research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 6-imino-8-(4-methyl­phen­yl)-1,3,4,6-tetra­hydro-2H-pyrido[1,2-a]pyrimidine-7,9-dicarbo­nitrile

crossmark logo

aDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148, Baku, Azerbaijan, bPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow 117198, Russian Federation, cN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, eDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal, and f"Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan
*Correspondence e-mail: akkurt@erciyes.edu.tr, ajaya.bhattarai@mmamc.tu.edu.np

Edited by X. Hao, Institute of Chemistry, Chinese Academy of Sciences (Received 12 March 2024; accepted 15 March 2024; online 21 March 2024)

In the ten-membered 1,3,4,6-tetra­hydro-2H-pyrido[1,2-a]pyrimidine ring system of the title compound, C17H15N5, the 1,2-di­hydro­pyridine ring is essentially planar (r.m.s. deviation = 0.001 Å), while the 1,3-diazinane ring has a distorted twist-boat conformation. In the crystal, mol­ecules are linked by N—H⋯N and C—H⋯N hydrogen bonds, forming a three-dimensional network. In addition, C—H⋯π inter­actions form layers parallel to the (100) plane. Thus, crystal-structure cohesion is ensured. According to a Hirshfeld surface study, H⋯H (40.4%), N⋯H/H⋯N (28.6%) and C⋯H/H⋯C (24.1%) inter­actions are the most important contributors to the crystal packing.

1. Chemical context

Heterocyclic compounds are crucial systems, both in terms of frequency of occurrence and consequential importance in different fields (Khalilov et al., 2022[Khalilov, A. N., Khrustalev, V. N., Tereshina, T. A., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2022). Acta Cryst. E78, 525-529.]; Akkurt et al., 2023[Akkurt, M., Maharramov, A. M., Shikhaliyev, N. G., Qajar, A. M., Atakishiyeva, G., Shikhaliyeva, I. M., Niyazova, A. A. & Bhattarai, A. (2023). UNEC J. Eng. Appl. Sci. 3, 33-39.]). Heterocyclic systems comprise all nucleic acids, alkaloids, vitamins, sugars, hormones, anti­biotics, other drugs, dyes, pesticides, and herbicides. There have been major developments in organic chemistry in recent years with recently developed heterocyclic systems for various research and commercial aims, especially in the pharmaceutical and chemical industries (Maharramov et al., 2022[Maharramov, A. M., Suleymanova, G. T., Qajar, A. M., Niyazova, A. A., Ahmadova, N. E., Shikhaliyeva, I. M., Garazade, Kh. A., Nenajdenko, V. G. & Shikaliyev, N. G. (2022). UNEC J. Eng. Appl. Sci. 2, 64-73.]; Erenler et al., 2022[Erenler, R., Dag, B. & Ozbek, B. B. (2022). UNEC J. Eng. Appl. Sci. 2, 26-32.]). These compounds have found widespread applications in multiple branches of science, such as coordination chemistry (Gurbanov et al., 2021[Gurbanov, A. V., Mertsalov, D. F., Zubkov, F. I., Nadirova, M. A., Nikitina, E. V., Truong, H. H., Grigoriev, M. S., Zaytsev, V. P., Mahmudov, K. T. & Pombeiro, A. J. L. (2021). Crystals, 11, 112.]; Mahmoudi et al., 2021[Mahmoudi, G., Zangrando, E., Miroslaw, B., Gurbanov, A. V., Babashkina, M. G., Frontera, A. & Safin, D. A. (2021). Inorg. Chim. Acta, 519, 120279.]), medicinal chemistry (Askerova, 2022[Askerova, U. F. (2022). UNEC J. Eng. Appl. Sci, 2, 58-64.]) and materials chemistry (Velásquez et al., 2019[Velásquez, J. D., Mahmoudi, G., Zangrando, E., Gurbanov, A. V., Zubkov, F. I., Zorlu, Y., Masoudiasl, A. & Echeverría, J. (2019). CrystEngComm, 21, 6018-6025.]; Afkhami et al., 2019[Afkhami, F. A., Mahmoudi, G., Khandar, A. A., Franconetti, A., Zangrando, E., Qureshi, N., Lipkowski, J., Gurbanov, A. V. & Frontera, A. (2019). Eur. J. Inorg. Chem. pp. 262-270.]). Pyrido[1,2-a]pyrimidines are simple bicyclic ring systems that contain a nitro­gen-bridgehead condensed pyrimidine motif. These derivatives are used for a large range of applications, as well as drugs, ligands, catalysts, materials, etc (Maharramov et al., 2021[Maharramov, A. M., Shikhaliyev, N. G., Zeynalli, N. R., Niyazova, A. A., Garazade, Kh. A. & Shikhaliyeva, I. M. (2021). UNEC J. Eng. Appl. Sci. 1, 5-11.], Sobhi & Faisal, 2023[Sobhi, R. M. & Faisal, R. M. (2023). UNEC J. Eng. Appl. Sci. 3, 21-32.]). Functionalized pyrido[1,2-a]pyrimidines exhibit various biological activities, such as anti­cancer, anti­oxidant, cytotoxic, anti-inflammatory, herbicidal, pesticidal, anti­bacterial (Atalay et al., 2022[Atalay, V. E., Atish, I. S., Shahin, K. F., Kashikchi, E. S. & Karahan, M. (2022). UNEC J. Eng. Appl. Sci. 2, 33-40.]; Donmez & Turkyılmaz, 2022[Donmez, M. & Turkyılmaz, M. (2022). UNEC J. Eng. Appl. Sci, 2, 43-48.]). In medical practice, pyrido[1,2-a]pyrimidines are used as tranquilizers, anti-ulcerative agents, anti­allergics, anti-asthmatics, analgesics, anti­psychotics, protective gastrointestinal, neurotropic, stress-protecting compounds, and anti-HIV agents (Elattar et al., 2017[Elattar, K. M., Rabie, R. & Hammouda, M. M. (2017). Monatsh. Chem. 148, 601-627.]). As a result of the wide application of these systems, the efficient and regioselective development of pyrido[1,2-a]pyrimidines has attracted a lot of attention. Thus, in the framework of our studies in heterocyclic chemistry (Naghiyev et al., 2020[Naghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020). Acta Cryst. E76, 720-723.], 2021[Naghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 516-521.], 2022[Naghiyev, F. N., Khrustalev, V. N., Novikov, A. P., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, I. G. (2022). Acta Cryst. E78, 554-558.]), herein we report the crystal structure and Hirshfeld surface analysis of the title compound, 6-imino-8-(4-methyl­phen­yl)-1,3,4,6-tetra­hydro-2H-pyrido[1,2-a]pyrimidine-7,9-dicarbo­nitrile.

[Scheme 1]

2. Structural commentary

As seen in Fig. 1[link], in the ten-membered 1,3,4,6-tetra­hydro-2H-pyrido[1,2-a]pyrimidine ring system (N1/N5/C2–C9/C9A) of the title compound, the 1,2-di­hydro­pyridine ring (C11–C16) is essentially planar (r.m.s. deviation = 0.001 Å), while the 1,3-diazinane ring (N1/N5/C2–C4/C9A) has a distorted twist-boat conformation [puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]): QT = 0.5085 (14) Å, θ = 122.41 (15)° and φ = 281.45 (17)°]. The plane of the 1,2-di­hydro­pyridine ring makes dihedral angles of 11.49 (6) and 47.52 (6)°, respectively, with the mean plane of the 1,3-diazine and benzene rings. The angle between the mean plane of the 1,3-diazine and benzene rings is 41.40 (6)°. The torsion angles C11—C8—C7—C10, C11—C8—C9—C18 and C8—C7—C6—N6 are 4.73 (19), −4.83 (18) and −179.04 (13) °, respectively. The geometric parameters of the title compound are normal and comparable to those of the related compounds listed in the Database survey section.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, mol­ecules are linked by N—H⋯N and C–H⋯N hydrogen bonds, forming a three-dimensional network (Table 1[link]; Figs. 2[link] and 3[link]). In addition, C—H⋯π inter­actions form layers parallel to the (100) plane (Table 1[link]; Figs. 4[link] and 5[link]). Thus, crystal-structure cohesion is ensured.

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the N5/C6–C9/C9A and C11–C16 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N18i 0.892 (18) 2.229 (18) 3.0308 (16) 149.3 (14)
C2—H2B⋯N10ii 0.99 2.60 3.1574 (18) 116
C16—H16⋯N18iii 0.95 2.51 3.3592 (17) 149
C3—H3BCg3iv 0.99 2.77 3.5553 (15) 136
C4—H4BCg3v 0.99 2.88 3.6750 (14) 138
C17—H17CCg2vi 0.98 2.88 3.6306 (16) 134
Symmetry codes: (i) [-x+3, -y+2, -z+1]; (ii) [x+1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [x-1, y, z]; (iv) [-x+2, -y+2, -z+1]; (v) [x, -y+{\script{1\over 2}}, z-{\script{3\over 2}}]; (vi) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
The packing viewed along the a-axis of the title compound with N—H⋯N and C—H⋯N hydrogen bonds shown as dashed lines.
[Figure 3]
Figure 3
The packing viewed along the b-axis of the title compound with N—H⋯N and C—H⋯N hydrogen bonds shown as dashed lines.
[Figure 4]
Figure 4
A view of the packing along the a-axis of the title compound with C—H⋯π inter­actions shown as dashed lines.
[Figure 5]
Figure 5
A view of the packing along the b-axis of the title compound with C—H⋯π inter­actions shown as dashed lines.

In order to qu­antify the inter­molecular inter­actions in the crystal, Crystal Explorer 17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) was used to generate Hirshfeld surfaces and two-dimensional fingerprint plots. The Hirshfeld surfaces mapped over dnorm are shown in Fig. 6[link]. The bright-red spots indicate their roles as respective donors and/or acceptors; they also appear as blue and red regions corresponding to positive and negative potentials on the electrostatic potential energy surface (Fig. 7[link]).

[Figure 6]
Figure 6
(a) Front and (b) back sides of the three-dimensional Hirshfeld surface of the title compound mapped over dnorm.
[Figure 7]
Figure 7
View of the electrostatic potential energy surface of the title compound calculated using the STO-3G basis set at the Hartree–Fock level of theory.

The most important inter­atomic contact is H⋯H as it makes the highest contribution to the crystal packing (40.4%, Fig. 8[link]b). The other major contributors are the N⋯H/H⋯N (28.6%, Fig. 8[link]c) and C⋯H/H⋯C (24.1%, Fig. 8[link]d) inter­actions. Other, smaller contributions are made by N⋯H/H⋯N (2.8%), C⋯C (2.7%) and N⋯N (1.4%) inter­actions.

[Figure 8]
Figure 8
The two-dimensional fingerprint plots, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) N⋯H/H⋯N and (d) C⋯H/H⋯C inter­actions. [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

4. Database survey

Five related compounds, which also have the 1,3,4,6-tetra­hydro- 2H-pyrido[1,2-a]pyrimidine ring system seen in the title compound, were found in a search of the Cambridge Structural Database (CSD version 5.42, update of November 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]): CSD refcode IQEFOC (Naghiyev et al., 2021[Naghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 516-521.]), VAMBET (Khodjaniyazov & Ashurov, 2016[Khodjaniyazov, Kh. U. & Ashurov, J. M. (2016). Acta Cryst. E72, 452-455.]), HECLUZ (Khodjaniyazov et al., 2017[Khodjaniyazov, K. U., Makhmudov, U. S., Turgunov, K. K. & Elmuradov, B. Z. (2017). Acta Cryst. E73, 1497-1500.]), LEGLIU (Chen et al., 2012[Chen, S., Shi, D., Liu, M. & Li, J. (2012). Acta Cryst. E68, o2546.]) and KUTPEV (Samarov et al., 2010[Samarov, Z. U., Okmanov, R. Y., Turgunov, K. K., Tashkhodjaev, B. & Shakhidoyatov, K. M. (2010). Acta Cryst. E66, o890.]).

In IQEFOC, inter­molecular N—H⋯N and C—H⋯N hydrogen bonds form mol­ecular sheets parallel to the (110) and ([\overline{1}]10) planes, crossing each other. Adjacent mol­ecules are further linked by C—H⋯π inter­actions, which form zigzag chains propagating parallel to [100]. In the crystal of VAMBET, mol­ecules are linked via C— H⋯O and C—H⋯N hydrogen bonds, forming layers parallel to (101). In the crystal of HECLUZ, hydrogen bonds with 16-membered ring and three chain motifs are generated by N—H⋯N and N—H⋯O contacts. The amino group is located close to the nitro­gen atoms, forming hydrogen bonds with R21 (4) and R22 (12) graph-set motifs. This amino group also forms a hydrogen bond with the C=O oxygen atom of a mol­ecule translated parallel to [100], which links the mol­ecules into R44 (16) rings. Hydrogen-bonded chains are formed along [100] by alternating R22 (12) and R44 (16) rings. These chains are stabilized by inter­molecular ππ stacking inter­actions observed between the pyridine and pyrimidine rings. In LEGLIU, the mol­ecular structure is built up from two fused six-membered rings and one seven-membered ring linked through a spiro C atom. The crystal packing is stabilized by inter­molecular N—H⋯O hydrogen bonds between the two N—H groups and the ketone O atoms of the neighbouring mol­ecules. In KUTPEV, water mol­ecules are mutually O—H⋯O hydrogen bonded and form infinite chains propagating parallel to [010]. Neighbouring chains are linked by the quinazoline mol­ecules by means of O—H⋯O=C hydrogen bonds, forming a diperiodic network.

5. Synthesis and crystallization

A solution of 2-(4-methyl­benzyl­idene)malono­nitrile (6 mmol) and malono­nitrile (6.1 mmol) in methanol (35 mL) was stirred for 10 min. Then 1,3-di­amino­propane (5.3 mol) was added to the reaction mixture and stirred for 72 h. Then 25 mL of methanol were removed from the reaction mixture, which was left overnight. The precipitated crystals were separated by filtration and recrystallized from an ethanol/water (1:1) solution (m.p. 501–502 K, yield 36%).

1H NMR (300 MHz, DMSO-d6, ppm.): 1.98 (m, 2H, CH2); 2.39 (s, 3H, CH3-Ar); 3.42 (t, 2H, CH2, 3JH–H = 6.9); 3.93 (t, 2H, CH2, 3JH–H = 6.9); 4.14 (s, 1H, CH-Ar); 6.41 (s, 2H, NH2); 7.30–7.42 (m, 4H, 4Ar-H); 7.70 (s, 1H, NH). 13C NMR (75 MHz, DMSO-d6, ppm.): 19.46 (CH2), 21.01 (Ar-CH3), 38.36 (Ar-CH), 39.64 (NCH2), 41.59 (NCH2), 51.64 (=Cquat.), 57.25 (=Cquat.), 120.70 (CN), 121.12 (CN), 128.14 (2CHarom.), 128.98 (2CHarom.), 134.92 (Carom.), 140.77 (Carom.), 151.15 (=Cquat.), 152.36 (=Cquat.).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All C-bound H atoms were placed at calculated positions and refined using a riding model, with C—H = 0.95–0.99 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C). The N-bound H atoms were located in difference-Fourier maps [N1—H1 = 0.894 (17) Å, N6—H6 = 0.944 (18) Å] and refined with Uiso(H) = 1.2Ueq(N).

Table 2
Experimental details

Crystal data
Chemical formula C17H15N5
Mr 289.34
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 6.2459 (4), 14.1480 (9), 16.2111 (11)
β (°) 92.435 (7)
V3) 1431.23 (16)
Z 4
Radiation type Synchrotron, λ = 0.74500 Å
μ (mm−1) 0.09
Crystal size (mm) 0.13 × 0.03 × 0.01
 
Data collection
Diffractometer Rayonix SX165 CCD
Absorption correction Multi-scan (SCALA; Evans, 2006[Evans, P. (2006). Acta Cryst. D62, 72-82.])
Tmin, Tmax 0.981, 0.989
No. of measured, independent and observed [I > 2σ(I)] reflections 16784, 3956, 3119
Rint 0.049
(sin θ/λ)max−1) 0.692
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.113, 1.04
No. of reflections 3956
No. of parameters 206
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.30, −0.24
Computer programs: Marccd (Doyle, 2011[Doyle, R. A. (2011). MarCCD software manual. Rayonix LLC, Evanston, IL 60201, USA.]), iMosflm (Battye et al., 2011[Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271-281.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

6-Imino-8-(4-methylphenyl)-1,3,4,6-tetrahydro-2H-pyrido[1,2-a]pyrimidine-7,9-dicarbonitrile top
Crystal data top
C17H15N5F(000) = 608
Mr = 289.34Dx = 1.343 Mg m3
Monoclinic, P21/cSynchrotron radiation, λ = 0.74500 Å
a = 6.2459 (4) ÅCell parameters from 600 reflections
b = 14.1480 (9) Åθ = 2.6–26.0°
c = 16.2111 (11) ŵ = 0.09 mm1
β = 92.435 (7)°T = 100 K
V = 1431.23 (16) Å3Needle, yellow
Z = 40.13 × 0.03 × 0.01 mm
Data collection top
Rayonix SX165 CCD
diffractometer
3119 reflections with I > 2σ(I)
/f scanRint = 0.049
Absorption correction: multi-scan
(Scala; Evans, 2006)
θmax = 31.0°, θmin = 2.6°
Tmin = 0.981, Tmax = 0.989h = 88
16784 measured reflectionsk = 1919
3956 independent reflectionsl = 2222
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0455P)2 + 0.6432P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3956 reflectionsΔρmax = 0.30 e Å3
206 parametersΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N11.22846 (18)0.85962 (8)0.43598 (6)0.0203 (2)
H11.338 (3)0.8968 (12)0.4519 (10)0.024*
C21.2417 (2)0.80620 (10)0.35940 (7)0.0218 (2)
H2A1.3034470.7428450.3707870.026*
H2B1.3342270.8396500.3207920.026*
C31.0165 (2)0.79718 (10)0.32220 (7)0.0217 (2)
H3A1.0181980.7606670.2701340.026*
H3B0.9570310.8606570.3095450.026*
C40.8787 (2)0.74716 (9)0.38329 (8)0.0220 (3)
H4A0.7263450.7514800.3641550.026*
H4B0.9183970.6794530.3858980.026*
N50.90562 (17)0.78939 (8)0.46706 (6)0.0188 (2)
C60.7437 (2)0.76717 (9)0.52209 (7)0.0196 (2)
N60.60252 (19)0.70637 (8)0.49720 (7)0.0246 (2)
H60.504 (3)0.6963 (13)0.5390 (11)0.030*
C70.7591 (2)0.81478 (9)0.60171 (7)0.0191 (2)
C80.91651 (19)0.88052 (9)0.62207 (7)0.0181 (2)
C91.07340 (19)0.89846 (9)0.56422 (7)0.0184 (2)
C9A1.07054 (19)0.84860 (9)0.48773 (7)0.0177 (2)
C100.6013 (2)0.78674 (9)0.65782 (8)0.0218 (3)
N100.4674 (2)0.75999 (9)0.69863 (8)0.0291 (3)
C110.91976 (19)0.93141 (9)0.70229 (7)0.0185 (2)
C121.1058 (2)0.93959 (9)0.75279 (7)0.0206 (2)
H121.2352380.9111160.7366370.025*
C131.1016 (2)0.98949 (10)0.82682 (8)0.0224 (3)
H131.2288540.9941840.8607900.027*
C140.9150 (2)1.03264 (9)0.85215 (8)0.0219 (3)
C150.7295 (2)1.02285 (9)0.80184 (8)0.0220 (3)
H150.5999791.0509410.8183030.026*
C160.7307 (2)0.97293 (9)0.72833 (7)0.0204 (2)
H160.6020650.9668210.6953230.025*
C170.9088 (2)1.09051 (11)0.92991 (8)0.0285 (3)
H17A1.0474231.0861730.9603010.043*
H17B0.7958311.0663820.9644070.043*
H17C0.8789701.1566660.9156420.043*
C181.2316 (2)0.96948 (9)0.57532 (7)0.0190 (2)
N181.36293 (18)1.02717 (8)0.57859 (7)0.0228 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0197 (5)0.0226 (5)0.0188 (5)0.0025 (4)0.0026 (4)0.0023 (4)
C20.0240 (6)0.0227 (6)0.0189 (5)0.0004 (5)0.0036 (4)0.0017 (5)
C30.0249 (6)0.0227 (6)0.0174 (5)0.0001 (5)0.0010 (4)0.0015 (4)
C40.0236 (6)0.0229 (6)0.0195 (5)0.0021 (5)0.0007 (4)0.0035 (4)
N50.0193 (5)0.0199 (5)0.0173 (4)0.0008 (4)0.0011 (4)0.0010 (4)
C60.0186 (5)0.0207 (6)0.0195 (5)0.0004 (5)0.0011 (4)0.0016 (4)
N60.0240 (5)0.0264 (6)0.0236 (5)0.0055 (5)0.0023 (4)0.0015 (4)
C70.0195 (5)0.0194 (6)0.0186 (5)0.0006 (5)0.0021 (4)0.0010 (4)
C80.0182 (5)0.0188 (6)0.0173 (5)0.0027 (5)0.0004 (4)0.0013 (4)
C90.0179 (5)0.0191 (6)0.0181 (5)0.0012 (5)0.0000 (4)0.0003 (4)
C9A0.0170 (5)0.0175 (5)0.0184 (5)0.0014 (4)0.0004 (4)0.0019 (4)
C100.0235 (6)0.0216 (6)0.0203 (5)0.0012 (5)0.0015 (5)0.0013 (4)
N100.0315 (6)0.0284 (6)0.0278 (6)0.0052 (5)0.0082 (5)0.0006 (5)
C110.0195 (6)0.0188 (5)0.0173 (5)0.0009 (5)0.0016 (4)0.0008 (4)
C120.0204 (6)0.0214 (6)0.0200 (5)0.0002 (5)0.0013 (4)0.0020 (4)
C130.0216 (6)0.0246 (6)0.0208 (6)0.0029 (5)0.0011 (4)0.0009 (5)
C140.0256 (6)0.0210 (6)0.0191 (5)0.0024 (5)0.0023 (5)0.0009 (4)
C150.0218 (6)0.0211 (6)0.0233 (6)0.0018 (5)0.0029 (4)0.0003 (5)
C160.0190 (6)0.0215 (6)0.0207 (5)0.0008 (5)0.0003 (4)0.0009 (4)
C170.0328 (7)0.0293 (7)0.0232 (6)0.0009 (6)0.0002 (5)0.0077 (5)
C180.0204 (5)0.0213 (6)0.0154 (5)0.0022 (5)0.0004 (4)0.0001 (4)
N180.0223 (5)0.0250 (5)0.0211 (5)0.0020 (5)0.0003 (4)0.0004 (4)
Geometric parameters (Å, º) top
N1—C9A1.3310 (16)C8—C111.4859 (16)
N1—C21.4587 (16)C9—C181.4155 (17)
N1—H10.894 (17)C9—C9A1.4259 (16)
C2—C31.5123 (18)C10—N101.1524 (18)
C2—H2A0.9900C11—C121.3974 (17)
C2—H2B0.9900C11—C161.4002 (17)
C3—C41.5150 (18)C12—C131.3936 (17)
C3—H3A0.9900C12—H120.9500
C3—H3B0.9900C13—C141.3929 (19)
C4—N51.4865 (15)C13—H130.9500
C4—H4A0.9900C14—C151.3947 (18)
C4—H4B0.9900C14—C171.5050 (18)
N5—C9A1.3586 (16)C15—C161.3855 (17)
N5—C61.4120 (16)C15—H150.9500
C6—N61.2847 (17)C16—H160.9500
C6—C71.4555 (17)C17—H17A0.9800
N6—H60.944 (18)C17—H17B0.9800
C7—C81.3833 (17)C17—H17C0.9800
C7—C101.4252 (17)C18—N181.1567 (17)
C8—C91.4080 (17)
C9A—N1—C2123.11 (11)C9—C8—C11120.77 (11)
C9A—N1—H1117.8 (10)C8—C9—C18123.04 (11)
C2—N1—H1118.7 (11)C8—C9—C9A120.44 (11)
N1—C2—C3107.31 (10)C18—C9—C9A116.40 (11)
N1—C2—H2A110.3N1—C9A—N5119.41 (11)
C3—C2—H2A110.3N1—C9A—C9120.53 (11)
N1—C2—H2B110.3N5—C9A—C9120.06 (11)
C3—C2—H2B110.3N10—C10—C7174.99 (14)
H2A—C2—H2B108.5C12—C11—C16118.66 (11)
C2—C3—C4108.88 (10)C12—C11—C8122.20 (11)
C2—C3—H3A109.9C16—C11—C8119.13 (11)
C4—C3—H3A109.9C13—C12—C11120.05 (12)
C2—C3—H3B109.9C13—C12—H12120.0
C4—C3—H3B109.9C11—C12—H12120.0
H3A—C3—H3B108.3C14—C13—C12121.50 (12)
N5—C4—C3111.35 (10)C14—C13—H13119.2
N5—C4—H4A109.4C12—C13—H13119.2
C3—C4—H4A109.4C13—C14—C15117.94 (11)
N5—C4—H4B109.4C13—C14—C17122.48 (12)
C3—C4—H4B109.4C15—C14—C17119.56 (12)
H4A—C4—H4B108.0C16—C15—C14121.27 (12)
C9A—N5—C6122.49 (10)C16—C15—H15119.4
C9A—N5—C4121.90 (10)C14—C15—H15119.4
C6—N5—C4115.55 (10)C15—C16—C11120.55 (12)
N6—C6—N5116.82 (11)C15—C16—H16119.7
N6—C6—C7127.35 (12)C11—C16—H16119.7
N5—C6—C7115.81 (11)C14—C17—H17A109.5
C6—N6—H6109.5 (11)C14—C17—H17B109.5
C8—C7—C10122.59 (11)H17A—C17—H17B109.5
C8—C7—C6122.82 (11)C14—C17—H17C109.5
C10—C7—C6114.58 (11)H17A—C17—H17C109.5
C7—C8—C9118.05 (11)H17B—C17—H17C109.5
C7—C8—C11121.18 (11)N18—C18—C9175.26 (13)
C9A—N1—C2—C338.85 (16)C6—N5—C9A—N1173.71 (11)
N1—C2—C3—C459.02 (13)C4—N5—C9A—N19.17 (18)
C2—C3—C4—N548.56 (14)C6—N5—C9A—C96.41 (18)
C3—C4—N5—C9A14.66 (16)C4—N5—C9A—C9170.71 (11)
C3—C4—N5—C6162.65 (11)C8—C9—C9A—N1174.37 (11)
C9A—N5—C6—N6176.32 (12)C18—C9—C9A—N19.52 (17)
C4—N5—C6—N66.39 (17)C8—C9—C9A—N55.75 (18)
C9A—N5—C6—C72.43 (17)C18—C9—C9A—N5170.36 (11)
C4—N5—C6—C7174.86 (11)C7—C8—C11—C12132.01 (13)
N6—C6—C7—C8179.04 (13)C9—C8—C11—C1248.44 (17)
N5—C6—C7—C82.36 (18)C7—C8—C11—C1648.17 (17)
N6—C6—C7—C102.2 (2)C9—C8—C11—C16131.37 (13)
N5—C6—C7—C10176.36 (11)C16—C11—C12—C130.95 (18)
C10—C7—C8—C9175.72 (12)C8—C11—C12—C13178.86 (12)
C6—C7—C8—C92.91 (18)C11—C12—C13—C140.42 (19)
C10—C7—C8—C114.73 (19)C12—C13—C14—C151.33 (19)
C6—C7—C8—C11176.65 (11)C12—C13—C14—C17177.21 (13)
C7—C8—C9—C18174.72 (11)C13—C14—C15—C160.88 (19)
C11—C8—C9—C184.83 (18)C17—C14—C15—C16177.71 (12)
C7—C8—C9—C9A1.12 (18)C14—C15—C16—C110.48 (19)
C11—C8—C9—C9A179.33 (11)C12—C11—C16—C151.40 (18)
C2—N1—C9A—N54.15 (18)C8—C11—C16—C15178.42 (12)
C2—N1—C9A—C9175.97 (11)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the N5/C6–C9/C9A and C11–C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···N18i0.892 (18)2.229 (18)3.0308 (16)149.3 (14)
C2—H2B···N10ii0.992.603.1574 (18)116
C16—H16···N18iii0.952.513.3592 (17)149
C3—H3B···Cg3iv0.992.773.5553 (15)136
C4—H4B···Cg3v0.992.883.6750 (14)138
C17—H17C···Cg2vi0.982.883.6306 (16)134
Symmetry codes: (i) x+3, y+2, z+1; (ii) x+1, y+3/2, z1/2; (iii) x1, y, z; (iv) x+2, y+2, z+1; (v) x, y+1/2, z3/2; (vi) x+2, y+1/2, z+3/2.
 

Acknowledgements

Authors contributions are as follows. Conceptualization, IGM, ANK and FNN; methodology, IGM and MA; investigation, VNK and FNN; writing (original draft), MA, AB and ANK, writing (review and editing of the manuscript), İGM and ANK; visualization, MA, EVD and FNN; funding acquisition, VNK, AB and FNN; resources, AB, VNK and MA; supervision, MA and ANK.

Funding information

This paper was supported by Baku State University and the RUDN University Strategic Academic Leadership Program.

References

First citationAfkhami, F. A., Mahmoudi, G., Khandar, A. A., Franconetti, A., Zangrando, E., Qureshi, N., Lipkowski, J., Gurbanov, A. V. & Frontera, A. (2019). Eur. J. Inorg. Chem. pp. 262–270.  Web of Science CSD CrossRef Google Scholar
First citationAkkurt, M., Maharramov, A. M., Shikhaliyev, N. G., Qajar, A. M., Atakishiyeva, G., Shikhaliyeva, I. M., Niyazova, A. A. & Bhattarai, A. (2023). UNEC J. Eng. Appl. Sci. 3, 33–39.  CrossRef Google Scholar
First citationAskerova, U. F. (2022). UNEC J. Eng. Appl. Sci, 2, 58–64.  Google Scholar
First citationAtalay, V. E., Atish, I. S., Shahin, K. F., Kashikchi, E. S. & Karahan, M. (2022). UNEC J. Eng. Appl. Sci. 2, 33–40.  Google Scholar
First citationBattye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271–281.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChen, S., Shi, D., Liu, M. & Li, J. (2012). Acta Cryst. E68, o2546.  CSD CrossRef IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDonmez, M. & Turkyılmaz, M. (2022). UNEC J. Eng. Appl. Sci, 2, 43–48.  Google Scholar
First citationDoyle, R. A. (2011). MarCCD software manual. Rayonix LLC, Evanston, IL 60201, USA.  Google Scholar
First citationElattar, K. M., Rabie, R. & Hammouda, M. M. (2017). Monatsh. Chem. 148, 601–627.  Web of Science CrossRef CAS Google Scholar
First citationErenler, R., Dag, B. & Ozbek, B. B. (2022). UNEC J. Eng. Appl. Sci. 2, 26–32.  Google Scholar
First citationEvans, P. (2006). Acta Cryst. D62, 72–82.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Mertsalov, D. F., Zubkov, F. I., Nadirova, M. A., Nikitina, E. V., Truong, H. H., Grigoriev, M. S., Zaytsev, V. P., Mahmudov, K. T. & Pombeiro, A. J. L. (2021). Crystals, 11, 112.  Web of Science CSD CrossRef Google Scholar
First citationKhalilov, A. N., Khrustalev, V. N., Tereshina, T. A., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2022). Acta Cryst. E78, 525–529.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhodjaniyazov, Kh. U. & Ashurov, J. M. (2016). Acta Cryst. E72, 452–455.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhodjaniyazov, K. U., Makhmudov, U. S., Turgunov, K. K. & Elmuradov, B. Z. (2017). Acta Cryst. E73, 1497–1500.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMaharramov, A. M., Shikhaliyev, N. G., Zeynalli, N. R., Niyazova, A. A., Garazade, Kh. A. & Shikhaliyeva, I. M. (2021). UNEC J. Eng. Appl. Sci. 1, 5–11.  Google Scholar
First citationMaharramov, A. M., Suleymanova, G. T., Qajar, A. M., Niyazova, A. A., Ahmadova, N. E., Shikhaliyeva, I. M., Garazade, Kh. A., Nenajdenko, V. G. & Shikaliyev, N. G. (2022). UNEC J. Eng. Appl. Sci. 2, 64–73.  Google Scholar
First citationMahmoudi, G., Zangrando, E., Miroslaw, B., Gurbanov, A. V., Babashkina, M. G., Frontera, A. & Safin, D. A. (2021). Inorg. Chim. Acta, 519, 120279.  Web of Science CSD CrossRef Google Scholar
First citationNaghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020). Acta Cryst. E76, 720–723.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Khrustalev, V. N., Novikov, A. P., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, I. G. (2022). Acta Cryst. E78, 554–558.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Rzayev, R. M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 516–521.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSamarov, Z. U., Okmanov, R. Y., Turgunov, K. K., Tashkhodjaev, B. & Shakhidoyatov, K. M. (2010). Acta Cryst. E66, o890.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSobhi, R. M. & Faisal, R. M. (2023). UNEC J. Eng. Appl. Sci. 3, 21–32.  Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVelásquez, J. D., Mahmoudi, G., Zangrando, E., Gurbanov, A. V., Zubkov, F. I., Zorlu, Y., Masoudiasl, A. & Echeverría, J. (2019). CrystEngComm, 21, 6018–6025.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds