research communications
The unanticipated oxidation of a tertiary amine in a tetracyclic glyoxal-cyclam condensate yielding zinc(II) coordinated to a sterically hindered amine oxide
aDepartment of Chemistry & Physics, Southwestern Oklahoma State University, Weatherford, OK 73096, USA, bDepartment of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA, and cDepartment of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
*Correspondence e-mail: aoliver2@nd.edu
The complex, trichlorido(1,4,11-triaza-8-azoniatetracyclo[6.6.2.04,16.011,15]hexadecane 1-oxide-κO)zinc(II) monohydrate, [ZnCl3(C12H23N4O)]·H2O, (I), has monoclinic symmetry (space group P21/n) at 120 K. The zinc(II) center adopts a slightly distorted tetrahedral coordination geometry and is coordinated by three chlorine atoms and the oxygen atom of the oxidized tertiary amine of the tetracycle. The amine nitrogen atom, inside the ligand cleft, is protonated and forms a hydrogen bond to the oxygen of the amine oxide. Additional hydrogen-bonding interactions involve the protonated amine, the water solvate oxygen atom, and one of the chloro ligands.
Keywords: crystal structure; zinc(II); glyoxal-cyclam.
CCDC reference: 2335501
1. Chemical context
Tetracyclic tetraamines formed by the condensation of dialdehyde glyoxal and tetraazamacrocycles, such as cyclen and cyclam, have been known since the 1980s (Alcock et al., 1980; Weisman et al., 1980). They can act as rigid, sterically hindered, bidentate chelates to form coordination complexes, but have not been exploited fully for this purpose (Hubin, McCormick, Busch & Alcock 1998; Hubin et al., 1999, 2002; May et al., 2004, Won et al., 2015). Instead, their greatest utility has been as crucial starting materials for the synthesis of ethylene cross-bridged tetraazamacrocycles (Weisman et al., 1990, 1996; Wong et al., 2000; Hubin, 2003; Matz et al., 2015). Their folded structures generally lead to dialkylation of only two non-adjacent nitrogens, which can then be reduced to ethylene cross-bridged ligands whose rigid and topologically complex transition-metal complexes exhibit astounding kinetic stability under harsh conditions (Hubin, McCormick, Collinson, et al., 1998; Hubin et al., 2000, 2003; Sun et al., 2002; Boswell et al., 2004; Woodin et al., 2005; Odendaal et al., 2011; Matz et al., 2015; Jones et al., 2015).
Tertiary et al., 2001; Bernier et al., 2009). These can be reduced back to in the presence of reducing agents (Hayashi et al., 1959); zinc metal is often involved in the reduction reaction (Emerson & Rees, 1962; Kagami & Motoki, 1978; Jousseaume & Chanson, 1987; Balicki, 1989). In the present case, the tertiary amine was oxidized to the amine oxide in the presence of air, methanol, and zinc(II) chloride. Molecular oxygen is able to oxidize tertiary (Bernier et al., 2009), although it is generally inefficient and often is improved by the presence of transition metal ions, which may form metal-oxo catalysts in situ, although unlikely in the present case with zinc(II) (Jain & Sain, 2002; Wang et al., 1999; Imada et al., 2003). Under development in our labs are more efficient ways to make the mono- and diamine oxides of glyoxal-tetraazamacrocycle condensates – at present both hydrogen peroxide and 3-chloroperbenzoic acid have shown increased activity over molecular oxygen – and will be reported in due course.
like those found in glyoxal-tetraazamacrocycle condensates, are known to oxidize to under oxidizing conditions, usually in the presence of hydrogen peroxide or 3-chloroperbenzoic acid (O'NealHere, we present the first example of a glyoxal-tetraazamacrocycle condensate that serendipitously oxidized to a mono-amine-oxide during a complexation reaction with zinc(II) chloride. The resulting sterically demanding amine oxide coordinates in a monodentate fashion to a zinc(II) ion concomitantly coordinated to three additional chloro ligands.
2. Structural commentary
We pioneered the use of glyoxal-tetraazamacrocycle condensates as rigid, bulky, bidentate ligands for transition metal ions (Hubin, McCormick, Busch & Alcock 1998), and have continued our efforts (Hubin et al., 1999, 2002; May et al., 2004, Won et al., 2015) in coordinating various metal-containing species, in this case ZnCl2, to these bidentate of the glyoxal-cyclam condensate. During the course of the current work, air oxidation of one amine occurred, which produced an amine oxide moiety that subsequently resulted in coordination of [ZnCl3]− in a monodentate fashion. In the majority of the unoxidized amine examples, where two non-adjacent amine nitrogen atoms point into the cleft of the folded ligand, the metal ion coordinates in a bidentate fashion [palladium(II) and copper(II) examples: Hubin, McCormick, Alcock, et al., 1998; Hubin et al., 2002; May et al., 2004; Won et al., 2015]. However, in the present case (Fig. 1), the oxygen atom, O1, extends the reach of the amine oxide and renders bidentate coordination unfavorable. Furthermore, the oxygen of the amine oxide moiety is situated in the center of the tetracycle cavity by virtue of the distorted tetrahedral geometry about the atoms participating in the intramolecular N3⋯O1 hydrogen-bonding interaction. In addition, the oxygen atom fills most of this cavity created by the tetracycle, thus the larger than expected N1—O1—Zn1 bond angle [124.84 (9)°, Table 1] is instrumental in minimizing the caused by the bulk of the trichloro zinc unit. An interesting comparison can be drawn to our copper(I) glyoxal-cyclam condensate structure (Hubin et al., 1999). In that case, the low preferred by copper(I), along with the steric bulk of the ligand, resulted in a copper(I) complex with two cyclam-glyoxal ligands coordinated in a linear fashion to the metal.
|
3. Supramolecular features
Within the N-oxide oxygen, O1, atoms (see Fig. 2, Table 2 for details). One water hydrogen forms a hydrogen bond to one chlorine, Cl1, of the standard molecule resulting in an R22(10) ring (Etter et al., 1990). The remaining water hydrogen atom forms a bifurcated hydrogen bond to a neighboring chlorine, Cl2, related by translation along the a-axis and to a tetracycle nitrogen atom related by the screw-axis parallel to the b-axis. This is true for both components of the disordered water molecule (see below). The overall motif is a di-periodic network (Nespolo, 2019) of hydrogen-bonded molecules parallel to the ab plane. The remaining interactions within the structure (primarily C—H⋯Cl) are van der Waals contacts that direct the packing.
the ring nitrogen atom, N1, forms a bifurcated hydrogen bond with both the water, O2, and4. Database survey
We have found only two structural analogues of this zinc(II) coordination sphere – tertiary amine oxide and three chlorides coordinated to tetrahedral zinc(II) (Jasiewicz et al., 2011; refcodes: EWOZOG, EWOZUM). The Jasiewicz complexes utilize a spartein backbone ligand, which naturally form a folded structure with the amine lone pair of electrons pointed either concave or convex to the remainder of the structure. Analogous to our tetraazamacrocycle-glyoxal condensate, this generates either a concave or convex metal binding site. The most direct comparison to our own compound would be the concave isomer [(-)-spartein-16-ium N-1-oxide]trichlorozinc(II). In both this complex and our own, an important non-covalent interaction is the hydrogen bond formed by the oxygen of the amine oxide and the proton located on the non-adjacent nitrogen. The folded nature of the amine oxide functionalized concave backbones allow the zinc atom to fit tightly inside the ligand. Notably, the sparteine compound shows similar average C—N—O bond angles (111.0° cf 110.68°) and a larger N—O—Zn bond angle than our compound [127.4 (5) and 124.84 (9)°, respectively]. These two angles work in conjunction to determine how far into the cavity the metal atom can approach. The smaller N—O—Zn angle of our tetraazamacrocyclic ligand allows the zinc to sit further into and, ideally, interact more strongly with atoms forming the cavity.
5. Synthesis and crystallization
The cyclam-glyoxal condensate was prepared according to a literature procedure (Le Baccon et al., 2001): 0.24 g (1 mmol) of cyclam-glyoxal and 0.14 g (1 mmol) of ZnCl2 were stirred for three days in methanol (20 mL) in the presence of air. A white solid product precipitated and was filtered from the solution on a fine glass frit, and washed with a minimal amount of methanol before being dried under vacuum. X-ray quality colorless block crystals were obtained by ether diffusion into a 2-butanone solution.
6. Refinement
The structure was solved by dual-space methods (SHELXT; Sheldrick, 2015a) and was routine (SHELXL; Sheldrick, 2015b; Table 3). All non-hydrogen atoms were refined with anisotropic atomic displacement parameters. The water of crystallization exhibited mild positional disorder that was modeled over two equal occupancy sites. Hydrogen atoms on the water and protonated amine nitrogen were initially located in a difference-Fourier map. The amine hydrogen atom was ultimately refined using a riding model. The coordinates of the water hydrogen atoms were allowed to refine, with similarity restraints applied to all four O—H distances. Atomic displacement parameters of these hydrogen atoms were tied to that of the N or O to which they are bonded. All other hydrogen atoms were positioned at geometrically calculated positions with C—H = 0.99 or 1.00 Å for methylene and methine carbon atoms respectively; Uiso(H) = 1.5 × Ueq(O) or 1.2 × Ueq(N/C).
|
Supporting information
CCDC reference: 2335501
https://doi.org/10.1107/S2056989024001889/pk2704sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024001889/pk2704Isup2.hkl
[ZnCl3(C12H23N4O)]·H2O | F(000) = 888 |
Mr = 429.08 | Dx = 1.673 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 8.7253 (8) Å | Cell parameters from 8725 reflections |
b = 14.3482 (14) Å | θ = 2.5–28.1° |
c = 14.0718 (13) Å | µ = 1.92 mm−1 |
β = 104.760 (2)° | T = 120 K |
V = 1703.5 (3) Å3 | Block, colorless |
Z = 4 | 0.21 × 0.12 × 0.09 mm |
Bruker APEXII CCD diffractometer | 4237 independent reflections |
Radiation source: X-ray | 3572 reflections with I > 2σ(I) |
Detector resolution: 8.33 pixels mm-1 | Rint = 0.044 |
φ and ω scans | θmax = 28.3°, θmin = 2.1° |
Absorption correction: numerical (SADABS; Krause et al., 2015) | h = −11→11 |
Tmin = 0.699, Tmax = 0.793 | k = −19→19 |
32386 measured reflections | l = −18→18 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.024 | Hydrogen site location: mixed |
wR(F2) = 0.056 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0244P)2 + 0.8924P] where P = (Fo2 + 2Fc2)/3 |
4237 reflections | (Δ/σ)max = 0.002 |
220 parameters | Δρmax = 0.42 e Å−3 |
3 restraints | Δρmin = −0.33 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Zn1 | 0.38352 (2) | 0.63073 (2) | 0.74182 (2) | 0.01361 (6) | |
Cl1 | 0.40927 (6) | 0.54285 (3) | 0.61336 (3) | 0.02305 (10) | |
Cl2 | 0.11765 (5) | 0.64610 (3) | 0.72669 (3) | 0.02054 (9) | |
Cl3 | 0.50553 (6) | 0.56614 (3) | 0.88570 (3) | 0.02517 (10) | |
O1 | 0.48379 (13) | 0.75415 (7) | 0.73622 (8) | 0.0143 (2) | |
N1 | 0.40264 (16) | 0.83922 (9) | 0.72215 (10) | 0.0128 (3) | |
N2 | 0.49127 (17) | 0.88977 (9) | 0.54778 (10) | 0.0158 (3) | |
N3 | 0.73297 (16) | 0.82844 (9) | 0.66434 (10) | 0.0150 (3) | |
H3 | 0.682588 | 0.767367 | 0.672505 | 0.018* | |
N4 | 0.63893 (17) | 0.92560 (10) | 0.81784 (10) | 0.0168 (3) | |
C1 | 0.2840 (2) | 0.84123 (12) | 0.62400 (12) | 0.0168 (3) | |
H1A | 0.200438 | 0.794152 | 0.622381 | 0.020* | |
H1B | 0.233240 | 0.903358 | 0.612818 | 0.020* | |
C2 | 0.3667 (2) | 0.82071 (12) | 0.54517 (12) | 0.0187 (4) | |
H2A | 0.413817 | 0.757581 | 0.555104 | 0.022* | |
H2B | 0.289180 | 0.822203 | 0.480114 | 0.022* | |
C3 | 0.5688 (2) | 0.87961 (12) | 0.46713 (13) | 0.0211 (4) | |
H3A | 0.620783 | 0.939150 | 0.458245 | 0.025* | |
H3B | 0.487426 | 0.866169 | 0.405469 | 0.025* | |
C4 | 0.6919 (2) | 0.80197 (13) | 0.48621 (13) | 0.0221 (4) | |
H4A | 0.639472 | 0.741237 | 0.489173 | 0.027* | |
H4B | 0.745027 | 0.799462 | 0.431914 | 0.027* | |
C5 | 0.8131 (2) | 0.81999 (13) | 0.58233 (13) | 0.0210 (4) | |
H5A | 0.890506 | 0.768148 | 0.596338 | 0.025* | |
H5B | 0.871458 | 0.878211 | 0.577319 | 0.025* | |
C6 | 0.8502 (2) | 0.85260 (12) | 0.75866 (13) | 0.0200 (4) | |
H6A | 0.900038 | 0.913375 | 0.751790 | 0.024* | |
H6B | 0.934682 | 0.804743 | 0.773996 | 0.024* | |
C7 | 0.7694 (2) | 0.85777 (12) | 0.84095 (13) | 0.0203 (4) | |
H7A | 0.727310 | 0.795572 | 0.851407 | 0.024* | |
H7B | 0.847102 | 0.876364 | 0.902397 | 0.024* | |
C8 | 0.5621 (2) | 0.93873 (12) | 0.89888 (12) | 0.0206 (4) | |
H8A | 0.507952 | 0.999931 | 0.891293 | 0.025* | |
H8B | 0.644199 | 0.939192 | 0.962106 | 0.025* | |
C9 | 0.4420 (2) | 0.86239 (12) | 0.90143 (12) | 0.0198 (4) | |
H9A | 0.496925 | 0.801698 | 0.916110 | 0.024* | |
H9B | 0.388001 | 0.875842 | 0.953828 | 0.024* | |
C10 | 0.3211 (2) | 0.85768 (11) | 0.80278 (12) | 0.0171 (3) | |
H10A | 0.244040 | 0.807317 | 0.803837 | 0.020* | |
H10B | 0.262410 | 0.917304 | 0.789926 | 0.020* | |
C11 | 0.6037 (2) | 0.90373 (11) | 0.63997 (12) | 0.0145 (3) | |
H11 | 0.659039 | 0.963672 | 0.634126 | 0.017* | |
C12 | 0.5264 (2) | 0.91649 (11) | 0.72469 (12) | 0.0142 (3) | |
H12 | 0.466658 | 0.976619 | 0.712488 | 0.017* | |
O2 | 0.7488 (7) | 0.6396 (4) | 0.7042 (5) | 0.0387 (13) | 0.5 |
H2C | 0.816 (8) | 0.605 (6) | 0.684 (5) | 0.058* | 0.5 |
H2D | 0.670 (6) | 0.604 (4) | 0.677 (5) | 0.058* | 0.5 |
O2A | 0.7280 (7) | 0.6345 (4) | 0.6550 (4) | 0.0399 (14) | 0.5 |
H2E | 0.806 (8) | 0.618 (7) | 0.704 (5) | 0.060* | 0.5 |
H2F | 0.631 (8) | 0.598 (4) | 0.631 (4) | 0.060* | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.01529 (10) | 0.00965 (9) | 0.01544 (10) | −0.00118 (7) | 0.00307 (7) | 0.00082 (7) |
Cl1 | 0.0301 (2) | 0.0209 (2) | 0.0180 (2) | 0.00448 (18) | 0.00584 (17) | −0.00187 (16) |
Cl2 | 0.0149 (2) | 0.01714 (19) | 0.0298 (2) | −0.00291 (15) | 0.00600 (17) | −0.00108 (16) |
Cl3 | 0.0342 (3) | 0.0201 (2) | 0.0177 (2) | 0.00302 (18) | 0.00018 (18) | 0.00485 (16) |
O1 | 0.0134 (6) | 0.0079 (5) | 0.0209 (6) | 0.0019 (4) | 0.0034 (5) | 0.0021 (4) |
N1 | 0.0146 (7) | 0.0085 (6) | 0.0155 (7) | 0.0017 (5) | 0.0040 (5) | 0.0003 (5) |
N2 | 0.0217 (8) | 0.0133 (7) | 0.0132 (7) | 0.0028 (5) | 0.0055 (6) | 0.0009 (5) |
N3 | 0.0149 (7) | 0.0112 (6) | 0.0193 (7) | −0.0003 (5) | 0.0050 (6) | 0.0010 (5) |
N4 | 0.0191 (7) | 0.0156 (7) | 0.0148 (7) | −0.0036 (6) | 0.0026 (6) | −0.0011 (5) |
C1 | 0.0145 (8) | 0.0153 (8) | 0.0180 (8) | 0.0013 (6) | −0.0004 (6) | 0.0008 (6) |
C2 | 0.0208 (9) | 0.0169 (8) | 0.0160 (8) | 0.0017 (7) | 0.0006 (7) | −0.0013 (6) |
C3 | 0.0313 (10) | 0.0180 (8) | 0.0168 (8) | 0.0072 (7) | 0.0113 (7) | 0.0018 (7) |
C4 | 0.0293 (10) | 0.0181 (8) | 0.0219 (9) | 0.0053 (7) | 0.0117 (8) | 0.0007 (7) |
C5 | 0.0206 (9) | 0.0182 (8) | 0.0280 (9) | 0.0021 (7) | 0.0133 (8) | 0.0011 (7) |
C6 | 0.0140 (8) | 0.0199 (8) | 0.0244 (9) | −0.0035 (7) | 0.0015 (7) | −0.0009 (7) |
C7 | 0.0171 (9) | 0.0206 (9) | 0.0202 (8) | −0.0039 (7) | −0.0010 (7) | 0.0009 (7) |
C8 | 0.0297 (10) | 0.0175 (8) | 0.0149 (8) | −0.0040 (7) | 0.0060 (7) | −0.0019 (7) |
C9 | 0.0272 (10) | 0.0172 (8) | 0.0169 (8) | −0.0015 (7) | 0.0089 (7) | −0.0001 (7) |
C10 | 0.0186 (9) | 0.0141 (8) | 0.0217 (8) | 0.0015 (7) | 0.0110 (7) | −0.0011 (7) |
C11 | 0.0181 (8) | 0.0083 (7) | 0.0176 (8) | 0.0003 (6) | 0.0052 (7) | 0.0024 (6) |
C12 | 0.0179 (8) | 0.0080 (7) | 0.0168 (8) | −0.0021 (6) | 0.0048 (6) | 0.0006 (6) |
O2 | 0.020 (2) | 0.0159 (18) | 0.084 (4) | 0.0026 (16) | 0.019 (3) | 0.000 (3) |
O2A | 0.018 (2) | 0.0196 (19) | 0.079 (4) | 0.0014 (15) | 0.007 (3) | 0.003 (3) |
Zn1—O1 | 1.9856 (11) | C4—C5 | 1.512 (3) |
Zn1—Cl3 | 2.2345 (5) | C4—H4A | 0.9900 |
Zn1—Cl1 | 2.2616 (5) | C4—H4B | 0.9900 |
Zn1—Cl2 | 2.2856 (5) | C5—H5A | 0.9900 |
O1—N1 | 1.3996 (16) | C5—H5B | 0.9900 |
N1—C1 | 1.500 (2) | C6—C7 | 1.504 (3) |
N1—C10 | 1.508 (2) | C6—H6A | 0.9900 |
N1—C12 | 1.542 (2) | C6—H6B | 0.9900 |
N2—C11 | 1.427 (2) | C7—H7A | 0.9900 |
N2—C2 | 1.465 (2) | C7—H7B | 0.9900 |
N2—C3 | 1.469 (2) | C8—C9 | 1.522 (2) |
N3—C6 | 1.495 (2) | C8—H8A | 0.9900 |
N3—C5 | 1.499 (2) | C8—H8B | 0.9900 |
N3—C11 | 1.536 (2) | C9—C10 | 1.516 (2) |
N3—H3 | 1.0000 | C9—H9A | 0.9900 |
N4—C12 | 1.429 (2) | C9—H9B | 0.9900 |
N4—C7 | 1.470 (2) | C10—H10A | 0.9900 |
N4—C8 | 1.475 (2) | C10—H10B | 0.9900 |
C1—C2 | 1.498 (2) | C11—C12 | 1.523 (2) |
C1—H1A | 0.9900 | C11—H11 | 1.0000 |
C1—H1B | 0.9900 | C12—H12 | 1.0000 |
C2—H2A | 0.9900 | O2—H2C | 0.87 (4) |
C2—H2B | 0.9900 | O2—H2D | 0.87 (4) |
C3—C4 | 1.523 (2) | O2A—H2E | 0.87 (4) |
C3—H3A | 0.9900 | O2A—H2F | 0.98 (6) |
C3—H3B | 0.9900 | ||
O1—Zn1—Cl3 | 107.03 (4) | N3—C5—H5A | 109.6 |
O1—Zn1—Cl1 | 109.33 (4) | C4—C5—H5A | 109.6 |
Cl3—Zn1—Cl1 | 111.812 (19) | N3—C5—H5B | 109.6 |
O1—Zn1—Cl2 | 110.93 (3) | C4—C5—H5B | 109.6 |
Cl3—Zn1—Cl2 | 111.244 (19) | H5A—C5—H5B | 108.1 |
Cl1—Zn1—Cl2 | 106.531 (18) | N3—C6—C7 | 110.23 (14) |
N1—O1—Zn1 | 124.84 (9) | N3—C6—H6A | 109.6 |
O1—N1—C1 | 110.64 (12) | C7—C6—H6A | 109.6 |
O1—N1—C10 | 111.42 (12) | N3—C6—H6B | 109.6 |
C1—N1—C10 | 110.01 (13) | C7—C6—H6B | 109.6 |
O1—N1—C12 | 107.32 (11) | H6A—C6—H6B | 108.1 |
C1—N1—C12 | 108.81 (12) | N4—C7—C6 | 110.56 (14) |
C10—N1—C12 | 108.55 (12) | N4—C7—H7A | 109.5 |
C11—N2—C2 | 116.85 (13) | C6—C7—H7A | 109.5 |
C11—N2—C3 | 111.79 (14) | N4—C7—H7B | 109.5 |
C2—N2—C3 | 113.48 (14) | C6—C7—H7B | 109.5 |
C6—N3—C5 | 110.74 (13) | H7A—C7—H7B | 108.1 |
C6—N3—C11 | 109.42 (13) | N4—C8—C9 | 112.18 (14) |
C5—N3—C11 | 110.19 (12) | N4—C8—H8A | 109.2 |
C6—N3—H3 | 108.8 | C9—C8—H8A | 109.2 |
C5—N3—H3 | 108.8 | N4—C8—H8B | 109.2 |
C11—N3—H3 | 108.8 | C9—C8—H8B | 109.2 |
C12—N4—C7 | 117.04 (13) | H8A—C8—H8B | 107.9 |
C12—N4—C8 | 112.30 (14) | C10—C9—C8 | 109.44 (14) |
C7—N4—C8 | 113.11 (14) | C10—C9—H9A | 109.8 |
C2—C1—N1 | 109.18 (13) | C8—C9—H9A | 109.8 |
C2—C1—H1A | 109.8 | C10—C9—H9B | 109.8 |
N1—C1—H1A | 109.8 | C8—C9—H9B | 109.8 |
C2—C1—H1B | 109.8 | H9A—C9—H9B | 108.2 |
N1—C1—H1B | 109.8 | N1—C10—C9 | 110.21 (14) |
H1A—C1—H1B | 108.3 | N1—C10—H10A | 109.6 |
N2—C2—C1 | 110.04 (14) | C9—C10—H10A | 109.6 |
N2—C2—H2A | 109.7 | N1—C10—H10B | 109.6 |
C1—C2—H2A | 109.7 | C9—C10—H10B | 109.6 |
N2—C2—H2B | 109.7 | H10A—C10—H10B | 108.1 |
C1—C2—H2B | 109.7 | N2—C11—C12 | 112.94 (14) |
H2A—C2—H2B | 108.2 | N2—C11—N3 | 113.56 (13) |
N2—C3—C4 | 112.29 (14) | C12—C11—N3 | 110.86 (13) |
N2—C3—H3A | 109.1 | N2—C11—H11 | 106.3 |
C4—C3—H3A | 109.1 | C12—C11—H11 | 106.3 |
N2—C3—H3B | 109.1 | N3—C11—H11 | 106.3 |
C4—C3—H3B | 109.1 | N4—C12—C11 | 113.04 (14) |
H3A—C3—H3B | 107.9 | N4—C12—N1 | 113.60 (13) |
C5—C4—C3 | 109.50 (15) | C11—C12—N1 | 110.04 (13) |
C5—C4—H4A | 109.8 | N4—C12—H12 | 106.5 |
C3—C4—H4A | 109.8 | C11—C12—H12 | 106.5 |
C5—C4—H4B | 109.8 | N1—C12—H12 | 106.5 |
C3—C4—H4B | 109.8 | H2C—O2—H2D | 92 (7) |
H4A—C4—H4B | 108.2 | H2E—O2A—H2F | 124 (9) |
N3—C5—C4 | 110.20 (14) | ||
Zn1—O1—N1—C1 | −62.44 (15) | C12—N1—C10—C9 | −57.12 (16) |
Zn1—O1—N1—C10 | 60.28 (15) | C8—C9—C10—N1 | 58.25 (18) |
Zn1—O1—N1—C12 | 178.98 (9) | C2—N2—C11—C12 | −48.08 (19) |
O1—N1—C1—C2 | −55.24 (16) | C3—N2—C11—C12 | 178.82 (13) |
C10—N1—C1—C2 | −178.78 (13) | C2—N2—C11—N3 | 79.25 (17) |
C12—N1—C1—C2 | 62.43 (16) | C3—N2—C11—N3 | −53.85 (17) |
C11—N2—C2—C1 | 52.82 (19) | C6—N3—C11—N2 | 176.31 (13) |
C3—N2—C2—C1 | −174.84 (14) | C5—N3—C11—N2 | 54.33 (18) |
N1—C1—C2—N2 | −59.05 (17) | C6—N3—C11—C12 | −55.28 (17) |
C11—N2—C3—C4 | 55.33 (19) | C5—N3—C11—C12 | −177.27 (13) |
C2—N2—C3—C4 | −79.42 (19) | C7—N4—C12—C11 | −47.23 (19) |
N2—C3—C4—C5 | −56.6 (2) | C8—N4—C12—C11 | 179.49 (13) |
C6—N3—C5—C4 | −176.21 (14) | C7—N4—C12—N1 | 79.08 (18) |
C11—N3—C5—C4 | −55.01 (17) | C8—N4—C12—N1 | −54.20 (18) |
C3—C4—C5—N3 | 56.74 (19) | N2—C11—C12—N4 | 176.91 (13) |
C5—N3—C6—C7 | −178.14 (14) | N3—C11—C12—N4 | 48.17 (18) |
C11—N3—C6—C7 | 60.20 (17) | N2—C11—C12—N1 | 48.73 (17) |
C12—N4—C7—C6 | 51.16 (19) | N3—C11—C12—N1 | −80.01 (16) |
C8—N4—C7—C6 | −175.92 (14) | O1—N1—C12—N4 | −64.71 (16) |
N3—C6—C7—N4 | −56.85 (18) | C1—N1—C12—N4 | 175.53 (13) |
C12—N4—C8—C9 | 54.02 (19) | C10—N1—C12—N4 | 55.82 (17) |
C7—N4—C8—C9 | −81.15 (18) | O1—N1—C12—C11 | 63.16 (15) |
N4—C8—C9—C10 | −55.69 (19) | C1—N1—C12—C11 | −56.59 (16) |
O1—N1—C10—C9 | 60.84 (16) | C10—N1—C12—C11 | −176.31 (13) |
C1—N1—C10—C9 | −176.07 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···O1 | 1.00 | 2.15 | 2.8297 (18) | 123 |
N3—H3···O2 | 1.00 | 1.94 | 2.763 (6) | 138 |
N3—H3···O2A | 1.00 | 1.98 | 2.786 (7) | 136 |
O2—H2C···Cl2i | 0.87 (4) | 2.61 (8) | 3.154 (6) | 121 (7) |
O2—H2C···N4ii | 0.87 (4) | 2.61 (8) | 3.262 (6) | 133 (8) |
O2—H2D···Cl1 | 0.87 (4) | 2.39 (4) | 3.227 (6) | 162 (6) |
O2A—H2E···Cl2i | 0.87 (4) | 2.69 (8) | 3.295 (6) | 128 (9) |
O2A—H2E···N4ii | 0.87 (4) | 2.84 (9) | 3.202 (6) | 107 (7) |
O2A—H2F···Cl1 | 0.98 (6) | 2.04 (7) | 2.996 (6) | 163 (5) |
C1—H1A···Cl2 | 0.99 | 2.78 | 3.6198 (18) | 143 |
C2—H2B···Cl3iii | 0.99 | 2.96 | 3.7412 (18) | 136 |
C3—H3A···N2iv | 0.99 | 2.64 | 3.348 (2) | 129 |
C4—H4B···Cl2v | 0.99 | 2.92 | 3.6201 (19) | 128 |
C5—H5A···Cl2i | 0.99 | 2.92 | 3.8290 (19) | 154 |
C5—H5B···Cl3vi | 0.99 | 2.90 | 3.8493 (19) | 161 |
C6—H6A···Cl1vi | 0.99 | 2.87 | 3.6295 (18) | 135 |
C6—H6B···Cl2i | 0.99 | 2.95 | 3.8679 (19) | 154 |
C7—H7A···O1 | 0.99 | 2.40 | 2.953 (2) | 115 |
C8—H8A···Cl2vii | 0.99 | 2.73 | 3.6088 (19) | 149 |
C8—H8B···Cl1viii | 0.99 | 2.73 | 3.7009 (19) | 168 |
C10—H10A···Cl2 | 0.99 | 2.67 | 3.5420 (17) | 147 |
C10—H10B···Cl1vii | 0.99 | 2.89 | 3.7018 (17) | 139 |
C12—H12···Cl2vii | 1.00 | 2.74 | 3.6524 (17) | 152 |
Symmetry codes: (i) x+1, y, z; (ii) −x+3/2, y−1/2, −z+3/2; (iii) x−1/2, −y+3/2, z−1/2; (iv) −x+1, −y+2, −z+1; (v) x+1/2, −y+3/2, z−1/2; (vi) −x+3/2, y+1/2, −z+3/2; (vii) −x+1/2, y+1/2, −z+3/2; (viii) x+1/2, −y+3/2, z+1/2. |
Acknowledgements
This material is based on work supported by the National Science Foundation under Grant No. OIA-1946093. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. TJH and BMC acknowledge the Health Research award for project No. HR13–157, from the Oklahoma Center for the Advancement of Science and Technology. This project was supported by the National Center for Research Resources and the National Institute of General Medical Sciences of the National Institutes of Health through grant No. 8P20M103447.
Funding information
Funding for this research was provided by: National Science Foundation, Office of the Director (grant No. OIA-194093); American Chemical Society Petroleum Research Fund.
References
Alcock, N. W., Moore, P. & Mok, K. F. (1980). J. Chem. Soc. Perkin Trans. 2, pp. 1186–1190. CSD CrossRef Web of Science Google Scholar
Balicki, R. (1989). Synthesis, pp. 645–646. CrossRef Google Scholar
Bernier, D. W., Wefelscheid, U. K. & Woodward, S. (2009). Org. Prep. Proced. Int. 41, 173–210. Web of Science CrossRef CAS Google Scholar
Boswell, C. A., Sun, X., Niu, W., Weisman, G. R., Wong, E. H., Rheingold, A. L. & Anderson, C. J. (2004). J. Med. Chem. 47, 1465–1474. Web of Science CSD CrossRef PubMed CAS Google Scholar
Bruker (2021). APEX and SAINT. Bruker AXS Inc., Madison Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Emerson, T. R. & Rees, C. W. (1962). J. Chem. Soc. pp. 1917–1923. CrossRef Web of Science Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Hayashi, E., Yamanaka, H. & Shimizu, K. (1959). Chem. Pharm. Bull. 7, 141–145. CrossRef CAS Google Scholar
Hubin, T. J. (2003). Coord. Chem. Rev. 241, 27–46. Web of Science CrossRef CAS Google Scholar
Hubin, T. J., Alcock, N. W., Clase, H. J. & Busch, D. H. (1999). Acta Cryst. C55, 1402–1403. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Hubin, T. J., Alcock, N. W., Morton, M. D. & Busch, D. H. (2003). Inorg. Chim. Acta, 348, 33–40. Web of Science CSD CrossRef CAS Google Scholar
Hubin, T. J., Alcock, N. W., Seib, L. L. & Busch, D. H. (2002). Inorg. Chem. 41, 7006–7014. Web of Science CrossRef PubMed CAS Google Scholar
Hubin, T. J., McCormick, J. M., Alcock, N. W. & Busch, D. H. (1998). Inorg. Chem. 37, 6549–6551. Web of Science CSD CrossRef PubMed CAS Google Scholar
Hubin, T. J., McCormick, J. M., Collinson, S. R., Buchalova, M., Perkins, C. M., Alcock, N. W., Kahol, P. K., Raghunathan, A. & Busch, D. H. (2000). J. Am. Chem. Soc. 122, 2512–2522. Web of Science CSD CrossRef CAS Google Scholar
Hubin, T. J., McCormick, J. M., Collinson, S. R., Busch, D. H. & Alcock, N. W. (1998). Chem. Commun. pp. 1675–1676. Web of Science CSD CrossRef Google Scholar
Imada, Y., Iida, H., Ono, S. & Murahashi, S. (2003). J. Am. Chem. Soc. 125, 2868–2869. Web of Science CrossRef PubMed CAS Google Scholar
Jain, S. L. & Sain, B. (2002). Chem. Commun. pp. 1040–1041. Web of Science CrossRef Google Scholar
Jasiewicz, B., Warżajtis, B. & Rychlewska, U. (2011). Polyhedron, 30, 2007–2015. Web of Science CSD CrossRef CAS Google Scholar
Jones, D. G., Wilson, K. R., Cannon-Smith, D. J., Shircliff, A. D., Zhang, Z., Chen, Z., Prior, T. J., Yin, G. & Hubin, T. J. (2015). Inorg. Chem. 54, 2221–2234. Web of Science CSD CrossRef CAS PubMed Google Scholar
Jousseaume, B. & Chanson, E. (1987). Synthesis, pp. 55–56. CrossRef Google Scholar
Kagami, H. & Motoki, S. (1978). J. Org. Chem. 43, 1267–1268. CrossRef CAS Web of Science Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Le Baccon, M., Chuburu, F., Toupet, L., Handel, H., Soibinet, M., De'champs-Olivier, I., Barbier, J. P. & Aplincourt, M. (2001). New J. Chem. 25, 1168–1174. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Matz, D. L., Jones, D. G., Roewe, K. D., Gorbet, M. J., Zhang, Z., Chen, Z. Q., Prior, T. J., Archibald, S. J., Yin, G. C. & Hubin, T. J. (2015). Dalton Trans. 44, 12210–12224. Web of Science CSD CrossRef CAS PubMed Google Scholar
May, C. M., Archibald, S. J., Bridgeman, A. J., Empson, C. J. & Hubin, T. J. (2004). Chem. Commun. pp. 1880–1881. Web of Science CSD CrossRef Google Scholar
Nespolo, M. (2019). J. Appl. Cryst. 52, 451–456. Web of Science CrossRef CAS IUCr Journals Google Scholar
Odendaal, A. Y., Fiamengo, A. L., Ferdani, R., Wadas, T. J., Hill, D. C., Peng, Y., Heroux, K. J., Golen, J. A., Rheingold, A. L., Anderson, C. J., Weisman, G. R. & Wong, E. H. (2011). Inorg. Chem. 50, 3078–3086. Web of Science CSD CrossRef CAS PubMed Google Scholar
O'Neil, I. A., Cleator, E. & Tapolczay, D. J. (2001). Tetrahedron Lett. 42, 8247–8249. CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sun, X., Wuest, M., Weisman, G. R., Wong, E. H., Reed, D. P., Boswell, C. A., Motekaitis, R., Martell, A. E., Welch, M. J. & Anderson, C. J. (2002). J. Med. Chem. 45, 469–477. Web of Science CrossRef PubMed CAS Google Scholar
Wang, F. Z. H., Zhang, H., And, G. S. & Lu, X. (1999). Synth. Commun. 29, 11–14. Web of Science CrossRef CAS Google Scholar
Weisman, G. R., Ho, S. C. H. & Johnson, V. (1980). Tetrahedron Lett. 21, 335–338. CrossRef CAS Web of Science Google Scholar
Weisman, G. R., Rogers, M. E., Wong, E. H., Jasinski, J. P. & Paight, E. S. (1990). J. Am. Chem. Soc. 112, 8604–8605. CSD CrossRef CAS Web of Science Google Scholar
Weisman, G. R., Wong, E. H., Hill, D. C., Rogers, M. E., Reed, D. P. & Calabrese, J. C. (1996). Chem. Commun. pp. 947–948. CSD CrossRef Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Won, P. D., Funwie, N. L., Birdsong, O. C., Obali, A. Y., Burke, B. P., McRobbie, G., Greenman, P., Prior, T. J., Archibald, S. J. & Hubin, T. J. (2015). Eur. J. Inorg. Chem. pp. 4678–4688. Web of Science CSD CrossRef Google Scholar
Wong, E. H., Weisman, G. R., Hill, D. C., Reed, D. P., Rogers, M. E., Condon, J. S., Fagan, M. A., Calabrese, J. C., Lam, K.-C., Guzei, I. A. & Rheingold, A. L. (2000). J. Am. Chem. Soc. 122, 10561–10572. Web of Science CSD CrossRef CAS Google Scholar
Woodin, K. S., Heroux, K. J., Boswell, C. A., Wong, E. H., Weisman, G. R., Niu, W. J., Tomellini, S. A., Anderson, C. J., Zakharov, L. N. & Rheingold, A. L. (2005). Eur. J. Inorg. Chem. pp. 4829–4833. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.