research communications
Synthesis, characterization and supramolecular analysis for (E)-3-(pyridin-4-yl)acrylic acid
aFacultad de Ciencias Básicas, Universidad Santiago de Cali, Calle 5 No 62-00, Cali, Colombia, bCristalografía y Química de Materiales (CrisQuimMat), Facultad de Ciencias, Departamento de Química, Universidad de los Andes, Cra. 1 No 18a-12, Bogotá, Colombia, and cFacultad de Ciencias Naturales, Exactas y de la Educación, Departamento de Química, Universidad del Cauca, Calle 5 No 4-70, Popayán, Colombia
*Correspondence e-mail: luis.illicachi00@usc.edu.co, richard.dvries@unicauca.edu.co
The title compound, C8H7NO2, crystallizes as prismatic colourless crystals in P, with one molecule in the The pyridine ring is fused to acrylic acid, forming an almost planar structure with an E-configuration about the double bond with a torsion angle of −6.1 (2)°. In the crystal, strong O—H⋯N interactions link the molecules, forming chains along the [101] direction. Weak C—H⋯O interactions link adjacent chains along the [100] direction, generating an R22(14) homosynthon. Finally, π–π stacking interactions lead to the formation of the three-dimensional structure. The supramolecular analysis was supported by Hirshfeld surface and two-dimensional fingerprint plot analysis, indicating that the most abundant contacts are associated with H⋯H, O⋯H/H⋯O, N⋯H/H⋯N and C⋯H/H⋯C interactions.
CCDC reference: 2341592
1. Chemical context
Cinnamic acid and its derivatives have been used in several applications related to medicinal chemistry (Deng et al., 2023), organic synthesis (Chen et al., 2020), and coordination chemistry (Zhou et al., 2016). Cinnamic acids are reactive molecules due to possessing an unsaturated carbonyl moiety, which can be considered a Michael acceptor and benzene ring. Both make it possible to modify them, resulting in synthetic cinnamic acid derivatives with a broad range of biological properties, including antibacterial (Ruwizhi & Aderibigbe, 2020) antituberculosis (Teixeira et al., 2020), antimalarial (Fonte et al., 2023), antidiabetic (Adisakwattana, 2017; Feng et al., 2022), anticancer (Feng et al., 2022), antifungal (Liu et al., 2024), Alzheimer's treatment (Drakontaeidi & Pontiki, 2024), antioxidant (Nouni et al., 2023), and cosmetic (Gunia-Krzyżak et al., 2018). Among the various types of cinnamic acids documented, 4-pyridylacrylic acid (4-Hpya) is considered a highly valuable ligand because of several structural characteristics that make it suitable for the construction of coordination compounds. These characteristics include multiple coordination sites, which enable the formation of higher-dimensional structures, and versatile coordination modes to form different structures (Khalfaoui et al., 2021). On the other hand, its capacity to function as both a hydrogen-bond donor and acceptor facilitates the creation of intricate hydrogen-bonded networks (Jiao et al., 2007; Zhu et al., 2005).
2. Structural commentary
The title compound crystallizes in P with one molecule per (Fig. 1). The pyridinic ring is fused to acrylic acid, forming an almost planar structure with an E-configuration about the double bond, with a C8—C4—C3—C2 torsion angle of −6.1 (2)°.
3. Supramolecular features
In the crystal, strong O1—H1⋯N1 interactions link the molecules, forming chains along the [101] direction (Fig. 2a, Table 1). Adjacent chains are linked along the [100] direction through weak C—H⋯O interactions, generating an R22(14) homosynthon (Fig. 2b). Finally, the three-dimensional supramolecular structure is finally formed by slipped π–π stacking interactions (Hunter & Sanders, 1990) between the pyridinic rings (N1/C4–C8) with distances of 3.8246 (10) Å, and π–π stacking interactions of the acrylic double bond (C2=C3) of 3.4322 (10)Å (Fig. 2c). An interaction between the nitrogen atom of the pyridinic ring, N1, and the double bond of the acrylic group with a distance of 3.4044 (13) Å is also observed.
|
A Hirshfeld surface analysis was performed to confirm, visualise and quantify the supramolecular interactions present in title compound. The Hirshfeld surface mapped over dnorm and 2D fingerprint plots (Spackman & Jayatilaka, 2009) were generated using Crystal Explorer 17 (Spackman, et al., 2021). Fig. 3 shows the strongest interactions as red spots. These are associated with the donor and acceptor atoms, in this case for the O—H⋯N interaction. The weakest interactions, associated with the C—H⋯O contacts, are shown as white areas. These interactions were quantified through the fingerprint plots, indicating that the most abundant contacts are associated with H⋯H interactions (36.2%) while O⋯H/H⋯O, N⋯H/H⋯N and C⋯H/H⋯C interactions represent 27.8%, 8.7% and 10.7%, respectively. These results show that crystal packing is governed mainly by dispersion and electrostatic interactions.
4. Database survey
A search of the Cambridge Structural Database (Version 2023.3.0; Groom et al., 2016) using Conquest (Bruno et al., 2002) found seven entries for (E)-3-(pyridin-4-yl)acrylic acid derivative molecules. In all cases, the protonation of the nitrogen atom in the pyridine ring leads to the formation of pyridinium salts. These include halides (Hu, 2010; Kole et al., 2010), trifluoroacetate (Kole et al., 2010), hydrogen sulfate (Kole et al., 2010), perchlorate and hexafluorophosphate (Kole et al., 2011).
5. Synthesis and crystallization
The synthesis of (E)-3-(pyridin-4-yl)acrylic acid compound was performed following the procedure reported by Kudelko et al. (2015) for the synthesis of 3-(pyridyl)acrylic acids (Fig. 4). In a 25 mL flat-bottomed flask, 728 mg of malonic acid (0.335 mmol) and 300 mg of 4-pyridincarboxyaldehyde (0.33 5 mmol) were mixed with 2 ml of pyridine. The reaction mixture was refluxed under constant stirring for 3 h. The reaction synthesis was ice-cooled, and then drops of 37% HCl were added until precipitate formation was observed. The obtained solid was separated by filtration and washed with acetone. The solid product was recrystallized by slow water evaporation, giving a colourless crystalline powder and small prismatic crystals in 97.9% yield.
6. Refinement
Crystal data, data collection and structure . The O-bound hydrogen atom (H1) was found in electron density maps and freely refined. C-bound hydrogen atoms were positioned geometrically and refined using a riding model [C—H = 0.93 Å, Uiso(H) = 1.2Ueq(C)].
details are summarized in Table 2Supporting information
CCDC reference: 2341592
https://doi.org/10.1107/S2056989024002627/ex2082sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024002627/ex2082Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989024002627/ex2082Isup3.cml
C8H7NO2 | F(000) = 156 |
Mr = 149.15 | Dx = 1.405 Mg m−3 |
Triclinic, P1 | Melting point: 553 K |
a = 6.6279 (15) Å | Cu Kα radiation, λ = 1.54184 Å |
b = 7.3272 (12) Å | Cell parameters from 1657 reflections |
c = 8.2308 (15) Å | θ = 6.8–74.9° |
α = 67.271 (17)° | µ = 0.85 mm−1 |
β = 83.403 (17)° | T = 291 K |
γ = 73.006 (17)° | Prismatic, colourless |
V = 352.57 (13) Å3 | 0.09 × 0.06 × 0.05 mm |
Z = 2 |
SuperNova, Dual, Cu at home/near, Atlas diffractometer | 1461 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source | 1243 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.035 |
Detector resolution: 10.6144 pixels mm-1 | θmax = 76.6°, θmin = 5.8° |
ω scans | h = −8→7 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) | k = −8→9 |
Tmin = 0.831, Tmax = 1.000 | l = −10→10 |
3635 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.049 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.153 | w = 1/[σ2(Fo2) + (0.0977P)2 + 0.0215P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
1461 reflections | Δρmax = 0.14 e Å−3 |
104 parameters | Δρmin = −0.27 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.48195 (18) | 0.6974 (2) | 0.64537 (15) | 0.0609 (4) | |
O2 | 0.63738 (19) | 0.8136 (2) | 0.79722 (16) | 0.0669 (4) | |
C2 | 0.3116 (2) | 0.7317 (2) | 0.89960 (18) | 0.0484 (4) | |
H2 | 0.211812 | 0.676180 | 0.879516 | 0.058* | |
N1 | −0.20475 (19) | 0.72846 (17) | 1.42131 (15) | 0.0504 (4) | |
C5 | 0.1186 (2) | 0.8159 (2) | 1.31387 (18) | 0.0490 (4) | |
H5 | 0.228403 | 0.862808 | 1.329376 | 0.059* | |
C4 | 0.1149 (2) | 0.76641 (18) | 1.16689 (16) | 0.0426 (3) | |
C7 | −0.2089 (2) | 0.6805 (2) | 1.28079 (19) | 0.0507 (4) | |
H7 | −0.320055 | 0.632669 | 1.269716 | 0.061* | |
C1 | 0.4937 (2) | 0.75386 (19) | 0.77647 (17) | 0.0477 (4) | |
C3 | 0.2868 (2) | 0.7884 (2) | 1.03649 (18) | 0.0456 (3) | |
H3 | 0.386535 | 0.847081 | 1.051782 | 0.055* | |
C8 | −0.0552 (2) | 0.6991 (2) | 1.15114 (18) | 0.0483 (4) | |
H8 | −0.065343 | 0.666782 | 1.054192 | 0.058* | |
C6 | −0.0433 (3) | 0.7943 (2) | 1.43650 (18) | 0.0524 (4) | |
H6 | −0.038863 | 0.827444 | 1.534078 | 0.063* | |
H1 | 0.600 (4) | 0.713 (4) | 0.561 (3) | 0.099 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0601 (7) | 0.0851 (8) | 0.0546 (6) | −0.0366 (6) | 0.0209 (5) | −0.0374 (5) |
O2 | 0.0631 (7) | 0.0930 (9) | 0.0644 (7) | −0.0440 (6) | 0.0193 (5) | −0.0389 (6) |
C2 | 0.0493 (8) | 0.0521 (7) | 0.0490 (8) | −0.0225 (6) | 0.0125 (6) | −0.0213 (6) |
N1 | 0.0545 (7) | 0.0513 (6) | 0.0463 (6) | −0.0184 (5) | 0.0129 (5) | −0.0197 (5) |
C5 | 0.0523 (8) | 0.0528 (7) | 0.0489 (7) | −0.0218 (6) | 0.0056 (6) | −0.0225 (6) |
C4 | 0.0457 (7) | 0.0396 (6) | 0.0405 (7) | −0.0122 (5) | 0.0055 (5) | −0.0139 (5) |
C7 | 0.0482 (7) | 0.0572 (7) | 0.0524 (7) | −0.0224 (6) | 0.0101 (6) | −0.0233 (6) |
C1 | 0.0508 (7) | 0.0488 (7) | 0.0451 (7) | −0.0201 (5) | 0.0097 (5) | −0.0167 (5) |
C3 | 0.0455 (7) | 0.0468 (6) | 0.0450 (7) | −0.0168 (5) | 0.0058 (5) | −0.0161 (5) |
C8 | 0.0513 (7) | 0.0552 (7) | 0.0453 (7) | −0.0202 (6) | 0.0075 (5) | −0.0240 (5) |
C6 | 0.0621 (9) | 0.0553 (7) | 0.0458 (7) | −0.0199 (6) | 0.0091 (6) | −0.0249 (6) |
O1—C1 | 1.3135 (17) | C5—C4 | 1.3954 (18) |
O1—H1 | 0.98 (3) | C5—C6 | 1.386 (2) |
O2—C1 | 1.2110 (19) | C4—C3 | 1.4729 (19) |
C2—H2 | 0.9300 | C4—C8 | 1.392 (2) |
C2—C1 | 1.4887 (18) | C7—H7 | 0.9300 |
C2—C3 | 1.322 (2) | C7—C8 | 1.384 (2) |
N1—C7 | 1.3374 (18) | C3—H3 | 0.9300 |
N1—C6 | 1.332 (2) | C8—H8 | 0.9300 |
C5—H5 | 0.9300 | C6—H6 | 0.9300 |
C1—O1—H1 | 113.5 (14) | C8—C7—H7 | 118.6 |
C1—C2—H2 | 118.9 | O1—C1—C2 | 112.14 (13) |
C3—C2—H2 | 118.9 | O2—C1—O1 | 124.20 (13) |
C3—C2—C1 | 122.27 (14) | O2—C1—C2 | 123.65 (13) |
C6—N1—C7 | 117.87 (12) | C2—C3—C4 | 125.60 (14) |
C4—C5—H5 | 120.4 | C2—C3—H3 | 117.2 |
C6—C5—H5 | 120.4 | C4—C3—H3 | 117.2 |
C6—C5—C4 | 119.18 (13) | C4—C8—H8 | 120.2 |
C5—C4—C3 | 119.41 (13) | C7—C8—C4 | 119.52 (12) |
C8—C4—C5 | 117.36 (12) | C7—C8—H8 | 120.2 |
C8—C4—C3 | 123.22 (12) | N1—C6—C5 | 123.17 (12) |
N1—C7—H7 | 118.6 | N1—C6—H6 | 118.4 |
N1—C7—C8 | 122.88 (14) | C5—C6—H6 | 118.4 |
N1—C7—C8—C4 | 1.3 (2) | C3—C2—C1—O2 | 4.3 (2) |
C5—C4—C3—C2 | 174.27 (12) | C3—C4—C8—C7 | 179.26 (12) |
C5—C4—C8—C7 | −1.2 (2) | C8—C4—C3—C2 | −6.1 (2) |
C4—C5—C6—N1 | −0.2 (2) | C6—N1—C7—C8 | −0.8 (2) |
C7—N1—C6—C5 | 0.3 (2) | C6—C5—C4—C3 | −179.79 (12) |
C1—C2—C3—C4 | −178.21 (11) | C6—C5—C4—C8 | 0.6 (2) |
C3—C2—C1—O1 | −176.96 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1i | 0.99 (3) | 1.63 (3) | 2.6147 (18) | 177 (3) |
C5—H5···O2ii | 0.93 | 2.57 | 3.336 (2) | 140 |
Symmetry codes: (i) x+1, y, z−1; (ii) −x+1, −y+2, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1i | 0.990 (3) | 1.630 (3) | 2.61470 (18) | 177.0 (3) |
C5—H5···O2ii | 0.9300 | 2.5700 | 3.3360 (2) | 140.00 |
Cp1···Cp1 | 3.82460 (10) | |||
Cp2···Cp2 | 3.43220 (10) | |||
N1···Cp1 | 3.40440 (13) |
Funding information
The authors all acknowledge the Universidad Santiago de Cali and Dirección General de Investigaciones for funding this research under call No. 01–2024 and projects 939–621121-3307 and 934–621122-3427. RD acknowledges the Vicerectoria de Investigaciones of Universidad del Cauca for 2024 internal call, project No. ID-6161. MM is grateful for support from the Facultad de Ciencias and Departamento de Química at Universidad de los Andes, Bogotá, Colombia.
References
Adisakwattana, S. (2017). Nutrients, 9, 163. CrossRef PubMed Google Scholar
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. Web of Science CrossRef CAS IUCr Journals Google Scholar
Chen, L., Zhang, L., Yan, G. & Huang, D. (2020). Asia. J. Org. Chem. 9, 842–862. CrossRef CAS Google Scholar
Deng, H., Xu, Q., Guo, H.-Y., Huang, X., Chen, F., Jin, L., Quan, Z.-S. & Shen, Q.-K. (2023). Phytochemistry, 206, 113532. CrossRef PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Drakontaeidi, A. & Pontiki, E. (2024). Int. J. Mol. Sci. 25, 582. CrossRef PubMed Google Scholar
Feng, L.-S., Cheng, J.-B., Su, W.-Q., Li, H.-Z., Xiao, T., Chen, D.-A. & Zhang, Z.-L. (2022). Arch. Pharm. 355, 2200052. CrossRef Google Scholar
Fonte, M., Fontinha, D., Moita, D., Caño-Prades, O., Avalos-Padilla, Y., Fernàndez-Busquets, X., Prudêncio, M., Gomes, P. & Teixeira, C. (2023). Eur. J. Med. Chem. 258, 115575. CrossRef PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gunia–Krzyżak, A., Słoczyńska, K., Popiół, J., Koczurkiewicz, P., Marona, H. & Pękala, E. (2018). Int. J. Cosmet. Sci. 40, 356–366. PubMed Google Scholar
Hunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5535–5534. Google Scholar
Hu, D.-Y. (2010). Acta Cryst. E66, o1639. CSD CrossRef IUCr Journals Google Scholar
Jiao, C. M., Zhang, W. H., Tang, X. Y., Liu, L. L., Zhang, Y. & Lang, J. P. (2007). Inorg. Chem. Commun. 10, 975–978. CSD CrossRef CAS Google Scholar
Khalfaoui, O., Beghidja, A., Beghidja, C., Guari, Y., Larionova, J. & Long, J. (2021). Polyhedron, 207, 115366. Web of Science CSD CrossRef Google Scholar
Kole, G. K., Tan, G. K. & Vittal, J. J. (2010). Org. Lett. 12, 128–131. Web of Science CSD CrossRef PubMed CAS Google Scholar
Kole, G. K., Tan, G. K. & Vittal, J. J. (2011). Org. Lett. 76(19), 7860–7865. Google Scholar
Kudelko, A., Jasiak, K. & Ejsmont, K. (2015). Monatsh. Chem. 146, 303–311. CSD CrossRef CAS PubMed Google Scholar
Liu, H., Cai, C., Zhang, X., Li, W., Ma, Z., Feng, J., Liu, X. & Lei, P. (2024). J. Agric. Food Chem. 72, 2492–2500. CrossRef CAS PubMed Google Scholar
Nouni, C., Theodosis-Nobelos, P. & Rekka, E. A. (2023). Molecules, 28, 6732. CrossRef PubMed Google Scholar
Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Ruwizhi, N. & Aderibigbe, B. A. (2020). Int. J. Mol. Sci. 21, 5712. Web of Science CrossRef PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Teixeira, C., Ventura, C., Gomes, J. R. B., Gomes, P. & Martins, F. (2020). Molecules, 25, 456. CrossRef PubMed Google Scholar
Zhou, K., Feng, Z., Shen, J., Wu, B., Luo, X., Jiang, S., Li, L. & Zhou, X. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 158, 29–33. CrossRef CAS PubMed Google Scholar
Zhu, Y. J., Chen, J. X., Zhang, W. H., Ren, Z. G., Zhang, Y., Lang, J. P. & Ng, S. W. (2005). J. Organomet. Chem. 690, 3479–3487. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.