research communications
CoII-catalysed synthesis of N-(4-methoxyphenyl)-5-(pyridin-4-yl)-1,3,4-oxadiazol-2-amine hemihydrochloride monohydrate
aDepartment of Chemistry, Banaras Hindu University, Varanasi-221005, India, bDepartment of Chemistry, AKS University, Satna-485001, India, and cBuddha PG College, Kushinagar - 274403, India
*Correspondence e-mail: mkbharty@bhu.ac.in
The title compound, C14H12N4O2·0.5HCl·H2O or H(C14H12N4O2)2+·Cl−·2H2O, arose from the unexpected of isonicotinoyl-N-phenyl hydrazine carbothioamide catalysed by cobalt(II) acetate. The organic molecule is almost planar and a symmetric N⋯H+⋯N hydrogen bond links two of them together, with the H atom lying on a crystallographic twofold axis. The extended structure features N—H⋯O and O—H⋯Cl hydrogen bonds, which generate [001] chains. Weak C—H⋯Cl interactions cross-link the chains. The chloride ion has 2. The major contributions to the Hirshfeld surface are from H⋯H (47.1%), Cl⋯H/H⋯Cl (total 10.8%), O⋯H/H⋯O (7.4%) and N⋯H/H⋯N (6.7%) interactions.
CCDC reference: 2238764
1. Chemical context
1,3,4-Oxadiazole derivatives have been studied in recent years for their diverse biological activities (Gond et al., 2023; Abd-Ellah et al., 2017; Bitla et al., 2020). As a result of their electron-accepting properties, high and good thermal and chemical stabilities, they have also been used in electroluminescent, optical and electron-transporting materials and chelating agents (Najare et al., 2020; Wu et al., 2012). Several methods for the synthesis of 1,3,4-oxadiazoles from acyclic precursors are available, which include oxidative of acylhydrazones (Jedlovská & Leško, 1994) and acylthiosemicarbazides (Omar et al., 1996, Paswan et al., 2015). In the presence of a strong acid, an N-acylhydrazine carbodithioate is converted into a thiadiazole whereas in the presence of a weak acid or base or on complexation they can be cyclized into oxadiazole (Reid & Heindel, 1976; Jasinski et al., 2011).
We have previously reported the cyclo-desulfurization of several N-acylhydrazine carbodithioates into the corresponding 1,3,4-oxadiazole in the presence of manganese(II) acetate via the loss of H2S where the MnII ion presumably behaves as a weak (Paswan et al., 2015, 2016; Gond et al., 2022). In the present work, a similar reaction is reported in presence of CoII chloride. Similar CoII-assisted reactions are also reported in the literature (Li et al., 2021, 2023; Bharty et al., 2012).
2. Structural commentary
The compound crystallizes in the monoclinic C2/c. The consists of one organic molecule, half an equivalent of HCl and one water molecule (Fig. 1). The C3–C7/N4 pyridyl, C1/C2/N2/N3/O1 oxadiazole and C8–C13 phenyl rings are close to co-planar with the dihedral angles between pyridyl and oxadiazole rings being 4.88 (9)°, oxadiazole and phenyl rings 4.27 (10)° and pyridyl and phenyl rings 2.27 (9)°. The bond distances and angles of the 1,3,4-oxadiazole ring [C1—N2 = 1.298 (2); C2—N3 = 1.277 (2) Å] are in good agreement with values reported previously (Jasinski et al., 2011; Paswan et al., 2015, 2016; Singh et al., 2007). The C—N bond distance in the pyridine ring, C5—N4 = 1.336 (2) Å, is slightly longer than the corresponding bond in a similar compound (1.326 (2) Å; Singh et al., 2006), probably due to the N⋯H interaction (Fig. 2).
in3. Supramolecular features
In the extended structure, two organic molecules are linked through their pyridine nitrogen atoms via the proton of the hydrochloric acid, which lies on a crystallographic twofold axis. This strong, symmetrical, almost linear N4⋯H4N⋯N4 hydrogen bond (Table 1) leads to a rod-like dimeric structure. These units form a layer-like structure when viewed along b axis of the (Fig. 3). The water molecules and chloride ions (site symmetry 2) are embedded in the space between the chains and are connected to them via N—H⋯O and O—H⋯Cl hydrogen bonds, thereby generating [001] chains. Weak C—H⋯Cl interactions are also observed (Table 1; Fig. 2).
4. Hirshfeld Surface Analysis
To gain further insight into the intermolecular interactions, a Hirshfeld surface analysis was performed using Crystal Explorer 17.5 (Spackman et al., 2021). Fig. 4a,b shows the Hirshfeld surface mapped over dnorm. The red spots show the various hydrogen bonds noted above.
The two-dimensional fingerprint plots are presented in Fig. 4c–g. The H⋯H (van der Waals) contacts dominate at 47.1%. Among the directional interactions present in the structure, the Cl⋯H/H⋯Cl (total 10.8%) contact is the most significant. Other contacts include 6.6% for C⋯H/H⋯C, 6.7% N⋯H/H⋯N and 7.4% for O⋯H/H⋯O interactions.
5. Synthesis and crystallization
2-Isonicotinoyl-N-(4-methoxyphenyl)hydrazine-1-carbothioamide was prepared by adding 1.652 g (10.00 mmol) of 4-methoxy phenyl isothiocyanate in ethanol solution to 1.370 g (10.00 mmol) of isonicotinohydrazide and the reaction mixture was refluxed for 6 h at 333 K. Upon cooling, a white precipitate of 2-isonicotinoyl-N-(4-methoxyphenyl)hydrazine-1-carbothioamide was obtained (Fig. 5), which was filtered off and washed with a 50:50 v/v mixture of water and ether. Then, 1.00 mmol of 2-isonicotinoyl-N-(4-methoxyphenyl)hydrazine-1-carbothioamide was dissolved in a 50:50 v/v mixture of methanol and chloroform, and a methanolic solution of 0.5 mmol of CoCl2·6H2O was added and stirred for 2 h, during which time the smell of H2S was noted. The clear solution obtained was kept for crystallization and after 15 days, pale-pink blocks of the title compound were grown. Yield: 60.6%; m.p. 495–498 K. Analysis calculated for C14H12N4O2.0.5 HCl·H2O: C, 55.21; H, 4.79; N, 18.39%; found: C, 55.25; H, 4.50; N, 18.55%.
The IR spectrum (KBr disc) shows an absorption band at 3280 cm−1 due to the NH group. The C=O band is absent and a new band is observed at 1623 cm−1 corresponding to the C=N bond. In addition, a blue shift is observed for the N=N band at 1179 cm−1 compared to the single bond in the thiosemicarbazide intermediate (Fig. 1 in the supporting information). All these data indicate that the carbothioamide moiety has been transformed into the corresponding oxadiazole (Chandra et al., 2022; Jaiswal et al., 2023ab).
The 1H NMR spectrum of the title compound in DMSO-d6 displays peaks at δ 10.69 ppm due to the NH proton, at δ 8.91 and 7.90 ppm due to the pyridyl ring protons and at δ 7.55 and 6.98 ppm due to phenyl ring protons. The methoxy protons appear at δ 3.74 ppm. (Fig. 2 in the supporting information). In the 13C NMR spectrum, peaks at δ 156.9 and 155.2 ppm arise from oxadiazole ring carbon atoms, the methoxy C atom appears at 55.7 ppm and the phenyl and pyridyl carbon atoms are observed in the range δ 114.8–132.4 ppm (Fig. 3 in the supporting information). An absorption at 338 nm in the electronic spectrum of the title compound can be attributed to its π–π* transition (Fig. 4 in the supporting information). It displays fluorescence at 418 nm upon excitation at 338 nm (Fig. 5 in the supporting information) when dissolved in 10−5 M DMSO solution.
6. Refinement
Crystal data, data collection and structure . Atom H4N was freely refined. Other H atoms were placed in idealized locations (N—H = 0.86 Å, C—H = 0.93–0. 96 Å) and refined using a riding model with Uiso(H) =1.2Ueq(C,N) or 1.5Ueq(C-methyl). Asymmetric N—H⋯N/N⋯H—N refinements with the H atom displaced towards one of the N atoms were inconclusive and atom H4N was placed on the twofold axis.
details are summarized in Table 2
|
Supporting information
CCDC reference: 2238764
https://doi.org/10.1107/S2056989024002044/hb8088sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024002044/hb8088Isup2.hkl
Spectra. DOI: https://doi.org/10.1107/S2056989024002044/hb8088sup3.docx
Supporting information file. DOI: https://doi.org/10.1107/S2056989024002044/hb8088Isup4.cml
C28H25N8O4+·Cl−·2H2O | F(000) = 1276 |
Mr = 609.04 | Dx = 1.418 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 20.5406 (9) Å | Cell parameters from 8519 reflections |
b = 13.7457 (5) Å | θ = 2.5–26.2° |
c = 10.5650 (3) Å | µ = 0.19 mm−1 |
β = 107.006 (4)° | T = 293 K |
V = 2852.54 (19) Å3 | Block, pinkish |
Z = 4 | 0.32 × 0.26 × 0.24 mm |
Bruker multiwire proportional diffractometer | Rint = 0.029 |
Radiation source: sealed tube | θmax = 27.0°, θmin = 2.5° |
phi and ω scans | h = −25→25 |
16772 measured reflections | k = −17→13 |
3121 independent reflections | l = −13→11 |
2026 reflections with I > 2σ(I) |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.041 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.119 | w = 1/[σ2(Fo2) + (0.0602P)2 + 1.1461P] where P = (Fo2 + 2Fc2)/3 |
S = 0.98 | (Δ/σ)max < 0.001 |
3009 reflections | Δρmax = 0.20 e Å−3 |
205 parameters | Δρmin = −0.18 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.500000 | 0.49848 (5) | 0.750000 | 0.0696 (3) | |
O1 | 0.60240 (6) | 0.24882 (8) | 0.73971 (10) | 0.0438 (3) | |
O2 | 0.73500 (8) | 0.20297 (12) | 0.12535 (14) | 0.0738 (4) | |
N4 | 0.52376 (7) | 0.20300 (10) | 1.14485 (13) | 0.0447 (4) | |
N1 | 0.63480 (7) | 0.26868 (11) | 0.55203 (13) | 0.0470 (4) | |
H1 | 0.627028 | 0.329212 | 0.562248 | 0.056* | |
N2 | 0.62683 (8) | 0.11322 (11) | 0.64893 (14) | 0.0567 (4) | |
O3 | 0.59808 (11) | 0.46965 (13) | 0.5629 (3) | 0.0817 (5) | |
N3 | 0.60728 (9) | 0.08972 (11) | 0.76220 (15) | 0.0579 (4) | |
C3 | 0.57017 (8) | 0.18290 (12) | 0.92666 (15) | 0.0395 (4) | |
C1 | 0.62287 (8) | 0.20733 (13) | 0.64050 (15) | 0.0423 (4) | |
C2 | 0.59381 (8) | 0.16960 (12) | 0.81088 (16) | 0.0421 (4) | |
C7 | 0.55180 (9) | 0.27308 (13) | 0.96298 (16) | 0.0465 (4) | |
H7 | 0.554704 | 0.328207 | 0.913884 | 0.056* | |
C8 | 0.65878 (8) | 0.24517 (13) | 0.44342 (16) | 0.0438 (4) | |
C6 | 0.52914 (9) | 0.27987 (13) | 1.07303 (16) | 0.0481 (4) | |
H6 | 0.517179 | 0.340647 | 1.097866 | 0.058* | |
C4 | 0.56536 (9) | 0.10281 (13) | 1.00308 (17) | 0.0489 (4) | |
H4 | 0.577659 | 0.041269 | 0.981505 | 0.059* | |
C5 | 0.54218 (9) | 0.11591 (13) | 1.11088 (17) | 0.0504 (5) | |
H5 | 0.539154 | 0.062199 | 1.162390 | 0.060* | |
C13 | 0.66769 (10) | 0.32122 (14) | 0.36423 (17) | 0.0526 (5) | |
H13 | 0.656561 | 0.384241 | 0.382362 | 0.063* | |
C11 | 0.70949 (9) | 0.21120 (15) | 0.23119 (17) | 0.0537 (5) | |
C9 | 0.67449 (9) | 0.15188 (14) | 0.41413 (17) | 0.0514 (5) | |
H9 | 0.668165 | 0.100040 | 0.465852 | 0.062* | |
C12 | 0.69280 (10) | 0.30451 (15) | 0.25909 (19) | 0.0578 (5) | |
H12 | 0.698590 | 0.356168 | 0.206558 | 0.069* | |
C10 | 0.69972 (10) | 0.13515 (15) | 0.30768 (18) | 0.0560 (5) | |
H10 | 0.710046 | 0.072074 | 0.288146 | 0.067* | |
C14 | 0.75778 (13) | 0.11035 (19) | 0.0984 (2) | 0.0827 (7) | |
H14A | 0.774283 | 0.114498 | 0.022456 | 0.124* | |
H14B | 0.793818 | 0.088726 | 0.173472 | 0.124* | |
H14C | 0.720706 | 0.064931 | 0.081080 | 0.124* | |
H22 | 0.5797 (18) | 0.477 (2) | 0.621 (3) | 0.129 (14)* | |
H21 | 0.578 (2) | 0.478 (3) | 0.485 (4) | 0.159 (18)* | |
H4N | 0.500000 | 0.205 (2) | 1.250000 | 0.092 (10)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.1079 (7) | 0.0494 (4) | 0.0619 (4) | 0.000 | 0.0413 (4) | 0.000 |
O1 | 0.0531 (7) | 0.0434 (7) | 0.0391 (6) | 0.0010 (5) | 0.0201 (5) | −0.0004 (5) |
O2 | 0.0879 (11) | 0.0901 (11) | 0.0591 (8) | 0.0004 (9) | 0.0458 (8) | −0.0021 (8) |
N4 | 0.0507 (9) | 0.0484 (9) | 0.0375 (7) | 0.0013 (7) | 0.0168 (6) | −0.0010 (6) |
N1 | 0.0547 (9) | 0.0476 (8) | 0.0434 (8) | −0.0006 (7) | 0.0218 (7) | 0.0003 (7) |
N2 | 0.0838 (12) | 0.0460 (10) | 0.0518 (9) | −0.0039 (8) | 0.0380 (8) | −0.0053 (7) |
O3 | 0.1057 (15) | 0.0670 (11) | 0.0814 (13) | 0.0140 (9) | 0.0413 (13) | −0.0026 (9) |
N3 | 0.0875 (12) | 0.0457 (9) | 0.0520 (9) | −0.0028 (8) | 0.0386 (9) | −0.0040 (7) |
C3 | 0.0413 (9) | 0.0428 (9) | 0.0346 (8) | −0.0022 (7) | 0.0115 (7) | −0.0011 (7) |
C1 | 0.0421 (9) | 0.0488 (10) | 0.0371 (9) | −0.0036 (8) | 0.0133 (7) | −0.0054 (7) |
C2 | 0.0471 (10) | 0.0406 (9) | 0.0395 (9) | −0.0022 (7) | 0.0141 (8) | −0.0009 (7) |
C7 | 0.0604 (11) | 0.0395 (9) | 0.0421 (9) | 0.0029 (8) | 0.0189 (8) | 0.0033 (7) |
C8 | 0.0408 (9) | 0.0546 (11) | 0.0361 (8) | −0.0040 (8) | 0.0116 (7) | −0.0016 (8) |
C6 | 0.0597 (11) | 0.0424 (10) | 0.0457 (10) | 0.0045 (8) | 0.0209 (9) | −0.0018 (8) |
C4 | 0.0628 (12) | 0.0398 (10) | 0.0493 (10) | 0.0033 (8) | 0.0245 (9) | 0.0018 (8) |
C5 | 0.0633 (12) | 0.0445 (10) | 0.0476 (10) | 0.0016 (9) | 0.0228 (9) | 0.0079 (8) |
C13 | 0.0592 (12) | 0.0552 (11) | 0.0469 (10) | −0.0007 (9) | 0.0208 (9) | 0.0019 (8) |
C11 | 0.0504 (11) | 0.0751 (14) | 0.0397 (9) | −0.0067 (9) | 0.0195 (8) | −0.0036 (9) |
C9 | 0.0597 (12) | 0.0548 (12) | 0.0446 (10) | −0.0049 (9) | 0.0231 (9) | 0.0002 (8) |
C12 | 0.0639 (13) | 0.0655 (13) | 0.0484 (10) | −0.0049 (10) | 0.0235 (9) | 0.0070 (9) |
C10 | 0.0595 (12) | 0.0595 (12) | 0.0534 (11) | −0.0021 (9) | 0.0236 (9) | −0.0085 (9) |
C14 | 0.0935 (18) | 0.0996 (19) | 0.0706 (14) | −0.0045 (15) | 0.0485 (13) | −0.0172 (13) |
O1—C1 | 1.3634 (19) | C7—H7 | 0.9300 |
O1—C2 | 1.3637 (19) | C8—C9 | 1.379 (3) |
O2—C11 | 1.371 (2) | C8—C13 | 1.384 (2) |
O2—C14 | 1.414 (3) | C6—H6 | 0.9300 |
N4—C6 | 1.324 (2) | C4—C5 | 1.369 (2) |
N4—C5 | 1.336 (2) | C4—H4 | 0.9300 |
N4—H4N | 1.3379 (15) | C5—H5 | 0.9300 |
N1—C1 | 1.334 (2) | C13—C12 | 1.374 (3) |
N1—C8 | 1.412 (2) | C13—H13 | 0.9300 |
N1—H1 | 0.8600 | C11—C10 | 1.371 (3) |
N2—C1 | 1.298 (2) | C11—C12 | 1.382 (3) |
N2—N3 | 1.407 (2) | C9—C10 | 1.388 (2) |
O3—H22 | 0.82 (4) | C9—H9 | 0.9300 |
O3—H21 | 0.81 (4) | C12—H12 | 0.9300 |
N3—C2 | 1.277 (2) | C10—H10 | 0.9300 |
C3—C7 | 1.382 (2) | C14—H14A | 0.9600 |
C3—C4 | 1.386 (2) | C14—H14B | 0.9600 |
C3—C2 | 1.454 (2) | C14—H14C | 0.9600 |
C7—C6 | 1.376 (2) | ||
C1—O1—C2 | 102.04 (13) | C7—C6—H6 | 118.8 |
C11—O2—C14 | 117.79 (17) | C5—C4—C3 | 118.79 (16) |
C6—N4—C5 | 118.91 (15) | C5—C4—H4 | 120.6 |
C6—N4—H4N | 124.9 (13) | C3—C4—H4 | 120.6 |
C5—N4—H4N | 116.2 (13) | N4—C5—C4 | 122.43 (16) |
C1—N1—C8 | 127.16 (15) | N4—C5—H5 | 118.8 |
C1—N1—H1 | 116.4 | C4—C5—H5 | 118.8 |
C8—N1—H1 | 116.4 | C12—C13—C8 | 120.64 (18) |
C1—N2—N3 | 105.04 (14) | C12—C13—H13 | 119.7 |
H22—O3—H21 | 122 (4) | C8—C13—H13 | 119.7 |
C2—N3—N2 | 107.14 (14) | C10—C11—O2 | 125.05 (19) |
C7—C3—C4 | 118.62 (16) | C10—C11—C12 | 119.59 (17) |
C7—C3—C2 | 122.13 (15) | O2—C11—C12 | 115.36 (18) |
C4—C3—C2 | 119.25 (15) | C8—C9—C10 | 120.20 (18) |
N2—C1—N1 | 131.13 (16) | C8—C9—H9 | 119.9 |
N2—C1—O1 | 113.05 (14) | C10—C9—H9 | 119.9 |
N1—C1—O1 | 115.82 (15) | C13—C12—C11 | 120.19 (18) |
N3—C2—O1 | 112.73 (15) | C13—C12—H12 | 119.9 |
N3—C2—C3 | 127.75 (15) | C11—C12—H12 | 119.9 |
O1—C2—C3 | 119.50 (14) | C11—C10—C9 | 120.31 (19) |
C6—C7—C3 | 118.86 (16) | C11—C10—H10 | 119.8 |
C6—C7—H7 | 120.6 | C9—C10—H10 | 119.8 |
C3—C7—H7 | 120.6 | O2—C14—H14A | 109.5 |
C9—C8—C13 | 119.05 (17) | O2—C14—H14B | 109.5 |
C9—C8—N1 | 123.71 (16) | H14A—C14—H14B | 109.5 |
C13—C8—N1 | 117.23 (16) | O2—C14—H14C | 109.5 |
N4—C6—C7 | 122.38 (16) | H14A—C14—H14C | 109.5 |
N4—C6—H6 | 118.8 | H14B—C14—H14C | 109.5 |
C1—N2—N3—C2 | −0.2 (2) | C5—N4—C6—C7 | 1.3 (3) |
N3—N2—C1—N1 | −179.21 (18) | C3—C7—C6—N4 | −0.6 (3) |
N3—N2—C1—O1 | 0.22 (19) | C7—C3—C4—C5 | 0.5 (3) |
C8—N1—C1—N2 | −3.2 (3) | C2—C3—C4—C5 | −179.14 (16) |
C8—N1—C1—O1 | 177.42 (14) | C6—N4—C5—C4 | −1.2 (3) |
C2—O1—C1—N2 | −0.20 (18) | C3—C4—C5—N4 | 0.3 (3) |
C2—O1—C1—N1 | 179.33 (14) | C9—C8—C13—C12 | −1.0 (3) |
N2—N3—C2—O1 | 0.0 (2) | N1—C8—C13—C12 | 178.02 (16) |
N2—N3—C2—C3 | 178.69 (16) | C14—O2—C11—C10 | −5.0 (3) |
C1—O1—C2—N3 | 0.08 (18) | C14—O2—C11—C12 | 175.28 (18) |
C1—O1—C2—C3 | −178.69 (14) | C13—C8—C9—C10 | 0.9 (3) |
C7—C3—C2—N3 | −174.38 (18) | N1—C8—C9—C10 | −178.10 (15) |
C4—C3—C2—N3 | 5.2 (3) | C8—C13—C12—C11 | 0.0 (3) |
C7—C3—C2—O1 | 4.2 (2) | C10—C11—C12—C13 | 1.1 (3) |
C4—C3—C2—O1 | −176.23 (15) | O2—C11—C12—C13 | −179.10 (17) |
C4—C3—C7—C6 | −0.3 (3) | O2—C11—C10—C9 | 178.98 (18) |
C2—C3—C7—C6 | 179.26 (15) | C12—C11—C10—C9 | −1.3 (3) |
C1—N1—C8—C9 | −0.8 (3) | C8—C9—C10—C11 | 0.3 (3) |
C1—N1—C8—C13 | −179.82 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4N···N4i | 1.34 (1) | 1.34 (1) | 2.675 (3) | 178 (3) |
N1—H1···O3 | 0.86 | 2.02 | 2.875 (2) | 172 |
O3—H22···Cl1 | 0.82 (4) | 2.43 (4) | 3.233 (2) | 166 (3) |
O3—H21···Cl1ii | 0.81 (4) | 2.55 (4) | 3.359 (3) | 172 (4) |
C7—H7···Cl1 | 0.93 | 2.93 | 3.7940 (18) | 155 |
C6—H6···Cl1iii | 0.93 | 2.82 | 3.7137 (18) | 163 |
C5—H5···N3iv | 0.93 | 2.56 | 3.329 (2) | 140 |
C9—H9···N2 | 0.93 | 2.34 | 2.969 (2) | 125 |
Symmetry codes: (i) −x+1, y, −z+5/2; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y+1, −z+2; (iv) x, −y, z+1/2. |
Footnotes
‡Additional correspondence author, email: syshailendra5@gmail.com.
Acknowledgements
MK expresses gratitude to BHU for the financial support provided through the IoE Research Grant for Faculty Development Scheme No. 6031.
References
Abd-Ellah, H. S., Abdel-Aziz, M., Shoman, M. E., Beshr, E. A. M., Kaoud, T. S. & Ahmed, A. F. F. (2017). Bioorg. Chem. 74, 15–29. Web of Science CAS PubMed Google Scholar
Bharty, M. K., Bharti, A., Dani, R. K., Dulare, R., Bharati, P. & Singh, N. K. (2012). J. Mol. Struct. 1011, 34–41. Web of Science CSD CrossRef CAS Google Scholar
Bitla, S., Sagurthi, S. R., Dhanavath, R., Puchakayala, M. R., Birudaraju, S., Gayatri, A. A., Bhukya, V. K. & Atcha, K. R. (2020). J. Mol. Struct. 1220, 128705. Web of Science CrossRef Google Scholar
Bruker (2004). FRAMBO. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chandra, S., Gond, M. K., Jaiswal, S., Bharty, M. K., Maiti, B., Kushwaha, D. & Butcher, R. J. (2022). J. Mol. Struct. 1249, 131637. Web of Science CSD CrossRef Google Scholar
Gond, M. K., Rai, N., Chandra, B., Gautam, V., Garai, S., Butcher, R. J. & Bharty, M. K. (2023). Dalton Trans. 52, 10213–10221. Web of Science CSD CrossRef CAS PubMed Google Scholar
Gond, M. K., Shukla, A., Pandey, S. K., Bharty, M. K., Maiti, B., Acharya, A., Tiwari, N., Katiyar, D. & Butcher, R. J. (2022). J. Mol. Struct. 1249, 131547. Web of Science CSD CrossRef Google Scholar
Jaiswal, S., Pandey, S. K., Minocha, T., Chandra, S., Bharty, M. K., Yadav, S. K., Kushwaha, D. & Butcher, R. J. (2023a). J. Mol. Struct. 1281, 135075. Web of Science CSD CrossRef Google Scholar
Jaiswal, S., Pandey, S. K., Prajapati, J., Chandra, S., Gond, M. K., Bharty, M. K., Tiwari, I. & Butcher, R. J. (2023b). Appl. Organom Chem. 37, e7085. Web of Science CSD CrossRef Google Scholar
Jasinski, J. P., Bharty, M. K., Singh, N. K., Kushwaha, S. K. & Butcher, R. J. (2011). J. Chem. Crystallogr. 41, 6–11. Web of Science CSD CrossRef CAS Google Scholar
Jedlovská, E. & Leško, J. (1994). Synth. Commun. 24, 1879–1885. Google Scholar
Li, J. L., Li, H. Y., Zhang, S. S., Shen, S., Yang, X. L. & Niu, X. (2023). J. Org. Chem. 88, 14874–14886. Web of Science CrossRef CAS PubMed Google Scholar
Li, X., Liao, S., Chen, Y., Xia, C. & Wang, G. (2021). J. Chem. Res. 45, 1038–1041. Web of Science CrossRef CAS Google Scholar
Najare, M. S., Patil, M. K., Nadaf, A. A., Mantur, S., Garbhagudi, M., Gaonkar, S., Inamdar, S. R. & Khazi, I. A. M. (2020). J. Mol. Struct. 1199, 127032. Web of Science CrossRef Google Scholar
Omar, F. A., Mahfouz, N. M. & Rahman, M. A. (1996). Eur. J. Med. Chem. 31, 819–825. CrossRef CAS PubMed Web of Science Google Scholar
Paswan, S., Bharty, M. K., Gupta, S. K., Butcher, R. J. & Jasinski, J. P. (2016). IUCrData, 1, x161724. Google Scholar
Paswan, S., Bharty, M. K., Kumari, S., Gupta, S. K. & Singh, N. K. (2015). Acta Cryst. E71, o880–o881. Web of Science CSD CrossRef IUCr Journals Google Scholar
Reid, J. R. & Heindel, N. D. (1976). J. Heterocycl. Chem. 13, 925–926. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Singh, N. K., Butcher, R. J., Bharty, M. K., Srivastava, A. K. & Tripathi, P. (2006). Acta Cryst. E62, o3473–o3474. Web of Science CSD CrossRef IUCr Journals Google Scholar
Singh, N. K., Butcher, R. J., Tripathi, P., Srivastava, A. K. & Bharty, M. K. (2007). Acta Cryst. E63, o782–o784. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wu, C. A., Chou, H. H., Shih, C. H., Wu, F. I., Cheng, C. H., Huang, H. L., Chao, T. C. & Tseng, M. R. (2012). J. Mater. Chem. 22, 17792–17799. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.