research communications
S)-5-(3-acetyl-5-chloro-2-ethoxy-6-fluorophenyl)-2-oxazolidinone
of (aW. M. Keck Center for Advanced Microscopy and Microanalysis, University of Delaware, Newark, DE 19716, USA, bDepartment of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA, and cDepartment of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
*Correspondence e-mail: cni@udel.edu
The structure of (S)-5-(3-acetyl-5-chloro-2-ethoxy-6-fluorophenyl)-2-oxazolidinone, C13H13ClFNO4, at 100 K has monoclinic (P21) symmetry. The compound has a polymeric structure propagated by a screw axis parallel to the b axis with N—H⋯O hydrogen bonding. It is of interest with respect to efforts in the synthesis of a candidate anticancer drug, parsaclisib.
Keywords: crystal structure; oxazolidinone; parsaclib; pharmaceutical; kinase inhibitor; anti-cancer; drug.
CCDC reference: 2306123
1. Chemical context
Oxazolidinones are a class of compounds containing the five-membered heterocycle 1,3-oxazolidin-2-one and were mainly used for antimicrobials acting as protein synthesis inhibitors targeting N-formylmethionyl-tRNA to ribosome binding (Zhao et al., 2021). Cases with elevated levels of phosphoinositide 3-kinase delta (PI3Kδ) were found associated with increased cancer susceptibility (Crank et al., 2014). An oxazolidinone drug candidate, (4R)-4-[3-[(1S)-1-(4-amino-3-methylpyrazolo[3,4-d]pyrimidin-1-yl)ethyl]-5-chloro-2-ethoxy-6-fluorophenyl]pyrrolidin-2-one, parsaclisib, was discovered to be a potent PI3Kδ inhibitor (Zinzani et al., 2023). As part of evolving attempts to improve the synthesis of parsaclisib, we were sent samples of an intermediate product that required confirmation of substituents and absolute determination. Our diffraction studies identified it as (S)-5-(3-acetyl-5-chloro-2-ethoxy-6-fluorophenyl)-2-oxazolidinone. Atom C-3 has been determined by our study to have S absolute which can yield the corresponding alcohol via enantioselective ketone reduction (Mao et al., 2005), which should subsequently yield parsaclisib as per the reaction scheme.
2. Structural commentary
The . Consistent with similar structures (vide infra), the oxazolidinone ring is essentially planar and is twisted from the plane of the dihalophenyl ring as seen from twist angles C2—C3—C4—C9 = 70.5 (5)°. One of the two symmetry-unique molecules in (R)-5-mesityloxazolidin-2-one has the closest similar twist of 73.5 (2)° (Qin et al., 2012). The acetate and ethoxy groups in the title compound are almost perpendicular to the phenyl ring with torsion angles C7—C6—C12—O4 = −92.8 (6)° and C10—O3—C5—C6 = −96.8 (4)°, respectively. The refined to nil indicating the correct handedness has been established.
consisting of one complete molecule of the title compound is shown in Fig. 13. Supramolecular features
In the crystal, N—H⋯O hydrogen-bonding interactions (Table 1) occur between neighboring molecules related by −x, + y, 1 − z, resulting in chains parallel to the b-axis direction (Fig. 2). In contrast, dichloro-{2-methoxy-4-[2-(pyridin-2-yl)-1,3-oxazolidin-5-yl]phenol}palladium acetonitrile solvate does not show this type of hydrogen bonding, perhaps because the oxazolidinone N atom is also coordinated to palladium (Denisov & Gagarskikh, 2021). Remarkably, the four other structures do display N—H⋯O hydrogen bonding; however, in each case, this leads to pair-wise dimer formation instead of a more extended structure (Chen et al., 2021; Norte et al., 1988; Qin et al., 2012; Bresciani et al., 2020).
4. Database survey
A search of the Cambridge Structural Database with WebCSD (https://www.ccdc.cam.ac.uk/structures/WebCSD, accessed November 8, 2023; Groom et al., 2016) for structures containing the 5-(arene)-oxazolidine-2-one moiety yielded five additional structures: EWIPEI (Chen et al., 2021), GIGHUZ (Norte et al., 1988), MAZDEN (Qin et al., 2012), WAFCEP (Bresciani et al., 2020) and YALYUJ (Denisov & Gagarskikh, 2021).
5. Synthesis and crystallization
(S)-5-(3-Acetyl-5-chloro-2-ethoxy-6-fluorophenyl)-2-oxazolidinone and solvents were used as received without further purification. (S)-5-(3-Acetyl-5-chloro-2-ethoxy-6-fluorophenyl)-2-oxazolidinone (20 mg) was dissolved in a mixed solvent of methanol (3 mL) and dichloromethane (1 mL). The solution was allowed to evaporate slowly at room temperature until suitable crystals were deposited.
6. Refinement
Crystal data, data collection and structure . Amide H atoms were located from difference maps and positionally refined. Other H atoms were positioned geometrically. All H atoms refined as riding with Uiso(H) = 1.2 or 1.5Ueq(C,N).
details are summarized in Table 2Supporting information
CCDC reference: 2306123
https://doi.org/10.1107/S2056989024001920/jy2039sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024001920/jy2039Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989024001920/jy2039Isup3.cml
C13H13ClFNO4 | F(000) = 312 |
Mr = 301.69 | Dx = 1.506 Mg m−3 |
Monoclinic, P21 | Cu Kα radiation, λ = 1.54178 Å |
a = 7.8729 (12) Å | Cell parameters from 9877 reflections |
b = 5.5655 (8) Å | θ = 2.9–72.0° |
c = 15.492 (2) Å | µ = 2.80 mm−1 |
β = 101.446 (3)° | T = 100 K |
V = 665.31 (17) Å3 | Needle, colourless |
Z = 2 | 0.41 × 0.10 × 0.08 mm |
Bruker Venture Photon III diffractometer | 2483 reflections with I > 2σ(I) |
area detector profiles from φ and ω scans | Rint = 0.061 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 72.9°, θmin = 2.9° |
Tmin = 0.523, Tmax = 0.754 | h = −9→9 |
12247 measured reflections | k = −6→6 |
2540 independent reflections | l = −19→19 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.050 | w = 1/[σ2(Fo2) + (0.0799P)2 + 0.4134P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.136 | (Δ/σ)max < 0.001 |
S = 1.08 | Δρmax = 0.44 e Å−3 |
2540 reflections | Δρmin = −0.28 e Å−3 |
186 parameters | Absolute structure: Flack x determined using 1052 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
1 restraint | Absolute structure parameter: 0.009 (11) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. 1. Fixed Uiso At 1.2 times of: All C(H) groups, All C(H,H) groups, All N(H) groups At 1.5 times of: All C(H,H,H) groups 2.a Ternary CH refined with riding coordinates: C3(H3) 2.b Secondary CH2 refined with riding coordinates: C2(H2A,H2B), C10(H10A,H10B) 2.c Aromatic/amide H refined with riding coordinates: C7(H7) 2.d Idealised Me refined as rotating group: C11(H11A,H11B,H11C), C13(H13A,H13B,H13C) |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.46325 (14) | −0.0030 (2) | 0.91489 (7) | 0.0449 (3) | |
F1 | 0.3318 (3) | 0.1581 (4) | 0.73539 (17) | 0.0349 (6) | |
O1 | 0.4236 (3) | 0.2441 (5) | 0.57659 (19) | 0.0301 (6) | |
O2 | 0.1716 (4) | 0.0984 (5) | 0.50190 (19) | 0.0322 (7) | |
O3 | 0.8242 (3) | 0.6319 (5) | 0.70925 (19) | 0.0289 (6) | |
O4 | 0.9772 (4) | 0.7707 (7) | 0.9207 (2) | 0.0495 (9) | |
N1 | 0.1913 (5) | 0.4736 (7) | 0.5652 (2) | 0.0353 (8) | |
H1 | 0.090 (7) | 0.528 (11) | 0.557 (3) | 0.042* | |
C1 | 0.2492 (5) | 0.2622 (7) | 0.5438 (3) | 0.0268 (8) | |
C2 | 0.3247 (6) | 0.6254 (8) | 0.6146 (4) | 0.0493 (13) | |
H2A | 0.298858 | 0.669061 | 0.672563 | 0.059* | |
H2B | 0.339997 | 0.773721 | 0.581675 | 0.059* | |
C3 | 0.4851 (5) | 0.4609 (7) | 0.6246 (3) | 0.0328 (9) | |
H3 | 0.573730 | 0.539348 | 0.595815 | 0.039* | |
C4 | 0.5655 (5) | 0.4054 (7) | 0.7189 (3) | 0.0270 (8) | |
C5 | 0.7273 (5) | 0.5032 (8) | 0.7582 (3) | 0.0275 (8) | |
C6 | 0.7992 (5) | 0.4604 (8) | 0.8463 (3) | 0.0294 (8) | |
C7 | 0.7180 (6) | 0.3066 (8) | 0.8952 (3) | 0.0321 (9) | |
H7 | 0.769301 | 0.272687 | 0.954743 | 0.039* | |
C8 | 0.5617 (5) | 0.2021 (8) | 0.8570 (3) | 0.0304 (9) | |
C9 | 0.4874 (5) | 0.2588 (7) | 0.7713 (3) | 0.0278 (8) | |
C10 | 0.7841 (5) | 0.8849 (8) | 0.7014 (3) | 0.0353 (10) | |
H10A | 0.766791 | 0.949590 | 0.758510 | 0.042* | |
H10B | 0.676577 | 0.911158 | 0.656942 | 0.042* | |
C11 | 0.9338 (6) | 1.0079 (9) | 0.6736 (3) | 0.0387 (10) | |
H11A | 0.957185 | 0.931322 | 0.620211 | 0.058* | |
H11B | 1.036659 | 0.995249 | 0.720835 | 0.058* | |
H11C | 0.905624 | 1.177735 | 0.661648 | 0.058* | |
C12 | 0.9720 (6) | 0.5739 (8) | 0.8859 (3) | 0.0345 (9) | |
C13 | 1.1270 (6) | 0.4320 (13) | 0.8800 (4) | 0.0605 (18) | |
H13A | 1.231157 | 0.523590 | 0.905643 | 0.091* | |
H13B | 1.127680 | 0.397057 | 0.818083 | 0.091* | |
H13C | 1.125416 | 0.281004 | 0.912361 | 0.091* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0441 (6) | 0.0441 (6) | 0.0467 (6) | −0.0063 (5) | 0.0097 (5) | 0.0123 (5) |
F1 | 0.0204 (11) | 0.0352 (14) | 0.0458 (14) | −0.0082 (9) | −0.0014 (9) | 0.0003 (11) |
O1 | 0.0236 (13) | 0.0249 (14) | 0.0366 (15) | −0.0006 (11) | −0.0063 (11) | −0.0011 (11) |
O2 | 0.0284 (14) | 0.0259 (14) | 0.0369 (15) | −0.0028 (11) | −0.0062 (12) | −0.0021 (12) |
O3 | 0.0246 (13) | 0.0234 (14) | 0.0374 (15) | −0.0009 (11) | 0.0035 (11) | −0.0027 (12) |
O4 | 0.0407 (18) | 0.040 (2) | 0.059 (2) | −0.0019 (15) | −0.0109 (16) | −0.0079 (16) |
N1 | 0.0272 (17) | 0.0273 (18) | 0.044 (2) | 0.0064 (16) | −0.0101 (14) | −0.0030 (16) |
C1 | 0.0214 (18) | 0.0269 (19) | 0.0282 (19) | 0.0005 (15) | −0.0043 (14) | 0.0061 (15) |
C2 | 0.047 (3) | 0.023 (2) | 0.063 (3) | 0.007 (2) | −0.024 (2) | −0.003 (2) |
C3 | 0.031 (2) | 0.023 (2) | 0.039 (2) | −0.0033 (16) | −0.0072 (17) | 0.0025 (16) |
C4 | 0.0220 (17) | 0.0228 (17) | 0.033 (2) | 0.0010 (14) | −0.0024 (15) | 0.0008 (15) |
C5 | 0.0199 (16) | 0.0234 (17) | 0.036 (2) | 0.0001 (15) | −0.0007 (14) | −0.0027 (17) |
C6 | 0.0216 (17) | 0.031 (2) | 0.0322 (19) | 0.0010 (15) | −0.0037 (14) | −0.0037 (16) |
C7 | 0.0283 (19) | 0.037 (2) | 0.0278 (19) | 0.0033 (16) | −0.0029 (16) | −0.0010 (16) |
C8 | 0.0275 (19) | 0.027 (2) | 0.037 (2) | 0.0023 (15) | 0.0073 (16) | 0.0039 (16) |
C9 | 0.0158 (16) | 0.0233 (18) | 0.041 (2) | −0.0003 (14) | −0.0035 (15) | −0.0026 (16) |
C10 | 0.029 (2) | 0.025 (2) | 0.049 (3) | 0.0024 (17) | 0.0004 (18) | −0.0005 (19) |
C11 | 0.041 (2) | 0.028 (2) | 0.048 (2) | −0.0125 (19) | 0.0126 (19) | −0.008 (2) |
C12 | 0.030 (2) | 0.036 (2) | 0.032 (2) | −0.0060 (17) | −0.0048 (16) | −0.0022 (17) |
C13 | 0.025 (2) | 0.077 (4) | 0.075 (4) | −0.002 (2) | 0.001 (2) | −0.039 (3) |
Cl1—C8 | 1.727 (4) | C4—C9 | 1.379 (6) |
F1—C9 | 1.361 (4) | C5—C6 | 1.392 (6) |
O1—C1 | 1.370 (5) | C6—C7 | 1.380 (6) |
O1—C3 | 1.449 (5) | C6—C12 | 1.515 (5) |
O2—C1 | 1.211 (5) | C7—H7 | 0.9500 |
O3—C5 | 1.378 (5) | C7—C8 | 1.383 (6) |
O3—C10 | 1.443 (5) | C8—C9 | 1.377 (6) |
O4—C12 | 1.217 (6) | C10—H10A | 0.9900 |
N1—H1 | 0.84 (6) | C10—H10B | 0.9900 |
N1—C1 | 1.328 (6) | C10—C11 | 1.498 (6) |
N1—C2 | 1.443 (6) | C11—H11A | 0.9800 |
C2—H2A | 0.9900 | C11—H11B | 0.9800 |
C2—H2B | 0.9900 | C11—H11C | 0.9800 |
C2—C3 | 1.542 (6) | C12—C13 | 1.472 (7) |
C3—H3 | 1.0000 | C13—H13A | 0.9800 |
C3—C4 | 1.505 (5) | C13—H13B | 0.9800 |
C4—C5 | 1.408 (5) | C13—H13C | 0.9800 |
C1—O1—C3 | 109.7 (3) | C6—C7—C8 | 119.7 (4) |
C5—O3—C10 | 114.7 (3) | C8—C7—H7 | 120.1 |
C1—N1—H1 | 130 (4) | C7—C8—Cl1 | 120.6 (3) |
C1—N1—C2 | 113.7 (4) | C9—C8—Cl1 | 120.2 (3) |
C2—N1—H1 | 116 (4) | C9—C8—C7 | 119.2 (4) |
O2—C1—O1 | 120.3 (4) | F1—C9—C4 | 118.2 (3) |
O2—C1—N1 | 129.7 (4) | F1—C9—C8 | 118.4 (4) |
N1—C1—O1 | 109.9 (3) | C8—C9—C4 | 123.3 (4) |
N1—C2—H2A | 111.4 | O3—C10—H10A | 110.2 |
N1—C2—H2B | 111.4 | O3—C10—H10B | 110.2 |
N1—C2—C3 | 101.6 (4) | O3—C10—C11 | 107.4 (4) |
H2A—C2—H2B | 109.3 | H10A—C10—H10B | 108.5 |
C3—C2—H2A | 111.4 | C11—C10—H10A | 110.2 |
C3—C2—H2B | 111.4 | C11—C10—H10B | 110.2 |
O1—C3—C2 | 105.0 (3) | C10—C11—H11A | 109.5 |
O1—C3—H3 | 109.0 | C10—C11—H11B | 109.5 |
O1—C3—C4 | 111.1 (3) | C10—C11—H11C | 109.5 |
C2—C3—H3 | 109.0 | H11A—C11—H11B | 109.5 |
C4—C3—C2 | 113.4 (4) | H11A—C11—H11C | 109.5 |
C4—C3—H3 | 109.0 | H11B—C11—H11C | 109.5 |
C5—C4—C3 | 120.7 (4) | O4—C12—C6 | 120.2 (4) |
C9—C4—C3 | 122.9 (3) | O4—C12—C13 | 123.7 (4) |
C9—C4—C5 | 116.5 (3) | C13—C12—C6 | 116.1 (4) |
O3—C5—C4 | 121.1 (3) | C12—C13—H13A | 109.5 |
O3—C5—C6 | 117.8 (3) | C12—C13—H13B | 109.5 |
C6—C5—C4 | 121.0 (4) | C12—C13—H13C | 109.5 |
C5—C6—C12 | 118.9 (4) | H13A—C13—H13B | 109.5 |
C7—C6—C5 | 120.1 (4) | H13A—C13—H13C | 109.5 |
C7—C6—C12 | 120.9 (4) | H13B—C13—H13C | 109.5 |
C6—C7—H7 | 120.1 | ||
Cl1—C8—C9—F1 | 3.0 (5) | C3—C4—C9—C8 | 178.4 (4) |
Cl1—C8—C9—C4 | −174.5 (3) | C4—C5—C6—C7 | 4.6 (6) |
O1—C3—C4—C5 | 132.4 (4) | C4—C5—C6—C12 | −178.7 (4) |
O1—C3—C4—C9 | −47.5 (5) | C5—O3—C10—C11 | 161.8 (3) |
O3—C5—C6—C7 | −171.5 (4) | C5—C4—C9—F1 | −179.1 (3) |
O3—C5—C6—C12 | 5.1 (6) | C5—C4—C9—C8 | −1.6 (6) |
N1—C2—C3—O1 | 2.5 (5) | C5—C6—C7—C8 | −2.3 (6) |
N1—C2—C3—C4 | −119.0 (4) | C5—C6—C12—O4 | 90.6 (5) |
C1—O1—C3—C2 | −2.1 (5) | C5—C6—C12—C13 | −89.9 (6) |
C1—O1—C3—C4 | 120.9 (4) | C6—C7—C8—Cl1 | 176.6 (3) |
C1—N1—C2—C3 | −2.3 (6) | C6—C7—C8—C9 | −1.7 (6) |
C2—N1—C1—O1 | 1.1 (5) | C7—C6—C12—O4 | −92.8 (6) |
C2—N1—C1—O2 | −178.7 (5) | C7—C6—C12—C13 | 86.7 (6) |
C2—C3—C4—C5 | −109.5 (4) | C7—C8—C9—F1 | −178.7 (4) |
C2—C3—C4—C9 | 70.5 (5) | C7—C8—C9—C4 | 3.8 (6) |
C3—O1—C1—O2 | −179.4 (4) | C9—C4—C5—O3 | 173.4 (4) |
C3—O1—C1—N1 | 0.8 (4) | C9—C4—C5—C6 | −2.6 (6) |
C3—C4—C5—O3 | −6.6 (6) | C10—O3—C5—C4 | 87.1 (5) |
C3—C4—C5—C6 | 177.4 (4) | C10—O3—C5—C6 | −96.8 (4) |
C3—C4—C9—F1 | 0.9 (6) | C12—C6—C7—C8 | −178.9 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2i | 0.84 (6) | 2.12 (6) | 2.923 (4) | 161 (5) |
Symmetry code: (i) −x, y+1/2, −z+1. |
Acknowledgements
We thank Dr Jiacheng Zhou of Incyte Corp. for providing samples of (S)-4-{3-chloro-6-ethoxy-2-fluoro-5-[(S)-1-hydroxyethyl]phenyl}pyrrolidin-2-one.
Funding information
Funding for this research was provided by: National Institutes of Health (award No. S10 OD026896A to G. P. A. Yap).
References
Bresciani, G., Antico, E., Ciancaleoni, G., Zacchini, S., Pampaloni, G. & Marchetti, F. (2020). ChemSusChem, 13, 5586–5594. CSD CrossRef CAS PubMed Google Scholar
Bruker (2016). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2021). APEX4. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, X., Huang, Z. & Xu, J. (2021). Adv. Synth. Catal. 363, 3098–3108. CSD CrossRef CAS Google Scholar
Crank, M. C., Grossman, J. K., Moir, S., Pittaluga, S., Buckner, C. M., Kardava, L., Agharahimi, A., Meuwissen, H., Stoddard, J., Niemela, J., Kuehn, H. & Rosenzweig, S. D. (2014). J. Clin. Immunol. 34, 272–276. CrossRef CAS PubMed Google Scholar
Denisov, M. S. & Gagarskikh, O. N. (2021). Russ. J. Gen. Chem. 91, 1354–1360. CSD CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Mao, J., Wan, B., Wu, F. & Lu, S. (2005). Tetrahedron Lett. 46, 7341–7344. CrossRef CAS Google Scholar
Norte, M., Rodriguez, M. L., Fernández, J. J., Eguren, L. & Estrada, D. M. (1988). Tetrahedron, 44, 4973–4980. CSD CrossRef CAS Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Qin, D.-D., Lai, W.-H., Hu, D., Chen, Z., Wu, A.-A., Ruan, Y.-P., Zhou, Z.-H. & Chen, H.-B. (2012). Chem. Eur. J. 18, 10515–10518. CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Zhao, Q., Xin, L., Liu, Y., Liang, C., Li, J., Jian, Y., Li, H., Shi, Z., Liu, H. & Cao, W. (2021). J. Med. Chem. 64, 10557–10580. CrossRef CAS PubMed Google Scholar
Zinzani, P. L., Trněný, M., Ribrag, V., Zilioli, V. R., Walewski, J., Christensen, J. H., Delwail, V., Rodriguez, G., Venugopal, P., Coleman, M., Dartigeas, C., Patti, C., Pane, F., Jurczak, W., Taszner, M., Paneesha, S., Zheng, F., DeMarini, D. J., Jiang, W., Gilmartin, A. & Mehtas, A. (2023). EClinicalMedicine, 62, 102131. CrossRef PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.