research communications
H-pyrido[1,2-a]pyrimidine-7,9-dicarbonitrile
and Hirshfeld surface analysis of 6-imino-8-(4-methylphenyl)-1,3,4,6-tetrahydro-2aDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148, Baku, Azerbaijan, bPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow 117198, Russian Federation, cN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, eDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal, and f"Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan
*Correspondence e-mail: akkurt@erciyes.edu.tr, ajaya.bhattarai@mmamc.tu.edu.np
In the ten-membered 1,3,4,6-tetrahydro-2H-pyrido[1,2-a]pyrimidine ring system of the title compound, C17H15N5, the 1,2-dihydropyridine ring is essentially planar (r.m.s. deviation = 0.001 Å), while the 1,3-diazinane ring has a distorted twist-boat conformation. In the crystal, molecules are linked by N—H⋯N and C—H⋯N hydrogen bonds, forming a three-dimensional network. In addition, C—H⋯π interactions form layers parallel to the (100) plane. Thus, crystal-structure cohesion is ensured. According to a Hirshfeld surface study, H⋯H (40.4%), N⋯H/H⋯N (28.6%) and C⋯H/H⋯C (24.1%) interactions are the most important contributors to the crystal packing.
Keywords: crystal structure; 1,2-dihydropyridine ring; 1,3-diazinane ring; hydrogen bonds; C–H⋯π interactions; Hirshfeld surface analysis.
CCDC reference: 2340712
1. Chemical context
et al., 2022; Akkurt et al., 2023). Heterocyclic systems comprise all vitamins, sugars, hormones, antibiotics, other drugs, dyes, pesticides, and herbicides. There have been major developments in organic chemistry in recent years with recently developed heterocyclic systems for various research and commercial aims, especially in the pharmaceutical and chemical industries (Maharramov et al., 2022; Erenler et al., 2022). These compounds have found widespread applications in multiple branches of science, such as coordination chemistry (Gurbanov et al., 2021; Mahmoudi et al., 2021), medicinal chemistry (Askerova, 2022) and materials chemistry (Velásquez et al., 2019; Afkhami et al., 2019). Pyrido[1,2-a]pyrimidines are simple bicyclic ring systems that contain a nitrogen-bridgehead condensed pyrimidine motif. These derivatives are used for a large range of applications, as well as drugs, ligands, catalysts, materials, etc (Maharramov et al., 2021, Sobhi & Faisal, 2023). Functionalized pyrido[1,2-a]pyrimidines exhibit various biological activities, such as anticancer, antioxidant, cytotoxic, anti-inflammatory, herbicidal, pesticidal, antibacterial (Atalay et al., 2022; Donmez & Turkyılmaz, 2022). In medical practice, pyrido[1,2-a]pyrimidines are used as tranquilizers, anti-ulcerative agents, antiallergics, anti-asthmatics, analgesics, antipsychotics, protective gastrointestinal, neurotropic, stress-protecting compounds, and anti-HIV agents (Elattar et al., 2017). As a result of the wide application of these systems, the efficient and regioselective development of pyrido[1,2-a]pyrimidines has attracted a lot of attention. Thus, in the framework of our studies in heterocyclic chemistry (Naghiyev et al., 2020, 2021, 2022), herein we report the and Hirshfeld surface analysis of the title compound, 6-imino-8-(4-methylphenyl)-1,3,4,6-tetrahydro-2H-pyrido[1,2-a]pyrimidine-7,9-dicarbonitrile.
are crucial systems, both in terms of frequency of occurrence and consequential importance in different fields (Khalilov2. Structural commentary
As seen in Fig. 1, in the ten-membered 1,3,4,6-tetrahydro-2H-pyrido[1,2-a]pyrimidine ring system (N1/N5/C2–C9/C9A) of the title compound, the 1,2-dihydropyridine ring (C11–C16) is essentially planar (r.m.s. deviation = 0.001 Å), while the 1,3-diazinane ring (N1/N5/C2–C4/C9A) has a distorted twist-boat conformation [puckering parameters (Cremer & Pople, 1975): QT = 0.5085 (14) Å, θ = 122.41 (15)° and φ = 281.45 (17)°]. The plane of the 1,2-dihydropyridine ring makes dihedral angles of 11.49 (6) and 47.52 (6)°, respectively, with the mean plane of the 1,3-diazine and benzene rings. The angle between the mean plane of the 1,3-diazine and benzene rings is 41.40 (6)°. The torsion angles C11—C8—C7—C10, C11—C8—C9—C18 and C8—C7—C6—N6 are 4.73 (19), −4.83 (18) and −179.04 (13) °, respectively. The geometric parameters of the title compound are normal and comparable to those of the related compounds listed in the Database survey section.
3. Supramolecular features and Hirshfeld surface analysis
In the crystal, molecules are linked by N—H⋯N and C–H⋯N hydrogen bonds, forming a three-dimensional network (Table 1; Figs. 2 and 3). In addition, C—H⋯π interactions form layers parallel to the (100) plane (Table 1; Figs. 4 and 5). Thus, crystal-structure cohesion is ensured.
In order to quantify the intermolecular interactions in the crystal, Crystal Explorer 17.5 (Spackman et al., 2021) was used to generate Hirshfeld surfaces and two-dimensional fingerprint plots. The Hirshfeld surfaces mapped over dnorm are shown in Fig. 6. The bright-red spots indicate their roles as respective donors and/or acceptors; they also appear as blue and red regions corresponding to positive and negative potentials on the electrostatic surface (Fig. 7).
The most important interatomic contact is H⋯H as it makes the highest contribution to the crystal packing (40.4%, Fig. 8b). The other major contributors are the N⋯H/H⋯N (28.6%, Fig. 8c) and C⋯H/H⋯C (24.1%, Fig. 8d) interactions. Other, smaller contributions are made by N⋯H/H⋯N (2.8%), C⋯C (2.7%) and N⋯N (1.4%) interactions.
4. Database survey
Five related compounds, which also have the 1,3,4,6-tetrahydro- 2H-pyrido[1,2-a]pyrimidine ring system seen in the title compound, were found in a search of the Cambridge Structural Database (CSD version 5.42, update of November 2020; Groom et al., 2016): CSD refcode IQEFOC (Naghiyev et al., 2021), VAMBET (Khodjaniyazov & Ashurov, 2016), HECLUZ (Khodjaniyazov et al., 2017), LEGLIU (Chen et al., 2012) and KUTPEV (Samarov et al., 2010).
In IQEFOC, intermolecular N—H⋯N and C—H⋯N hydrogen bonds form molecular sheets parallel to the (110) and (10) planes, crossing each other. Adjacent molecules are further linked by C—H⋯π interactions, which form zigzag chains propagating parallel to [100]. In the crystal of VAMBET, molecules are linked via C— H⋯O and C—H⋯N hydrogen bonds, forming layers parallel to (101). In the crystal of HECLUZ, hydrogen bonds with 16-membered ring and three chain motifs are generated by N—H⋯N and N—H⋯O contacts. The amino group is located close to the nitrogen atoms, forming hydrogen bonds with R21 (4) and R22 (12) graph-set motifs. This amino group also forms a hydrogen bond with the C=O oxygen atom of a molecule translated parallel to [100], which links the molecules into R44 (16) rings. Hydrogen-bonded chains are formed along [100] by alternating R22 (12) and R44 (16) rings. These chains are stabilized by intermolecular π–π stacking interactions observed between the pyridine and pyrimidine rings. In LEGLIU, the molecular structure is built up from two fused six-membered rings and one seven-membered ring linked through a spiro C atom. The crystal packing is stabilized by intermolecular N—H⋯O hydrogen bonds between the two N—H groups and the ketone O atoms of the neighbouring molecules. In KUTPEV, water molecules are mutually O—H⋯O hydrogen bonded and form infinite chains propagating parallel to [010]. Neighbouring chains are linked by the quinazoline molecules by means of O—H⋯O=C hydrogen bonds, forming a diperiodic network.
5. Synthesis and crystallization
A solution of 2-(4-methylbenzylidene)malononitrile (6 mmol) and malononitrile (6.1 mmol) in methanol (35 mL) was stirred for 10 min. Then 1,3-diaminopropane (5.3 mol) was added to the reaction mixture and stirred for 72 h. Then 25 mL of methanol were removed from the reaction mixture, which was left overnight. The precipitated crystals were separated by filtration and recrystallized from an ethanol/water (1:1) solution (m.p. 501–502 K, yield 36%).
1H NMR (300 MHz, DMSO-d6, ppm.): 1.98 (m, 2H, CH2); 2.39 (s, 3H, CH3-Ar); 3.42 (t, 2H, CH2, 3JH–H = 6.9); 3.93 (t, 2H, CH2, 3JH–H = 6.9); 4.14 (s, 1H, CH-Ar); 6.41 (s, 2H, NH2); 7.30–7.42 (m, 4H, 4Ar-H); 7.70 (s, 1H, NH). 13C NMR (75 MHz, DMSO-d6, ppm.): 19.46 (CH2), 21.01 (Ar-CH3), 38.36 (Ar-CH), 39.64 (NCH2), 41.59 (NCH2), 51.64 (=Cquat.), 57.25 (=Cquat.), 120.70 (CN), 121.12 (CN), 128.14 (2CHarom.), 128.98 (2CHarom.), 134.92 (Carom.), 140.77 (Carom.), 151.15 (=Cquat.), 152.36 (=Cquat.).
6. Refinement
Crystal data, data collection and structure . All C-bound H atoms were placed at calculated positions and refined using a riding model, with C—H = 0.95–0.99 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C). The N-bound H atoms were located in difference-Fourier maps [N1—H1 = 0.894 (17) Å, N6—H6 = 0.944 (18) Å] and refined with Uiso(H) = 1.2Ueq(N).
details are summarized in Table 2
|
Supporting information
CCDC reference: 2340712
https://doi.org/10.1107/S2056989024002500/nx2006sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024002500/nx2006Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989024002500/nx2006Isup3.cml
C17H15N5 | F(000) = 608 |
Mr = 289.34 | Dx = 1.343 Mg m−3 |
Monoclinic, P21/c | Synchrotron radiation, λ = 0.74500 Å |
a = 6.2459 (4) Å | Cell parameters from 600 reflections |
b = 14.1480 (9) Å | θ = 2.6–26.0° |
c = 16.2111 (11) Å | µ = 0.09 mm−1 |
β = 92.435 (7)° | T = 100 K |
V = 1431.23 (16) Å3 | Needle, yellow |
Z = 4 | 0.13 × 0.03 × 0.01 mm |
Rayonix SX165 CCD diffractometer | 3119 reflections with I > 2σ(I) |
/f scan | Rint = 0.049 |
Absorption correction: multi-scan (Scala; Evans, 2006) | θmax = 31.0°, θmin = 2.6° |
Tmin = 0.981, Tmax = 0.989 | h = −8→8 |
16784 measured reflections | k = −19→19 |
3956 independent reflections | l = −22→22 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.045 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.113 | w = 1/[σ2(Fo2) + (0.0455P)2 + 0.6432P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
3956 reflections | Δρmax = 0.30 e Å−3 |
206 parameters | Δρmin = −0.24 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 1.22846 (18) | 0.85962 (8) | 0.43598 (6) | 0.0203 (2) | |
H1 | 1.338 (3) | 0.8968 (12) | 0.4519 (10) | 0.024* | |
C2 | 1.2417 (2) | 0.80620 (10) | 0.35940 (7) | 0.0218 (2) | |
H2A | 1.303447 | 0.742845 | 0.370787 | 0.026* | |
H2B | 1.334227 | 0.839650 | 0.320792 | 0.026* | |
C3 | 1.0165 (2) | 0.79718 (10) | 0.32220 (7) | 0.0217 (2) | |
H3A | 1.018198 | 0.760667 | 0.270134 | 0.026* | |
H3B | 0.957031 | 0.860657 | 0.309545 | 0.026* | |
C4 | 0.8787 (2) | 0.74716 (9) | 0.38329 (8) | 0.0220 (3) | |
H4A | 0.726345 | 0.751480 | 0.364155 | 0.026* | |
H4B | 0.918397 | 0.679453 | 0.385898 | 0.026* | |
N5 | 0.90562 (17) | 0.78939 (8) | 0.46706 (6) | 0.0188 (2) | |
C6 | 0.7437 (2) | 0.76717 (9) | 0.52209 (7) | 0.0196 (2) | |
N6 | 0.60252 (19) | 0.70637 (8) | 0.49720 (7) | 0.0246 (2) | |
H6 | 0.504 (3) | 0.6963 (13) | 0.5390 (11) | 0.030* | |
C7 | 0.7591 (2) | 0.81478 (9) | 0.60171 (7) | 0.0191 (2) | |
C8 | 0.91651 (19) | 0.88052 (9) | 0.62207 (7) | 0.0181 (2) | |
C9 | 1.07340 (19) | 0.89846 (9) | 0.56422 (7) | 0.0184 (2) | |
C9A | 1.07054 (19) | 0.84860 (9) | 0.48773 (7) | 0.0177 (2) | |
C10 | 0.6013 (2) | 0.78674 (9) | 0.65782 (8) | 0.0218 (3) | |
N10 | 0.4674 (2) | 0.75999 (9) | 0.69863 (8) | 0.0291 (3) | |
C11 | 0.91976 (19) | 0.93141 (9) | 0.70229 (7) | 0.0185 (2) | |
C12 | 1.1058 (2) | 0.93959 (9) | 0.75279 (7) | 0.0206 (2) | |
H12 | 1.235238 | 0.911116 | 0.736637 | 0.025* | |
C13 | 1.1016 (2) | 0.98949 (10) | 0.82682 (8) | 0.0224 (3) | |
H13 | 1.228854 | 0.994184 | 0.860790 | 0.027* | |
C14 | 0.9150 (2) | 1.03264 (9) | 0.85215 (8) | 0.0219 (3) | |
C15 | 0.7295 (2) | 1.02285 (9) | 0.80184 (8) | 0.0220 (3) | |
H15 | 0.599979 | 1.050941 | 0.818303 | 0.026* | |
C16 | 0.7307 (2) | 0.97293 (9) | 0.72833 (7) | 0.0204 (2) | |
H16 | 0.602065 | 0.966821 | 0.695323 | 0.025* | |
C17 | 0.9088 (2) | 1.09051 (11) | 0.92991 (8) | 0.0285 (3) | |
H17A | 1.047423 | 1.086173 | 0.960301 | 0.043* | |
H17B | 0.795831 | 1.066382 | 0.964407 | 0.043* | |
H17C | 0.878970 | 1.156666 | 0.915642 | 0.043* | |
C18 | 1.2316 (2) | 0.96948 (9) | 0.57532 (7) | 0.0190 (2) | |
N18 | 1.36293 (18) | 1.02717 (8) | 0.57859 (7) | 0.0228 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0197 (5) | 0.0226 (5) | 0.0188 (5) | −0.0025 (4) | 0.0026 (4) | −0.0023 (4) |
C2 | 0.0240 (6) | 0.0227 (6) | 0.0189 (5) | −0.0004 (5) | 0.0036 (4) | −0.0017 (5) |
C3 | 0.0249 (6) | 0.0227 (6) | 0.0174 (5) | 0.0001 (5) | 0.0010 (4) | −0.0015 (4) |
C4 | 0.0236 (6) | 0.0229 (6) | 0.0195 (5) | −0.0021 (5) | 0.0007 (4) | −0.0035 (4) |
N5 | 0.0193 (5) | 0.0199 (5) | 0.0173 (4) | −0.0008 (4) | 0.0011 (4) | −0.0010 (4) |
C6 | 0.0186 (5) | 0.0207 (6) | 0.0195 (5) | −0.0004 (5) | 0.0011 (4) | 0.0016 (4) |
N6 | 0.0240 (5) | 0.0264 (6) | 0.0236 (5) | −0.0055 (5) | 0.0023 (4) | −0.0015 (4) |
C7 | 0.0195 (5) | 0.0194 (6) | 0.0186 (5) | −0.0006 (5) | 0.0021 (4) | 0.0010 (4) |
C8 | 0.0182 (5) | 0.0188 (6) | 0.0173 (5) | 0.0027 (5) | 0.0004 (4) | 0.0013 (4) |
C9 | 0.0179 (5) | 0.0191 (6) | 0.0181 (5) | −0.0012 (5) | 0.0000 (4) | 0.0003 (4) |
C9A | 0.0170 (5) | 0.0175 (5) | 0.0184 (5) | 0.0014 (4) | −0.0004 (4) | 0.0019 (4) |
C10 | 0.0235 (6) | 0.0216 (6) | 0.0203 (5) | −0.0012 (5) | 0.0015 (5) | −0.0013 (4) |
N10 | 0.0315 (6) | 0.0284 (6) | 0.0278 (6) | −0.0052 (5) | 0.0082 (5) | −0.0006 (5) |
C11 | 0.0195 (6) | 0.0188 (5) | 0.0173 (5) | −0.0009 (5) | 0.0016 (4) | 0.0008 (4) |
C12 | 0.0204 (6) | 0.0214 (6) | 0.0200 (5) | 0.0002 (5) | 0.0013 (4) | 0.0020 (4) |
C13 | 0.0216 (6) | 0.0246 (6) | 0.0208 (6) | −0.0029 (5) | −0.0011 (4) | 0.0009 (5) |
C14 | 0.0256 (6) | 0.0210 (6) | 0.0191 (5) | −0.0024 (5) | 0.0023 (5) | −0.0009 (4) |
C15 | 0.0218 (6) | 0.0211 (6) | 0.0233 (6) | 0.0018 (5) | 0.0029 (4) | −0.0003 (5) |
C16 | 0.0190 (6) | 0.0215 (6) | 0.0207 (5) | −0.0008 (5) | 0.0003 (4) | 0.0009 (4) |
C17 | 0.0328 (7) | 0.0293 (7) | 0.0232 (6) | 0.0009 (6) | −0.0002 (5) | −0.0077 (5) |
C18 | 0.0204 (5) | 0.0213 (6) | 0.0154 (5) | 0.0022 (5) | 0.0004 (4) | −0.0001 (4) |
N18 | 0.0223 (5) | 0.0250 (5) | 0.0211 (5) | −0.0020 (5) | −0.0003 (4) | −0.0004 (4) |
N1—C9A | 1.3310 (16) | C8—C11 | 1.4859 (16) |
N1—C2 | 1.4587 (16) | C9—C18 | 1.4155 (17) |
N1—H1 | 0.894 (17) | C9—C9A | 1.4259 (16) |
C2—C3 | 1.5123 (18) | C10—N10 | 1.1524 (18) |
C2—H2A | 0.9900 | C11—C12 | 1.3974 (17) |
C2—H2B | 0.9900 | C11—C16 | 1.4002 (17) |
C3—C4 | 1.5150 (18) | C12—C13 | 1.3936 (17) |
C3—H3A | 0.9900 | C12—H12 | 0.9500 |
C3—H3B | 0.9900 | C13—C14 | 1.3929 (19) |
C4—N5 | 1.4865 (15) | C13—H13 | 0.9500 |
C4—H4A | 0.9900 | C14—C15 | 1.3947 (18) |
C4—H4B | 0.9900 | C14—C17 | 1.5050 (18) |
N5—C9A | 1.3586 (16) | C15—C16 | 1.3855 (17) |
N5—C6 | 1.4120 (16) | C15—H15 | 0.9500 |
C6—N6 | 1.2847 (17) | C16—H16 | 0.9500 |
C6—C7 | 1.4555 (17) | C17—H17A | 0.9800 |
N6—H6 | 0.944 (18) | C17—H17B | 0.9800 |
C7—C8 | 1.3833 (17) | C17—H17C | 0.9800 |
C7—C10 | 1.4252 (17) | C18—N18 | 1.1567 (17) |
C8—C9 | 1.4080 (17) | ||
C9A—N1—C2 | 123.11 (11) | C9—C8—C11 | 120.77 (11) |
C9A—N1—H1 | 117.8 (10) | C8—C9—C18 | 123.04 (11) |
C2—N1—H1 | 118.7 (11) | C8—C9—C9A | 120.44 (11) |
N1—C2—C3 | 107.31 (10) | C18—C9—C9A | 116.40 (11) |
N1—C2—H2A | 110.3 | N1—C9A—N5 | 119.41 (11) |
C3—C2—H2A | 110.3 | N1—C9A—C9 | 120.53 (11) |
N1—C2—H2B | 110.3 | N5—C9A—C9 | 120.06 (11) |
C3—C2—H2B | 110.3 | N10—C10—C7 | 174.99 (14) |
H2A—C2—H2B | 108.5 | C12—C11—C16 | 118.66 (11) |
C2—C3—C4 | 108.88 (10) | C12—C11—C8 | 122.20 (11) |
C2—C3—H3A | 109.9 | C16—C11—C8 | 119.13 (11) |
C4—C3—H3A | 109.9 | C13—C12—C11 | 120.05 (12) |
C2—C3—H3B | 109.9 | C13—C12—H12 | 120.0 |
C4—C3—H3B | 109.9 | C11—C12—H12 | 120.0 |
H3A—C3—H3B | 108.3 | C14—C13—C12 | 121.50 (12) |
N5—C4—C3 | 111.35 (10) | C14—C13—H13 | 119.2 |
N5—C4—H4A | 109.4 | C12—C13—H13 | 119.2 |
C3—C4—H4A | 109.4 | C13—C14—C15 | 117.94 (11) |
N5—C4—H4B | 109.4 | C13—C14—C17 | 122.48 (12) |
C3—C4—H4B | 109.4 | C15—C14—C17 | 119.56 (12) |
H4A—C4—H4B | 108.0 | C16—C15—C14 | 121.27 (12) |
C9A—N5—C6 | 122.49 (10) | C16—C15—H15 | 119.4 |
C9A—N5—C4 | 121.90 (10) | C14—C15—H15 | 119.4 |
C6—N5—C4 | 115.55 (10) | C15—C16—C11 | 120.55 (12) |
N6—C6—N5 | 116.82 (11) | C15—C16—H16 | 119.7 |
N6—C6—C7 | 127.35 (12) | C11—C16—H16 | 119.7 |
N5—C6—C7 | 115.81 (11) | C14—C17—H17A | 109.5 |
C6—N6—H6 | 109.5 (11) | C14—C17—H17B | 109.5 |
C8—C7—C10 | 122.59 (11) | H17A—C17—H17B | 109.5 |
C8—C7—C6 | 122.82 (11) | C14—C17—H17C | 109.5 |
C10—C7—C6 | 114.58 (11) | H17A—C17—H17C | 109.5 |
C7—C8—C9 | 118.05 (11) | H17B—C17—H17C | 109.5 |
C7—C8—C11 | 121.18 (11) | N18—C18—C9 | 175.26 (13) |
C9A—N1—C2—C3 | 38.85 (16) | C6—N5—C9A—N1 | 173.71 (11) |
N1—C2—C3—C4 | −59.02 (13) | C4—N5—C9A—N1 | −9.17 (18) |
C2—C3—C4—N5 | 48.56 (14) | C6—N5—C9A—C9 | −6.41 (18) |
C3—C4—N5—C9A | −14.66 (16) | C4—N5—C9A—C9 | 170.71 (11) |
C3—C4—N5—C6 | 162.65 (11) | C8—C9—C9A—N1 | −174.37 (11) |
C9A—N5—C6—N6 | −176.32 (12) | C18—C9—C9A—N1 | 9.52 (17) |
C4—N5—C6—N6 | 6.39 (17) | C8—C9—C9A—N5 | 5.75 (18) |
C9A—N5—C6—C7 | 2.43 (17) | C18—C9—C9A—N5 | −170.36 (11) |
C4—N5—C6—C7 | −174.86 (11) | C7—C8—C11—C12 | 132.01 (13) |
N6—C6—C7—C8 | −179.04 (13) | C9—C8—C11—C12 | −48.44 (17) |
N5—C6—C7—C8 | 2.36 (18) | C7—C8—C11—C16 | −48.17 (17) |
N6—C6—C7—C10 | 2.2 (2) | C9—C8—C11—C16 | 131.37 (13) |
N5—C6—C7—C10 | −176.36 (11) | C16—C11—C12—C13 | −0.95 (18) |
C10—C7—C8—C9 | 175.72 (12) | C8—C11—C12—C13 | 178.86 (12) |
C6—C7—C8—C9 | −2.91 (18) | C11—C12—C13—C14 | −0.42 (19) |
C10—C7—C8—C11 | −4.73 (19) | C12—C13—C14—C15 | 1.33 (19) |
C6—C7—C8—C11 | 176.65 (11) | C12—C13—C14—C17 | −177.21 (13) |
C7—C8—C9—C18 | 174.72 (11) | C13—C14—C15—C16 | −0.88 (19) |
C11—C8—C9—C18 | −4.83 (18) | C17—C14—C15—C16 | 177.71 (12) |
C7—C8—C9—C9A | −1.12 (18) | C14—C15—C16—C11 | −0.48 (19) |
C11—C8—C9—C9A | 179.33 (11) | C12—C11—C16—C15 | 1.40 (18) |
C2—N1—C9A—N5 | −4.15 (18) | C8—C11—C16—C15 | −178.42 (12) |
C2—N1—C9A—C9 | 175.97 (11) |
Cg2 and Cg3 are the centroids of the N5/C6–C9/C9A and C11–C16 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···N18i | 0.892 (18) | 2.229 (18) | 3.0308 (16) | 149.3 (14) |
C2—H2B···N10ii | 0.99 | 2.60 | 3.1574 (18) | 116 |
C16—H16···N18iii | 0.95 | 2.51 | 3.3592 (17) | 149 |
C3—H3B···Cg3iv | 0.99 | 2.77 | 3.5553 (15) | 136 |
C4—H4B···Cg3v | 0.99 | 2.88 | 3.6750 (14) | 138 |
C17—H17C···Cg2vi | 0.98 | 2.88 | 3.6306 (16) | 134 |
Symmetry codes: (i) −x+3, −y+2, −z+1; (ii) x+1, −y+3/2, z−1/2; (iii) x−1, y, z; (iv) −x+2, −y+2, −z+1; (v) x, −y+1/2, z−3/2; (vi) −x+2, y+1/2, −z+3/2. |
Acknowledgements
Authors contributions are as follows. Conceptualization, IGM, ANK and FNN; methodology, IGM and MA; investigation, VNK and FNN; writing (original draft), MA, AB and ANK, writing (review and editing of the manuscript), İGM and ANK; visualization, MA, EVD and FNN; funding acquisition, VNK, AB and FNN; resources, AB, VNK and MA; supervision, MA and ANK.
Funding information
This paper was supported by Baku State University and the RUDN University Strategic Academic Leadership Program.
References
Afkhami, F. A., Mahmoudi, G., Khandar, A. A., Franconetti, A., Zangrando, E., Qureshi, N., Lipkowski, J., Gurbanov, A. V. & Frontera, A. (2019). Eur. J. Inorg. Chem. pp. 262–270. Web of Science CSD CrossRef Google Scholar
Akkurt, M., Maharramov, A. M., Shikhaliyev, N. G., Qajar, A. M., Atakishiyeva, G., Shikhaliyeva, I. M., Niyazova, A. A. & Bhattarai, A. (2023). UNEC J. Eng. Appl. Sci. 3, 33–39. CrossRef Google Scholar
Askerova, U. F. (2022). UNEC J. Eng. Appl. Sci, 2, 58–64. Google Scholar
Atalay, V. E., Atish, I. S., Shahin, K. F., Kashikchi, E. S. & Karahan, M. (2022). UNEC J. Eng. Appl. Sci. 2, 33–40. Google Scholar
Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271–281. Web of Science CrossRef CAS IUCr Journals Google Scholar
Chen, S., Shi, D., Liu, M. & Li, J. (2012). Acta Cryst. E68, o2546. CSD CrossRef IUCr Journals Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Donmez, M. & Turkyılmaz, M. (2022). UNEC J. Eng. Appl. Sci, 2, 43–48. Google Scholar
Doyle, R. A. (2011). MarCCD software manual. Rayonix LLC, Evanston, IL 60201, USA. Google Scholar
Elattar, K. M., Rabie, R. & Hammouda, M. M. (2017). Monatsh. Chem. 148, 601–627. Web of Science CrossRef CAS Google Scholar
Erenler, R., Dag, B. & Ozbek, B. B. (2022). UNEC J. Eng. Appl. Sci. 2, 26–32. Google Scholar
Evans, P. (2006). Acta Cryst. D62, 72–82. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Mertsalov, D. F., Zubkov, F. I., Nadirova, M. A., Nikitina, E. V., Truong, H. H., Grigoriev, M. S., Zaytsev, V. P., Mahmudov, K. T. & Pombeiro, A. J. L. (2021). Crystals, 11, 112. Web of Science CSD CrossRef Google Scholar
Khalilov, A. N., Khrustalev, V. N., Tereshina, T. A., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2022). Acta Cryst. E78, 525–529. Web of Science CSD CrossRef IUCr Journals Google Scholar
Khodjaniyazov, Kh. U. & Ashurov, J. M. (2016). Acta Cryst. E72, 452–455. Web of Science CSD CrossRef IUCr Journals Google Scholar
Khodjaniyazov, K. U., Makhmudov, U. S., Turgunov, K. K. & Elmuradov, B. Z. (2017). Acta Cryst. E73, 1497–1500. Web of Science CSD CrossRef IUCr Journals Google Scholar
Maharramov, A. M., Shikhaliyev, N. G., Zeynalli, N. R., Niyazova, A. A., Garazade, Kh. A. & Shikhaliyeva, I. M. (2021). UNEC J. Eng. Appl. Sci. 1, 5–11. Google Scholar
Maharramov, A. M., Suleymanova, G. T., Qajar, A. M., Niyazova, A. A., Ahmadova, N. E., Shikhaliyeva, I. M., Garazade, Kh. A., Nenajdenko, V. G. & Shikaliyev, N. G. (2022). UNEC J. Eng. Appl. Sci. 2, 64–73. Google Scholar
Mahmoudi, G., Zangrando, E., Miroslaw, B., Gurbanov, A. V., Babashkina, M. G., Frontera, A. & Safin, D. A. (2021). Inorg. Chim. Acta, 519, 120279. Web of Science CSD CrossRef Google Scholar
Naghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020). Acta Cryst. E76, 720–723. Web of Science CSD CrossRef IUCr Journals Google Scholar
Naghiyev, F. N., Khrustalev, V. N., Novikov, A. P., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, I. G. (2022). Acta Cryst. E78, 554–558. Web of Science CSD CrossRef IUCr Journals Google Scholar
Naghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 516–521. Web of Science CSD CrossRef IUCr Journals Google Scholar
Samarov, Z. U., Okmanov, R. Y., Turgunov, K. K., Tashkhodjaev, B. & Shakhidoyatov, K. M. (2010). Acta Cryst. E66, o890. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sobhi, R. M. & Faisal, R. M. (2023). UNEC J. Eng. Appl. Sci. 3, 21–32. Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Velásquez, J. D., Mahmoudi, G., Zangrando, E., Gurbanov, A. V., Zubkov, F. I., Zorlu, Y., Masoudiasl, A. & Echeverría, J. (2019). CrystEngComm, 21, 6018–6025. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.