research communications
Synthesis, κN3]copper(II) bromide
and Hirshfeld surface analysis of bromidotetrakis[5-(prop-2-en-1-ylsulfanyl)-1,3,4-thiadiazol-2-amine-aNational University of Uzbekistan named after Mirzo Ulugbek, 4 University St., Tashkent, 100174, Uzbekistan, bKarakalpak State University, 1 Ch. Abdirov St. Nukus, 230112, Uzbekistan, cInstitute of Organic Chemistry, Research Centre for Natural Sciences, 2 Magyar Tudosok Korutja, H-1117 Budapest, Hungary, and dInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek, St, 83, Tashkent, 100125, Uzbekistan
*Correspondence e-mail: torambetov_b@mail.ru
A novel cationic complex, bromidotetrakis[5-(prop-2-en-1-ylsulfanyl)-1,3,4-thiadiazol-2-amine-κN3]copper(II) bromide, [CuBr](C5H7N3S2)4Br, was synthesized. The complex crystallizes with fourfold molecular symmetry in the tetragonal P4/n. The CuII atom exhibits a square-pyramidal coordination geometry. The Cu atom is located centrally within the complex, being coordinated by four nitrogen atoms from four AAT molecules, while a bromine anion is located at the apex of the pyramid. The amino H atoms of AAT interact with bromine from the inner and outer spheres, forming a two-dimensional network in the [100] and [010] directions. Hirshfeld surface analysis reveals that 33.7% of the intermolecular interactions are from H⋯H contacts, 21.2% are from S⋯H/H⋯S contacts, 13.4% are from S⋯S contacts and 11.0% are from C⋯H/H⋯C, while other contributions are from Br⋯H/H⋯Br and N⋯H/H⋯N contacts.
Keywords: crystal structure; copper(II); 1,3,4-thiadiazole; hydrogen bonding; Hirshfeld surface analysis.
CCDC reference: 2341909
1. Chemical context
Nitrogen-containing heterocycles are a promising class of ligands for the synthesis of transition-metal complexes that are strongly responsive to the changes in external conditions (Lavrenova et al., 2023). Derivatives of 1,3,4-thiadiazole represent a relatively new class of compounds that demonstrate a broad array of biological activities, making them of significant interest to various fields in medicinal chemistry and pharmacology worldwide (Gowramma et al., 2018; Kaviarasan et al., 2020; Upadhyay & Mishra, 2017; Yusuf et al., 2008). 1,3,4-Thiadiazole derivatives exhibit many biological properties, such as antimicrobial (Li et al., 2014; Chen et al., 2019), antituberculosis (Foroumadi et al., 2004; Kolavi et al., 2006), antioxidant (Jakovljević et al., 2017; Swapna et al., 2013), anticancer (Altıntop et al., 2018; Aliabadi, 2016), herbicidal (Wang et al., 2011) and antifungal (Chen et al., 2007; Karaburun et al., 2018) activities. In addition, a limited number of studies mention the utilization of diverse thiadiazoles as ligands in the synthesis of biologically complexes (Huxel et al., 2015; Chandra et al., 2015; Hangan et al., 2015).
The strong complexing capability of thiadiazole derivatives is associated with the existence of numerous sulfur and nitrogen atoms and the distinctiveness of its structure, specifically, the presence of unshared electron pairs and donor characteristics. They generate complexes with elements whose ions possess partially vacant d-orbitals or occupied d-orbitals and a low positive charge, exhibiting various polyhedral structures. In this context, investigating the complex-forming properties of thiadiazole derivatives is pertinent in delineating the characteristics of the molecular and electronic structure of the original ligands and the stereochemistry of the (Hassan et al., 2018). This study focuses on the synthesis, examination of the structure, and characteristics of the [Cu(L)4Br]Br complex, where L is 2-amino-5-allylthio-1,3,4-thiadiazole (AAT), employing single-crystal X-ray diffraction (SC-XRD).
2. Structural commentary
The crystals of [Cu(AAT)4Br]Br possess an ionic-molecular structure. The complex crystallizes in the fourfold tetragonal system, P4/n, and the comprises one molecule of 2-amino-5-allylthio-1,3,4-thiadiazole (AAT), one Cu2+ ion with a multiplicity of 0.25, and Br− ions in two positions with multiplicities of 0.25 each. The Br− ions occupy special positions on fourfold axes, and this symmetry transformation generates the formula unit. In [Cu(AAT)4Br]Br, the copper atom exhibits a square-pyramidal geometry and its coordination sphere includes four nitrogen atoms (N2) from the heterocyclic ligands and a bromine anion at the top of the pyramid. These nitrogen atoms lie in one plane. The planar AAT molecules are nearly perpendicular to this plane, exhibiting a slight twist of the Br1CuN2 planes. All the amino groups are in a syn arrangement. One of the Br− ions is integrated into the inner coordination sphere, while the second Br- ion resides in the outer sphere (Fig. 1). As a result, the inner coordination sphere of the complex takes the shape of a tetragonal pyramid, where the basal positions are filled by nitrogen atoms from the 2-amino-5-allylthio-1,3,4-thiadiazole ligands, and the apical position is occupied by the Br− ion.
The Cu—Br bond length in the compound measures 2.7474 (7) Å, closely resembling the Cu—Br distance in the [CuL4Br2](H2O)2 molecule, which is 2.9383 Å (Berezin et al., 2018). Apparently, the binding of the Br− ion into the inner coordination sphere induces a distortion of the CuN4 plane. The effect of this distortion is to the reduce N—Cu—N coordination angles [88.446 (18) and 161.04 (11)°], in contrast to the angles of 90 and 180° expected in an ideal square-planar structure. The sum of bond angles at the Cu atom is 353.8°. The Cu atom deviates from the (N2)4 plane toward Br− by 0.333 Å. The length of the Cu—N coordination bonds is 2.0206 (17) Å, similar to those bonds in analogous complexes. For instance, in nitrato-tetrakis(2-amino-5-ethyl-1,3,4-thiadiazole)copper(II) nitrate, the average Cu—N bond length is 2.003 Å (Kadirova et al., 2008), aligning with the sum of the covalent radii of Cu and N.
Additionally, the Br1 atom participates in the formation of an intramolecular hydrogen bond with hydrogen atoms of four amino groups NH2 simultaneously (Table 1). By comparing the structures of some complexes based on 2-amino-1,3,4-thiadiazole derivatives, we see that copper(II) bromide, in contrast to chlorides and acetates of cobalt(II) and zinc(II) (Camí et al., 2005; Song et al., 2012; Wang et al., 2009; Kadirova et al., 2008; Ishankhodzhaeva et al., 2000, 2001), exhibits a distinct behavior when reacted with 2-amino-5-allylthio-1,3,4-thiadiazole under identical conditions. Instead of forming a tetrahedral molecular complex as might be anticipated from analytical data, copper(II) bromide forms the tetragonal–pyramidal cationic complex [Cu(AAT)4Br]Br.
3. Supramolecular features
In the 4Br]Br, in addition to the aforementioned intramolecular hydrogen bonds, there exist intermolecular hydrogen bonds. The second bromide ion, positioned in the outer sphere, forms a hydrogen bond with the second (not participating in the intramolecular hydrogen bond) hydrogen atom of the amino group N3H2 (Table 1). The outer-sphere Br2 ion also resides on the fourfold axis, resulting in the generation of a layer in the crystal perpendicular to the fourfold axis due to this symmetry transformation. As a result, in the crystal packing, the cationic coordination complexes form columns along the [001] crystallographic axis (Fig. 2). The bromine anions of the outer sphere of the complex are located between the columns due to the formation of the N3—H3B⋯Br2 intermolecular hydrogen bonds with the amino groups of the ligand (Table 1).
of [Cu(AAT)The interaction energies of the secondary interactions system within the structure were calculated using the HF method (HF/3-21G) in CrystalExplorer17 (Spackman et al., 2021). Although these calculations may not yield precise values for an ionic interaction, they effectively highlight the direction of strong interactions. The result shows the total energy (Etot), which is the sum of the Coulombic (Eele), polar (Epol), dispersion (Edis) and repulsive (Erep) contributions. The four energy components were scaled in the total energy (Etot = 1.019Eele + 0651Epol + 0901Edis + 0.811Erep). The interaction energies were investigated for a 3.8 Å cluster around the reference molecule. The calculation reveals two stronger interactions within the neighbouring molecules. The strongest interaction total energy (Etot) is −112.5 kJ mol−1 (∼-27 kcal mol−1), with the polar (−30.1 kJ mol−1), dispersion (−123.3 kJ mol−1), Coulombic (−58.5 kJ mol−1) and repulsive (96.0 kJ mol−1) energies (with green colour) (Fig. 3).
4. Hirshfeld surface analysis
To further investigate the intermolecular interactions present in the title compound, a Hirshfeld surface analysis was performed, and the two-dimensional (2D) fingerprint plots were generated with CrystalExplorer17 (Spackman et al., 2021). Fig. 4 shows the three-dimensional (3D) Hirshfeld surfaces of the complex with dnorm (normalized contact distance) plotted. The hydrogen-bond interactions given in Table 1 play a key role in the molecular packing of the complex. The overall 2D fingerprint plot and those delineated into H⋯H, S⋯H/H⋯S, S⋯S, C⋯H/H⋯C, Br⋯H/H⋯Br and N⋯H/H⋯N interactions are shown in Fig. 5. The percentage contributions to the Hirshfeld surfaces from the various interatomic contacts are as follows: H⋯H 33.7%, S⋯H/H⋯S 21.2%, S⋯S 13.4, C⋯H/H⋯C 11%, Br⋯H/H⋯Br 9.2% and N⋯H/H⋯N 7.8%. Other minor contributions to the Hirshfeld surface are: S⋯C/C⋯S 1.9% and Br⋯S/S⋯Br 1.6%.
5. Database survey
A survey of the Cambridge Structural Database (CSD, version 5.43, update of March 2022; Groom et al., 2016) revealed that nearly a hundred crystal structures had been reported for complexes of 2-amino-1,3,4-thiadiazole derivatives and a number of metal ions, including Mn, Fe, Co, Ni, Cu, Zn, Mo, Ag, Pd, Cd, Sn, Re, Pt, Au and Hg, twelve of which are for Cu complexes. Six structures exhibit tetragonal–pyramidal polyhedra (HONDOG, Torambetov et al., 2019; RUFQIT, Kadirova et al., 2008; SUZVOY, SUZVUE, Lynch & Ewington, 2001; XIGWIU, Camí et al., 2005; ZEKWOE, Gurbanov, et al., 2018). In seven structures, AAT is attached to metal ions, making p-complexes (ODAPOC, Slyvka et al., 2022; CEDSEM, Slyvka, 2017a; ESIBUG, Slyvka et al., 2021; HAJLUC, Ardan et al., 2017; HAJMAJ, HAJMIR, Ardan et al., 2017; YEBNAX, Slyvka, 2017b). However, no complexes of CuBr2 based on 2-amino-1,3,4-thiadiazole derivatives have been documented in the CSD.
6. Synthesis and crystallization
The ligand 2-amino-5-allylthio-1,3,4-thiadiazole (AAT) was synthesized by the method of Toshmurodov et al. (2016), yield: 93%, m.p. = 388–390 K. CuBr2·4H2O (0.296g, 1 mmol) was added under continuous stirring to a solution of AAT (0.692 g, 4 mmol) dissolved in 10 ml of methanol. The resulting dark-green solution was stirred for 3 h and was then left to stand at room temperature. After one week, green crystals suitable for X-ray diffraction were obtained (yield 86%) by the slow evaporation of the solvent, m.p. = 458–460 K.
7. Refinement
Crystal data, data collection and structure . H atoms were positioned geometrically (N—H = 0.86 Å, C—H = 0.83–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C, N).
details are summarized in Table 2Supporting information
CCDC reference: 2341909
https://doi.org/10.1107/S2056989024002652/ny2003sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024002652/ny2003Isup2.hkl
[CuBr(C5H7N3S2)4]Br | Dx = 1.663 Mg m−3 |
Mr = 916.38 | Cu Kα radiation, λ = 1.54184 Å |
Tetragonal, P4/n | Cell parameters from 9121 reflections |
a = 12.69368 (9) Å | θ = 3.5–70.8° |
c = 11.35879 (13) Å | µ = 7.95 mm−1 |
V = 1830.24 (3) Å3 | T = 293 K |
Z = 2 | Block, green |
F(000) = 918 | 0.12 × 0.08 × 0.03 mm |
XtaLAB Synergy, Single source at home/near, HyPix3000 diffractometer | 1597 reflections with I > 2σ(I) |
Detector resolution: 10.0000 pixels mm-1 | Rint = 0.036 |
ω scans | θmax = 69.9°, θmin = 3.9° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2020) | h = −15→15 |
Tmin = 0.626, Tmax = 1.000 | k = −11→15 |
18450 measured reflections | l = −13→13 |
1746 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.025 | w = 1/[σ2(Fo2) + (0.0273P)2 + 0.9257P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.065 | (Δ/σ)max < 0.001 |
S = 1.05 | Δρmax = 0.26 e Å−3 |
1746 reflections | Δρmin = −0.28 e Å−3 |
118 parameters | Extinction correction: SHELXL-2016/6 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.00018 (7) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Br1 | 0.750000 | 0.750000 | 1.01564 (4) | 0.04943 (15) | |
Br2 | 0.250000 | 0.750000 | 1.000000 | 0.05616 (16) | |
Cu1 | 0.750000 | 0.750000 | 0.77377 (5) | 0.03890 (16) | |
S1 | 0.39660 (5) | 0.70986 (6) | 0.72047 (6) | 0.06176 (19) | |
S2 | 0.42895 (6) | 0.65094 (8) | 0.46657 (7) | 0.0831 (3) | |
N2 | 0.59625 (14) | 0.71817 (14) | 0.74447 (16) | 0.0470 (4) | |
N1 | 0.57992 (14) | 0.68882 (16) | 0.62785 (18) | 0.0544 (5) | |
N3 | 0.50405 (16) | 0.7637 (2) | 0.9157 (2) | 0.0739 (7) | |
H3A | 0.560992 | 0.775718 | 0.954484 | 0.089* | |
H3B | 0.443808 | 0.771729 | 0.949189 | 0.089* | |
C1 | 0.50915 (16) | 0.73279 (18) | 0.8039 (2) | 0.0500 (5) | |
C2 | 0.48136 (19) | 0.6828 (2) | 0.6037 (2) | 0.0574 (6) | |
C3 | 0.5494 (3) | 0.6360 (3) | 0.3816 (3) | 0.0984 (11) | |
H3BC | 0.580640 | 0.704195 | 0.365145 | 0.118* | 0.5 |
H3BD | 0.600153 | 0.593336 | 0.423967 | 0.118* | 0.5 |
H3AA | 0.600532 | 0.688177 | 0.406669 | 0.118* | 0.5 |
H3AB | 0.579095 | 0.566715 | 0.395347 | 0.118* | 0.5 |
C5A | 0.5337 (16) | 0.5753 (12) | 0.1730 (17) | 0.143 (7) | 0.5 |
H5AA | 0.587593 | 0.612982 | 0.136912 | 0.171* | 0.5 |
H5AB | 0.492013 | 0.529830 | 0.128742 | 0.171* | 0.5 |
C4 | 0.5259 (9) | 0.6502 (7) | 0.2475 (9) | 0.104 (3) | 0.5 |
H4 | 0.516751 | 0.720330 | 0.226229 | 0.125* | 0.5 |
C4A | 0.5181 (8) | 0.5852 (11) | 0.2749 (8) | 0.112 (3) | 0.5 |
H4A | 0.461720 | 0.541488 | 0.293578 | 0.134* | 0.5 |
C5 | 0.5187 (14) | 0.6021 (18) | 0.1813 (12) | 0.154 (8) | 0.5 |
H5A | 0.526312 | 0.529967 | 0.192763 | 0.185* | 0.5 |
H5B | 0.504113 | 0.628295 | 0.106619 | 0.185* | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.05153 (19) | 0.05153 (19) | 0.0452 (3) | 0.000 | 0.000 | 0.000 |
Br2 | 0.04993 (19) | 0.04993 (19) | 0.0686 (3) | 0.000 | 0.000 | 0.000 |
Cu1 | 0.0362 (2) | 0.0362 (2) | 0.0443 (3) | 0.000 | 0.000 | 0.000 |
S1 | 0.0387 (3) | 0.0791 (4) | 0.0675 (4) | 0.0015 (3) | −0.0065 (3) | 0.0060 (3) |
S2 | 0.0637 (4) | 0.1138 (7) | 0.0718 (5) | −0.0029 (4) | −0.0179 (4) | −0.0189 (4) |
N2 | 0.0405 (9) | 0.0489 (10) | 0.0517 (10) | −0.0013 (8) | −0.0029 (8) | 0.0008 (8) |
N1 | 0.0450 (10) | 0.0610 (12) | 0.0573 (11) | −0.0041 (9) | −0.0020 (8) | −0.0070 (9) |
N3 | 0.0430 (11) | 0.121 (2) | 0.0573 (13) | 0.0096 (12) | 0.0002 (9) | −0.0060 (13) |
C1 | 0.0388 (11) | 0.0538 (12) | 0.0574 (13) | 0.0016 (9) | −0.0018 (9) | 0.0079 (10) |
C2 | 0.0489 (13) | 0.0608 (14) | 0.0626 (15) | −0.0020 (11) | −0.0058 (11) | −0.0008 (11) |
C3 | 0.084 (2) | 0.131 (3) | 0.080 (2) | −0.004 (2) | −0.0020 (18) | −0.023 (2) |
C5A | 0.168 (13) | 0.095 (7) | 0.165 (16) | −0.031 (7) | 0.075 (10) | −0.020 (7) |
C4 | 0.173 (9) | 0.068 (5) | 0.070 (6) | −0.034 (5) | 0.017 (5) | 0.007 (4) |
C4A | 0.117 (7) | 0.141 (10) | 0.077 (6) | 0.013 (7) | 0.024 (5) | −0.019 (6) |
C5 | 0.121 (9) | 0.30 (2) | 0.038 (4) | 0.016 (12) | −0.010 (5) | −0.005 (8) |
Br1—Cu1 | 2.7474 (7) | C3—H3BC | 0.9700 |
Cu1—N2i | 2.0206 (17) | C3—H3BD | 0.9700 |
Cu1—N2 | 2.0206 (17) | C3—H3AA | 0.9700 |
Cu1—N2ii | 2.0206 (17) | C3—H3AB | 0.9700 |
Cu1—N2iii | 2.0206 (17) | C3—C4 | 1.562 (11) |
S1—C1 | 1.739 (2) | C3—C4A | 1.429 (10) |
S1—C2 | 1.742 (3) | C5A—H5AA | 0.9300 |
S2—C2 | 1.741 (3) | C5A—H5AB | 0.9300 |
S2—C3 | 1.818 (4) | C5A—C4A | 1.181 (19) |
N2—N1 | 1.392 (3) | C4—H4 | 0.9300 |
N2—C1 | 1.308 (3) | C4—C5 | 0.973 (18) |
N1—C2 | 1.283 (3) | C4A—H4A | 0.9300 |
N3—H3A | 0.8600 | C5—H5A | 0.9300 |
N3—H3B | 0.8600 | C5—H5B | 0.9300 |
N3—C1 | 1.331 (3) | ||
N2i—Cu1—Br1 | 99.48 (5) | S2—C3—H3BC | 110.7 |
N2iii—Cu1—Br1 | 99.48 (5) | S2—C3—H3BD | 110.7 |
N2ii—Cu1—Br1 | 99.48 (5) | S2—C3—H3AA | 109.6 |
N2—Cu1—Br1 | 99.48 (5) | S2—C3—H3AB | 109.6 |
N2ii—Cu1—N2iii | 88.446 (18) | H3BC—C3—H3BD | 108.8 |
N2ii—Cu1—N2 | 88.446 (18) | H3AA—C3—H3AB | 108.1 |
N2iii—Cu1—N2i | 88.446 (18) | C4—C3—S2 | 110.2 (5) |
N2i—Cu1—N2 | 88.445 (18) | C4—C3—H3AA | 109.6 |
N2ii—Cu1—N2i | 161.04 (11) | C4—C3—H3AB | 109.6 |
N2iii—Cu1—N2 | 161.04 (11) | C4A—C3—S2 | 105.3 (5) |
C1—S1—C2 | 86.58 (11) | C4A—C3—H3BC | 110.7 |
C2—S2—C3 | 100.25 (14) | C4A—C3—H3BD | 110.7 |
N1—N2—Cu1 | 110.74 (13) | H5AA—C5A—H5AB | 120.0 |
C1—N2—Cu1 | 134.66 (16) | C4A—C5A—H5AA | 120.0 |
C1—N2—N1 | 113.76 (18) | C4A—C5A—H5AB | 120.0 |
C2—N1—N2 | 111.4 (2) | C3—C4—H4 | 112.8 |
H3A—N3—H3B | 120.0 | C5—C4—C3 | 134.4 (15) |
C1—N3—H3A | 120.0 | C5—C4—H4 | 112.8 |
C1—N3—H3B | 120.0 | C3—C4A—H4A | 106.8 |
N2—C1—S1 | 112.94 (18) | C5A—C4A—C3 | 146.4 (13) |
N2—C1—N3 | 125.1 (2) | C5A—C4A—H4A | 106.8 |
N3—C1—S1 | 121.96 (17) | C4—C5—H5A | 120.0 |
S2—C2—S1 | 119.40 (14) | C4—C5—H5B | 120.0 |
N1—C2—S1 | 115.33 (19) | H5A—C5—H5B | 120.0 |
N1—C2—S2 | 125.3 (2) | ||
Cu1—N2—N1—C2 | −170.89 (17) | C1—S1—C2—S2 | −178.55 (17) |
Cu1—N2—C1—S1 | 168.95 (12) | C1—S1—C2—N1 | 1.2 (2) |
Cu1—N2—C1—N3 | −9.9 (4) | C1—N2—N1—C2 | 0.2 (3) |
S2—C3—C4—C5 | −103 (2) | C2—S1—C1—N2 | −1.01 (18) |
S2—C3—C4A—C5A | 148 (2) | C2—S1—C1—N3 | 177.9 (2) |
N2—N1—C2—S1 | −1.0 (3) | C2—S2—C3—C4 | −158.1 (4) |
N2—N1—C2—S2 | 178.68 (17) | C2—S2—C3—C4A | 166.4 (6) |
N1—N2—C1—S1 | 0.7 (2) | C3—S2—C2—S1 | 178.11 (19) |
N1—N2—C1—N3 | −178.2 (2) | C3—S2—C2—N1 | −1.6 (3) |
Symmetry codes: (i) y, −x+3/2, z; (ii) −y+3/2, x, z; (iii) −x+3/2, −y+3/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···Br1 | 0.86 | 2.52 | 3.3265 (1) | 157 |
N3—H3B···Br2 | 0.86 | 2.54 | 3.3685 (1) | 162 |
C5A—H5AA···Br1iv | 0.93 | 3.03 | 3.95 (2) | 175 |
Symmetry code: (iv) x, y, z−1. |
Funding information
This work was supported by Uzbekistan Ministry of Higher Education, Science and Innovation.
References
Aliabadi, A. (2016). Anticancer Agents Med. Chem. 16, 1301–1314. CrossRef CAS PubMed Google Scholar
Altıntop, M. D., Sever, B., Özdemir, A., Ilgın, S., Atlı, Ö., Turan-Zitouni, G. & Kaplancıklı, Z. A. (2018). Anticancer Agents Med. Chem. 18, 1606–1616. PubMed Google Scholar
Ardan, B., Kinzhybalo, V., Slyvka, Y., Shyyka, O., Luk'yanov, M., Lis, T. & Mys'kiv, M. (2017). Acta Cryst. C73, 36–46. CSD CrossRef IUCr Journals Google Scholar
Berezin, A. S., Ivanova, A. D., Komarov, V. Y., Nadolinny, V. A. & Lavrenova, L. G. (2018). New J. Chem. 42, 4902–4908. CSD CrossRef CAS Google Scholar
Camí, G. E., Liu González, M., Sanz Ruiz, F. & Pedregosa, J. C. (2005). J. Phys. Chem. Solids, 66, 936–945. Google Scholar
Chandra, S., Gautam, S., Rajor, H. K. & Bhatia, R. (2015). Spectrochim. Acta A Mol. Biomol. Spectrosc. 137, 749–760. CrossRef CAS PubMed Google Scholar
Chen, C. J., Song, B. A., Yang, S., Xu, G. F., Bhadury, P. S., Jin, L. H., Hu, D. Y., Li, Q. Z., Liu, F., Xue, W., Lu, P. & Chen, Z. (2007). Bioorg. Med. Chem. 15, 3981–3989. Web of Science CSD CrossRef PubMed CAS Google Scholar
Chen, J., Yi, C., Wang, S., Wu, S., Li, S., Hu, D. & Song, B. (2019). Bioorg. Med. Chem. Lett. 29, 1203–1210. CrossRef CAS PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Foroumadi, A., Soltani, F., Jabini, R., Moshafi, M. H. & Rasnani, F. M. (2004). Arch. Pharm. Res. 27, 502–506. Web of Science CrossRef PubMed CAS Google Scholar
Gowramma, B., Praveen, T. K., Gomathy, S., Kalirajan, R., Babu, B. & Krishnavenic, N. (2018). Curr. Bioact. Compd. 14, 309–316. CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Inorg. Chim. Acta, 471, 130–136. Web of Science CSD CrossRef CAS Google Scholar
Hangan, A. C., Turza, A., Stan, R. L., Stefan, R. & Oprean, L. S. (2015). Russ. J. Coord. Chem. 41, 395–404. CrossRef CAS Google Scholar
Hassan, A. E., Shaaban, I. A., Abuelela, A. M., Zoghaib, W. M. & Mohamed, T. A. (2018). J. Coord. Chem. 71, 2814–2830. CrossRef CAS Google Scholar
Huxel, T., Demeshko, S. & Klingele, J. (2015). Z. Anorg. Allge Chem. 641, 1711–1717. CSD CrossRef CAS Google Scholar
Ishankhodzhaeva, M. M., Kadyrova, S. A., Talipov, S. A., Ibragimov, B. T., Fun, K. K., Sundara Razh, S. S. & Parpiev, N. A. (2001). Russ. J. Gen. Chem. 71, 1066–1069. CrossRef CAS Google Scholar
Ishankhodzhaeva, M. M., Umarov, B. B., Kadyrova, Sh. A., Parpiev, N. A., Makhkamov, K. K. & Talipov, S. A. (2000). Russ. J. Gen. Chem. 70, 1113–1119. CAS Google Scholar
Jakovljević, K., Matić, I. Z., Stanojković, T., Krivokuća, A., Marković, V., Joksović, M. D., Mihailović, N., Nićiforović, M. & Joksović, L. (2017). Bioorg. Med. Chem. Lett. 27, 3709–3715. PubMed Google Scholar
Kadirova, Sh. A., Ishankhodzhaeva, M. M., Parpiev, N. A., Tozhiboev, A., Tashkhodzhaev, B. & Karimov, Z. (2008). Russ. J. Gen. Chem. 78, 2398–2402. CrossRef CAS Google Scholar
Karaburun, A., Acar Çevik, U., Osmaniye, D., Sağlık, B., Kaya Çavuşoğlu, B., Levent, S. & Kaplancıklı, Z. (2018). Molecules, 23, 3129. https://doi.org/10.3390/molecules23123129 Google Scholar
Kaviarasan, L., Gowramma, B., Kalirajan, R., Mevithra, M. & Chandralekha, S. (2020). J. Iran. Chem. Soc. 17, 2083–2094. CrossRef CAS Google Scholar
Kolavi, G., Hegde, V., Khazi, I. & Gadad, P. (2006). Bioorg. Med. Chem. 14, 3069–3080. Web of Science CrossRef PubMed CAS Google Scholar
Lavrenova, L. G., Sukhikh, T. S., Glinskaya, L. A., Trubina, S. V., Zvereva, V. V., Lavrov, A. N., Klyushova, L. S. & Artem'ev, A. V. (2023). Int. J. Mol. Sci. 24, 13024. CSD CrossRef PubMed Google Scholar
Li, P., Shi, L., Yang, X., Yang, L., Chen, X. W., Wu, F., Shi, Q. C., Xu, W. M., He, M., Hu, D. Y. & Song, B. A. (2014). Bioorg. Med. Chem. Lett. 24, 1677–1680. Web of Science CrossRef CAS PubMed Google Scholar
Lynch, D. E. & Ewington, J. (2001). Acta Cryst. C57, 1032–1035. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Slyvka, Y. (2017a). Visnyk Lviv Univ. Ser. Chem. 58, 172. Google Scholar
Slyvka, Y., Kinzhybalo, V., Shyyka, O. & Mys'kiv, M. (2021). Acta Cryst. C77, 249–256. Web of Science CSD CrossRef IUCr Journals Google Scholar
Slyvka, Y. I. (2017b). J. Struct. Chem. 58, 356–357. CSD CrossRef CAS Google Scholar
Slyvka, Y. I., Goreshnik, E. A., Pokhodylo, N. T. & Mys'kiv, M. G. (2022). J. Chem. Crystallogr. 52, 205–213. CSD CrossRef CAS Google Scholar
Song, Y., Ji, Y.-F., Kang, M.-Y. & Liu, Z.-L. (2012). Acta Cryst. E68, m772. CSD CrossRef IUCr Journals Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Swapna, M., Premakumari, C., Nagi Reddy, S., Padmaja, A. & Padmavathi, V. (2013). Chem. Pharm. Bull. 61, 611–617. CrossRef CAS Google Scholar
Torambetov, B., Kadirova, S., Toshmurodov, T., Ashurov, J. M., Parpiev, N. A. & Ziyaev, A. (2019). Acta Cryst. E75, 1239–1242. CSD CrossRef IUCr Journals Google Scholar
Toshmurodov, T. T., Ziyaev, A. A., Elmuradov, B. Zh., Ismailova, D. S. & Kurbanova, E. R. (2016). J. Chem. Chem. Sci. 6, 199–204. Google Scholar
Upadhyay, P. K. & Mishra, P. (2017). Rasayan J. Chem. 10, 254–262. CAS Google Scholar
Wang, P., Wan, R., Wang, B., Han, F. & Wang, Y. (2009). Acta Cryst. E65, m1086. CSD CrossRef IUCr Journals Google Scholar
Wang, T., Miao, W., Wu, S., Bing, G., Zhang, X., Qin, Z., Yu, H., Qin, X. & Fang, J. (2011). Chin. J. Chem. 29, 959–967. CrossRef CAS Google Scholar
Yusuf, M., Khan, R. A. & Ahmed, B. (2008). Bioorg. Med. Chem. 16, 8029–8034. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.