research communications
and Hirshfeld surface analysis of 4,4′-dimethoxybiphenyl-3,3′,5,5′-tetracarboxylic acid dihydrate
aTechnische Universität Bergakademie Freiberg, Leipziger Str. 29, D-09596 Freiberg/Sachsen, Germany
*Correspondence e-mail: monika.mazik@chemie.tu-freiberg.de
In the crystal of the title compound, C18H14O10·2H2O, the arene rings of the biphenyl moiety are tilted at an angle of 24.3 (1)°, while the planes passing through the carboxyl groups are rotated at angles of 8.6 (1) and 7.7 (1)° out of the plane of the benzene ring to which they are attached. The is essentially stabilized by O—H⋯O bonds. Here, the carboxyl groups of neighbouring host molecules are connected by cyclic R22(8) synthons, leading to the formation of a three-dimensional network. The water molecules in turn form helical supramolecular strands running in the direction of the crystallographic c-axis (chain-like water clusters). The second H atom of each water molecule provides a link to a methoxy O atom of the host molecule. A Hirshfeld surface analysis was performed to quantify the contributions of the different intermolecular interactions, indicating that the most important contributions to the crystal packing are from H⋯O/O⋯H (37.0%), H⋯H (26.3%), H⋯C/C⋯H (18.5%) and C⋯O/O⋯C (9.5%) interactions.
Keywords: biphenyl derivative; O—H⋯O hydrogen bonds; supramolecular motifs; water cluster; helical supramolecular strands; Hirshfeld surface; crystal structure.
CCDC reference: 2339048
1. Chemical context
Our studies on the molecular recognition of mono- and , 2012) and macrocyclic (Lippe & Mazik, 2013, 2015; Amrhein et al., 2016; Amrhein & Mazik, 2021; Leibiger et al., 2022) receptor architectures. Among the acyclic compounds, those with a central aromatic core carrying three or more functionalized side arms as recognition groups have proven to be effective carbohydrate receptors. Their binding properties can be fine-tuned by varying the structural subunits of these compounds. In this context, benzene (Stapf et al., 2020; Köhler et al., 2020, 2021; Kaiser et al., 2019), fluorene (Seidel & Mazik, 2020, 2023), diphenylmethane (Mazik & König, 2007; Mazik & Buthe, 2009; Koch et al., 2014) or biphenyl units (Mazik & König, 2006) were used as the central aromatic platform of the receptor structures. Representatives of the last mentioned receptors can be prepared, for example, on the basis of biphenyl-3,3′,5,5′-tetracarboxylic acid (Mazik & König, 2006). In this article we describe the of the hydrate of 4,4′-dimethoxy-biphenyl-3,3′,5,5′-tetracarboxylic acid, which is also a valuable precursor for the synthesis of receptors with a biphenyl-based scaffold.
with artificial receptors led to the development of various acyclic (Mazik, 20092. Structural commentary
The title compound, C18H14O10·2H2O, crystallizes in the tetragonal I41cd with one half [the second half is generated by the 1 − x, 1 − y, z] of the biphenyl-4,4′-dimethoxy-3,3′,5,5′-tetracarboxylic acid (host) molecule and one water molecule (guest) in the of the cell. A perspective view of the 1:2 host–guest unit is shown in Fig. 1. The two benzene rings of the biphenyl moiety are twisted at an angle of 24.3 (1)°. The mean planes passing the carboxy groups are inclined at angles of 8.6 (1) and 7.7 (1)° with respect to the planes of the respective benzene rings. The bond lengths within the host molecule resemble those found in the of biphenyl-3,3′,5,5′-tetracarboxylic acid (Coles et al., 2002).
3. Supramolecular features and Hirshfeld surface analysis
The ). On the one hand, these hydrogen bonds contribute to the connection of the host molecules via cyclic synthons of the structure (8) (Etter et al., 1990; Etter, 1991; Bernstein et al., 1995), thus creating a three-dimensional cross-linking of these molecules. On the other hand, the water molecules in turn form infinite helical strands running in the c-axis direction (Fig. 2). The arrangement of the water molecules in this helical structure corresponds to the fourfold (41 axis) of the The second H atom of the water molecule serves as a binding site for a hydrogen bond to the O atom of the methoxy group (Fig. 3). Taking the interactions between the water molecules into account, their arrangement could also be described as water clusters, which belong to the class of infinite chains (for nomenclature of water clusters, see: Infantes & Motherwell, 2002; Mascal et al., 2006; for examples of other water clusters reported by our group, see: Rosin et al., 2017). Furthermore, the H⋯Cg distances of 2.96 and 2.99 Å involving the hydrogen atoms H3 and H5 (symmetry operations: x, 1 − y, + z; 1 − x, y, − + z) indicate the presence of weak C—H⋯π interactions. A packing diagram of the title compound viewed along the c-axis direction is presented in Fig. 4.
is mainly stabilized by O—H⋯O bonds (Table 1In order to visualize and quantify intermolecular interactions a Hirshfeld surface analysis (Spackman & Byrom, 1997; McKinnon et al., 1998) was performed using CrystalExplorer (Version 21.5, Spackman et al., 2021). The Hirshfeld surface mapped over dnorm using a standard surface resolution with a fixed colour scale of −0.7603 to 1.5689 a.u. is shown in Fig. 5. The red spots on the dnorm surface represent O—H⋯O hydrogen bonds. The full two-dimensional fingerprint plots and those delineated into different types of interactions (McKinnon, 2007) are illustrated in Fig. 6. They reveal that H⋯O/O⋯H contacts (Fig. 6b), i.e. strong hydrogen bonds, contribute 37.0% of the Hirshfeld surface. The two weakly pronounced wings in the fingerprint plot prove the presence of intermolecular interactions of the C—H⋯π type. H⋯H contacts represent 26.3% of the fingerprint plot, while H⋯C/C⋯H and C⋯O/O⋯C contacts cover 18.5% and 9.5% of the Hirshfeld surface, respectively.
4. Database survey
A search in the Cambridge Structural Database (CSD, Version 5.44, update April 2023; Groom et al., 2016) for 4,4′-disubstituted derivatives of biphenyl-3,3′,5,5′-tetracarboxylic acid gave no hits; however, the of biphenyl-3,3′,5,5′-tetracarboxylic acid is known (refcode: PUYTEI; Coles et al., 2002). A comparison between the structure of the title compound and the unsolvated structure of biphenyl-3,3′,5,5′-tetracarboxylic acid (PUYTEI) provides a hint about the influence of the water molecules on the packing of the The difference in the space-group symmetries (I41cd vs P21/c) suggests structural differences. In the structure of PUYTEI, a supramolecular arrangement of three interpenetrating corrugated layers forms structure domains that extend parallel to the crystallographic ac plane. Within a given corrugated layer, adjacent molecules are also linked via their carboxyl groups through eight-membered ring synthons. Furthermore, the molecules within the structure domains are arranged such that offset π–π-stacking interactions [d(Cg⋯Cg) = 3.636 Å] are effective between their aromatic units.
5. Synthesis and crystallization
To a mixture of 760 mg (1.51 mmol) of 4,4′-dimethoxy-3,3′,5,5′-biphenyltetracarboxylic acid tetraethyl ester and 60 mL of water, 1.01 g (17.9 mmol) of potassium hydroxide were added. After heating to boiling point for up to 18 h, the solution was cooled and acidified with semi-concentrated sulfuric acid. The white solid was filtered and dried under reduced pressure. Yield 96% (578 mg, 1.48 mmol); m.p. 528 K. 1H NMR (500 MHz, DMSO-d6, ppm): δ = 3.85 (s, 6H), 8.08 (s, 4H), 13.31 (br. s, 4H). 13C NMR (125 MHz, DMSO-d6, ppm): δ = 63.0, 128.4, 131.0, 133.1, 157.1, 166.7. Single crystals suitable for X-ray analysis were obtained by recrystallizing the resulting solid from water.
6. Refinement
Crystal data, data collection and structure . The non-hydrogen atoms were refined anisotropically. The carboxyl H atoms and the hydrogen atoms of the water molecules were identified in difference-Fourier maps and their Uiso parameters refined freely. All other H atoms were placed in calculated positions and refined using a riding model with C—H = 0.95–0.98 Å and Uiso(H) = 1.2 or 1.5 Ueq(C).
details are summarized in Table 2
|
Supporting information
CCDC reference: 2339048
https://doi.org/10.1107/S2056989024002305/ex2080sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024002305/ex2080Isup2.hkl
C18H14O10·2H2O | Dx = 1.516 Mg m−3 |
Mr = 426.32 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, I41cd | Cell parameters from 1164 reflections |
a = 24.069 (3) Å | θ = 3.7–23.3° |
c = 6.4468 (8) Å | µ = 0.13 mm−1 |
V = 3734.6 (9) Å3 | T = 123 K |
Z = 8 | Needle, colorless |
F(000) = 1776 | 0.40 × 0.03 × 0.03 mm |
Stoe IPDS 2T diffractometer | 1502 reflections with I > 2σ(I) |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | Rint = 0.055 |
Plane graphite monochromator | θmax = 26.5°, θmin = 2.7° |
Detector resolution: 6.67 pixels mm-1 | h = −30→30 |
rotation method scans | k = −30→30 |
14573 measured reflections | l = −7→8 |
1914 independent reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.039 | w = 1/[σ2(Fo2) + (0.0377P)2 + 2.9912P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.093 | (Δ/σ)max < 0.001 |
S = 1.08 | Δρmax = 0.22 e Å−3 |
1914 reflections | Δρmin = −0.20 e Å−3 |
153 parameters | Absolute structure: Flack x determined using 575 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
4 restraints | Absolute structure parameter: −2.2 (10) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.51833 (11) | 0.31455 (13) | 0.2339 (6) | 0.0237 (8) | |
O2 | 0.42995 (12) | 0.28601 (12) | 0.2186 (6) | 0.0239 (8) | |
H1O2 | 0.449 (3) | 0.256 (3) | 0.185 (12) | 0.05 (2)* | |
O3 | 0.35137 (11) | 0.35799 (11) | 0.3165 (6) | 0.0179 (5) | |
O4 | 0.28338 (12) | 0.43760 (11) | 0.4265 (6) | 0.0248 (8) | |
H1O4 | 0.2495 (15) | 0.450 (3) | 0.443 (13) | 0.07 (2)* | |
O5 | 0.31378 (12) | 0.52496 (11) | 0.4093 (6) | 0.0222 (7) | |
C1 | 0.39269 (17) | 0.39659 (18) | 0.3264 (9) | 0.0140 (6) | |
C2 | 0.37996 (17) | 0.45289 (16) | 0.3673 (7) | 0.0140 (9) | |
C3 | 0.42244 (16) | 0.49250 (17) | 0.3661 (6) | 0.0127 (9) | |
H3 | 0.413302 | 0.530267 | 0.392110 | 0.015* | |
C4 | 0.47773 (17) | 0.47854 (17) | 0.3282 (9) | 0.0124 (5) | |
C5 | 0.48953 (17) | 0.42264 (17) | 0.2878 (7) | 0.0137 (9) | |
H5 | 0.526771 | 0.412055 | 0.259073 | 0.016* | |
C6 | 0.44816 (17) | 0.38202 (16) | 0.2884 (7) | 0.0142 (9) | |
C7 | 0.46785 (15) | 0.32382 (17) | 0.2435 (7) | 0.0156 (9) | |
C8 | 0.33949 (17) | 0.32976 (16) | 0.5113 (7) | 0.0271 (9) | |
H8A | 0.308463 | 0.303926 | 0.491492 | 0.041* | |
H8B | 0.329565 | 0.357244 | 0.617154 | 0.041* | |
H8C | 0.372435 | 0.309100 | 0.556346 | 0.041* | |
C9 | 0.32219 (16) | 0.47463 (15) | 0.4027 (8) | 0.0155 (9) | |
O6 | 0.30431 (14) | 0.28767 (14) | −0.0127 (6) | 0.0401 (8) | |
H1O6 | 0.302 (2) | 0.2570 (16) | 0.070 (7) | 0.042 (15)* | |
H2O6 | 0.321 (3) | 0.309 (3) | 0.084 (9) | 0.09 (3)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0149 (13) | 0.0148 (15) | 0.041 (2) | 0.0036 (10) | 0.0022 (14) | −0.0036 (15) |
O2 | 0.0179 (13) | 0.0110 (15) | 0.043 (2) | −0.0020 (11) | 0.0022 (14) | −0.0074 (15) |
O3 | 0.0136 (13) | 0.0131 (13) | 0.0270 (12) | −0.0032 (9) | 0.0003 (12) | −0.0021 (12) |
O4 | 0.0101 (14) | 0.0168 (14) | 0.047 (2) | 0.0004 (10) | 0.0038 (15) | −0.0043 (14) |
O5 | 0.0126 (13) | 0.0170 (13) | 0.037 (2) | 0.0036 (10) | 0.0038 (15) | −0.0010 (14) |
C1 | 0.0113 (19) | 0.0159 (19) | 0.0146 (14) | −0.0022 (11) | −0.0012 (17) | 0.0004 (17) |
C2 | 0.0126 (19) | 0.0133 (18) | 0.016 (2) | 0.0019 (15) | −0.0009 (17) | −0.0020 (17) |
C3 | 0.0131 (17) | 0.0119 (18) | 0.013 (2) | −0.0007 (14) | −0.0030 (18) | −0.0004 (17) |
C4 | 0.0117 (19) | 0.0137 (19) | 0.0118 (14) | 0.0007 (10) | −0.0030 (16) | −0.0001 (17) |
C5 | 0.0093 (17) | 0.0163 (19) | 0.016 (2) | 0.0034 (14) | −0.0002 (17) | −0.0001 (19) |
C6 | 0.019 (2) | 0.0106 (19) | 0.014 (2) | −0.0002 (15) | 0.0004 (18) | −0.0002 (17) |
C7 | 0.0157 (17) | 0.0125 (19) | 0.019 (2) | −0.0012 (15) | 0.0031 (19) | 0.0006 (17) |
C8 | 0.022 (2) | 0.024 (2) | 0.035 (2) | −0.0026 (16) | 0.0039 (18) | 0.0104 (18) |
C9 | 0.0138 (19) | 0.0166 (18) | 0.016 (2) | 0.0024 (15) | −0.0012 (18) | 0.0016 (17) |
O6 | 0.045 (2) | 0.0366 (18) | 0.039 (2) | −0.0051 (15) | −0.0063 (16) | −0.0029 (16) |
O1—C7 | 1.237 (4) | C3—C4 | 1.394 (6) |
O2—C7 | 1.298 (5) | C3—H3 | 0.9500 |
O2—H1O2 | 0.88 (6) | C4—C5 | 1.400 (6) |
O3—C1 | 1.363 (4) | C4—C4i | 1.489 (6) |
O3—C8 | 1.456 (5) | C5—C6 | 1.396 (6) |
O4—C9 | 1.300 (5) | C5—H5 | 0.9500 |
O4—H1O4 | 0.88 (3) | C6—C7 | 1.507 (6) |
O5—C9 | 1.229 (4) | C8—H8A | 0.9800 |
C1—C6 | 1.402 (6) | C8—H8B | 0.9800 |
C1—C2 | 1.414 (6) | C8—H8C | 0.9800 |
C2—C3 | 1.398 (6) | O6—H1O6 | 0.91 (3) |
C2—C9 | 1.503 (6) | O6—H2O6 | 0.90 (3) |
C7—O2—H1O2 | 105 (4) | C4—C5—H5 | 119.1 |
C1—O3—C8 | 114.9 (4) | C5—C6—C1 | 120.3 (4) |
C9—O4—H1O4 | 117 (5) | C5—C6—C7 | 115.2 (4) |
O3—C1—C6 | 121.1 (4) | C1—C6—C7 | 124.5 (3) |
O3—C1—C2 | 120.3 (4) | O1—C7—O2 | 123.9 (4) |
C6—C1—C2 | 118.6 (2) | O1—C7—C6 | 119.1 (4) |
C3—C2—C1 | 119.6 (4) | O2—C7—C6 | 117.0 (3) |
C3—C2—C9 | 116.1 (3) | O3—C8—H8A | 109.5 |
C1—C2—C9 | 124.2 (3) | O3—C8—H8B | 109.5 |
C4—C3—C2 | 122.3 (4) | H8A—C8—H8B | 109.5 |
C4—C3—H3 | 118.8 | O3—C8—H8C | 109.5 |
C2—C3—H3 | 118.8 | H8A—C8—H8C | 109.5 |
C3—C4—C5 | 117.3 (2) | H8B—C8—H8C | 109.5 |
C3—C4—C4i | 121.3 (5) | O5—C9—O4 | 123.6 (4) |
C5—C4—C4i | 121.4 (5) | O5—C9—C2 | 120.1 (4) |
C6—C5—C4 | 121.9 (4) | O4—C9—C2 | 116.4 (3) |
C6—C5—H5 | 119.1 | H1O6—O6—H2O6 | 95 (6) |
C8—O3—C1—C6 | 90.3 (6) | C4—C5—C6—C7 | −179.6 (5) |
C8—O3—C1—C2 | −92.3 (6) | O3—C1—C6—C5 | 176.4 (4) |
O3—C1—C2—C3 | −176.6 (5) | C2—C1—C6—C5 | −1.1 (9) |
C6—C1—C2—C3 | 0.9 (9) | O3—C1—C6—C7 | −2.7 (8) |
O3—C1—C2—C9 | 0.1 (8) | C2—C1—C6—C7 | 179.8 (4) |
C6—C1—C2—C9 | 177.6 (4) | C5—C6—C7—O1 | 8.4 (7) |
C1—C2—C3—C4 | −0.8 (8) | C1—C6—C7—O1 | −172.4 (5) |
C9—C2—C3—C4 | −177.8 (4) | C5—C6—C7—O2 | −172.1 (4) |
C2—C3—C4—C5 | 0.9 (8) | C1—C6—C7—O2 | 7.1 (7) |
C2—C3—C4—C4i | −179.9 (3) | C3—C2—C9—O5 | 6.7 (7) |
C3—C4—C5—C6 | −1.1 (8) | C1—C2—C9—O5 | −170.1 (5) |
C4i—C4—C5—C6 | 179.7 (3) | C3—C2—C9—O4 | −172.8 (4) |
C4—C5—C6—C1 | 1.2 (8) | C1—C2—C9—O4 | 10.4 (7) |
Symmetry code: (i) −x+1, −y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H1O2···O5ii | 0.88 (6) | 1.80 (6) | 2.663 (4) | 166 (7) |
O4—H1O4···O1iii | 0.88 (3) | 1.74 (3) | 2.611 (4) | 174 (7) |
O6—H1O6···O6iv | 0.91 (3) | 1.86 (3) | 2.768 (4) | 173 (5) |
O6—H2O6···O3 | 0.90 (3) | 2.04 (3) | 2.941 (5) | 174 (7) |
Symmetry codes: (ii) −y+1, −x+1/2, z−1/4; (iii) −y+1/2, −x+1, z+1/4; (iv) y, −x+1/2, z+1/4. |
Acknowledgements
TH would like to thank the Free State of Saxony for funding (Saxon State Doctoral Scholarship). Open Access Funding by the Publication Fund of the Technische Universität Bergakademie Freiberg is gratefully acknowledged.
References
Amrhein, F., Lippe, J. & Mazik, M. (2016). Org. Biomol. Chem. 14, 10648–10659. Web of Science CrossRef CAS PubMed Google Scholar
Amrhein, F. & Mazik, M. (2021). Eur. J. Org. Chem. pp. 6282–6303. Web of Science CrossRef Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Coles, S. J., Holmes, R., Hursthouse, M. B. & Price, D. J. (2002). Acta Cryst. E58, o626–o628. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Etter, M. C. (1991). J. Phys. Chem. 95, 4601–4610. CrossRef CAS Web of Science Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. Web of Science CrossRef IUCr Journals Google Scholar
Infantes, L. & Motherwell, S. (2002). CrystEngComm, 4, 454–461. Web of Science CrossRef CAS Google Scholar
Kaiser, S., Geffert, C. & Mazik, M. (2019). Eur. J. Org. Chem. pp. 7555–7562. Web of Science CrossRef Google Scholar
Koch, N., Rosien, J.-R. & Mazik, M. (2014). Tetrahedron, 70, 8758–8767. CrossRef CAS Google Scholar
Köhler, L., Hübler, C., Seichter, W. & Mazik, M. (2021). RSC Adv. 11, 22221–22229. Web of Science PubMed Google Scholar
Köhler, L., Seichter, W. & Mazik, M. (2020). Eur. J. Org. Chem. pp. 7023–7034. Google Scholar
Leibiger, B., Stapf, M. & Mazik, M. (2022). Molecules, 27, 7630–7645. CrossRef CAS PubMed Google Scholar
Lippe, J. & Mazik, M. (2013). J. Org. Chem. 78, 9013–9020. Web of Science CrossRef CAS PubMed Google Scholar
Lippe, J. & Mazik, M. (2015). J. Org. Chem. 80, 1427–1439. Web of Science CrossRef CAS PubMed Google Scholar
Mascal, M., Infantes, L. & Chisholm, J. (2006). Angew. Chem. Int. Ed. 45, 32–36. Web of Science CrossRef CAS Google Scholar
Mazik, M. (2009). Chem. Soc. Rev. 38, 935–956. Web of Science CrossRef PubMed CAS Google Scholar
Mazik, M. (2012). RSC Adv. 2, 2630–2642. Web of Science CrossRef CAS Google Scholar
Mazik, M. & Buthe, A. (2009). Org. Biomol. Chem. 7, 2063–2071. CrossRef PubMed CAS Google Scholar
Mazik, M. & König, A. (2006). J. Org. Chem. 71, 7854–7857. Web of Science CrossRef PubMed CAS Google Scholar
Mazik, M. & König, A. (2007). Eur. J. Org. Chem. pp. 3271–3276. CrossRef Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
McKinnon, J. J., Mitchell, A. S. & Spackman, M. A. (1998). Chem. Eur. J. 4, 2136–2141. CrossRef CAS Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Rosin, R., Seichter, W., Schwarzer, A. & Mazik, M. (2017). Eur. J. Org. Chem. pp. 6038–6051. CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Seidel, P. & Mazik, M. (2020). ChemistryOpen, 9, 1202-1213. Web of Science CrossRef CAS PubMed Google Scholar
Seidel, P. & Mazik, M. (2023). ChemistryOpen, 12, e202300019. CrossRef PubMed Google Scholar
Spackman, P. R. & Byrom, P. G. (1997). Chem. Phys. Lett. 267, 215–220. CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stapf, M., Seichter, W. & Mazik, M. (2020). Eur. J. Org. Chem. pp. 4900–4915. CSD CrossRef Google Scholar
Stoe & Cie (2002). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.