research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The unanti­cipated oxidation of a tertiary amine in a tetra­cyclic glyoxal-cyclam condensate yielding zinc(II) coordinated to a sterically hindered amine oxide

crossmark logo

aDepartment of Chemistry & Physics, Southwestern Oklahoma State University, Weatherford, OK 73096, USA, bDepartment of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA, and cDepartment of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
*Correspondence e-mail: aoliver2@nd.edu

Edited by S. Parkin, University of Kentucky, USA (Received 16 February 2024; accepted 26 February 2024; online 6 March 2024)

The complex, tri­chlorido­(1,4,11-tri­aza-8-azonia­tetra­cyclo­[6.6.2.04,16.011,15]hexa­decane 1-oxide-κO)zinc(II) monohydrate, [ZnCl3(C12H23N4O)]·H2O, (I), has monoclinic symmetry (space group P21/n) at 120 K. The zinc(II) center adopts a slightly distorted tetra­hedral coordination geometry and is coordinated by three chlorine atoms and the oxygen atom of the oxidized tertiary amine of the tetra­cycle. The amine nitro­gen atom, inside the ligand cleft, is protonated and forms a hydrogen bond to the oxygen of the amine oxide. Additional hydrogen-bonding inter­actions involve the protonated amine, the water solvate oxygen atom, and one of the chloro ligands.

1. Chemical context

Tetra­cyclic tetra­amines formed by the condensation of di­aldehyde glyoxal and tetra­aza­macrocycles, such as cyclen and cyclam, have been known since the 1980s (Alcock et al., 1980[Alcock, N. W., Moore, P. & Mok, K. F. (1980). J. Chem. Soc. Perkin Trans. 2, pp. 1186-1190.]; Weisman et al., 1980[Weisman, G. R., Ho, S. C. H. & Johnson, V. (1980). Tetrahedron Lett. 21, 335-338.]). They can act as rigid, sterically hindered, bidentate chelates to form coordination complexes, but have not been exploited fully for this purpose (Hubin, McCormick, Busch & Alcock 1998[Hubin, T. J., McCormick, J. M., Alcock, N. W. & Busch, D. H. (1998). Inorg. Chem. 37, 6549-6551.]; Hubin et al., 1999[Hubin, T. J., Alcock, N. W., Clase, H. J. & Busch, D. H. (1999). Acta Cryst. C55, 1402-1403.], 2002[Hubin, T. J., Alcock, N. W., Seib, L. L. & Busch, D. H. (2002). Inorg. Chem. 41, 7006-7014.]; May et al., 2004[May, C. M., Archibald, S. J., Bridgeman, A. J., Empson, C. J. & Hubin, T. J. (2004). Chem. Commun. pp. 1880-1881.], Won et al., 2015[Won, P. D., Funwie, N. L., Birdsong, O. C., Obali, A. Y., Burke, B. P., McRobbie, G., Greenman, P., Prior, T. J., Archibald, S. J. & Hubin, T. J. (2015). Eur. J. Inorg. Chem. pp. 4678-4688.]). Instead, their greatest utility has been as crucial starting materials for the synthesis of ethyl­ene cross-bridged tetra­aza­macrocycles (Weisman et al., 1990[Weisman, G. R., Rogers, M. E., Wong, E. H., Jasinski, J. P. & Paight, E. S. (1990). J. Am. Chem. Soc. 112, 8604-8605.], 1996[Weisman, G. R., Wong, E. H., Hill, D. C., Rogers, M. E., Reed, D. P. & Calabrese, J. C. (1996). Chem. Commun. pp. 947-948.]; Wong et al., 2000[Wong, E. H., Weisman, G. R., Hill, D. C., Reed, D. P., Rogers, M. E., Condon, J. S., Fagan, M. A., Calabrese, J. C., Lam, K.-C., Guzei, I. A. & Rheingold, A. L. (2000). J. Am. Chem. Soc. 122, 10561-10572.]; Hubin, 2003[Hubin, T. J. (2003). Coord. Chem. Rev. 241, 27-46.]; Matz et al., 2015[Matz, D. L., Jones, D. G., Roewe, K. D., Gorbet, M. J., Zhang, Z., Chen, Z. Q., Prior, T. J., Archibald, S. J., Yin, G. C. & Hubin, T. J. (2015). Dalton Trans. 44, 12210-12224.]). Their folded structures generally lead to di­alkyl­ation of only two non-adjacent nitro­gens, which can then be reduced to ethyl­ene cross-bridged ligands whose rigid and topologically complex transition-metal complexes exhibit astounding kinetic stability under harsh conditions (Hubin, McCormick, Collinson, et al., 1998[Hubin, T. J., McCormick, J. M., Collinson, S. R., Busch, D. H. & Alcock, N. W. (1998). Chem. Commun. pp. 1675-1676.]; Hubin et al., 2000[Hubin, T. J., McCormick, J. M., Collinson, S. R., Buchalova, M., Perkins, C. M., Alcock, N. W., Kahol, P. K., Raghunathan, A. & Busch, D. H. (2000). J. Am. Chem. Soc. 122, 2512-2522.], 2003[Hubin, T. J., Alcock, N. W., Morton, M. D. & Busch, D. H. (2003). Inorg. Chim. Acta, 348, 33-40.]; Sun et al., 2002[Sun, X., Wuest, M., Weisman, G. R., Wong, E. H., Reed, D. P., Boswell, C. A., Motekaitis, R., Martell, A. E., Welch, M. J. & Anderson, C. J. (2002). J. Med. Chem. 45, 469-477.]; Boswell et al., 2004[Boswell, C. A., Sun, X., Niu, W., Weisman, G. R., Wong, E. H., Rheingold, A. L. & Anderson, C. J. (2004). J. Med. Chem. 47, 1465-1474.]; Woodin et al., 2005[Woodin, K. S., Heroux, K. J., Boswell, C. A., Wong, E. H., Weisman, G. R., Niu, W. J., Tomellini, S. A., Anderson, C. J., Zakharov, L. N. & Rheingold, A. L. (2005). Eur. J. Inorg. Chem. pp. 4829-4833.]; Odendaal et al., 2011[Odendaal, A. Y., Fiamengo, A. L., Ferdani, R., Wadas, T. J., Hill, D. C., Peng, Y., Heroux, K. J., Golen, J. A., Rheingold, A. L., Anderson, C. J., Weisman, G. R. & Wong, E. H. (2011). Inorg. Chem. 50, 3078-3086.]; Matz et al., 2015[Matz, D. L., Jones, D. G., Roewe, K. D., Gorbet, M. J., Zhang, Z., Chen, Z. Q., Prior, T. J., Archibald, S. J., Yin, G. C. & Hubin, T. J. (2015). Dalton Trans. 44, 12210-12224.]; Jones et al., 2015[Jones, D. G., Wilson, K. R., Cannon-Smith, D. J., Shircliff, A. D., Zhang, Z., Chen, Z., Prior, T. J., Yin, G. & Hubin, T. J. (2015). Inorg. Chem. 54, 2221-2234.]).

Tertiary amines, like those found in glyoxal-tetra­aza­macrocycle condensates, are known to oxidize to amine oxides under oxidizing conditions, usually in the presence of hydrogen peroxide or 3-chloro­perbenzoic acid (O'Neal et al., 2001[O'Neil, I. A., Cleator, E. & Tapolczay, D. J. (2001). Tetrahedron Lett. 42, 8247-8249.]; Bernier et al., 2009[Bernier, D. W., Wefelscheid, U. K. & Woodward, S. (2009). Org. Prep. Proced. Int. 41, 173-210.]). These amine oxides can be reduced back to amines in the presence of reducing agents (Hayashi et al., 1959[Hayashi, E., Yamanaka, H. & Shimizu, K. (1959). Chem. Pharm. Bull. 7, 141-145.]); zinc metal is often involved in the reduction reaction (Emerson & Rees, 1962[Emerson, T. R. & Rees, C. W. (1962). J. Chem. Soc. pp. 1917-1923.]; Kagami & Motoki, 1978[Kagami, H. & Motoki, S. (1978). J. Org. Chem. 43, 1267-1268.]; Jousseaume & Chanson, 1987[Jousseaume, B. & Chanson, E. (1987). Synthesis, pp. 55-56.]; Balicki, 1989[Balicki, R. (1989). Synthesis, pp. 645-646.]). In the present case, the tertiary amine was oxidized to the amine oxide in the presence of air, methanol, and zinc(II) chloride. Mol­ecular oxygen is able to oxidize tertiary amines (Bernier et al., 2009[Bernier, D. W., Wefelscheid, U. K. & Woodward, S. (2009). Org. Prep. Proced. Int. 41, 173-210.]), although it is generally inefficient and often is improved by the presence of transition metal ions, which may form metal-oxo catalysts in situ, although unlikely in the present case with zinc(II) (Jain & Sain, 2002[Jain, S. L. & Sain, B. (2002). Chem. Commun. pp. 1040-1041.]; Wang et al., 1999[Wang, F. Z. H., Zhang, H., And, G. S. & Lu, X. (1999). Synth. Commun. 29, 11-14.]; Imada et al., 2003[Imada, Y., Iida, H., Ono, S. & Murahashi, S. (2003). J. Am. Chem. Soc. 125, 2868-2869.]). Under development in our labs are more efficient ways to make the mono- and di­amine oxides of glyoxal-tetra­aza­macrocycle condensates – at present both hydrogen peroxide and 3-chloro­perbenzoic acid have shown increased activity over mol­ecular oxygen – and will be reported in due course.

[Scheme 1]

Here, we present the first example of a glyoxal-tetra­aza­macrocycle condensate that serendipitously oxidized to a mono-amine-oxide during a complexation reaction with zinc(II) chloride. The resulting sterically demanding amine oxide coordinates in a monodentate fashion to a zinc(II) ion concomitantly coordinated to three additional chloro ligands.

2. Structural commentary

We pioneered the use of glyoxal-tetra­aza­macrocycle condensates as rigid, bulky, bidentate ligands for transition metal ions (Hubin, McCormick, Busch & Alcock 1998[Hubin, T. J., McCormick, J. M., Alcock, N. W. & Busch, D. H. (1998). Inorg. Chem. 37, 6549-6551.]), and have continued our efforts (Hubin et al., 1999[Hubin, T. J., Alcock, N. W., Clase, H. J. & Busch, D. H. (1999). Acta Cryst. C55, 1402-1403.], 2002[Hubin, T. J., Alcock, N. W., Seib, L. L. & Busch, D. H. (2002). Inorg. Chem. 41, 7006-7014.]; May et al., 2004[May, C. M., Archibald, S. J., Bridgeman, A. J., Empson, C. J. & Hubin, T. J. (2004). Chem. Commun. pp. 1880-1881.], Won et al., 2015[Won, P. D., Funwie, N. L., Birdsong, O. C., Obali, A. Y., Burke, B. P., McRobbie, G., Greenman, P., Prior, T. J., Archibald, S. J. & Hubin, T. J. (2015). Eur. J. Inorg. Chem. pp. 4678-4688.]) in coordinating various metal-containing species, in this case ZnCl2, to these bidentate amines of the glyoxal-cyclam condensate. During the course of the current work, air oxidation of one amine occurred, which produced an amine oxide moiety that subsequently resulted in coordination of [ZnCl3] in a monodentate fashion. In the majority of the unoxidized amine examples, where two non-adjacent amine nitro­gen atoms point into the cleft of the folded ligand, the metal ion coordinates in a bidentate fashion [palladium(II) and copper(II) examples: Hubin, McCormick, Alcock, et al., 1998; Hubin et al., 2002[Hubin, T. J., Alcock, N. W., Seib, L. L. & Busch, D. H. (2002). Inorg. Chem. 41, 7006-7014.]; May et al., 2004[May, C. M., Archibald, S. J., Bridgeman, A. J., Empson, C. J. & Hubin, T. J. (2004). Chem. Commun. pp. 1880-1881.]; Won et al., 2015[Won, P. D., Funwie, N. L., Birdsong, O. C., Obali, A. Y., Burke, B. P., McRobbie, G., Greenman, P., Prior, T. J., Archibald, S. J. & Hubin, T. J. (2015). Eur. J. Inorg. Chem. pp. 4678-4688.]]. However, in the present case (Fig. 1[link]), the oxygen atom, O1, extends the reach of the amine oxide and renders bidentate coord­ination unfavorable. Furthermore, the oxygen of the amine oxide moiety is situated in the center of the tetra­cycle cavity by virtue of the distorted tetra­hedral geometry about the atoms participating in the intra­molecular N3⋯O1 hydrogen-bonding inter­action. In addition, the oxygen atom fills most of this cavity created by the tetra­cycle, thus the larger than expected N1—O1—Zn1 bond angle [124.84 (9)°, Table 1[link]] is instrumental in minimizing the steric hindrance caused by the bulk of the tri­chloro zinc unit. An inter­esting comparison can be drawn to our copper(I) glyoxal-cyclam condensate structure (Hubin et al., 1999[Hubin, T. J., Alcock, N. W., Clase, H. J. & Busch, D. H. (1999). Acta Cryst. C55, 1402-1403.]). In that case, the low coordination number preferred by copper(I), along with the steric bulk of the ligand, resulted in a copper(I) complex with two cyclam-glyoxal ligands coordinated in a linear fashion to the metal.

Table 1
Selected geometric parameters (Å, °)

Zn1—O1 1.9856 (11) Zn1—Cl1 2.2616 (5)
Zn1—Cl3 2.2345 (5) Zn1—Cl2 2.2856 (5)
       
O1—Zn1—Cl3 107.03 (4) Cl3—Zn1—Cl2 111.244 (19)
O1—Zn1—Cl1 109.33 (4) Cl1—Zn1—Cl2 106.531 (18)
Cl3—Zn1—Cl1 111.812 (19) N1—O1—Zn1 124.84 (9)
O1—Zn1—Cl2 110.93 (3)    
[Figure 1]
Figure 1
The mol­ecular structure of (I). Atomic displacement ellipsoids shown at 50% probability with hydrogen atoms shown as spheres of arbitrary radius.

3. Supra­molecular features

Within the asymmetric unit, the ring nitro­gen atom, N1, forms a bifurcated hydrogen bond with both the water, O2, and N-oxide oxygen, O1, atoms (see Fig. 2[link], Table 2[link] for details). One water hydrogen forms a hydrogen bond to one chlorine, Cl1, of the standard mol­ecule resulting in an R22(10) ring (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). The remaining water hydrogen atom forms a bifurcated hydrogen bond to a neighboring chlorine, Cl2, related by translation along the a-axis and to a tetra­cycle nitro­gen atom related by the screw-axis parallel to the b-axis. This is true for both components of the disordered water mol­ecule (see below). The overall motif is a di-periodic network (Nespolo, 2019[Nespolo, M. (2019). J. Appl. Cryst. 52, 451-456.]) of hydrogen-bonded mol­ecules parallel to the ab plane. The remaining inter­actions within the structure (primarily C—H⋯Cl) are van der Waals contacts that direct the packing.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1 1.00 2.15 2.8297 (18) 123
N3—H3⋯O2 1.00 1.94 2.763 (6) 138
N3—H3⋯O2A 1.00 1.98 2.786 (7) 136
O2—H2C⋯Cl2i 0.87 (4) 2.61 (8) 3.154 (6) 121 (7)
O2—H2C⋯N4ii 0.87 (4) 2.61 (8) 3.262 (6) 133 (8)
O2—H2D⋯Cl1 0.87 (4) 2.39 (4) 3.227 (6) 162 (6)
O2A—H2E⋯Cl2i 0.87 (4) 2.69 (8) 3.295 (6) 128 (9)
O2A—H2E⋯N4ii 0.87 (4) 2.84 (9) 3.202 (6) 107 (7)
O2A—H2F⋯Cl1 0.98 (6) 2.04 (7) 2.996 (6) 163 (5)
Symmetry codes: (i) [x+1, y, z]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
Packing diagram of (I) viewed along the c-axis. Hydrogen atoms, except those involved in hydrogen bonding, and one component of the disordered water of crystallization are omitted for clarity. Light-blue dashed lines represent hydrogen-bonding inter­actions. One layer of mol­ecules is shown for clarity.

4. Database survey

We have found only two structural analogues of this zinc(II) coordination sphere – tertiary amine oxide and three chlorides coordinated to tetra­hedral zinc(II) (Jasiewicz et al., 2011[Jasiewicz, B., Warżajtis, B. & Rychlewska, U. (2011). Polyhedron, 30, 2007-2015.]; refcodes: EWOZOG, EWOZUM). The Jasiewicz complexes utilize a spartein backbone ligand, which naturally form a folded structure with the amine lone pair of electrons pointed either concave or convex to the remainder of the structure. Analogous to our tetra­aza­macrocycle-glyoxal condensate, this generates either a concave or convex metal binding site. The most direct comparison to our own compound would be the concave isomer [(-)-spartein-16-ium N-1-oxide]tri­chloro­zinc(II). In both this complex and our own, an important non-covalent inter­action is the hydrogen bond formed by the oxygen of the amine oxide and the proton located on the non-adjacent nitro­gen. The folded nature of the amine oxide functionalized concave backbones allow the zinc atom to fit tightly inside the ligand. Notably, the sparteine compound shows similar average C—N—O bond angles (111.0° cf 110.68°) and a larger N—O—Zn bond angle than our compound [127.4 (5) and 124.84 (9)°, respectively]. These two angles work in conjunction to determine how far into the cavity the metal atom can approach. The smaller N—O—Zn angle of our tetra­aza­macrocyclic ligand allows the zinc to sit further into and, ideally, inter­act more strongly with atoms forming the cavity.

5. Synthesis and crystallization

The cyclam-glyoxal condensate was prepared according to a literature procedure (Le Baccon et al., 2001[Le Baccon, M., Chuburu, F., Toupet, L., Handel, H., Soibinet, M., De'champs-Olivier, I., Barbier, J. P. & Aplincourt, M. (2001). New J. Chem. 25, 1168-1174.]): 0.24 g (1 mmol) of cyclam-glyoxal and 0.14 g (1 mmol) of ZnCl2 were stirred for three days in methanol (20 mL) in the presence of air. A white solid product precipitated and was filtered from the solution on a fine glass frit, and washed with a minimal amount of methanol before being dried under vacuum. X-ray quality colorless block crystals were obtained by ether diffusion into a 2-butanone solution.

6. Refinement

The structure was solved by dual-space methods (SHELXT; Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) and refinement was routine (SHELXL; Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]; Table 3[link]). All non-hydrogen atoms were refined with anisotropic atomic displacement parameters. The water of crystallization exhibited mild positional disorder that was modeled over two equal occupancy sites. Hydrogen atoms on the water and protonated amine nitro­gen were initially located in a difference-Fourier map. The amine hydrogen atom was ultimately refined using a riding model. The coord­inates of the water hydrogen atoms were allowed to refine, with similarity restraints applied to all four O—H distances. Atomic displacement parameters of these hydrogen atoms were tied to that of the N or O to which they are bonded. All other hydrogen atoms were positioned at geometrically calculated positions with C—H = 0.99 or 1.00 Å for methyl­ene and methine carbon atoms respectively; Uiso(H) = 1.5 × Ueq(O) or 1.2 × Ueq(N/C).

Table 3
Experimental details

Crystal data
Chemical formula [ZnCl3(C12H23N4O)]·H2O
Mr 429.08
Crystal system, space group Monoclinic, P21/n
Temperature (K) 120
a, b, c (Å) 8.7253 (8), 14.3482 (14), 14.0718 (13)
β (°) 104.760 (2)
V3) 1703.5 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.92
Crystal size (mm) 0.21 × 0.12 × 0.09
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Numerical (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.699, 0.793
No. of measured, independent and observed [I > 2σ(I)] reflections 32386, 4237, 3572
Rint 0.044
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.056, 1.01
No. of reflections 4237
No. of parameters 220
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.42, −0.33
Computer programs: APEX4 and SAINT (Bruker, 2021[Bruker (2021). APEX and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 1.5 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Trichlorido(1,4,11-triaza-8-azoniatetracyclo[6.6.2.04,16.011,15]hexadecane 1-oxide-κO)zinc(II) monohydrate top
Crystal data top
[ZnCl3(C12H23N4O)]·H2OF(000) = 888
Mr = 429.08Dx = 1.673 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.7253 (8) ÅCell parameters from 8725 reflections
b = 14.3482 (14) Åθ = 2.5–28.1°
c = 14.0718 (13) ŵ = 1.92 mm1
β = 104.760 (2)°T = 120 K
V = 1703.5 (3) Å3Block, colorless
Z = 40.21 × 0.12 × 0.09 mm
Data collection top
Bruker APEXII CCD
diffractometer
4237 independent reflections
Radiation source: X-ray3572 reflections with I > 2σ(I)
Detector resolution: 8.33 pixels mm-1Rint = 0.044
φ and ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: numerical
(SADABS; Krause et al., 2015)
h = 1111
Tmin = 0.699, Tmax = 0.793k = 1919
32386 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: mixed
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0244P)2 + 0.8924P]
where P = (Fo2 + 2Fc2)/3
4237 reflections(Δ/σ)max = 0.002
220 parametersΔρmax = 0.42 e Å3
3 restraintsΔρmin = 0.33 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.38352 (2)0.63073 (2)0.74182 (2)0.01361 (6)
Cl10.40927 (6)0.54285 (3)0.61336 (3)0.02305 (10)
Cl20.11765 (5)0.64610 (3)0.72669 (3)0.02054 (9)
Cl30.50553 (6)0.56614 (3)0.88570 (3)0.02517 (10)
O10.48379 (13)0.75415 (7)0.73622 (8)0.0143 (2)
N10.40264 (16)0.83922 (9)0.72215 (10)0.0128 (3)
N20.49127 (17)0.88977 (9)0.54778 (10)0.0158 (3)
N30.73297 (16)0.82844 (9)0.66434 (10)0.0150 (3)
H30.6825880.7673670.6725050.018*
N40.63893 (17)0.92560 (10)0.81784 (10)0.0168 (3)
C10.2840 (2)0.84123 (12)0.62400 (12)0.0168 (3)
H1A0.2004380.7941520.6223810.020*
H1B0.2332400.9033580.6128180.020*
C20.3667 (2)0.82071 (12)0.54517 (12)0.0187 (4)
H2A0.4138170.7575810.5551040.022*
H2B0.2891800.8222030.4801140.022*
C30.5688 (2)0.87961 (12)0.46713 (13)0.0211 (4)
H3A0.6207830.9391500.4582450.025*
H3B0.4874260.8661690.4054690.025*
C40.6919 (2)0.80197 (13)0.48621 (13)0.0221 (4)
H4A0.6394720.7412370.4891730.027*
H4B0.7450270.7994620.4319140.027*
C50.8131 (2)0.81999 (13)0.58233 (13)0.0210 (4)
H5A0.8905060.7681480.5963380.025*
H5B0.8714580.8782110.5773190.025*
C60.8502 (2)0.85260 (12)0.75866 (13)0.0200 (4)
H6A0.9000380.9133750.7517900.024*
H6B0.9346820.8047430.7739960.024*
C70.7694 (2)0.85777 (12)0.84095 (13)0.0203 (4)
H7A0.7273100.7955720.8514070.024*
H7B0.8471020.8763640.9023970.024*
C80.5621 (2)0.93873 (12)0.89888 (12)0.0206 (4)
H8A0.5079520.9999310.8912930.025*
H8B0.6441990.9391920.9621060.025*
C90.4420 (2)0.86239 (12)0.90143 (12)0.0198 (4)
H9A0.4969250.8016980.9161100.024*
H9B0.3880010.8758420.9538280.024*
C100.3211 (2)0.85768 (11)0.80278 (12)0.0171 (3)
H10A0.2440400.8073170.8038370.020*
H10B0.2624100.9173040.7899260.020*
C110.6037 (2)0.90373 (11)0.63997 (12)0.0145 (3)
H110.6590390.9636720.6341260.017*
C120.5264 (2)0.91649 (11)0.72469 (12)0.0142 (3)
H120.4666580.9766190.7124880.017*
O20.7488 (7)0.6396 (4)0.7042 (5)0.0387 (13)0.5
H2C0.816 (8)0.605 (6)0.684 (5)0.058*0.5
H2D0.670 (6)0.604 (4)0.677 (5)0.058*0.5
O2A0.7280 (7)0.6345 (4)0.6550 (4)0.0399 (14)0.5
H2E0.806 (8)0.618 (7)0.704 (5)0.060*0.5
H2F0.631 (8)0.598 (4)0.631 (4)0.060*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01529 (10)0.00965 (9)0.01544 (10)0.00118 (7)0.00307 (7)0.00082 (7)
Cl10.0301 (2)0.0209 (2)0.0180 (2)0.00448 (18)0.00584 (17)0.00187 (16)
Cl20.0149 (2)0.01714 (19)0.0298 (2)0.00291 (15)0.00600 (17)0.00108 (16)
Cl30.0342 (3)0.0201 (2)0.0177 (2)0.00302 (18)0.00018 (18)0.00485 (16)
O10.0134 (6)0.0079 (5)0.0209 (6)0.0019 (4)0.0034 (5)0.0021 (4)
N10.0146 (7)0.0085 (6)0.0155 (7)0.0017 (5)0.0040 (5)0.0003 (5)
N20.0217 (8)0.0133 (7)0.0132 (7)0.0028 (5)0.0055 (6)0.0009 (5)
N30.0149 (7)0.0112 (6)0.0193 (7)0.0003 (5)0.0050 (6)0.0010 (5)
N40.0191 (7)0.0156 (7)0.0148 (7)0.0036 (6)0.0026 (6)0.0011 (5)
C10.0145 (8)0.0153 (8)0.0180 (8)0.0013 (6)0.0004 (6)0.0008 (6)
C20.0208 (9)0.0169 (8)0.0160 (8)0.0017 (7)0.0006 (7)0.0013 (6)
C30.0313 (10)0.0180 (8)0.0168 (8)0.0072 (7)0.0113 (7)0.0018 (7)
C40.0293 (10)0.0181 (8)0.0219 (9)0.0053 (7)0.0117 (8)0.0007 (7)
C50.0206 (9)0.0182 (8)0.0280 (9)0.0021 (7)0.0133 (8)0.0011 (7)
C60.0140 (8)0.0199 (8)0.0244 (9)0.0035 (7)0.0015 (7)0.0009 (7)
C70.0171 (9)0.0206 (9)0.0202 (8)0.0039 (7)0.0010 (7)0.0009 (7)
C80.0297 (10)0.0175 (8)0.0149 (8)0.0040 (7)0.0060 (7)0.0019 (7)
C90.0272 (10)0.0172 (8)0.0169 (8)0.0015 (7)0.0089 (7)0.0001 (7)
C100.0186 (9)0.0141 (8)0.0217 (8)0.0015 (7)0.0110 (7)0.0011 (7)
C110.0181 (8)0.0083 (7)0.0176 (8)0.0003 (6)0.0052 (7)0.0024 (6)
C120.0179 (8)0.0080 (7)0.0168 (8)0.0021 (6)0.0048 (6)0.0006 (6)
O20.020 (2)0.0159 (18)0.084 (4)0.0026 (16)0.019 (3)0.000 (3)
O2A0.018 (2)0.0196 (19)0.079 (4)0.0014 (15)0.007 (3)0.003 (3)
Geometric parameters (Å, º) top
Zn1—O11.9856 (11)C4—C51.512 (3)
Zn1—Cl32.2345 (5)C4—H4A0.9900
Zn1—Cl12.2616 (5)C4—H4B0.9900
Zn1—Cl22.2856 (5)C5—H5A0.9900
O1—N11.3996 (16)C5—H5B0.9900
N1—C11.500 (2)C6—C71.504 (3)
N1—C101.508 (2)C6—H6A0.9900
N1—C121.542 (2)C6—H6B0.9900
N2—C111.427 (2)C7—H7A0.9900
N2—C21.465 (2)C7—H7B0.9900
N2—C31.469 (2)C8—C91.522 (2)
N3—C61.495 (2)C8—H8A0.9900
N3—C51.499 (2)C8—H8B0.9900
N3—C111.536 (2)C9—C101.516 (2)
N3—H31.0000C9—H9A0.9900
N4—C121.429 (2)C9—H9B0.9900
N4—C71.470 (2)C10—H10A0.9900
N4—C81.475 (2)C10—H10B0.9900
C1—C21.498 (2)C11—C121.523 (2)
C1—H1A0.9900C11—H111.0000
C1—H1B0.9900C12—H121.0000
C2—H2A0.9900O2—H2C0.87 (4)
C2—H2B0.9900O2—H2D0.87 (4)
C3—C41.523 (2)O2A—H2E0.87 (4)
C3—H3A0.9900O2A—H2F0.98 (6)
C3—H3B0.9900
O1—Zn1—Cl3107.03 (4)N3—C5—H5A109.6
O1—Zn1—Cl1109.33 (4)C4—C5—H5A109.6
Cl3—Zn1—Cl1111.812 (19)N3—C5—H5B109.6
O1—Zn1—Cl2110.93 (3)C4—C5—H5B109.6
Cl3—Zn1—Cl2111.244 (19)H5A—C5—H5B108.1
Cl1—Zn1—Cl2106.531 (18)N3—C6—C7110.23 (14)
N1—O1—Zn1124.84 (9)N3—C6—H6A109.6
O1—N1—C1110.64 (12)C7—C6—H6A109.6
O1—N1—C10111.42 (12)N3—C6—H6B109.6
C1—N1—C10110.01 (13)C7—C6—H6B109.6
O1—N1—C12107.32 (11)H6A—C6—H6B108.1
C1—N1—C12108.81 (12)N4—C7—C6110.56 (14)
C10—N1—C12108.55 (12)N4—C7—H7A109.5
C11—N2—C2116.85 (13)C6—C7—H7A109.5
C11—N2—C3111.79 (14)N4—C7—H7B109.5
C2—N2—C3113.48 (14)C6—C7—H7B109.5
C6—N3—C5110.74 (13)H7A—C7—H7B108.1
C6—N3—C11109.42 (13)N4—C8—C9112.18 (14)
C5—N3—C11110.19 (12)N4—C8—H8A109.2
C6—N3—H3108.8C9—C8—H8A109.2
C5—N3—H3108.8N4—C8—H8B109.2
C11—N3—H3108.8C9—C8—H8B109.2
C12—N4—C7117.04 (13)H8A—C8—H8B107.9
C12—N4—C8112.30 (14)C10—C9—C8109.44 (14)
C7—N4—C8113.11 (14)C10—C9—H9A109.8
C2—C1—N1109.18 (13)C8—C9—H9A109.8
C2—C1—H1A109.8C10—C9—H9B109.8
N1—C1—H1A109.8C8—C9—H9B109.8
C2—C1—H1B109.8H9A—C9—H9B108.2
N1—C1—H1B109.8N1—C10—C9110.21 (14)
H1A—C1—H1B108.3N1—C10—H10A109.6
N2—C2—C1110.04 (14)C9—C10—H10A109.6
N2—C2—H2A109.7N1—C10—H10B109.6
C1—C2—H2A109.7C9—C10—H10B109.6
N2—C2—H2B109.7H10A—C10—H10B108.1
C1—C2—H2B109.7N2—C11—C12112.94 (14)
H2A—C2—H2B108.2N2—C11—N3113.56 (13)
N2—C3—C4112.29 (14)C12—C11—N3110.86 (13)
N2—C3—H3A109.1N2—C11—H11106.3
C4—C3—H3A109.1C12—C11—H11106.3
N2—C3—H3B109.1N3—C11—H11106.3
C4—C3—H3B109.1N4—C12—C11113.04 (14)
H3A—C3—H3B107.9N4—C12—N1113.60 (13)
C5—C4—C3109.50 (15)C11—C12—N1110.04 (13)
C5—C4—H4A109.8N4—C12—H12106.5
C3—C4—H4A109.8C11—C12—H12106.5
C5—C4—H4B109.8N1—C12—H12106.5
C3—C4—H4B109.8H2C—O2—H2D92 (7)
H4A—C4—H4B108.2H2E—O2A—H2F124 (9)
N3—C5—C4110.20 (14)
Zn1—O1—N1—C162.44 (15)C12—N1—C10—C957.12 (16)
Zn1—O1—N1—C1060.28 (15)C8—C9—C10—N158.25 (18)
Zn1—O1—N1—C12178.98 (9)C2—N2—C11—C1248.08 (19)
O1—N1—C1—C255.24 (16)C3—N2—C11—C12178.82 (13)
C10—N1—C1—C2178.78 (13)C2—N2—C11—N379.25 (17)
C12—N1—C1—C262.43 (16)C3—N2—C11—N353.85 (17)
C11—N2—C2—C152.82 (19)C6—N3—C11—N2176.31 (13)
C3—N2—C2—C1174.84 (14)C5—N3—C11—N254.33 (18)
N1—C1—C2—N259.05 (17)C6—N3—C11—C1255.28 (17)
C11—N2—C3—C455.33 (19)C5—N3—C11—C12177.27 (13)
C2—N2—C3—C479.42 (19)C7—N4—C12—C1147.23 (19)
N2—C3—C4—C556.6 (2)C8—N4—C12—C11179.49 (13)
C6—N3—C5—C4176.21 (14)C7—N4—C12—N179.08 (18)
C11—N3—C5—C455.01 (17)C8—N4—C12—N154.20 (18)
C3—C4—C5—N356.74 (19)N2—C11—C12—N4176.91 (13)
C5—N3—C6—C7178.14 (14)N3—C11—C12—N448.17 (18)
C11—N3—C6—C760.20 (17)N2—C11—C12—N148.73 (17)
C12—N4—C7—C651.16 (19)N3—C11—C12—N180.01 (16)
C8—N4—C7—C6175.92 (14)O1—N1—C12—N464.71 (16)
N3—C6—C7—N456.85 (18)C1—N1—C12—N4175.53 (13)
C12—N4—C8—C954.02 (19)C10—N1—C12—N455.82 (17)
C7—N4—C8—C981.15 (18)O1—N1—C12—C1163.16 (15)
N4—C8—C9—C1055.69 (19)C1—N1—C12—C1156.59 (16)
O1—N1—C10—C960.84 (16)C10—N1—C12—C11176.31 (13)
C1—N1—C10—C9176.07 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O11.002.152.8297 (18)123
N3—H3···O21.001.942.763 (6)138
N3—H3···O2A1.001.982.786 (7)136
O2—H2C···Cl2i0.87 (4)2.61 (8)3.154 (6)121 (7)
O2—H2C···N4ii0.87 (4)2.61 (8)3.262 (6)133 (8)
O2—H2D···Cl10.87 (4)2.39 (4)3.227 (6)162 (6)
O2A—H2E···Cl2i0.87 (4)2.69 (8)3.295 (6)128 (9)
O2A—H2E···N4ii0.87 (4)2.84 (9)3.202 (6)107 (7)
O2A—H2F···Cl10.98 (6)2.04 (7)2.996 (6)163 (5)
C1—H1A···Cl20.992.783.6198 (18)143
C2—H2B···Cl3iii0.992.963.7412 (18)136
C3—H3A···N2iv0.992.643.348 (2)129
C4—H4B···Cl2v0.992.923.6201 (19)128
C5—H5A···Cl2i0.992.923.8290 (19)154
C5—H5B···Cl3vi0.992.903.8493 (19)161
C6—H6A···Cl1vi0.992.873.6295 (18)135
C6—H6B···Cl2i0.992.953.8679 (19)154
C7—H7A···O10.992.402.953 (2)115
C8—H8A···Cl2vii0.992.733.6088 (19)149
C8—H8B···Cl1viii0.992.733.7009 (19)168
C10—H10A···Cl20.992.673.5420 (17)147
C10—H10B···Cl1vii0.992.893.7018 (17)139
C12—H12···Cl2vii1.002.743.6524 (17)152
Symmetry codes: (i) x+1, y, z; (ii) x+3/2, y1/2, z+3/2; (iii) x1/2, y+3/2, z1/2; (iv) x+1, y+2, z+1; (v) x+1/2, y+3/2, z1/2; (vi) x+3/2, y+1/2, z+3/2; (vii) x+1/2, y+1/2, z+3/2; (viii) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

This material is based on work supported by the National Science Foundation under Grant No. OIA-1946093. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. TJH and BMC acknowledge the Health Research award for project No. HR13–157, from the Oklahoma Center for the Advancement of Science and Technology. This project was supported by the National Center for Research Resources and the National Institute of General Medical Sciences of the National Institutes of Health through grant No. 8P20M103447.

Funding information

Funding for this research was provided by: National Science Foundation, Office of the Director (grant No. OIA-194093); American Chemical Society Petroleum Research Fund.

References

First citationAlcock, N. W., Moore, P. & Mok, K. F. (1980). J. Chem. Soc. Perkin Trans. 2, pp. 1186–1190.  CSD CrossRef Web of Science Google Scholar
First citationBalicki, R. (1989). Synthesis, pp. 645–646.  CrossRef Google Scholar
First citationBernier, D. W., Wefelscheid, U. K. & Woodward, S. (2009). Org. Prep. Proced. Int. 41, 173–210.  Web of Science CrossRef CAS Google Scholar
First citationBoswell, C. A., Sun, X., Niu, W., Weisman, G. R., Wong, E. H., Rheingold, A. L. & Anderson, C. J. (2004). J. Med. Chem. 47, 1465–1474.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2021). APEX and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEmerson, T. R. & Rees, C. W. (1962). J. Chem. Soc. pp. 1917–1923.  CrossRef Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationHayashi, E., Yamanaka, H. & Shimizu, K. (1959). Chem. Pharm. Bull. 7, 141–145.  CrossRef CAS Google Scholar
First citationHubin, T. J. (2003). Coord. Chem. Rev. 241, 27–46.  Web of Science CrossRef CAS Google Scholar
First citationHubin, T. J., Alcock, N. W., Clase, H. J. & Busch, D. H. (1999). Acta Cryst. C55, 1402–1403.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHubin, T. J., Alcock, N. W., Morton, M. D. & Busch, D. H. (2003). Inorg. Chim. Acta, 348, 33–40.  Web of Science CSD CrossRef CAS Google Scholar
First citationHubin, T. J., Alcock, N. W., Seib, L. L. & Busch, D. H. (2002). Inorg. Chem. 41, 7006–7014.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHubin, T. J., McCormick, J. M., Alcock, N. W. & Busch, D. H. (1998). Inorg. Chem. 37, 6549–6551.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHubin, T. J., McCormick, J. M., Collinson, S. R., Buchalova, M., Perkins, C. M., Alcock, N. W., Kahol, P. K., Raghunathan, A. & Busch, D. H. (2000). J. Am. Chem. Soc. 122, 2512–2522.  Web of Science CSD CrossRef CAS Google Scholar
First citationHubin, T. J., McCormick, J. M., Collinson, S. R., Busch, D. H. & Alcock, N. W. (1998). Chem. Commun. pp. 1675–1676.  Web of Science CSD CrossRef Google Scholar
First citationImada, Y., Iida, H., Ono, S. & Murahashi, S. (2003). J. Am. Chem. Soc. 125, 2868–2869.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJain, S. L. & Sain, B. (2002). Chem. Commun. pp. 1040–1041.  Web of Science CrossRef Google Scholar
First citationJasiewicz, B., Warżajtis, B. & Rychlewska, U. (2011). Polyhedron, 30, 2007–2015.  Web of Science CSD CrossRef CAS Google Scholar
First citationJones, D. G., Wilson, K. R., Cannon-Smith, D. J., Shircliff, A. D., Zhang, Z., Chen, Z., Prior, T. J., Yin, G. & Hubin, T. J. (2015). Inorg. Chem. 54, 2221–2234.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationJousseaume, B. & Chanson, E. (1987). Synthesis, pp. 55–56.  CrossRef Google Scholar
First citationKagami, H. & Motoki, S. (1978). J. Org. Chem. 43, 1267–1268.  CrossRef CAS Web of Science Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLe Baccon, M., Chuburu, F., Toupet, L., Handel, H., Soibinet, M., De'champs-Olivier, I., Barbier, J. P. & Aplincourt, M. (2001). New J. Chem. 25, 1168–1174.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMatz, D. L., Jones, D. G., Roewe, K. D., Gorbet, M. J., Zhang, Z., Chen, Z. Q., Prior, T. J., Archibald, S. J., Yin, G. C. & Hubin, T. J. (2015). Dalton Trans. 44, 12210–12224.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMay, C. M., Archibald, S. J., Bridgeman, A. J., Empson, C. J. & Hubin, T. J. (2004). Chem. Commun. pp. 1880–1881.  Web of Science CSD CrossRef Google Scholar
First citationNespolo, M. (2019). J. Appl. Cryst. 52, 451–456.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOdendaal, A. Y., Fiamengo, A. L., Ferdani, R., Wadas, T. J., Hill, D. C., Peng, Y., Heroux, K. J., Golen, J. A., Rheingold, A. L., Anderson, C. J., Weisman, G. R. & Wong, E. H. (2011). Inorg. Chem. 50, 3078–3086.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationO'Neil, I. A., Cleator, E. & Tapolczay, D. J. (2001). Tetrahedron Lett. 42, 8247–8249.  CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSun, X., Wuest, M., Weisman, G. R., Wong, E. H., Reed, D. P., Boswell, C. A., Motekaitis, R., Martell, A. E., Welch, M. J. & Anderson, C. J. (2002). J. Med. Chem. 45, 469–477.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, F. Z. H., Zhang, H., And, G. S. & Lu, X. (1999). Synth. Commun. 29, 11–14.  Web of Science CrossRef CAS Google Scholar
First citationWeisman, G. R., Ho, S. C. H. & Johnson, V. (1980). Tetrahedron Lett. 21, 335–338.  CrossRef CAS Web of Science Google Scholar
First citationWeisman, G. R., Rogers, M. E., Wong, E. H., Jasinski, J. P. & Paight, E. S. (1990). J. Am. Chem. Soc. 112, 8604–8605.  CSD CrossRef CAS Web of Science Google Scholar
First citationWeisman, G. R., Wong, E. H., Hill, D. C., Rogers, M. E., Reed, D. P. & Calabrese, J. C. (1996). Chem. Commun. pp. 947–948.  CSD CrossRef Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWon, P. D., Funwie, N. L., Birdsong, O. C., Obali, A. Y., Burke, B. P., McRobbie, G., Greenman, P., Prior, T. J., Archibald, S. J. & Hubin, T. J. (2015). Eur. J. Inorg. Chem. pp. 4678–4688.  Web of Science CSD CrossRef Google Scholar
First citationWong, E. H., Weisman, G. R., Hill, D. C., Reed, D. P., Rogers, M. E., Condon, J. S., Fagan, M. A., Calabrese, J. C., Lam, K.-C., Guzei, I. A. & Rheingold, A. L. (2000). J. Am. Chem. Soc. 122, 10561–10572.  Web of Science CSD CrossRef CAS Google Scholar
First citationWoodin, K. S., Heroux, K. J., Boswell, C. A., Wong, E. H., Weisman, G. R., Niu, W. J., Tomellini, S. A., Anderson, C. J., Zakharov, L. N. & Rheingold, A. L. (2005). Eur. J. Inorg. Chem. pp. 4829–4833.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds