higher affinity of the phosphoryl group towards the metal ion. Deprotonation of the ligands leads to an increase of the π-conjugation in the chelating fragments and results in changes in the bond lengths. The C—O and P—O bond lengths are shorter than in the binuclear LuIII complex and are in the ranges 1.233 (4)–1.245 (5) Å and 1.483 (3)–1.489 (3) Å, respectively, with corresponding average values of 1.2399 and 1.486 Å. In contrast, in {Lu2L6·μ-(γ, γ′-dipy)} (Trush et al., 2001[Trush, V. A., Swiatek-Kozlowska, J., Skopenko, V. V. & Amyrkhanov, V. M. (2001). Z. Naturforsch. B, 56, 249-254.]) the C—O bond lengths lie within 1.237–1.258 Å (average 1.247 Å) and the P—O bond lengths lie between 1.492 and 1.509 Å (average 1.501 Å). The corresponding bond lengths in the neutral ligand HL are 1.202 (2) and 1.459 (2) Å (Amirkhanov et al., 1995[Amirkhanov, V. M. & Trush, V. A. (1995). Russ. J. Gen. Chem. 65, 1120-1124.]). The C—O and P—O bonds in the complex are longer than those in the neutral ligand (HL), indicating greater C—O and P—O double-bond character in HL than in the complex. The C—N and P—N bonds in PPh4[LuL4], with lengths in the ranges 1.295 (6)–1.315 (5) and 1.613 (3)–1.624 (4) Å, respectively, are shorter compared to those in the free ligand, in which the reported C—N bond length is 1.347 (2) Å and P—N is 1.676 (1) Å. The C—N bond lengths in the binuclear lutetium complex are proportional to those in the tetra­kis- and lie between 1.297 and 1.314 Å while the P—N distances are shorter (1.602–1.621 Å).

3. Supra­molecular features

The crystal packing of the title compound viewed down the c-axis is shown in Fig. 3[link]. The LuIII polyhedra are isolated and do not share edges or vertices.

[Figure 3]
Figure 3
The crystal packing of the title compound viewed down the c-axis. Hydrogen bonds are shown as dashed cyano lines.

To visualize the inter­molecular contacts in PPh4[LuL4], the Hirshfeld surfaces (HS) mapped over dnorm and the two-dimensional fingerprint plots were generated using CrystalExplorer 21.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). Fig. 4[link] illustrates the Hirshfeld surfaces for the PPh4+ cation and the [LuL4] anion. The anion contains oxygen, chlorine, and nitro­gen atoms that act as proton acceptors, forming hydrogen bonds (Table 1[link]) and making a significant contribution to the inter­molecular inter­actions, in addition to electrostatic attraction between the cations and anions. In contrast, the phenyl groups of the PPh4+ cation only act as proton donors for hydrogen-bond formation. Weak hydrogen bonds, such as O⋯HC(Ph), Cl⋯HC(Ph) and N⋯HC(Ph), are formed between the cations and anions (Table 1[link], Fig. 4[link]). The regions on the Hirshfeld surface of the cation colored in red correspond to hydrogen bonds of the C—H⋯O, C—H⋯Cl and C—H⋯N (light red) types (Fig. 4[link]). On the Hirshfeld surface of the complex anion, the red regions represent close contacts between cations and anions, with the most significant inter­actions being inter­molecular hydrogen bonds and C—H⋯O, C—H⋯Cl, C—H⋯N and Cl⋯Cl inter­actions. The figure also shows the atomic contributions (as percentages of the total surface) to the inter­actions between anions and cations. ππ stacking is not observed in the compound. There are six inter­acting anions around the cation and six inter­acting cations around the anion.

[Figure 4]
Figure 4
The Hirshfeld surface mapped over dnorm and two-dimensional fingerprint plots for inter­molecular contacts for the anion and the cation in PPh4[LuL4].

4. Database survey

Only one structure of a lutetium complex with the carbacyl­amido­phosphate ligand has been reported. It contains the dimethyl (2,2,2-tri­chloro­acet­yl)phospho­ramidate ligand used in the synthesis of PPh4[LuL4] and has the formula [Lu2L6·μ-(γ,γ′-dipy)] (refcode QENSIL; Trush et al., 2001[Trush, V. A., Swiatek-Kozlowska, J., Skopenko, V. V. & Amyrkhanov, V. M. (2001). Z. Naturforsch. B, 56, 249-254.]).

A search of the Cambridge Structural Database (CSD, Version 5.44, update of September 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for compounds containing dimethyl (2,2,2-tri­chloro­acet­yl)phospho­ramidate yielded 21 hits. Dimethyl (2,2,2-tri­chloro­acet­yl)phospho­ramidate forms mono-, bi- and polynuclear coordination compounds with different metals. There are four cases of monodentate coordination of dimethyl (2,2,2-tri­chloro­acet­yl)phospho­ramidate: three via oxygen (HATVOO, Trush et al., 2005[Trush, V. A., Gubina, K. E., Amirkhanov, V. M., Swiatek-Kozlowska, J. & Domasevitch, K. V. (2005). Polyhedron, 24, 1007-1014.]; BIGCAV, Trush et al., 1999[Trush, V. A., Domasevitch, K. V., Amirkhanov, V. M. & Sieler, J. (1999). Z. Naturforsch. B, 54, 451-455.]; HATWOP, Trush et al., 2005[Trush, V. A., Gubina, K. E., Amirkhanov, V. M., Swiatek-Kozlowska, J. & Domasevitch, K. V. (2005). Polyhedron, 24, 1007-1014.]) and one via nitro­gen (VONWUT, Trush et al., 2007[Trush, V. A., Domasevitch, K. V. & Amyrkhanov, V. M. (2007). Rep. Nat. Acad. Sci. Ukraine, 7, 147]). In the remaining structures, it is coordinated in a bidentate O-chelating manner (seven compounds: IHIBUW, Oczko et al., 2003[Oczko, G., Legendziewicz, J., Trush, V. & Amirkhanov, V. (2003). New J. Chem. 27, 948-956.]; QENSIL, Trush et al., 2001[Trush, V. A., Swiatek-Kozlowska, J., Skopenko, V. V. & Amyrkhanov, V. M. (2001). Z. Naturforsch. B, 56, 249-254.]; RUZRIN, Borzechowska et al., 2002[Borzechowska, M., Trush, V., Turowska-Tyrk, I., Amirkhanov, W. & Legendziewicz, J. (2002). J. Alloys Compd. 341, 98-106.]; SAPKIH, Struhatska et al., 2021[Struhatska, M. B., Kariaka, N. S., Amirkhanov, V. M., Dyakonenko, V. V. & Seredyuk, M. (2021). Acta Cryst. E77, 1307-1310.]; SEMQAF, Yakovlev et al., 2018[Yakovlev, O. O., Kariaka, N. S., Trush, V. A., Smola, S. S., Siczek, M. & Amirkhanov, V. M. (2018). Opt. Mater. 75, 459-464.]; WUKCOV, Znovjyak et al., 2009[Znovjyak, K. O., Moroz, O. V., Ovchynnikov, V. A., Sliva, T. Yu., Shishkina, S. V. & Amirkhanov, V. M. (2009). Polyhedron, 28, 3731-3738.]; YOFKUA, Puchalska et al., 2008[Puchalska, M., Turowska-Tyrk, I., Trush, V. & Legendziewicz, J. (2008). J. Alloys Compd. 451, 264-269.]) or a bridging manner (six compounds: CAPXOG, Bundya et al., 1999[Bundya, E. A., Amirkhanov, V. M., Ovchynnikov, V. A., Trush, V. A., Domasevitch, K. V., Sieler, J. & Skopenko, V. V. (1999). Z. Naturforsch. B, 54, 1033-1038.]; HATVII, Trush et al., 2005[Trush, V. A., Gubina, K. E., Amirkhanov, V. M., Swiatek-Kozlowska, J. & Domasevitch, K. V. (2005). Polyhedron, 24, 1007-1014.]; HATVUU, Trush et al., 2005[Trush, V. A., Gubina, K. E., Amirkhanov, V. M., Swiatek-Kozlowska, J. & Domasevitch, K. V. (2005). Polyhedron, 24, 1007-1014.]; HATVIJ, Trush et al., 2005[Trush, V. A., Gubina, K. E., Amirkhanov, V. M., Swiatek-Kozlowska, J. & Domasevitch, K. V. (2005). Polyhedron, 24, 1007-1014.]; JAGNUB, Trush et al., 2003[Trush, E. A., Amirkhanov, V. M., Ovchynnikov, V. A., Swiatek-Kozlowska, J., Lanikina, K. A. & Domasevitch, K. V. (2003). Polyhedron, 22, 1221-1229.]; RUMRIA, Amirkhanov et al., 1996[Amirkhanov, V. M., Trush, V. A., Kapshuk, A. A. & Skopenko, V. V. (1996). Zh. Neorg. Khim. 41, 2052-2057.]). Among them, a case of μ-2 coordination via oxygen atoms was found (RUMRIA, Amirkhanov et al., 1996[Amirkhanov, V. M., Trush, V. A., Kapshuk, A. A. & Skopenko, V. V. (1996). Zh. Neorg. Khim. 41, 2052-2057.]). Another structure contains both a μ-3 bridging ligand connected to the metal via oxygen and chlorine and a μ-4 bridging ligand attracting oxygen and nitro­gen atoms for binding to the metal ions (HATVUU, Trush et al., 2005[Trush, V. A., Gubina, K. E., Amirkhanov, V. M., Swiatek-Kozlowska, J. & Domasevitch, K. V. (2005). Polyhedron, 24, 1007-1014.]). The remaining four cases show μ-2 coord­ination involving oxygen atoms of the phosphoryl and carbonyl groups. Among reported HL-based compounds there are two complexes of 3d-metals (CAPXOG, Bundya et al., 1999[Bundya, E. A., Amirkhanov, V. M., Ovchynnikov, V. A., Trush, V. A., Domasevitch, K. V., Sieler, J. & Skopenko, V. V. (1999). Z. Naturforsch. B, 54, 1033-1038.]; JAGNUB, Trush et al., 2003[Trush, E. A., Amirkhanov, V. M., Ovchynnikov, V. A., Swiatek-Kozlowska, J., Lanikina, K. A. & Domasevitch, K. V. (2003). Polyhedron, 22, 1221-1229.]), four salts of alkaline metals (HATVII, HATVUU and HATWIJ, Trush et al., 2005[Trush, V. A., Gubina, K. E., Amirkhanov, V. M., Swiatek-Kozlowska, J. & Domasevitch, K. V. (2005). Polyhedron, 24, 1007-1014.]; RUMRIA, Amirkhanov et al., 1996[Amirkhanov, V. M., Trush, V. A., Kapshuk, A. A. & Skopenko, V. V. (1996). Zh. Neorg. Khim. 41, 2052-2057.]), two of thallium (BIGCAV, Trush et al., 1999[Trush, V. A., Domasevitch, K. V., Amirkhanov, V. M. & Sieler, J. (1999). Z. Naturforsch. B, 54, 451-455.]; HATVOO, Trush et al., 2005[Trush, V. A., Gubina, K. E., Amirkhanov, V. M., Swiatek-Kozlowska, J. & Domasevitch, K. V. (2005). Polyhedron, 24, 1007-1014.]), two tetra­phenyl­phospho­nium salts (HATWAB and HATWEF, which also contains a bromide anion and water; Trush et al., 2005[Trush, V. A., Gubina, K. E., Amirkhanov, V. M., Swiatek-Kozlowska, J. & Domasevitch, K. V. (2005). Polyhedron, 24, 1007-1014.]) and one tetra­phenyl­anti­mony(V) salt (HATWOP, Trush et al., 2005[Trush, V. A., Gubina, K. E., Amirkhanov, V. M., Swiatek-Kozlowska, J. & Domasevitch, K. V. (2005). Polyhedron, 24, 1007-1014.]), as well as nine coordination compounds of lanthanides: seven mixed-ligand lanthanide complexes (QENSIL, Trush et al., 2001[Trush, V. A., Swiatek-Kozlowska, J., Skopenko, V. V. & Amyrkhanov, V. M. (2001). Z. Naturforsch. B, 56, 249-254.]; RUZRIN, Borzechowska et al., 2002[Borzechowska, M., Trush, V., Turowska-Tyrk, I., Amirkhanov, W. & Legendziewicz, J. (2002). J. Alloys Compd. 341, 98-106.]; RUZRIN01, Puchalska et al., 2008[Puchalska, M., Turowska-Tyrk, I., Trush, V. & Legendziewicz, J. (2008). J. Alloys Compd. 451, 264-269.]; SEMQAF, Yakovlev et al., 2018[Yakovlev, O. O., Kariaka, N. S., Trush, V. A., Smola, S. S., Siczek, M. & Amirkhanov, V. M. (2018). Opt. Mater. 75, 459-464.]; WUKCOV, Znovjyak et al., 2009[Znovjyak, K. O., Moroz, O. V., Ovchynnikov, V. A., Sliva, T. Yu., Shishkina, S. V. & Amirkhanov, V. M. (2009). Polyhedron, 28, 3731-3738.]; YOFKUA, Puchalska et al., 2008[Puchalska, M., Turowska-Tyrk, I., Trush, V. & Legendziewicz, J. (2008). J. Alloys Compd. 451, 264-269.]; IHIBUW, Oczko et al., 2003[Oczko, G., Legendziewicz, J., Trush, V. & Amirkhanov, V. (2003). New J. Chem. 27, 948-956.]) and two tetra­kis- CAPh lanthanide complexes Na[ErL4] and NMe4[LaL4] (RUMRIA, Amirkhanov et al., 1996[Amirkhanov, V. M., Trush, V. A., Kapshuk, A. A. & Skopenko, V. V. (1996). Zh. Neorg. Khim. 41, 2052-2057.]; SAPKIH, Struhatska et al., 2021[Struhatska, M. B., Kariaka, N. S., Amirkhanov, V. M., Dyakonenko, V. V. & Seredyuk, M. (2021). Acta Cryst. E77, 1307-1310.]). In the latter two complexes, the ligand is coordinated to the lanthanide ion in a bidentate chelating manner via oxygen atoms of the phosphoryl and carbonyl groups. The average Ln—O(P) bond lengths are 2.29 and 2.44 Å, respectively, and are shorter than the average Ln—O(C) bond lengths (2.39 and 2.55 Å, respectively). In the structure of the one known lutetium complex {Lu2L6[μ-(γ, γ′-dipy)]} with HL (QENSIL; Trush et al., 2001[Trush, V. A., Swiatek-Kozlowska, J., Skopenko, V. V. & Amyrkhanov, V. M. (2001). Z. Naturforsch. B, 56, 249-254.]), the average Lu—O(P) bond length is 2.22 Å and the average Lu—O(C) bond length is 2.26 Å. The CAPh ligand is coordinated to the lutetium ion in a bidentate chelating manner via the PO and CO groups.

5. Synthesis and crystallization

Materials and methods

Commercially available lutetium nitrate, Lu(NO3)3·7H2O, and tetra­phenyl­phospho­nium bromide, PPh4Br, of reagent grade were used in the synthesis. The acetone used was dried and distilled. The 1H NMR spectrum of a solution of the title compound in DMSO-d6 was recorded on a Varian 400 NMR spectrometer at room temperature. The infrared (FT–IR) spectrum was recorded on a Perkin–Elmer BX-II spectrometer using a KBr pellet.

The dimethyl (2,2,2-tri­chloro­acet­yl)phospho­ramidate ligand and its sodium salt were obtained according to a known procedure (Kirsanov et al., 1956[Kirsanov, A. W. & Derkatch, G. I. (1956). Zh. Org. Khim. 26, 2631-2638.]). The complexes of composition PPh4[LnL4] with metals La, Nd, Eu, Tb and Y have been synthesized and described previously. The previously used method (Olyshevets et al., 2017[Olyshevets, I., Kariaka, N., Smola, S., Trush, V. & Amirkhanov, V. (2017). Bull. Taras Shevchenko Nat. Univ. Kyiv Chem. 2, 43-46.]) was adopted for the preparation of the title compound.

Preparation of PPh4[LuL4]

Lu(NO3)3·7H2O (0.0487 g, 0.1 mmol) in the presence of HC(OC2H5)3 (0.14 ml, 0.7 mmol) as dehydrating agent was dissolved in acetone under heating. In a separate flask, NaL (0.1122 g, 0.4 mmol) was dissolved in acetone and PPh4Br (0.0419 g, 0.1 mmol) was added under stirring and heating. The two mixtures were combined and boiled for few minutes, then cooled to room temperature. A white precipitate of NaNO3 and NaBr was filtered off and the filtrate was left in a flask in a desiccator over CaCl2. After two days, colorless crystals suitable for X-ray diffraction studies were obtained. The crystals were filtered off, washed with 2-propanol and dried in air.

IR (KBr pellet, cm−1): 2954 [w, ν(CHaliph)], 1622 [s, ν(CO)], 1438 (w), 1358 [s, ν(CN)], 1164 [s, ν(PO)], 1042 [s, δ(POC)], 1004 (m), 888 (s), 842 (m), 820 (m), 790 (w), 730 (m), 674 [m, ν(CCl)], 556 [m, δ(PNC)], 502 (m).

1H NMR (400 MHz, DMSO-d6, 293 K): 3.58, 3.55 (d, 24H, CH3 [L], J = 11.1 Hz), 7.98, 7.97, 7.95 (t, 4H, CH [PPh4]+), 7.82, 7.81, 7.8, 7.79, 7.76, 7.75, 7.73, 7.71 (m, 16H, CH [PPh4]+).

A comparison of the IR spectra of the obtained compound with the spectra of the ligand and of its sodium salt was carried out. In the IR spectrum of PPh4[LuL4], characteristic absorption bands of the carbonyl and phosphoryl groups are observed at 1622 and 1164 cm−1, respectively. There is a noticeable shift of the absorption bands of the carbonyl and phosphoryl groups in the spectrum of the complex towards lower wavenumbers compared to the spectra of the free ligand (110 and 104 cm−1, respectively) and the sodium salt (2 and 36 cm−1, respectively). This is consistent with the observed lengthening of the P=O and C=O bond lengths in the structure when compared to the ligand and sodium salt structures. The absorption band ν(N—H), which is observed in the IR spectrum of HL at 3080 cm−1, is absent in the IR spectrum of the PPh4[LuL4] complex, indicating ligand coordination in the deprotonated form. The presence of the tetra­phenyl­phospho­nium cation in the complex can be confirmed by the IR spectrum, showing bands at 1439, 1108, and 528 cm−1, which are absent in the IR spectrum of NaL.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hydrogen-atom positions were positioned geometrically (C—H = 0.95–0.98 Å) refined using a riding model, with fixed Uiso values of 1.2Uiso of the attached C atom for aromatic H atoms and 1.5 for CH3 groups. The methyl group was refined as a rotating group. One of the phosphoryl ligands is disordered. The chlorine atoms of the CCl3 group and the CH3 group of the meth­oxy substituents refined to occupancy ratios of 0.868 (3):0.132 (3) and 0.62 (5):0.38 (5). The major component of the disordered CCl3 group was refined in an anisotropic approximation, while the minor component was refined isotropically. Additionally, some C—Cl distances were restrained to 1.750 Å with a sigma value of 0.001.

Table 2
Experimental details

Crystal data
Chemical formula (C24H20)[Lu(C4H6Cl3NO4P)4]
Mr 1592.01
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 19.6882 (3), 18.9452 (10), 17.2139 (3)
β (°) 110.8107 (15)
V3) 6001.8 (3)
Z 4
Radiation type Cu Kα
μ (mm−1) 9.89
Crystal size (mm) 0.3 × 0.3 × 0.3
 
Data collection
Diffractometer Rigaku XtaLAB Synergy R with HyPix-Arc 150
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.513, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 68030, 11789, 10535
Rint 0.059
(sin θ/λ)max−1) 0.623
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.108, 1.08
No. of reflections 11789
No. of parameters 735
No. of restraints 7
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.32, −1.07
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2019/2 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and ORTEPIII for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Tetraphenyl phosphate tetrakis[dimethyl (2,2,2-trichloroacetyl)phosphoramidato]lutetium(III) top
Crystal data top
(C24H20P)[Lu(C4H6Cl3NO4P)4]F(000) = 3160
Mr = 1592.01Dx = 1.762 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 19.6882 (3) ÅCell parameters from 36128 reflections
b = 18.9452 (10) Åθ = 2.4–73.8°
c = 17.2139 (3) ŵ = 9.89 mm1
β = 110.8107 (15)°T = 100 K
V = 6001.8 (3) Å3Block, colorless
Z = 40.3 × 0.3 × 0.3 mm
Data collection top
Rigaku XtaLAB Synergy R with HyPix-Arc 150
diffractometer
11789 independent reflections
Radiation source: Rotating-anode X-ray tube, Rigaku (Cu) X-ray Source10535 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.059
ω scansθmax = 73.9°, θmin = 2.4°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
h = 2424
Tmin = 0.513, Tmax = 1.000k = 2323
68030 measured reflectionsl = 1721
Refinement top
Refinement on F27 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0532P)2 + 11.4066P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.002
11789 reflectionsΔρmax = 1.32 e Å3
735 parametersΔρmin = 1.07 e Å3
Special details top

Experimental. X-ray analyses of PPh4[LuL4] were performed on an XtaLAB Synergy R, Dual Wavelength system, using Cu Kα radiation (λ = 1.5418 Å) and a Hybrid Pixel Array HyPix-Arc 150 detector at 100 K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Lu10.30812 (2)0.52340 (2)0.24117 (2)0.02160 (7)
Cl1A0.09212 (6)0.36510 (8)0.07379 (7)0.0405 (4)0.868 (3)
Cl2A0.03572 (7)0.34419 (9)0.20331 (7)0.0513 (5)0.868 (3)
Cl3A0.03339 (8)0.48308 (8)0.13322 (16)0.0625 (6)0.868 (3)
Cl1B0.0709 (13)0.3239 (6)0.1084 (12)0.133 (8)*0.132 (3)
Cl2B0.0208 (5)0.4021 (7)0.2140 (7)0.071 (4)*0.132 (3)
Cl3B0.0433 (8)0.4763 (6)0.0972 (8)0.075 (5)*0.132 (3)
C43A0.3208 (6)0.4020 (17)0.5146 (8)0.052 (4)0.62 (5)
H43A0.3064140.4172500.5609850.078*0.62 (5)
H43B0.3563570.4352440.5077960.078*0.62 (5)
H43C0.3424360.3547960.5262730.078*0.62 (5)
C43B0.3050 (19)0.440 (3)0.4999 (15)0.057 (9)0.38 (5)
H43D0.2886280.4432340.5473410.085*0.38 (5)
H43E0.3076620.4877200.4787090.085*0.38 (5)
H43F0.3531860.4182030.5177150.085*0.38 (5)
P30.46486 (5)0.60714 (5)0.36566 (6)0.0262 (2)
O320.42365 (14)0.47177 (14)0.27693 (17)0.0262 (6)
O420.18959 (15)0.47307 (15)0.20058 (17)0.0311 (6)
N20.3317 (2)0.52389 (18)0.0298 (2)0.0322 (8)
O120.24928 (15)0.57523 (15)0.32441 (16)0.0311 (6)
O110.23433 (14)0.60386 (14)0.15668 (16)0.0274 (6)
O410.31681 (14)0.44195 (14)0.33823 (16)0.0259 (5)
O240.34595 (17)0.38773 (16)0.04136 (18)0.0370 (7)
C120.1787 (2)0.6328 (2)0.3905 (3)0.0370 (10)
O330.49700 (17)0.68190 (16)0.35963 (19)0.0376 (7)
O230.22456 (16)0.43826 (16)0.01704 (17)0.0348 (6)
O340.48780 (16)0.59568 (18)0.46207 (17)0.0398 (7)
O130.11413 (17)0.67104 (18)0.10392 (19)0.0419 (7)
C190.2909 (3)0.2636 (3)0.1581 (4)0.0632 (16)
H19A0.2860950.3110370.1391170.076*
O220.36999 (14)0.57898 (14)0.15909 (15)0.0250 (5)
C310.4859 (2)0.4967 (2)0.2957 (2)0.0263 (8)
C400.0260 (2)0.1450 (2)0.0609 (3)0.0361 (9)
H40A0.0096920.1577530.1047000.043*
O310.38470 (14)0.60400 (14)0.32491 (16)0.0272 (6)
O140.22822 (17)0.73667 (16)0.15450 (19)0.0386 (7)
C150.2386 (2)0.1577 (2)0.1887 (3)0.0328 (9)
O210.29546 (15)0.44604 (14)0.13784 (16)0.0283 (6)
C210.3629 (2)0.5727 (2)0.0853 (2)0.0261 (8)
C130.1034 (3)0.6581 (3)0.0180 (3)0.0495 (12)
H13A0.0643260.6885020.0172530.074*
H13B0.0901730.6085260.0047320.074*
H13C0.1484060.6684920.0081150.074*
O440.30205 (17)0.31240 (16)0.3592 (2)0.0410 (7)
C160.3064 (2)0.1258 (3)0.2175 (3)0.0417 (10)
H16A0.3119200.0791820.2390170.050*
C200.2308 (3)0.2267 (3)0.1595 (4)0.0506 (13)
H20A0.1843280.2484610.1405230.061*
C380.0040 (3)0.1343 (3)0.0851 (3)0.0423 (10)
H38A0.0279830.1381710.1411440.051*
C470.1889 (2)0.1020 (2)0.1770 (3)0.0359 (9)
H47A0.1822810.1383910.1370950.043*
Cl310.52815 (8)0.48361 (9)0.16518 (7)0.0614 (4)
C390.0198 (3)0.1517 (3)0.0213 (3)0.0442 (11)
H39A0.0680440.1683840.0337910.053*
C320.5380 (2)0.4514 (2)0.2654 (3)0.0309 (8)
N30.51473 (17)0.55532 (18)0.3336 (2)0.0289 (7)
C410.1615 (2)0.4226 (2)0.2240 (2)0.0280 (8)
C340.4372 (3)0.5806 (3)0.5022 (3)0.0547 (14)
H34A0.4476910.5339220.5282830.082*
H34B0.3877640.5811410.4610670.082*
H34C0.4415770.6163970.5448000.082*
Cl320.62997 (5)0.45770 (6)0.32937 (7)0.0381 (2)
Cl230.45983 (6)0.68373 (7)0.12537 (7)0.0464 (3)
P40.26757 (5)0.38843 (5)0.35292 (6)0.0267 (2)
Cl210.31894 (7)0.69263 (6)0.00345 (7)0.0450 (3)
P20.30013 (5)0.45186 (5)0.05381 (6)0.0265 (2)
Cl220.43061 (8)0.60520 (6)0.02568 (8)0.0496 (3)
Cl110.12830 (8)0.70995 (6)0.38663 (9)0.0555 (3)
P10.19335 (6)0.66579 (6)0.17026 (7)0.0312 (2)
Cl120.25254 (7)0.63051 (9)0.48617 (7)0.0588 (4)
P50.15805 (5)0.11087 (5)0.18373 (6)0.0269 (2)
Cl330.51374 (7)0.36110 (6)0.25932 (10)0.0578 (4)
C170.3661 (3)0.1630 (3)0.2143 (4)0.0593 (15)
H17A0.4127070.1414480.2328010.071*
Cl130.12303 (6)0.55772 (6)0.38694 (7)0.0401 (2)
O430.25654 (16)0.39996 (18)0.43804 (17)0.0384 (7)
C270.1282 (3)0.2266 (3)0.3676 (3)0.0498 (12)
H27A0.1529490.2625320.4056600.060*
C240.3597 (3)0.3797 (3)0.0347 (3)0.0517 (13)
H24A0.4004070.3470590.0258090.078*
H24B0.3718120.4256750.0523340.078*
H24C0.3162390.3607590.0778460.078*
C180.3581 (3)0.2309 (3)0.1845 (4)0.0697 (19)
H18A0.3991590.2557300.1819820.084*
C220.3937 (2)0.6348 (2)0.0479 (3)0.0349 (9)
C370.0749 (3)0.1112 (2)0.0673 (3)0.0399 (10)
H37A0.0917110.1004270.1112670.048*
C420.0823 (2)0.40435 (13)0.16142 (14)0.0338 (9)
C350.0956 (2)0.1197 (2)0.0784 (2)0.0295 (8)
C110.2067 (2)0.6251 (2)0.3161 (3)0.0304 (8)
C330.4738 (3)0.7416 (2)0.3975 (3)0.0421 (11)
H33A0.4988760.7844390.3903380.063*
H33B0.4855910.7325260.4568900.063*
H33C0.4211650.7481140.3706760.063*
N10.1799 (2)0.6714 (2)0.2578 (2)0.0378 (8)
N40.18567 (18)0.38005 (19)0.2877 (2)0.0323 (7)
C260.1568 (3)0.2016 (2)0.3094 (3)0.0401 (10)
H26A0.1998600.2215710.3058180.048*
C360.1206 (2)0.1040 (2)0.0137 (3)0.0356 (9)
H36A0.1690850.0883570.0258620.043*
C450.1794 (2)0.0201 (2)0.2100 (3)0.0293 (8)
C250.1212 (2)0.1468 (2)0.2567 (3)0.0291 (8)
C460.1695 (2)0.0331 (2)0.1508 (3)0.0326 (9)
H46A0.1496300.0222650.0932210.039*
C300.0579 (2)0.1178 (2)0.2615 (3)0.0370 (10)
H30A0.0348680.0793250.2266580.044*
C280.0641 (3)0.1992 (3)0.3701 (3)0.0475 (12)
H28A0.0440670.2177930.4085270.057*
C480.2175 (3)0.1178 (3)0.2604 (3)0.0437 (11)
H48A0.2280900.1654820.2776620.052*
C290.0285 (3)0.1450 (3)0.3172 (3)0.0441 (11)
H29A0.0158100.1267130.3191460.053*
C140.3054 (3)0.7467 (3)0.1957 (3)0.0460 (11)
H14A0.3205090.7898050.1747480.069*
H14B0.3314540.7061440.1845170.069*
H14C0.3166980.7510200.2556880.069*
C500.2109 (3)0.0040 (3)0.2937 (3)0.0441 (11)
H50A0.2187620.0403810.3339440.053*
C490.2311 (3)0.0648 (3)0.3195 (3)0.0508 (13)
H49A0.2540120.0753610.3768630.061*
C230.1674 (3)0.4876 (3)0.0238 (3)0.0471 (12)
H23A0.1212740.4691350.0623830.071*
H23B0.1782000.5328060.0445850.071*
H23C0.1637660.4945840.0310070.071*
C440.3783 (3)0.3044 (3)0.3774 (5)0.0712 (19)
H44A0.3890150.2551470.3687090.107*
H44B0.4047720.3175770.4354290.107*
H44C0.3935170.3350280.3406940.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Lu10.02115 (10)0.02505 (11)0.02073 (10)0.00046 (7)0.01006 (7)0.00134 (7)
Cl1A0.0320 (6)0.0588 (8)0.0284 (6)0.0052 (5)0.0078 (4)0.0129 (5)
Cl2A0.0338 (7)0.0854 (12)0.0309 (6)0.0266 (7)0.0068 (5)0.0069 (6)
Cl3A0.0265 (7)0.0439 (8)0.0990 (15)0.0123 (5)0.0001 (8)0.0143 (8)
C43A0.035 (5)0.098 (13)0.022 (5)0.004 (6)0.010 (4)0.007 (6)
C43B0.050 (13)0.10 (2)0.028 (8)0.027 (14)0.018 (8)0.009 (11)
P30.0241 (5)0.0322 (5)0.0251 (5)0.0023 (4)0.0122 (4)0.0077 (4)
O320.0239 (13)0.0268 (14)0.0304 (14)0.0010 (10)0.0127 (11)0.0002 (11)
O420.0266 (14)0.0389 (16)0.0280 (14)0.0066 (12)0.0098 (11)0.0010 (12)
N20.044 (2)0.0349 (19)0.0246 (16)0.0058 (15)0.0205 (15)0.0026 (14)
O120.0304 (14)0.0394 (16)0.0289 (14)0.0037 (12)0.0173 (11)0.0036 (12)
O110.0269 (13)0.0276 (14)0.0282 (13)0.0031 (11)0.0106 (11)0.0023 (11)
O410.0250 (13)0.0280 (14)0.0268 (13)0.0045 (11)0.0115 (10)0.0027 (11)
O240.0471 (18)0.0345 (16)0.0330 (15)0.0067 (13)0.0185 (13)0.0024 (12)
C120.036 (2)0.037 (2)0.047 (2)0.0037 (18)0.025 (2)0.0111 (19)
O330.0411 (17)0.0325 (15)0.0485 (17)0.0087 (13)0.0274 (14)0.0149 (13)
O230.0378 (16)0.0391 (16)0.0259 (13)0.0037 (13)0.0095 (12)0.0040 (12)
O340.0335 (15)0.062 (2)0.0239 (14)0.0013 (15)0.0105 (12)0.0060 (13)
O130.0336 (16)0.0481 (19)0.0436 (17)0.0081 (14)0.0133 (13)0.0067 (15)
C190.071 (4)0.047 (3)0.088 (4)0.018 (3)0.048 (3)0.001 (3)
O220.0261 (13)0.0276 (13)0.0236 (12)0.0026 (11)0.0117 (10)0.0009 (10)
C310.0262 (19)0.033 (2)0.0235 (18)0.0015 (16)0.0137 (15)0.0003 (16)
C400.030 (2)0.046 (3)0.037 (2)0.0005 (19)0.0184 (18)0.0008 (19)
O310.0257 (13)0.0301 (14)0.0265 (13)0.0015 (11)0.0101 (11)0.0107 (11)
O140.0423 (17)0.0304 (15)0.0460 (17)0.0007 (13)0.0191 (14)0.0014 (13)
C150.0262 (19)0.033 (2)0.044 (2)0.0043 (17)0.0188 (18)0.0054 (18)
O210.0372 (15)0.0238 (13)0.0271 (13)0.0045 (11)0.0152 (11)0.0030 (11)
C210.0284 (19)0.0260 (19)0.0283 (19)0.0010 (15)0.0156 (15)0.0024 (15)
C130.038 (3)0.062 (3)0.041 (3)0.001 (2)0.004 (2)0.012 (2)
O440.0386 (17)0.0305 (16)0.0494 (18)0.0038 (13)0.0103 (14)0.0004 (14)
C160.035 (2)0.041 (2)0.054 (3)0.0012 (19)0.022 (2)0.011 (2)
C200.042 (3)0.038 (3)0.080 (4)0.002 (2)0.031 (3)0.006 (2)
C380.042 (3)0.048 (3)0.036 (2)0.001 (2)0.014 (2)0.001 (2)
C470.043 (2)0.028 (2)0.035 (2)0.0015 (18)0.0112 (18)0.0069 (17)
Cl310.0661 (8)0.0943 (11)0.0340 (6)0.0326 (8)0.0301 (6)0.0042 (6)
C390.033 (2)0.059 (3)0.044 (3)0.004 (2)0.017 (2)0.001 (2)
C320.0235 (19)0.035 (2)0.036 (2)0.0007 (16)0.0128 (16)0.0083 (18)
N30.0226 (15)0.0347 (18)0.0311 (17)0.0026 (14)0.0116 (13)0.0096 (14)
C410.0231 (18)0.038 (2)0.0265 (18)0.0052 (16)0.0130 (15)0.0035 (16)
C340.057 (3)0.079 (4)0.036 (2)0.004 (3)0.026 (2)0.005 (3)
Cl320.0244 (5)0.0423 (6)0.0489 (6)0.0026 (4)0.0147 (4)0.0055 (5)
Cl230.0473 (6)0.0497 (6)0.0477 (6)0.0208 (5)0.0236 (5)0.0074 (5)
P40.0257 (5)0.0309 (5)0.0236 (4)0.0058 (4)0.0090 (4)0.0002 (4)
Cl210.0603 (7)0.0313 (5)0.0444 (6)0.0030 (5)0.0197 (5)0.0061 (4)
P20.0324 (5)0.0267 (5)0.0221 (4)0.0016 (4)0.0117 (4)0.0025 (4)
Cl220.0750 (8)0.0408 (6)0.0563 (7)0.0076 (6)0.0518 (7)0.0036 (5)
Cl110.0743 (9)0.0363 (6)0.0838 (9)0.0015 (6)0.0624 (8)0.0098 (6)
P10.0307 (5)0.0289 (5)0.0377 (5)0.0043 (4)0.0168 (4)0.0022 (4)
Cl120.0466 (7)0.0989 (11)0.0363 (6)0.0137 (7)0.0214 (5)0.0248 (6)
P50.0251 (5)0.0239 (5)0.0350 (5)0.0003 (4)0.0148 (4)0.0009 (4)
Cl330.0422 (6)0.0358 (6)0.1030 (11)0.0048 (5)0.0352 (7)0.0249 (6)
C170.034 (3)0.064 (4)0.089 (4)0.010 (2)0.033 (3)0.024 (3)
Cl130.0374 (5)0.0375 (5)0.0553 (6)0.0033 (4)0.0288 (5)0.0018 (5)
O430.0329 (15)0.056 (2)0.0278 (14)0.0135 (14)0.0127 (12)0.0029 (13)
C270.069 (3)0.036 (3)0.054 (3)0.005 (2)0.034 (3)0.014 (2)
C240.062 (3)0.059 (3)0.042 (3)0.019 (3)0.029 (2)0.005 (2)
C180.058 (4)0.065 (4)0.110 (5)0.028 (3)0.058 (4)0.025 (4)
C220.047 (2)0.030 (2)0.036 (2)0.0040 (18)0.025 (2)0.0032 (17)
C370.051 (3)0.040 (2)0.038 (2)0.003 (2)0.027 (2)0.0028 (19)
C420.026 (2)0.045 (2)0.030 (2)0.0038 (18)0.0100 (16)0.0006 (18)
C350.028 (2)0.029 (2)0.033 (2)0.0018 (16)0.0138 (16)0.0035 (16)
C110.0274 (19)0.035 (2)0.034 (2)0.0052 (17)0.0179 (17)0.0082 (18)
C330.047 (3)0.035 (2)0.046 (3)0.001 (2)0.018 (2)0.015 (2)
N10.040 (2)0.036 (2)0.046 (2)0.0044 (16)0.0254 (17)0.0050 (16)
N40.0270 (17)0.0395 (19)0.0287 (17)0.0085 (15)0.0076 (14)0.0042 (15)
C260.044 (3)0.035 (2)0.049 (3)0.0058 (19)0.026 (2)0.010 (2)
C360.035 (2)0.038 (2)0.040 (2)0.0021 (18)0.0205 (19)0.0043 (19)
C450.032 (2)0.0245 (19)0.033 (2)0.0013 (16)0.0127 (17)0.0016 (16)
C250.030 (2)0.0250 (19)0.036 (2)0.0004 (16)0.0161 (17)0.0017 (16)
C460.038 (2)0.029 (2)0.030 (2)0.0029 (17)0.0116 (17)0.0005 (16)
C300.040 (2)0.039 (2)0.038 (2)0.0034 (19)0.0219 (19)0.0003 (19)
C280.071 (3)0.038 (3)0.052 (3)0.009 (2)0.044 (3)0.002 (2)
C480.063 (3)0.034 (2)0.039 (2)0.013 (2)0.024 (2)0.0066 (19)
C290.046 (3)0.048 (3)0.050 (3)0.002 (2)0.030 (2)0.003 (2)
C140.042 (3)0.035 (2)0.065 (3)0.003 (2)0.024 (2)0.009 (2)
C500.065 (3)0.038 (2)0.030 (2)0.006 (2)0.017 (2)0.0065 (19)
C490.082 (4)0.040 (3)0.031 (2)0.021 (3)0.021 (2)0.006 (2)
C230.040 (3)0.063 (3)0.036 (2)0.008 (2)0.010 (2)0.000 (2)
C440.044 (3)0.041 (3)0.114 (5)0.006 (2)0.010 (3)0.016 (3)
Geometric parameters (Å, º) top
Lu1—O412.236 (3)C20—H20A0.9500
Lu1—O112.247 (3)C38—C391.378 (6)
Lu1—O212.249 (3)C38—C371.388 (7)
Lu1—O312.267 (3)C38—H38A0.9500
Lu1—O322.348 (3)C47—C481.376 (6)
Lu1—O122.353 (3)C47—C461.389 (6)
Lu1—O422.384 (3)C47—H47A0.9500
Lu1—O222.411 (2)Cl31—C321.775 (4)
Cl1A—C421.7529 (10)C39—H39A0.9500
Cl2A—C421.769 (3)C32—Cl321.758 (4)
Cl3A—C421.748 (3)C32—Cl331.768 (4)
Cl1B—C421.7495 (10)C41—N41.306 (5)
Cl2B—C421.7508 (10)C41—C421.586 (5)
Cl3B—C421.7508 (10)C34—H34A0.9800
C43A—O431.468 (13)C34—H34B0.9800
C43A—H43A0.9800C34—H34C0.9800
C43A—H43B0.9800Cl23—C221.761 (5)
C43A—H43C0.9800P4—O431.571 (3)
C43B—O431.38 (2)P4—N41.613 (3)
C43B—H43D0.9800Cl21—C221.795 (5)
C43B—H43E0.9800Cl22—C221.761 (4)
C43B—H43F0.9800P1—N11.624 (4)
P3—O311.483 (3)P5—C451.789 (4)
P3—O331.570 (3)P5—C251.793 (4)
P3—O341.573 (3)P5—C351.801 (4)
P3—N31.618 (3)C17—C181.372 (9)
O32—C311.245 (5)C17—H17A0.9500
O42—C411.242 (5)C27—C281.379 (7)
N2—C211.315 (5)C27—C261.395 (6)
N2—P21.613 (3)C27—H27A0.9500
O12—C111.238 (5)C24—H24A0.9800
O11—P11.489 (3)C24—H24B0.9800
O41—P41.485 (3)C24—H24C0.9800
O24—C241.436 (5)C18—H18A0.9500
O24—P21.573 (3)C37—C361.371 (6)
C12—C111.569 (5)C37—H37A0.9500
C12—Cl111.755 (5)C35—C361.400 (6)
C12—Cl121.768 (5)C11—N11.295 (6)
C12—Cl131.784 (5)C33—H33A0.9800
O33—C331.459 (5)C33—H33B0.9800
O23—C231.435 (6)C33—H33C0.9800
O23—P21.574 (3)C26—C251.394 (6)
O34—C341.428 (6)C26—H26A0.9500
O13—C131.438 (6)C36—H36A0.9500
O13—P11.575 (3)C45—C501.386 (6)
C19—C201.381 (7)C45—C461.396 (6)
C19—C181.383 (9)C25—C301.392 (6)
C19—H19A0.9500C46—H46A0.9500
O22—C211.233 (4)C30—C291.383 (6)
C31—N31.310 (5)C30—H30A0.9500
C31—C321.562 (5)C28—C291.387 (7)
C40—C351.380 (6)C28—H28A0.9500
C40—C391.389 (6)C48—C491.386 (7)
C40—H40A0.9500C48—H48A0.9500
O14—C141.443 (6)C29—H29A0.9500
O14—P11.575 (3)C14—H14A0.9800
C15—C161.386 (6)C14—H14B0.9800
C15—C201.389 (7)C14—H14C0.9800
C15—P51.793 (4)C50—C491.388 (7)
O21—P21.486 (3)C50—H50A0.9500
C21—C221.564 (5)C49—H49A0.9500
C13—H13A0.9800C23—H23A0.9800
C13—H13B0.9800C23—H23B0.9800
C13—H13C0.9800C23—H23C0.9800
O44—C441.429 (6)C44—H44A0.9800
O44—P41.580 (3)C44—H44B0.9800
C16—C171.388 (7)C44—H44C0.9800
C16—H16A0.9500
O41—Lu1—O11144.31 (9)O43—P4—N4103.19 (17)
O41—Lu1—O2195.67 (10)O44—P4—N4104.89 (18)
O11—Lu1—O2193.77 (10)O21—P2—O24108.19 (16)
O41—Lu1—O3197.62 (10)O21—P2—O23111.94 (16)
O11—Lu1—O3194.91 (10)O24—P2—O23101.42 (17)
O21—Lu1—O31143.48 (9)O21—P2—N2118.37 (16)
O41—Lu1—O3272.95 (9)O24—P2—N2109.09 (18)
O11—Lu1—O32142.71 (9)O23—P2—N2106.48 (18)
O21—Lu1—O3276.16 (10)O11—P1—O14110.56 (16)
O31—Lu1—O3275.55 (9)O11—P1—O13112.85 (17)
O41—Lu1—O1275.91 (10)O14—P1—O13101.61 (18)
O11—Lu1—O1276.47 (10)O11—P1—N1118.28 (18)
O21—Lu1—O12144.40 (10)O14—P1—N1109.21 (19)
O31—Lu1—O1272.05 (9)O13—P1—N1102.84 (19)
O32—Lu1—O12130.89 (9)C45—P5—C25107.76 (19)
O41—Lu1—O4275.53 (9)C45—P5—C15109.8 (2)
O11—Lu1—O4275.00 (10)C25—P5—C15110.48 (19)
O21—Lu1—O4271.68 (10)C45—P5—C35111.05 (19)
O31—Lu1—O42144.72 (9)C25—P5—C35111.61 (19)
O32—Lu1—O42131.78 (10)C15—P5—C35106.1 (2)
O12—Lu1—O4272.73 (10)C18—C17—C16120.2 (5)
O41—Lu1—O22144.98 (9)C18—C17—H17A119.9
O11—Lu1—O2270.70 (9)C16—C17—H17A119.9
O21—Lu1—O2276.01 (9)C43B—O43—P4120.7 (8)
O31—Lu1—O2273.62 (9)C43A—O43—P4118.8 (5)
O32—Lu1—O2272.03 (9)C28—C27—C26120.1 (5)
O12—Lu1—O22129.42 (10)C28—C27—H27A119.9
O42—Lu1—O22130.44 (9)C26—C27—H27A119.9
O43—C43A—H43A109.5O24—C24—H24A109.5
O43—C43A—H43B109.5O24—C24—H24B109.5
H43A—C43A—H43B109.5H24A—C24—H24B109.5
O43—C43A—H43C109.5O24—C24—H24C109.5
H43A—C43A—H43C109.5H24A—C24—H24C109.5
H43B—C43A—H43C109.5H24B—C24—H24C109.5
O43—C43B—H43D109.5C17—C18—C19120.8 (5)
O43—C43B—H43E109.5C17—C18—H18A119.6
H43D—C43B—H43E109.5C19—C18—H18A119.6
O43—C43B—H43F109.5C21—C22—Cl23112.0 (3)
H43D—C43B—H43F109.5C21—C22—Cl22112.1 (3)
H43E—C43B—H43F109.5Cl23—C22—Cl22109.2 (2)
O31—P3—O33113.02 (17)C21—C22—Cl21107.0 (3)
O31—P3—O34110.61 (16)Cl23—C22—Cl21107.9 (2)
O33—P3—O34102.89 (18)Cl22—C22—Cl21108.4 (2)
O31—P3—N3119.15 (16)C36—C37—C38120.0 (4)
O33—P3—N3102.54 (17)C36—C37—H37A120.0
O34—P3—N3107.14 (18)C38—C37—H37A120.0
C31—O32—Lu1133.1 (3)C41—C42—Cl3A108.3 (2)
C41—O42—Lu1135.7 (3)C41—C42—Cl1B117.2 (8)
C21—N2—P2122.1 (3)C41—C42—Cl3B111.3 (6)
C11—O12—Lu1135.1 (3)Cl1B—C42—Cl3B113.7 (9)
P1—O11—Lu1134.02 (16)C41—C42—Cl2B110.4 (4)
P4—O41—Lu1135.81 (16)Cl1B—C42—Cl2B105.3 (9)
C24—O24—P2120.6 (3)Cl3B—C42—Cl2B96.7 (7)
C11—C12—Cl11113.8 (3)C41—C42—Cl1A107.1 (2)
C11—C12—Cl12110.3 (3)Cl3A—C42—Cl1A109.95 (17)
Cl11—C12—Cl12108.8 (2)C41—C42—Cl2A113.0 (2)
C11—C12—Cl13106.7 (3)Cl3A—C42—Cl2A110.40 (19)
Cl11—C12—Cl13109.3 (2)Cl1A—C42—Cl2A108.00 (15)
Cl12—C12—Cl13107.7 (3)C40—C35—C36120.1 (4)
C33—O33—P3118.2 (3)C40—C35—P5121.5 (3)
C23—O23—P2117.0 (3)C36—C35—P5118.3 (3)
C34—O34—P3123.4 (3)O12—C11—N1132.8 (4)
C13—O13—P1118.7 (3)O12—C11—C12113.3 (4)
C20—C19—C18119.5 (5)N1—C11—C12113.9 (4)
C20—C19—H19A120.2O33—C33—H33A109.5
C18—C19—H19A120.2O33—C33—H33B109.5
C21—O22—Lu1131.7 (2)H33A—C33—H33B109.5
O32—C31—N3131.5 (4)O33—C33—H33C109.5
O32—C31—C32114.0 (3)H33A—C33—H33C109.5
N3—C31—C32114.4 (3)H33B—C33—H33C109.5
C35—C40—C39119.3 (4)C11—N1—P1121.3 (3)
C35—C40—H40A120.3C41—N4—P4120.0 (3)
C39—C40—H40A120.3C25—C26—C27118.8 (4)
P3—O31—Lu1133.10 (15)C25—C26—H26A120.6
C14—O14—P1118.4 (3)C27—C26—H26A120.6
C16—C15—C20120.5 (4)C37—C36—C35119.9 (4)
C16—C15—P5121.6 (3)C37—C36—H36A120.0
C20—C15—P5117.8 (3)C35—C36—H36A120.0
P2—O21—Lu1133.92 (16)C50—C45—C46119.6 (4)
O22—C21—N2132.0 (4)C50—C45—P5116.9 (3)
O22—C21—C22115.7 (3)C46—C45—P5123.3 (3)
N2—C21—C22112.3 (3)C30—C25—C26120.7 (4)
O13—C13—H13A109.5C30—C25—P5119.1 (3)
O13—C13—H13B109.5C26—C25—P5120.2 (3)
H13A—C13—H13B109.5C47—C46—C45119.3 (4)
O13—C13—H13C109.5C47—C46—H46A120.3
H13A—C13—H13C109.5C45—C46—H46A120.3
H13B—C13—H13C109.5C29—C30—C25119.9 (4)
C44—O44—P4120.3 (3)C29—C30—H30A120.1
C15—C16—C17119.1 (5)C25—C30—H30A120.1
C15—C16—H16A120.5C27—C28—C29120.9 (4)
C17—C16—H16A120.5C27—C28—H28A119.6
C19—C20—C15119.8 (5)C29—C28—H28A119.6
C19—C20—H20A120.1C47—C48—C49120.5 (4)
C15—C20—H20A120.1C47—C48—H48A119.8
C39—C38—C37120.0 (4)C49—C48—H48A119.8
C39—C38—H38A120.0C30—C29—C28119.5 (4)
C37—C38—H38A120.0C30—C29—H29A120.2
C48—C47—C46120.5 (4)C28—C29—H29A120.2
C48—C47—H47A119.8O14—C14—H14A109.5
C46—C47—H47A119.8O14—C14—H14B109.5
C38—C39—C40120.5 (4)H14A—C14—H14B109.5
C38—C39—H39A119.7O14—C14—H14C109.5
C40—C39—H39A119.7H14A—C14—H14C109.5
C31—C32—Cl32113.9 (3)H14B—C14—H14C109.5
C31—C32—Cl33110.9 (3)C45—C50—C49120.7 (4)
Cl32—C32—Cl33107.4 (2)C45—C50—H50A119.6
C31—C32—Cl31106.1 (3)C49—C50—H50A119.6
Cl32—C32—Cl31108.5 (2)C48—C49—C50119.2 (4)
Cl33—C32—Cl31109.9 (2)C48—C49—H49A120.4
C31—N3—P3118.4 (3)C50—C49—H49A120.4
O42—C41—N4132.5 (4)O23—C23—H23A109.5
O42—C41—C42113.0 (3)O23—C23—H23B109.5
N4—C41—C42114.4 (3)H23A—C23—H23B109.5
O34—C34—H34A109.5O23—C23—H23C109.5
O34—C34—H34B109.5H23A—C23—H23C109.5
H34A—C34—H34B109.5H23B—C23—H23C109.5
O34—C34—H34C109.5O44—C44—H44A109.5
H34A—C34—H34C109.5O44—C44—H44B109.5
H34B—C34—H34C109.5H44A—C44—H44B109.5
O41—P4—O43112.25 (16)O44—C44—H44C109.5
O41—P4—O44110.09 (17)H44A—C44—H44C109.5
O43—P4—O44105.16 (18)H44B—C44—H44C109.5
O41—P4—N4120.01 (17)
O31—P3—O33—C3361.0 (3)O22—C21—C22—Cl2321.9 (5)
O34—P3—O33—C3358.3 (3)N2—C21—C22—Cl23160.4 (3)
N3—P3—O33—C33169.4 (3)O22—C21—C22—Cl22145.0 (3)
O31—P3—O34—C343.1 (5)N2—C21—C22—Cl2237.2 (5)
O33—P3—O34—C34124.1 (4)O22—C21—C22—Cl2196.2 (4)
N3—P3—O34—C34128.2 (4)N2—C21—C22—Cl2181.5 (4)
Lu1—O32—C31—N331.3 (6)C39—C38—C37—C361.6 (7)
Lu1—O32—C31—C32146.0 (3)O42—C41—C42—Cl3A46.1 (3)
O33—P3—O31—Lu1137.0 (2)N4—C41—C42—Cl3A136.8 (3)
O34—P3—O31—Lu1108.3 (2)O42—C41—C42—Cl1B112.4 (9)
N3—P3—O31—Lu116.5 (3)N4—C41—C42—Cl1B64.6 (9)
Lu1—O22—C21—N217.2 (7)O42—C41—C42—Cl3B20.9 (7)
Lu1—O22—C21—C22160.1 (3)N4—C41—C42—Cl3B162.0 (7)
P2—N2—C21—O226.7 (7)O42—C41—C42—Cl2B127.1 (6)
P2—N2—C21—C22176.0 (3)N4—C41—C42—Cl2B55.9 (6)
C20—C15—C16—C171.9 (7)O42—C41—C42—Cl1A72.4 (3)
P5—C15—C16—C17175.4 (4)N4—C41—C42—Cl1A104.6 (3)
C18—C19—C20—C151.1 (9)O42—C41—C42—Cl2A168.8 (3)
C16—C15—C20—C190.8 (8)N4—C41—C42—Cl2A14.2 (4)
P5—C15—C20—C19176.6 (4)C39—C40—C35—C362.9 (7)
C37—C38—C39—C401.2 (8)C39—C40—C35—P5179.2 (4)
C35—C40—C39—C381.0 (7)C45—P5—C35—C40114.3 (4)
O32—C31—C32—Cl32150.1 (3)C25—P5—C35—C405.9 (4)
N3—C31—C32—Cl3232.1 (5)C15—P5—C35—C40126.4 (4)
O32—C31—C32—Cl3328.8 (4)C45—P5—C35—C3669.2 (4)
N3—C31—C32—Cl33153.5 (3)C25—P5—C35—C36170.5 (3)
O32—C31—C32—Cl3190.6 (4)C15—P5—C35—C3650.1 (4)
N3—C31—C32—Cl3187.2 (4)Lu1—O12—C11—N13.7 (7)
O32—C31—N3—P31.4 (6)Lu1—O12—C11—C12175.0 (3)
C32—C31—N3—P3178.7 (3)Cl11—C12—C11—O12171.8 (3)
O31—P3—N3—C3124.1 (4)Cl12—C12—C11—O1249.2 (4)
O33—P3—N3—C31149.7 (3)Cl13—C12—C11—O1267.6 (4)
O34—P3—N3—C31102.3 (3)Cl11—C12—C11—N19.2 (5)
Lu1—O42—C41—N48.0 (7)Cl12—C12—C11—N1131.8 (3)
Lu1—O42—C41—C42168.3 (2)Cl13—C12—C11—N1111.4 (4)
Lu1—O41—P4—O43120.8 (2)O12—C11—N1—P17.2 (7)
Lu1—O41—P4—O44122.4 (2)C12—C11—N1—P1171.6 (3)
Lu1—O41—P4—N40.6 (3)O11—P1—N1—C113.1 (4)
C44—O44—P4—O4120.0 (5)O14—P1—N1—C11124.5 (4)
C44—O44—P4—O43101.1 (4)O13—P1—N1—C11128.2 (4)
C44—O44—P4—N4150.4 (4)O42—C41—N4—P40.9 (7)
Lu1—O21—P2—O24135.4 (2)C42—C41—N4—P4175.4 (2)
Lu1—O21—P2—O23113.7 (2)O41—P4—N4—C413.3 (4)
Lu1—O21—P2—N210.7 (3)O43—P4—N4—C41122.5 (3)
C24—O24—P2—O21179.8 (4)O44—P4—N4—C41127.6 (3)
C24—O24—P2—O2362.3 (4)C28—C27—C26—C252.7 (8)
C24—O24—P2—N249.8 (4)C38—C37—C36—C350.2 (7)
C23—O23—P2—O2164.1 (3)C40—C35—C36—C372.5 (7)
C23—O23—P2—O24179.3 (3)P5—C35—C36—C37179.0 (3)
C23—O23—P2—N266.7 (3)C25—P5—C45—C5041.1 (4)
C21—N2—P2—O2110.3 (4)C15—P5—C45—C5079.3 (4)
C21—N2—P2—O24114.0 (3)C35—P5—C45—C50163.6 (4)
C21—N2—P2—O23137.3 (3)C25—P5—C45—C46142.4 (4)
Lu1—O11—P1—O14109.5 (2)C15—P5—C45—C4697.2 (4)
Lu1—O11—P1—O13137.5 (2)C35—P5—C45—C4619.8 (4)
Lu1—O11—P1—N117.4 (3)C27—C26—C25—C300.4 (7)
C14—O14—P1—O1150.8 (3)C27—C26—C25—P5177.6 (4)
C14—O14—P1—O13170.8 (3)C45—P5—C25—C3060.7 (4)
C14—O14—P1—N181.0 (3)C15—P5—C25—C30179.3 (3)
C13—O13—P1—O1142.9 (4)C35—P5—C25—C3061.5 (4)
C13—O13—P1—O1475.5 (4)C45—P5—C25—C26117.4 (4)
C13—O13—P1—N1171.4 (4)C15—P5—C25—C262.6 (4)
C16—C15—P5—C455.9 (4)C35—P5—C25—C26120.4 (4)
C20—C15—P5—C45171.5 (4)C48—C47—C46—C450.1 (7)
C16—C15—P5—C25112.9 (4)C50—C45—C46—C472.4 (7)
C20—C15—P5—C2569.8 (4)P5—C45—C46—C47178.8 (3)
C16—C15—P5—C35126.0 (4)C26—C25—C30—C292.2 (7)
C20—C15—P5—C3551.4 (4)P5—C25—C30—C29179.7 (4)
C15—C16—C17—C181.2 (8)C26—C27—C28—C292.3 (8)
O41—P4—O43—C43B19 (3)C46—C47—C48—C493.5 (8)
O44—P4—O43—C43B101 (3)C25—C30—C29—C282.6 (7)
N4—P4—O43—C43B150 (3)C27—C28—C29—C300.3 (8)
O41—P4—O43—C43A56.0 (15)C46—C45—C50—C491.5 (8)
O44—P4—O43—C43A63.6 (15)P5—C45—C50—C49178.2 (4)
N4—P4—O43—C43A173.3 (14)C47—C48—C49—C504.4 (9)
C16—C17—C18—C190.7 (10)C45—C50—C49—C481.9 (9)
C20—C19—C18—C171.9 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C26—H26A···O440.952.563.402 (6)148
C14—H14B···O220.982.613.561 (5)164
C43B—H43E···Cl120.982.933.73 (6)140
C20—H20A···Cl1A0.952.833.694 (5)152
C34—H34B···O310.982.362.887 (6)113
C19—H19A···O210.952.563.479 (6)162
C43B—H43D···Cl32i0.982.863.37 (2)113
C40—H40A···Cl11ii0.952.943.676 (4)135
C23—H23A···Cl3Aiii0.982.993.768 (5)137
C33—H33A···Cl33iv0.982.893.597 (5)130
C50—H50A···O23v0.952.563.355 (5)142
C49—H49A···N2v0.952.713.540 (6)146
C49—H49A···Cl21v0.952.993.795 (5)143
C17—H17A···O33vi0.952.883.383 (6)114
C17—H17A···N3vi0.952.683.424 (6)136
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1/2, z+1/2; (iii) x, y+1, z; (iv) x+1, y+1/2, z+1/2; (v) x, y+1/2, z+1/2; (vi) x+1, y1/2, z+1/2.
 

Funding information

The authors wish to acknowledge support through a grant from the Ministry of Education and Science of Ukraine (grant No. 22BF037-04).

References

First citationAmirkhanov, V., Ovchynnikov, V., Trush, V., Gawryszewska, P. & Jerzykiewicz, L. B. (2014). Ligands. Synthesis, Characterization and Role in Biotechnology, edited by P. Gawryszewska & P. Smolenski, ch. 7, pp. 199–248. New York: Nova Science Publishers.  Google Scholar
First citationAmirkhanov, V. M. & Trush, V. A. (1995). Russ. J. Gen. Chem. 65, 1120–1124.  CAS Google Scholar
First citationAmirkhanov, V. M., Trush, V. A., Kapshuk, A. A. & Skopenko, V. V. (1996). Zh. Neorg. Khim. 41, 2052–2057.  CAS Google Scholar
First citationBinnemans, K. (2009). Chem. Rev. 109, 4283–4374.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBorzechowska, M., Trush, V., Turowska-Tyrk, I., Amirkhanov, W. & Legendziewicz, J. (2002). J. Alloys Compd. 341, 98–106.  Web of Science CSD CrossRef CAS Google Scholar
First citationBundya, E. A., Amirkhanov, V. M., Ovchynnikov, V. A., Trush, V. A., Domasevitch, K. V., Sieler, J. & Skopenko, V. V. (1999). Z. Naturforsch. B, 54, 1033–1038.  Web of Science CrossRef CAS Google Scholar
First citationDuan, Y.-Y., Wu, D. F., Chen, H.-H., Wang, Y.-J., Li, L., Gao, H.-L. & Cui, J.-Z. (2022). Polyhedron, 225, 1–10.  Web of Science CSD CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKirsanov, A. W. & Derkatch, G. I. (1956). Zh. Org. Khim. 26, 2631–2638.  CAS Google Scholar
First citationLlunell, M., Casanova, D., Cirera, J., Alemany, P. & Alvarez, S. (2013). SHAPE. Barcelona, Spain.  Google Scholar
First citationMagennis, S. W., Parsons, S., Pikramenou, Z., Corval, A. & Derek Woollins, J. (1999). Chem. Commun. pp. 61–62.  Web of Science CSD CrossRef Google Scholar
First citationNehra, K., Dalal, A., Anjli, H., Shri, B., Raman, S., Bernabé, M. S., Sumit, K. & Devender, S. (2022). J. Mol. Struct. 1249, 1–10.  Web of Science CrossRef Google Scholar
First citationOczko, G., Legendziewicz, J., Trush, V. & Amirkhanov, V. (2003). New J. Chem. 27, 948–956.  Web of Science CSD CrossRef CAS Google Scholar
First citationOlyshevets, I., Kariaka, N., Smola, S., Trush, V. & Amirkhanov, V. (2017). Bull. Taras Shevchenko Nat. Univ. Kyiv Chem. 2, 43-46.  CrossRef Google Scholar
First citationPuchalska, M., Turowska-Tyrk, I., Trush, V. & Legendziewicz, J. (2008). J. Alloys Compd. 451, 264–269.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStruhatska, M. B., Kariaka, N. S., Amirkhanov, V. M., Dyakonenko, V. V. & Seredyuk, M. (2021). Acta Cryst. E77, 1307–1310.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTrush, E. A., Amirkhanov, V. M., Ovchynnikov, V. A., Swiatek-Kozlowska, J., Lanikina, K. A. & Domasevitch, K. V. (2003). Polyhedron, 22, 1221–1229.  Web of Science CSD CrossRef CAS Google Scholar
First citationTrush, V. A., Domasevitch, K. V., Amirkhanov, V. M. & Sieler, J. (1999). Z. Naturforsch. B, 54, 451–455.  Web of Science CrossRef CAS Google Scholar
First citationTrush, V. A., Domasevitch, K. V. & Amyrkhanov, V. M. (2007). Rep. Nat. Acad. Sci. Ukraine, 7, 147  Google Scholar
First citationTrush, V. A., Gubina, K. E., Amirkhanov, V. M., Swiatek-Kozlowska, J. & Domasevitch, K. V. (2005). Polyhedron, 24, 1007–1014.  Web of Science CSD CrossRef CAS Google Scholar
First citationTrush, V. A., Swiatek-Kozlowska, J., Skopenko, V. V. & Amyrkhanov, V. M. (2001). Z. Naturforsch. B, 56, 249–254.  Web of Science CrossRef CAS Google Scholar
First citationYakovlev, O. O., Kariaka, N. S., Trush, V. A., Smola, S. S., Siczek, M. & Amirkhanov, V. M. (2018). Opt. Mater. 75, 459–464.  Web of Science CSD CrossRef CAS Google Scholar
First citationZnovjyak, K. O., Moroz, O. V., Ovchynnikov, V. A., Sliva, T. Yu., Shishkina, S. V. & Amirkhanov, V. M. (2009). Polyhedron, 28, 3731–3738.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds