research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of bromido­tetra­kis­[5-(prop-2-en-1-yl­sulf­an­yl)-1,3,4-thia­diazol-2-amine-κN3]copper(II) bromide

crossmark logo

aNational University of Uzbekistan named after Mirzo Ulugbek, 4 University St., Tashkent, 100174, Uzbekistan, bKarakalpak State University, 1 Ch. Abdirov St. Nukus, 230112, Uzbekistan, cInstitute of Organic Chemistry, Research Centre for Natural Sciences, 2 Magyar Tudosok Korutja, H-1117 Budapest, Hungary, and dInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek, St, 83, Tashkent, 100125, Uzbekistan
*Correspondence e-mail: torambetov_b@mail.ru

Edited by N. Alvarez Failache, Universidad de la Repüblica, Uruguay (Received 4 March 2024; accepted 21 March 2024; online 26 March 2024)

A novel cationic complex, bromido­tetra­kis­[5-(prop-2-en-1-ylsulfan­yl)-1,3,4-thia­diazol-2-amine-κN3]copper(II) bromide, [CuBr](C5H7N3S2)4Br, was synthesized. The complex crystallizes with fourfold mol­ecular symmetry in the tetra­gonal space group P4/n. The CuII atom exhibits a square-pyramidal coord­ination geometry. The Cu atom is located centrally within the complex, being coordinated by four nitro­gen atoms from four AAT mol­ecules, while a bromine anion is located at the apex of the pyramid. The amino H atoms of AAT inter­act with bromine from the inner and outer spheres, forming a two-dimensional network in the [100] and [010] directions. Hirshfeld surface analysis reveals that 33.7% of the inter­mol­ecular inter­actions are from H⋯H contacts, 21.2% are from S⋯H/H⋯S contacts, 13.4% are from S⋯S contacts and 11.0% are from C⋯H/H⋯C, while other contributions are from Br⋯H/H⋯Br and N⋯H/H⋯N contacts.

1. Chemical context

Nitro­gen-containing heterocycles are a promising class of ligands for the synthesis of transition-metal complexes that are strongly responsive to the changes in external conditions (Lavrenova et al., 2023[Lavrenova, L. G., Sukhikh, T. S., Glinskaya, L. A., Trubina, S. V., Zvereva, V. V., Lavrov, A. N., Klyushova, L. S. & Artem'ev, A. V. (2023). Int. J. Mol. Sci. 24, 13024.]). Derivatives of 1,3,4-thia­diazole represent a relatively new class of compounds that demonstrate a broad array of biological activities, making them of significant inter­est to various fields in medicinal chemistry and pharmacology worldwide (Gowramma et al., 2018[Gowramma, B., Praveen, T. K., Gomathy, S., Kalirajan, R., Babu, B. & Krishnavenic, N. (2018). Curr. Bioact. Compd. 14, 309-316.]; Kaviarasan et al., 2020[Kaviarasan, L., Gowramma, B., Kalirajan, R., Mevithra, M. & Chandralekha, S. (2020). J. Iran. Chem. Soc. 17, 2083-2094.]; Upadhyay & Mishra, 2017[Upadhyay, P. K. & Mishra, P. (2017). Rasayan J. Chem. 10, 254-262.]; Yusuf et al., 2008[Yusuf, M., Khan, R. A. & Ahmed, B. (2008). Bioorg. Med. Chem. 16, 8029-8034.]). 1,3,4-Thia­diazole derivatives exhibit many biological properties, such as anti­microbial (Li et al., 2014[Li, P., Shi, L., Yang, X., Yang, L., Chen, X. W., Wu, F., Shi, Q. C., Xu, W. M., He, M., Hu, D. Y. & Song, B. A. (2014). Bioorg. Med. Chem. Lett. 24, 1677-1680.]; Chen et al., 2019[Chen, J., Yi, C., Wang, S., Wu, S., Li, S., Hu, D. & Song, B. (2019). Bioorg. Med. Chem. Lett. 29, 1203-1210.]), anti­tuberculosis (Foroumadi et al., 2004[Foroumadi, A., Soltani, F., Jabini, R., Moshafi, M. H. & Rasnani, F. M. (2004). Arch. Pharm. Res. 27, 502-506.]; Kolavi et al., 2006[Kolavi, G., Hegde, V., Khazi, I. & Gadad, P. (2006). Bioorg. Med. Chem. 14, 3069-3080.]), anti­oxidant (Jakovljević et al., 2017[Jakovljević, K., Matić, I. Z., Stanojković, T., Krivokuća, A., Marković, V., Joksović, M. D., Mihailović, N., Nićiforović, M. & Joksović, L. (2017). Bioorg. Med. Chem. Lett. 27, 3709-3715.]; Swapna et al., 2013[Swapna, M., Premakumari, C., Nagi Reddy, S., Padmaja, A. & Padmavathi, V. (2013). Chem. Pharm. Bull. 61, 611-617.]), anti­cancer (Altıntop et al., 2018[Altıntop, M. D., Sever, B., Özdemir, A., Ilgın, S., Atlı, Ö., Turan-Zitouni, G. & Kaplancıklı, Z. A. (2018). Anticancer Agents Med. Chem. 18, 1606-1616.]; Aliabadi, 2016[Aliabadi, A. (2016). Anticancer Agents Med. Chem. 16, 1301-1314.]), herbicidal (Wang et al., 2011[Wang, T., Miao, W., Wu, S., Bing, G., Zhang, X., Qin, Z., Yu, H., Qin, X. & Fang, J. (2011). Chin. J. Chem. 29, 959-967.]) and anti­fungal (Chen et al., 2007[Chen, C. J., Song, B. A., Yang, S., Xu, G. F., Bhadury, P. S., Jin, L. H., Hu, D. Y., Li, Q. Z., Liu, F., Xue, W., Lu, P. & Chen, Z. (2007). Bioorg. Med. Chem. 15, 3981-3989.]; Karaburun et al., 2018[Karaburun, A., Acar Çevik, U., Osmaniye, D., Sağlık, B., Kaya Çavuşoğlu, B., Levent, S. & Kaplancıklı, Z. (2018). Molecules, 23, 3129. https://doi.org/10.3390/molecules23123129]) activities. In addition, a limited number of studies mention the utilization of diverse thia­diazo­les as ligands in the synthesis of biologically active metal complexes (Huxel et al., 2015[Huxel, T., Demeshko, S. & Klingele, J. (2015). Z. Anorg. Allge Chem. 641, 1711-1717.]; Chandra et al., 2015[Chandra, S., Gautam, S., Rajor, H. K. & Bhatia, R. (2015). Spectrochim. Acta A Mol. Biomol. Spectrosc. 137, 749-760.]; Hangan et al., 2015[Hangan, A. C., Turza, A., Stan, R. L., Stefan, R. & Oprean, L. S. (2015). Russ. J. Coord. Chem. 41, 395-404.]).

The strong complexing capability of thia­diazole derivatives is associated with the existence of numerous sulfur and nitro­gen atoms and the distinctiveness of its structure, specifically, the presence of unshared electron pairs and donor characteristics. They generate complexes with elements whose ions possess partially vacant d-orbitals or occupied d-orbitals and a low positive charge, exhibiting various polyhedral structures. In this context, investigating the complex-forming properties of thia­diazole derivatives is pertinent in delineating the characteristics of the mol­ecular and electronic structure of the original ligands and the stereochemistry of the coordination polyhedron (Hassan et al., 2018[Hassan, A. E., Shaaban, I. A., Abuelela, A. M., Zoghaib, W. M. & Mohamed, T. A. (2018). J. Coord. Chem. 71, 2814-2830.]). This study focuses on the synthesis, examination of the structure, and characteristics of the [Cu(L)4Br]Br complex, where L is 2-amino-5-allyl­thio-1,3,4-thia­diazole (AAT), employing single-crystal X-ray diffraction (SC-XRD).

[Scheme 1]

2. Structural commentary

The crystals of [Cu(AAT)4Br]Br possess an ionic-mol­ecular structure. The complex crystallizes in the fourfold tetra­gonal system, space group P4/n, and the asymmetric unit comprises one mol­ecule of 2-amino-5-allyl­thio-1,3,4-thia­diazole (AAT), one Cu2+ ion with a multiplicity of 0.25, and Br ions in two positions with multiplicities of 0.25 each. The Br ions occupy special positions on fourfold axes, and this symmetry transformation generates the formula unit. In [Cu(AAT)4Br]Br, the copper atom exhibits a square-pyramidal geometry and its coordination sphere includes four nitro­gen atoms (N2) from the heterocyclic ligands and a bromine anion at the top of the pyramid. These nitro­gen atoms lie in one plane. The planar AAT mol­ecules are nearly perpendicular to this plane, exhibiting a slight twist of the Br1CuN2 planes. All the amino groups are in a syn arrangement. One of the Br ions is integrated into the inner coordination sphere, while the second Br- ion resides in the outer sphere (Fig. 1[link]). As a result, the inner coordination sphere of the complex takes the shape of a tetra­gonal pyramid, where the basal positions are filled by nitro­gen atoms from the 2-amino-5-allyl­thio-1,3,4-thia­diazole ligands, and the apical position is occupied by the Br ion.

[Figure 1]
Figure 1
Mol­ecular structure of the complex [Cu(AAT)4Br]Br. Displacement ellipsoids are shown with 20% probability level for clarity. Symmetry codes: (a) −x, y, z; (b) −[{3\over 2}] − y, x, z; (c) −[{3\over 2}] − x, [{3\over 2}] − y, z; (d) −y, [{3\over 2}] − x, z.

The Cu—Br bond length in the compound measures 2.7474 (7) Å, closely resembling the Cu—Br distance in the [CuL4Br2](H2O)2 mol­ecule, which is 2.9383 Å (Berezin et al., 2018[Berezin, A. S., Ivanova, A. D., Komarov, V. Y., Nadolinny, V. A. & Lavrenova, L. G. (2018). New J. Chem. 42, 4902-4908.]). Apparently, the binding of the Br ion into the inner coordination sphere induces a distortion of the CuN4 plane. The effect of this distortion is to the reduce N—Cu—N coordination angles [88.446 (18) and 161.04 (11)°], in contrast to the angles of 90 and 180° expected in an ideal square-planar structure. The sum of bond angles at the Cu atom is 353.8°. The Cu atom deviates from the (N2)4 plane toward Br by 0.333 Å. The length of the Cu—N coordination bonds is 2.0206 (17) Å, similar to those bonds in analogous complexes. For instance, in nitrato-tetra­kis­(2-amino-5-ethyl-1,3,4-thia­diazole)copper(II) nitrate, the average Cu—N bond length is 2.003 Å (Kadirova et al., 2008[Kadirova, Sh. A., Ishankhodzhaeva, M. M., Parpiev, N. A., Tozhiboev, A., Tashkhodzhaev, B. & Karimov, Z. (2008). Russ. J. Gen. Chem. 78, 2398-2402.]), aligning with the sum of the covalent radii of Cu and N.

Additionally, the Br1 atom participates in the formation of an intra­mol­ecular hydrogen bond with hydrogen atoms of four amino groups NH2 simultaneously (Table 1[link]). By comparing the structures of some complexes based on 2-amino-1,3,4-thia­diazole derivatives, we see that copper(II) bromide, in contrast to chlorides and acetates of cobalt(II) and zinc(II) (Camí et al., 2005[Camí, G. E., Liu González, M., Sanz Ruiz, F. & Pedregosa, J. C. (2005). J. Phys. Chem. Solids, 66, 936-945.]; Song et al., 2012[Song, Y., Ji, Y.-F., Kang, M.-Y. & Liu, Z.-L. (2012). Acta Cryst. E68, m772.]; Wang et al., 2009[Wang, P., Wan, R., Wang, B., Han, F. & Wang, Y. (2009). Acta Cryst. E65, m1086.]; Kadirova et al., 2008[Kadirova, Sh. A., Ishankhodzhaeva, M. M., Parpiev, N. A., Tozhiboev, A., Tashkhodzhaev, B. & Karimov, Z. (2008). Russ. J. Gen. Chem. 78, 2398-2402.]; Ishankhodzhaeva et al., 2000[Ishankhodzhaeva, M. M., Umarov, B. B., Kadyrova, Sh. A., Parpiev, N. A., Makhkamov, K. K. & Talipov, S. A. (2000). Russ. J. Gen. Chem. 70, 1113-1119.], 2001[Ishankhodzhaeva, M. M., Kadyrova, S. A., Talipov, S. A., Ibragimov, B. T., Fun, K. K., Sundara Razh, S. S. & Parpiev, N. A. (2001). Russ. J. Gen. Chem. 71, 1066-1069.]), exhibits a distinct behavior when reacted with 2-amino-5-all­ylthio-1,3,4-thia­diazole under identical conditions. Instead of forming a tetra­hedral mol­ecular complex as might be anti­cipated from analytical data, copper(II) bromide forms the tetra­gonal–pyramidal cationic complex [Cu(AAT)4Br]Br.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯Br1 0.86 2.52 3.3265 (1) 157
N3—H3B⋯Br2 0.86 2.54 3.3685 (1) 162
C5A—H5AA⋯Br1i 0.93 3.03 3.95 (2) 175
Symmetry code: (i) [x, y, z-1].

3. Supra­molecular features

In the crystal structure of [Cu(AAT)4Br]Br, in addition to the aforementioned intra­molecular hydrogen bonds, there exist inter­mol­ecular hydrogen bonds. The second bromide ion, positioned in the outer sphere, forms a hydrogen bond with the second (not participating in the intra­mol­ecular hydrogen bond) hydrogen atom of the amino group N3H2 (Table 1[link]). The outer-sphere Br2 ion also resides on the fourfold axis, resulting in the generation of a layer in the crystal perpendicular to the fourfold axis due to this symmetry transformation. As a result, in the crystal packing, the cationic coordination complexes form columns along the [001] crystallographic axis (Fig. 2[link]). The bromine anions of the outer sphere of the complex are located between the columns due to the formation of the N3—H3B⋯Br2 inter­molecular hydrogen bonds with the amino groups of the ligand (Table 1[link]).

[Figure 2]
Figure 2
Packing of [Cu(AAT)4Br]Br complex mol­ecules in the crystal structure in projections along the (a) b and (b) c crystallographic axis. Hydrogen bonds are indicated by blue dashed lines.

The inter­action energies of the secondary inter­actions system within the structure were calculated using the HF method (HF/3-21G) in CrystalExplorer17 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). Although these calculations may not yield precise values for an ionic inter­action, they effectively highlight the direction of strong inter­actions. The result shows the total energy (Etot), which is the sum of the Coulombic (Eele), polar (Epol), dispersion (Edis) and repulsive (Erep) contributions. The four energy components were scaled in the total energy (Etot = 1.019Eele + 0651Epol + 0901Edis + 0.811Erep). The inter­action energies were investigated for a 3.8 Å cluster around the reference mol­ecule. The calculation reveals two stronger inter­actions within the neighbouring mol­ecules. The strongest inter­action total energy (Etot) is −112.5 kJ mol−1 (∼-27 kcal mol−1), with the polar (−30.1 kJ mol−1), dispersion (−123.3 kJ mol−1), Coulombic (−58.5 kJ mol−1) and repulsive (96.0 kJ mol−1) energies (with green colour) (Fig. 3[link]).

[Figure 3]
Figure 3
Inter­action energy calculations within the structure were performed using the HF method (HF/3–21 G) (CrystalExplorer17; Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]. The thickness of the tube represents the value of the energy. The distribution of the inter­actions according to type shows strong inter­actions along the crystallographic a-axis direction (the largest values are represented here). The total energy framework (in blue) and its two main components, dispersion (in green) and Coulombic energy (in red), are shown for a cluster around a reference mol­ecule also exhibit stronger inter­actions along the crystallographic a-axis direction.

4. Hirshfeld surface analysis

To further investigate the inter­mol­ecular inter­actions present in the title compound, a Hirshfeld surface analysis was performed, and the two-dimensional (2D) fingerprint plots were generated with CrystalExplorer17 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). Fig. 4[link] shows the three-dimensional (3D) Hirshfeld surfaces of the complex with dnorm (normalized contact distance) plotted. The hydrogen-bond inter­actions given in Table 1[link] play a key role in the mol­ecular packing of the complex. The overall 2D fingerprint plot and those delineated into H⋯H, S⋯H/H⋯S, S⋯S, C⋯H/H⋯C, Br⋯H/H⋯Br and N⋯H/H⋯N inter­actions are shown in Fig. 5[link]. The percentage contributions to the Hirshfeld surfaces from the various inter­atomic contacts are as follows: H⋯H 33.7%, S⋯H/H⋯S 21.2%, S⋯S 13.4, C⋯H/H⋯C 11%, Br⋯H/H⋯Br 9.2% and N⋯H/H⋯N 7.8%. Other minor contributions to the Hirshfeld surface are: S⋯C/C⋯S 1.9% and Br⋯S/S⋯Br 1.6%.

[Figure 4]
Figure 4
Views of the three-dimensional Hirshfeld surface of the complex [Cu(AAT)4Br]+ cation plotted over dnorm in views along the (a) [110] and (b) [001] directions.
[Figure 5]
Figure 5
Contributions of the various contacts to the two-dimensional fingerprint plots built using the Hirshfeld surfaces of the title complex.

5. Database survey

A survey of the Cambridge Structural Database (CSD, version 5.43, update of March 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed that nearly a hundred crystal structures had been reported for complexes of 2-amino-1,3,4-thia­diazole derivatives and a number of metal ions, including Mn, Fe, Co, Ni, Cu, Zn, Mo, Ag, Pd, Cd, Sn, Re, Pt, Au and Hg, twelve of which are for Cu complexes. Six structures exhibit tetra­gonal–pyramidal polyhedra (HONDOG, Torambetov et al., 2019[Torambetov, B., Kadirova, S., Toshmurodov, T., Ashurov, J. M., Parpiev, N. A. & Ziyaev, A. (2019). Acta Cryst. E75, 1239-1242.]; RUFQIT, Kadirova et al., 2008[Kadirova, Sh. A., Ishankhodzhaeva, M. M., Parpiev, N. A., Tozhiboev, A., Tashkhodzhaev, B. & Karimov, Z. (2008). Russ. J. Gen. Chem. 78, 2398-2402.]; SUZVOY, SUZVUE, Lynch & Ewington, 2001[Lynch, D. E. & Ewington, J. (2001). Acta Cryst. C57, 1032-1035.]; XIGWIU, Camí et al., 2005[Camí, G. E., Liu González, M., Sanz Ruiz, F. & Pedregosa, J. C. (2005). J. Phys. Chem. Solids, 66, 936-945.]; ZEKWOE, Gurbanov, et al., 2018[Gurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Inorg. Chim. Acta, 471, 130-136.]). In seven structures, AAT is attached to metal ions, making p-complexes (ODAPOC, Slyvka et al., 2022[Slyvka, Y. I., Goreshnik, E. A., Pokhodylo, N. T. & Mys'kiv, M. G. (2022). J. Chem. Crystallogr. 52, 205-213.]; CEDSEM, Slyvka, 2017a[Slyvka, Y. (2017a). Visnyk Lviv Univ. Ser. Chem. 58, 172.]; ESIBUG, Slyvka et al., 2021[Slyvka, Y., Kinzhybalo, V., Shyyka, O. & Mys'kiv, M. (2021). Acta Cryst. C77, 249-256.]; HAJLUC, Ardan et al., 2017[Ardan, B., Kinzhybalo, V., Slyvka, Y., Shyyka, O., Luk'yanov, M., Lis, T. & Mys'kiv, M. (2017). Acta Cryst. C73, 36-46.]; HAJMAJ, HAJMIR, Ardan et al., 2017[Ardan, B., Kinzhybalo, V., Slyvka, Y., Shyyka, O., Luk'yanov, M., Lis, T. & Mys'kiv, M. (2017). Acta Cryst. C73, 36-46.]; YEBNAX, Slyvka, 2017b[Slyvka, Y. I. (2017b). J. Struct. Chem. 58, 356-357.]). However, no complexes of CuBr2 based on 2-amino-1,3,4-thia­diazole derivatives have been documented in the CSD.

6. Synthesis and crystallization

The ligand 2-amino-5-allyl­thio-1,3,4-thia­diazole (AAT) was synthesized by the method of Toshmurodov et al. (2016[Toshmurodov, T. T., Ziyaev, A. A., Elmuradov, B. Zh., Ismailova, D. S. & Kurbanova, E. R. (2016). J. Chem. Chem. Sci. 6, 199-204.]), yield: 93%, m.p. = 388–390 K. CuBr2·4H2O (0.296g, 1 mmol) was added under continuous stirring to a solution of AAT (0.692 g, 4 mmol) dissolved in 10 ml of methanol. The resulting dark-green solution was stirred for 3 h and was then left to stand at room temperature. After one week, green crystals suitable for X-ray diffraction were obtained (yield 86%) by the slow evaporation of the solvent, m.p. = 458–460 K.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were positioned geometrically (N—H = 0.86 Å, C—H = 0.83–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C, N).

Table 2
Experimental details

Crystal data
Chemical formula [CuBr(C5H7N3S2)4]Br
Mr 916.38
Crystal system, space group Tetragonal, P4/n
Temperature (K) 293
a, c (Å) 12.69368 (9), 11.35879 (13)
V3) 1830.24 (3)
Z 2
Radiation type Cu Kα
μ (mm−1) 7.95
Crystal size (mm) 0.12 × 0.08 × 0.03
 
Data collection
Diffractometer XtaLAB Synergy, Single source at home/near, HyPix3000
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.626, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 18450, 1746, 1597
Rint 0.036
(sin θ/λ)max−1) 0.609
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.065, 1.05
No. of reflections 1746
No. of parameters 118
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.28
Computer programs: CrysAlis PRO (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Bromidotetrakis[5-(prop-2-en-1-ylsulfanyl)-1,3,4-thiadiazol-2-amine-κN3]copper(II) bromide top
Crystal data top
[CuBr(C5H7N3S2)4]BrDx = 1.663 Mg m3
Mr = 916.38Cu Kα radiation, λ = 1.54184 Å
Tetragonal, P4/nCell parameters from 9121 reflections
a = 12.69368 (9) Åθ = 3.5–70.8°
c = 11.35879 (13) ŵ = 7.95 mm1
V = 1830.24 (3) Å3T = 293 K
Z = 2Block, green
F(000) = 9180.12 × 0.08 × 0.03 mm
Data collection top
XtaLAB Synergy, Single source at home/near, HyPix3000
diffractometer
1597 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.036
ω scansθmax = 69.9°, θmin = 3.9°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
h = 1515
Tmin = 0.626, Tmax = 1.000k = 1115
18450 measured reflectionsl = 1313
1746 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.0273P)2 + 0.9257P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.065(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.26 e Å3
1746 reflectionsΔρmin = 0.28 e Å3
118 parametersExtinction correction: SHELXL-2016/6 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00018 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.7500000.7500001.01564 (4)0.04943 (15)
Br20.2500000.7500001.0000000.05616 (16)
Cu10.7500000.7500000.77377 (5)0.03890 (16)
S10.39660 (5)0.70986 (6)0.72047 (6)0.06176 (19)
S20.42895 (6)0.65094 (8)0.46657 (7)0.0831 (3)
N20.59625 (14)0.71817 (14)0.74447 (16)0.0470 (4)
N10.57992 (14)0.68882 (16)0.62785 (18)0.0544 (5)
N30.50405 (16)0.7637 (2)0.9157 (2)0.0739 (7)
H3A0.5609920.7757180.9544840.089*
H3B0.4438080.7717290.9491890.089*
C10.50915 (16)0.73279 (18)0.8039 (2)0.0500 (5)
C20.48136 (19)0.6828 (2)0.6037 (2)0.0574 (6)
C30.5494 (3)0.6360 (3)0.3816 (3)0.0984 (11)
H3BC0.5806400.7041950.3651450.118*0.5
H3BD0.6001530.5933360.4239670.118*0.5
H3AA0.6005320.6881770.4066690.118*0.5
H3AB0.5790950.5667150.3953470.118*0.5
C5A0.5337 (16)0.5753 (12)0.1730 (17)0.143 (7)0.5
H5AA0.5875930.6129820.1369120.171*0.5
H5AB0.4920130.5298300.1287420.171*0.5
C40.5259 (9)0.6502 (7)0.2475 (9)0.104 (3)0.5
H40.5167510.7203300.2262290.125*0.5
C4A0.5181 (8)0.5852 (11)0.2749 (8)0.112 (3)0.5
H4A0.4617200.5414880.2935780.134*0.5
C50.5187 (14)0.6021 (18)0.1813 (12)0.154 (8)0.5
H5A0.5263120.5299670.1927630.185*0.5
H5B0.5041130.6282950.1066190.185*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.05153 (19)0.05153 (19)0.0452 (3)0.0000.0000.000
Br20.04993 (19)0.04993 (19)0.0686 (3)0.0000.0000.000
Cu10.0362 (2)0.0362 (2)0.0443 (3)0.0000.0000.000
S10.0387 (3)0.0791 (4)0.0675 (4)0.0015 (3)0.0065 (3)0.0060 (3)
S20.0637 (4)0.1138 (7)0.0718 (5)0.0029 (4)0.0179 (4)0.0189 (4)
N20.0405 (9)0.0489 (10)0.0517 (10)0.0013 (8)0.0029 (8)0.0008 (8)
N10.0450 (10)0.0610 (12)0.0573 (11)0.0041 (9)0.0020 (8)0.0070 (9)
N30.0430 (11)0.121 (2)0.0573 (13)0.0096 (12)0.0002 (9)0.0060 (13)
C10.0388 (11)0.0538 (12)0.0574 (13)0.0016 (9)0.0018 (9)0.0079 (10)
C20.0489 (13)0.0608 (14)0.0626 (15)0.0020 (11)0.0058 (11)0.0008 (11)
C30.084 (2)0.131 (3)0.080 (2)0.004 (2)0.0020 (18)0.023 (2)
C5A0.168 (13)0.095 (7)0.165 (16)0.031 (7)0.075 (10)0.020 (7)
C40.173 (9)0.068 (5)0.070 (6)0.034 (5)0.017 (5)0.007 (4)
C4A0.117 (7)0.141 (10)0.077 (6)0.013 (7)0.024 (5)0.019 (6)
C50.121 (9)0.30 (2)0.038 (4)0.016 (12)0.010 (5)0.005 (8)
Geometric parameters (Å, º) top
Br1—Cu12.7474 (7)C3—H3BC0.9700
Cu1—N2i2.0206 (17)C3—H3BD0.9700
Cu1—N22.0206 (17)C3—H3AA0.9700
Cu1—N2ii2.0206 (17)C3—H3AB0.9700
Cu1—N2iii2.0206 (17)C3—C41.562 (11)
S1—C11.739 (2)C3—C4A1.429 (10)
S1—C21.742 (3)C5A—H5AA0.9300
S2—C21.741 (3)C5A—H5AB0.9300
S2—C31.818 (4)C5A—C4A1.181 (19)
N2—N11.392 (3)C4—H40.9300
N2—C11.308 (3)C4—C50.973 (18)
N1—C21.283 (3)C4A—H4A0.9300
N3—H3A0.8600C5—H5A0.9300
N3—H3B0.8600C5—H5B0.9300
N3—C11.331 (3)
N2i—Cu1—Br199.48 (5)S2—C3—H3BC110.7
N2iii—Cu1—Br199.48 (5)S2—C3—H3BD110.7
N2ii—Cu1—Br199.48 (5)S2—C3—H3AA109.6
N2—Cu1—Br199.48 (5)S2—C3—H3AB109.6
N2ii—Cu1—N2iii88.446 (18)H3BC—C3—H3BD108.8
N2ii—Cu1—N288.446 (18)H3AA—C3—H3AB108.1
N2iii—Cu1—N2i88.446 (18)C4—C3—S2110.2 (5)
N2i—Cu1—N288.445 (18)C4—C3—H3AA109.6
N2ii—Cu1—N2i161.04 (11)C4—C3—H3AB109.6
N2iii—Cu1—N2161.04 (11)C4A—C3—S2105.3 (5)
C1—S1—C286.58 (11)C4A—C3—H3BC110.7
C2—S2—C3100.25 (14)C4A—C3—H3BD110.7
N1—N2—Cu1110.74 (13)H5AA—C5A—H5AB120.0
C1—N2—Cu1134.66 (16)C4A—C5A—H5AA120.0
C1—N2—N1113.76 (18)C4A—C5A—H5AB120.0
C2—N1—N2111.4 (2)C3—C4—H4112.8
H3A—N3—H3B120.0C5—C4—C3134.4 (15)
C1—N3—H3A120.0C5—C4—H4112.8
C1—N3—H3B120.0C3—C4A—H4A106.8
N2—C1—S1112.94 (18)C5A—C4A—C3146.4 (13)
N2—C1—N3125.1 (2)C5A—C4A—H4A106.8
N3—C1—S1121.96 (17)C4—C5—H5A120.0
S2—C2—S1119.40 (14)C4—C5—H5B120.0
N1—C2—S1115.33 (19)H5A—C5—H5B120.0
N1—C2—S2125.3 (2)
Cu1—N2—N1—C2170.89 (17)C1—S1—C2—S2178.55 (17)
Cu1—N2—C1—S1168.95 (12)C1—S1—C2—N11.2 (2)
Cu1—N2—C1—N39.9 (4)C1—N2—N1—C20.2 (3)
S2—C3—C4—C5103 (2)C2—S1—C1—N21.01 (18)
S2—C3—C4A—C5A148 (2)C2—S1—C1—N3177.9 (2)
N2—N1—C2—S11.0 (3)C2—S2—C3—C4158.1 (4)
N2—N1—C2—S2178.68 (17)C2—S2—C3—C4A166.4 (6)
N1—N2—C1—S10.7 (2)C3—S2—C2—S1178.11 (19)
N1—N2—C1—N3178.2 (2)C3—S2—C2—N11.6 (3)
Symmetry codes: (i) y, x+3/2, z; (ii) y+3/2, x, z; (iii) x+3/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···Br10.862.523.3265 (1)157
N3—H3B···Br20.862.543.3685 (1)162
C5A—H5AA···Br1iv0.933.033.95 (2)175
Symmetry code: (iv) x, y, z1.
 

Funding information

This work was supported by Uzbekistan Ministry of Higher Education, Science and Innovation.

References

First citationAliabadi, A. (2016). Anticancer Agents Med. Chem. 16, 1301–1314.  CrossRef CAS PubMed Google Scholar
First citationAltıntop, M. D., Sever, B., Özdemir, A., Ilgın, S., Atlı, Ö., Turan-Zitouni, G. & Kaplancıklı, Z. A. (2018). Anticancer Agents Med. Chem. 18, 1606–1616.  PubMed Google Scholar
First citationArdan, B., Kinzhybalo, V., Slyvka, Y., Shyyka, O., Luk'yanov, M., Lis, T. & Mys'kiv, M. (2017). Acta Cryst. C73, 36–46.  CSD CrossRef IUCr Journals Google Scholar
First citationBerezin, A. S., Ivanova, A. D., Komarov, V. Y., Nadolinny, V. A. & Lavrenova, L. G. (2018). New J. Chem. 42, 4902–4908.  CSD CrossRef CAS Google Scholar
First citationCamí, G. E., Liu González, M., Sanz Ruiz, F. & Pedregosa, J. C. (2005). J. Phys. Chem. Solids, 66, 936–945.  Google Scholar
First citationChandra, S., Gautam, S., Rajor, H. K. & Bhatia, R. (2015). Spectrochim. Acta A Mol. Biomol. Spectrosc. 137, 749–760.  CrossRef CAS PubMed Google Scholar
First citationChen, C. J., Song, B. A., Yang, S., Xu, G. F., Bhadury, P. S., Jin, L. H., Hu, D. Y., Li, Q. Z., Liu, F., Xue, W., Lu, P. & Chen, Z. (2007). Bioorg. Med. Chem. 15, 3981–3989.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationChen, J., Yi, C., Wang, S., Wu, S., Li, S., Hu, D. & Song, B. (2019). Bioorg. Med. Chem. Lett. 29, 1203–1210.  CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationForoumadi, A., Soltani, F., Jabini, R., Moshafi, M. H. & Rasnani, F. M. (2004). Arch. Pharm. Res. 27, 502–506.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGowramma, B., Praveen, T. K., Gomathy, S., Kalirajan, R., Babu, B. & Krishnavenic, N. (2018). Curr. Bioact. Compd. 14, 309–316.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Inorg. Chim. Acta, 471, 130–136.  Web of Science CSD CrossRef CAS Google Scholar
First citationHangan, A. C., Turza, A., Stan, R. L., Stefan, R. & Oprean, L. S. (2015). Russ. J. Coord. Chem. 41, 395–404.  CrossRef CAS Google Scholar
First citationHassan, A. E., Shaaban, I. A., Abuelela, A. M., Zoghaib, W. M. & Mohamed, T. A. (2018). J. Coord. Chem. 71, 2814–2830.  CrossRef CAS Google Scholar
First citationHuxel, T., Demeshko, S. & Klingele, J. (2015). Z. Anorg. Allge Chem. 641, 1711–1717.  CSD CrossRef CAS Google Scholar
First citationIshankhodzhaeva, M. M., Kadyrova, S. A., Talipov, S. A., Ibragimov, B. T., Fun, K. K., Sundara Razh, S. S. & Parpiev, N. A. (2001). Russ. J. Gen. Chem. 71, 1066–1069.  CrossRef CAS Google Scholar
First citationIshankhodzhaeva, M. M., Umarov, B. B., Kadyrova, Sh. A., Parpiev, N. A., Makhkamov, K. K. & Talipov, S. A. (2000). Russ. J. Gen. Chem. 70, 1113–1119.  CAS Google Scholar
First citationJakovljević, K., Matić, I. Z., Stanojković, T., Krivokuća, A., Marković, V., Joksović, M. D., Mihailović, N., Nićiforović, M. & Joksović, L. (2017). Bioorg. Med. Chem. Lett. 27, 3709–3715.  PubMed Google Scholar
First citationKadirova, Sh. A., Ishankhodzhaeva, M. M., Parpiev, N. A., Tozhiboev, A., Tashkhodzhaev, B. & Karimov, Z. (2008). Russ. J. Gen. Chem. 78, 2398–2402.  CrossRef CAS Google Scholar
First citationKaraburun, A., Acar Çevik, U., Osmaniye, D., Sağlık, B., Kaya Çavuşoğlu, B., Levent, S. & Kaplancıklı, Z. (2018). Molecules, 23, 3129. https://doi.org/10.3390/molecules23123129  Google Scholar
First citationKaviarasan, L., Gowramma, B., Kalirajan, R., Mevithra, M. & Chandralekha, S. (2020). J. Iran. Chem. Soc. 17, 2083–2094.  CrossRef CAS Google Scholar
First citationKolavi, G., Hegde, V., Khazi, I. & Gadad, P. (2006). Bioorg. Med. Chem. 14, 3069–3080.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLavrenova, L. G., Sukhikh, T. S., Glinskaya, L. A., Trubina, S. V., Zvereva, V. V., Lavrov, A. N., Klyushova, L. S. & Artem'ev, A. V. (2023). Int. J. Mol. Sci. 24, 13024.  CSD CrossRef PubMed Google Scholar
First citationLi, P., Shi, L., Yang, X., Yang, L., Chen, X. W., Wu, F., Shi, Q. C., Xu, W. M., He, M., Hu, D. Y. & Song, B. A. (2014). Bioorg. Med. Chem. Lett. 24, 1677–1680.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLynch, D. E. & Ewington, J. (2001). Acta Cryst. C57, 1032–1035.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSlyvka, Y. (2017a). Visnyk Lviv Univ. Ser. Chem. 58, 172.  Google Scholar
First citationSlyvka, Y., Kinzhybalo, V., Shyyka, O. & Mys'kiv, M. (2021). Acta Cryst. C77, 249–256.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSlyvka, Y. I. (2017b). J. Struct. Chem. 58, 356–357.  CSD CrossRef CAS Google Scholar
First citationSlyvka, Y. I., Goreshnik, E. A., Pokhodylo, N. T. & Mys'kiv, M. G. (2022). J. Chem. Crystallogr. 52, 205–213.  CSD CrossRef CAS Google Scholar
First citationSong, Y., Ji, Y.-F., Kang, M.-Y. & Liu, Z.-L. (2012). Acta Cryst. E68, m772.  CSD CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwapna, M., Premakumari, C., Nagi Reddy, S., Padmaja, A. & Padmavathi, V. (2013). Chem. Pharm. Bull. 61, 611–617.  CrossRef CAS Google Scholar
First citationTorambetov, B., Kadirova, S., Toshmurodov, T., Ashurov, J. M., Parpiev, N. A. & Ziyaev, A. (2019). Acta Cryst. E75, 1239–1242.  CSD CrossRef IUCr Journals Google Scholar
First citationToshmurodov, T. T., Ziyaev, A. A., Elmuradov, B. Zh., Ismailova, D. S. & Kurbanova, E. R. (2016). J. Chem. Chem. Sci. 6, 199–204.  Google Scholar
First citationUpadhyay, P. K. & Mishra, P. (2017). Rasayan J. Chem. 10, 254–262.  CAS Google Scholar
First citationWang, P., Wan, R., Wang, B., Han, F. & Wang, Y. (2009). Acta Cryst. E65, m1086.  CSD CrossRef IUCr Journals Google Scholar
First citationWang, T., Miao, W., Wu, S., Bing, G., Zhang, X., Qin, Z., Yu, H., Qin, X. & Fang, J. (2011). Chin. J. Chem. 29, 959–967.  CrossRef CAS Google Scholar
First citationYusuf, M., Khan, R. A. & Ahmed, B. (2008). Bioorg. Med. Chem. 16, 8029–8034.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds