research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 8-benzyl-1-[(4-methyl­phen­yl)sulfon­yl]-2,7,8,9-tetra­hydro-1H-3,6:10,13-diep­­oxy-1,8-benzodi­aza­cyclo­penta­decine ethanol hemisolvate

crossmark logo

aRUDN University, 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation, bZelinsky Institute of Organic Chemistry of RAS, 4, 7 Leninsky Prospect, 119991 Moscow, Russian Federation, cWestern Caspian University, Istiqlaliyyat Street 31, AZ1001, Baku, Azerbaijan, dAzerbaijan Medical University, Scientific Research Centre (SRC), A. Kasumzade St. 14. Baku, AZ 1022, Azerbaijan, eDepartment of Chemistry, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan, fDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, and gDepartment of Chemistry, M.M.A.M.C (Tribhuvan University), Biratnagar, Nepal
*Correspondence e-mail: akkurt@erciyes.edu.tr, ajaya.bhattarai@mmamc.tu.edu.np

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 1 March 2024; accepted 8 March 2024; online 26 March 2024)

The asymmetric unit of the title compound, 2C31H28N2O4S·C2H6O, contains a parent mol­ecule and a half mol­ecule of ethanol solvent. The main compound stabilizes its mol­ecular conformation by forming a ring with an R12(7) motif with the ethanol solvent mol­ecule. In the crystal, mol­ecules are connected by C—H⋯O and O—H⋯O hydrogen bonds, forming a three-dimensional network. In addition, C—H⋯π inter­actions also strengthen the mol­ecular packing.

1. Chemical context

Inter­molecular weak inter­actions play critical roles in maintaining supra­molecular networks with diverse structures and functions, wherein multiple weak bonds can cooperate to promote both the formation and stabilization of the assemblies (Aliyeva et al., 2024[Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C., Gomila, R. M., Frontera, A., Mahmudov, K. T. & Pombeiro, A. J. L. (2024). Cryst. Growth Des. 24, 781-791.]). N-Ligands bearing amino and imino moieties provide a rich coordination chemistry (Kopylovich et al., 2011a[Kopylovich, M. N., Karabach, Y. Y., Mahmudov, K. T., Haukka, M., Kirillov, A. M., Figiel, P. J. & Pombeiro, A. J. L. (2011a). Cryst. Growth Des. 11, 4247-4252.],b[Kopylovich, M. N., Mahmudov, K. T., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Kuznetsov, M. L., Silva, T. F. S., Fraústo da Silva, J. J. R. & Pombeiro, A. J. L. (2011b). J. Phys. Org. Chem. 24, 764-773.],c[Kopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011c). Inorg. Chim. Acta, 374, 175-180.]; Mahmudov et al., 2013[Mahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108-112.], 2021[Mahmudov, K. T., Huseynov, F. E., Aliyeva, V. A., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Chem. A Eur. J. 27, 14370-14389.]). A number of metal complexes with N-ligands have been reported and characterized (Mahmoudi et al., 2017a[Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192-205.],b[Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. pp. 4763-4772.]); some of them possess inter­esting spectroscopic, supra­molecular and catalytic properties (Akbari Afkhami et al., 2017[Akbari Afkhami, F., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888-14896.]; Gurbanov et al., 2018[Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190-194.], 2020[Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020). Chem. A Eur. J. 26, 14833-14837.]). Similarly to the design of N-heterocycles (Abdelhamid et al., 2011[Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744.]; Khalilov et al., 2021[Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.]; Safavora et al., 2019[Safavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1183-1185.]), particular attention has also been paid to the decoration of the secondary coordination sphere of metal complexes (Gurbanov et al., 2022a[Gurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022a). Dalton Trans. 51, 1019-1031.],b[Gurbanov, A. V., Kuznetsov, M. L., Resnati, G., Mahmudov, K. T. & Pombeiro, A. J. L. (2022b). Cryst. Growth Des. 22, 3932-3940.]; Mahmoudi et al., 2019[Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108-117.], 2021[Mahmoudi, G., Zangrando, E., Miroslaw, B., Gurbanov, A. V., Babashkina, M. G., Frontera, A. & Safin, D. A. (2021). Inorg. Chim. Acta, 519, 120279.]). Depending on the attached functional groups, the chemical properties of N-heterocyclic ligands and their metal complexes can be improved (Aliyeva et al., 2024[Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C., Gomila, R. M., Frontera, A., Mahmudov, K. T. & Pombeiro, A. J. L. (2024). Cryst. Growth Des. 24, 781-791.]). On the other hand, macrocyclic structures containing furan fragments have been described in the literature: furan-containing crown ethers and porphyrinoids (Märkl et al., 1997[Märkl, G., Hafner, M., Kreitmeier, P., Stadler, C., Daub, J., Nöth, H., Schmidt, M. & Gescheidt, G. (1997). Helv. Chim. Acta, 80, 2456-2476.]), furan-containing porphyrins (Srinivasan et al., 1997[Srinivasan, A., Reddy, V. M., Narayanan, S. J., Sridevi, B., Pushpan, S. K., Ravikumar, M. & Chandrashekar, T. K. (1997). Angew. Chem. Int. Ed. Engl. 36, 2598-2601.]), cyclic oligomers of furane-containing amino acids (Chakraborty et al., 2007[Chakraborty, T. K., Arora, A., Roy, S., Kumar, N. & Maiti, S. (2007). J. Med. Chem. 50, 5539-5542.]) and anti­aromatic macrocycles in which furan blocks are inter­connected through diene elements (Märkl et al., 1996[Märkl, G., Knott, Th., Kreitmeier, P., Burgemeister, Th. & Kastner, F. (1996). Tetrahedron, 52, 11763-11782.]). Materials based on macrocycles have applications in drug discovery, can be used for the separation of isomers and metals, purification of organic solvents, chemical detection systems etc. Continuing our research into the chemistry of furyl-substituted sulfonamides (Guliyeva et al., 2024[Guliyeva, N. A., Burkin, G. M., Annadurdyyeva, S., Khrustalev, V. N., Atioğlu, Z., Akkurt, M. & Bhattarai, A. (2024). Acta Cryst. E80, 62-66.]; Mammadova et al., 2023a[Mammadova, G. Z., Yakovleva, E. D., Burkin, G. M., Khrustalev, V. N., Akkurt, M., Çelikesir, S. T. & Bhattarai, A. (2023a). Acta Cryst. E79, 747-751.],b[Mammadova, G. Z., Annadurdyyeva, S., Burkin, G. M., Khrustalev, V. N., Akkurt, M., Yıldırım, S. Ö. & Bhattarai, A. (2023b). Acta Cryst. E79, 499-503.]; Borisova et al., 2018a[Borisova, K. K., Kvyatkovskaya, E. A., Nikitina, E. V., Aysin, R. R., Novikov, R. A. & Zubkov, F. I. (2018a). J. Org. Chem. 83, 4840-4850.],b[Borisova, K. K., Nikitina, E. V., Novikov, R. A., Khrustalev, V. N., Dorovatovskii, P. V., Zubavichus, Y. V., Kuznetsov, M. L., Zaytsev, V. P., Varlamov, A. V. & Zubkov, F. I. (2018b). Chem. Commun. 54, 2850-2853.]), a new approach toward the synthesis of difuryl-substituted arenesulfonamide macrocycles has been developed. The synthetic procedure is the Mannich reaction between a difuryl-substituted toluene­sulfonamide 1 and 3-benzyl-1,5,3-dioxazepane 2 under Lewis acid catalysis (Fig. 1[link]). Tri­methyl­silyl chloride is the most efficient catalyst and has exhibited satisfactory results.

[Scheme 1]
[Figure 1]
Figure 1
Synthesis of 8-benzyl-1-[(4-methyl­phen­yl)sulfon­yl]-2,7,8,9-tetra­hydro-1H-3,6:10,13-diep­oxy-1,8-benzodi­aza­cyclo­penta­decine.

2. Structural commentary

The asymmetric unit of the title compound contains a parent mol­ecule and a half mol­ecule of the solvent ethanol. The main compound stabilizes its mol­ecular conformation by forming a ring with an R12(7) motif with the ethanol solvent mol­ecule (Fig. 2[link]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). While the two furan rings (O18/C3–C6 and O19/C10–C13) in the central ring system subtend an angle of 75.50 (7)° with each other, they make dihedral angles of 50.15 (7) and 25.58 (7)°, respectively, with the benzene ring (C13A/C14–C17/C17A) in the same central ring. The phenyl (C26–C31) and benzene (C18–C23) rings outside the central ring make an angle of 65.91 (8)° with each other, and subtend dihedral angles of 68.95 (7) and 48.71 (7)°, respectively, with the benzene ring (C13A/C14–C17/C17A) in the central ring. The r.m.s. deviations of the planes fitted through the atoms attached to N1 and N8 are 0.0744 and 0.1889 Å, respectively, with the distances of N1 and N8 to these planes being 0.1288 (8) and 0.3271 (10) Å, respectively. The sums of the angles around the central atoms N1 and N8 are 356.20 and 334.96°, respectively. As can be seen, N1 is closer to the plane of neighboring atoms than N8, and the sum of the angles around it is closer to 360°. The S1 atom bonded to the N1 atom causes it to have a more planar environment. In the title compound, the N atoms are located on opposite sides of the mean plane through the thirteen-membered difuryl-containing ring. Bond length and angle values in the title compound are comparable to those in the related compounds discussed in the Database survey (section 4).

[Figure 2]
Figure 2
Mol­ecular structure of the title compound showing the atom labelling and ellipsoids at the 30% probability level with hydrogen bonds indicated by dashed lines.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, mol­ecules are connected by C—H⋯O and O—H⋯O hydrogen bonds, forming a three-dimensional network (Table 1[link]; Fig. 3[link]). In addition, C—H⋯π inter­actions (Table 1[link]) also strengthen the mol­ecular packing (Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg3 and Cg5 are the centroids of the O18/C3–C6 furan, C13A/C14–C17/C17A benzene and C26–C31 phenyl rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯O1i 0.99 2.53 3.4057 (17) 148
C25—H25B⋯O1i 0.99 2.59 3.5125 (18) 155
O3—H3⋯O2 0.88 (7) 2.52 (6) 3.251 (3) 141 (6)
O3—H3⋯O18 0.88 (7) 2.47 (7) 3.097 (4) 129 (5)
C2—H2ACg1ii 0.99 2.56 3.2916 (12) 131
C16—H16⋯Cg5iii 0.95 2.80 3.5220 (15) 133
C20—H20⋯Cg3iv 0.95 2.83 3.5707 (15) 135
Symmetry codes: (i) [-x, -y+1, -z+1]; (ii) [-x+1, -y, -z+1]; (iii) [x+1, y, z-1]; (iv) [-x+1, -y+1, -z].
[Figure 3]
Figure 3
Crystal packing viewed along the b-axis showing C—H⋯O and O—H⋯O hydrogen bonds shown as dashed lines.
[Figure 4]
Figure 4
View of the C—H⋯π inter­actions in the crystal packing, shown as dashed lines.

Two-dimensional fingerprints and the Hirshfeld surface of the title mol­ecule were computed using CrystalExplorer17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The Hirshfeld surface was mapped over dnorm in the range −0.1635 (red) to +1.5099 (blue) a.u. (Fig. 5[link]). The overall two-dimensional fingerprint plot and those delineated into H⋯H, C⋯H/H⋯C and O⋯H/H⋯O contacts are illustrated in Fig. 5[link]ad, respectively. The pairs of spikes with tips at de + di = 2.62 Å in Fig. 6[link]c and at de + di = 2.40 Å in Fig. 6[link]d indicate weak hydrogen-bonding inter­actions. The most significant contributions to the Hirshfeld surface are from H⋯H (56.6%, Fig. 6[link]b), C⋯H/H⋯C (26.6%, Fig. 6[link]c) and O⋯H/H⋯O (13.9%, Fig. 6[link]d) inter­actions, indicating that the highest contributions arise from contacts in which H atoms are involved. Except for C⋯C inter­actions (2.1%), the other contributions are less than 1.5%.

[Figure 5]
Figure 5
Front (a) and back (b) views of the three-dimensional Hirshfeld surface, showing some C—H⋯O and O—H⋯O hydrogen bonds.
[Figure 6]
Figure 6
The two-dimensional fingerprint plots for the title mol­ecule showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C and (d) O⋯H/H⋯O inter­actions. The dĩ and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) found the compounds most similar to the title compound to be 7,14,16-trimethyl-17-(tri­fluoro­acet­yl)-18,19-dioxa-7,17-di­aza­tetra­cyclo­[11.3.1.12,5.19,12]nona­deca-2,4,9,11-tetraen-15-one (CSD refcode YEYXAF; Yıldırım et al., 2023[Yıldırım, S. Ö., Akkurt, M., Ershova, A. A., Grigoriev, M. S., Rocha, B. G. M. & Bhattarai, A. (2023). Acta Cryst. E79, 292-296.]) and 1,8,12,19,24,26-hexa­aza­penta­cyclo­[17.3.1.13,6.18, 12.114,17]hexa­cosa-3,5,14,16-tetra­ene ethyl acetate solvate dihydrate (NOYCOW; Jana et al., 2019[Jana, D., Guchhait, T., Subramaniyan, V., Kumar, A. & Mani, G. (2019). Tetrahedron Lett. 60, 151247-151250.]).

NOYCOW crystallizes in the monoclinic space group I2/a with Z = 8 while YEYXAF crystallizes in the ortho­rhom­bic space group Pbca with Z = 8. The furan rings in YEYXAF are nearly perpendicular to the mean plane through the main twelve-membered difuryl-containing ring and their oxygen atoms are oriented towards opposite sides. In NOYCOW, the pyrrole rings are also almost perpendicular to the sixteen-membered ring, but the two pyrrolic NH atoms are oriented in the same direction.

In the title compound, the N atoms are located on either side of the mean plane through the thirteen-membered difuryl-containing ring. The phenyl group of the title mol­ecule is approximately parallel to this thirteen-membered ring, and the benzene ring attached to the S atom is also approximately parallel.

5. Synthesis and crystallization

The starting materials N-(2-(furan-2-yl)phen­yl)-N-(furan-2-yl­meth­yl)-4-methyl­benzene­sulfonamide 1 (100 mg, 0.25 mmol) and 3-benzyl-1,5,3-dioxazepane 2 (52 mg, 0.27 mmol) in 5 mL of DCM were placed into a two-neck flask. The reaction mixture was purged with argon for 10 min under stirring and cooling in an ice–water bath. Chloro­tri­methyl­silane (TMSCl, 0.11 mL, 0.84 mmol) was added to the reaction with stirring at 273 K. After the addition, the reaction mixture was stirred for 24 h under argon. Then a saturated Na2CO3 solution was added to the reaction mixture to adjust the pH to ∼7. Then it was poured into water (20 mL) and extracted with DCM (3 × 10 mL). The reaction product was purified by column chromatography (SiO2, 20 × 1.1 cm, eluent: hepta­ne/ethyl acetate 10:1, TLC: heptane/ethyl acetate 4:1). The title compound was obtained as a colorless powder, yield 13%, 17 mg (0.032 mmol); m.p. > 523 K (with decomp.). Single crystals of the title compound were grown from EtOH. IR (KBr), ν (cm−1): 1348 (νas SO2), 1162 (νs SO2). 1H NMR (700.2 MHz, CDCl3) (J, Hz): δ 7.47 (d, J = 8.1 Hz, 2H), 7.33 (d, J = 8.1 Hz, 1H), 7.27-7.20 (m, 7H), 7.13 (d, J = 8.1 Hz, 2H), 6.98 (d, J = 7.9 Hz, 1H), 6.30 (d, J = 2.9 Hz, 1H), 5.89 (d, J = 2.9 Hz, 1H), 5.74 (d, J = 2.9 Hz, 1H), 5.62 (d, J = 2.9 Hz, 1H), 5.15 (d, J = 14.8 Hz, 1H), 4.10 (d, J = 14.8 Hz, 1H), 3.86 (s, 2H), 3.79 (d, J = 15.0 Hz, 1H), 3.65 (d, J = 15.0 Hz, 1H), 3.57 (d, J = 13.8 Hz, 1H), 3.47 (d, J = 13.8 Hz, 1H), 2.33 (s, 3H). 13C{1H} NMR (176.1 MHz, CDCl3): δ 152.3, 152.1, 150.8, 146.4, 142.1, 138.2, 135.9, 134.9, 132.8, 128.9, 128.8, 128.3 (2C), 127.9 (2C), 127.7, 127.3 (2C), 126.7 (2C), 126.0, 114.1, 110.5, 109.6, 108.1, 107.0, 54.8, 49.7, 48.9, 48.4, 20.5. MS (ESI) m/z: [M + H]+ 525. Elemental analysis calculated (%) for C31H28N2O4S: C 70.97, H 5.38, N 5.34, S 6.11; found: C 71.11, H 5.49, N 5.59, S 5.87.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All C-bound H atoms were positioned geometrically (C—H = 0.95 and 0.99 Å) and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C). The O-bound H atom of the ethanol solvent was located in difference-Fourier maps [O3—H3 = 0.88 (6) Å] and refined freely with Uiso(H) = 1.5Ueq(O). The site occupation factors of the solvent atoms were fixed at 0.5.

Table 2
Experimental details

Crystal data
Chemical formula 2C31H28N2O4S·C2H6O
Mr 1095.29
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 10.7108 (2), 11.7817 (2), 12.9233 (3)
α, β, γ (°) 73.831 (2), 67.667 (2), 67.380 (2)
V3) 1375.62 (6)
Z 1
Radiation type Cu Kα
μ (mm−1) 1.39
Crystal size (mm) 0.28 × 0.25 × 0.21
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.696, 0.759
No. of measured, independent and observed [I > 2σ(I)] reflections 41981, 5824, 5577
Rint 0.035
(sin θ/λ)max−1) 0.634
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.088, 1.06
No. of reflections 5824
No. of parameters 375
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.36, −0.38
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2016/6 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.], ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

8-Benzyl-1-[(4-methylphenyl)sulfonyl]-2,7,8,9-tetrahydro-1H-3,6:10,13-diepoxy-1,8-benzodiazacyclopentadecine ethanol hemisolvate top
Crystal data top
2C31H28N2O4S·C2H6OZ = 1
Mr = 1095.29F(000) = 578
Triclinic, P1Dx = 1.322 Mg m3
a = 10.7108 (2) ÅCu Kα radiation, λ = 1.54184 Å
b = 11.7817 (2) ÅCell parameters from 29573 reflections
c = 12.9233 (3) Åθ = 3.7–77.3°
α = 73.831 (2)°µ = 1.39 mm1
β = 67.667 (2)°T = 100 K
γ = 67.380 (2)°Prism, colourless
V = 1375.62 (6) Å30.28 × 0.25 × 0.21 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
5577 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tubeRint = 0.035
φ and ω scansθmax = 77.9°, θmin = 3.7°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
h = 1313
Tmin = 0.696, Tmax = 0.759k = 1413
41981 measured reflectionsl = 1615
5824 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0392P)2 + 0.6403P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.088(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.36 e Å3
5824 reflectionsΔρmin = 0.38 e Å3
375 parametersExtinction correction: SHELXL-2019/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0016 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.34319 (3)0.29237 (3)0.25323 (2)0.01869 (9)
O10.26473 (9)0.42189 (9)0.23711 (8)0.0254 (2)
O20.27094 (10)0.20120 (9)0.30881 (8)0.0275 (2)
N10.44474 (10)0.27652 (9)0.32641 (8)0.0172 (2)
C20.51453 (13)0.15058 (10)0.37966 (10)0.0191 (2)
H2A0.4851590.0881760.3647040.023*
H2B0.6190130.1299230.3461170.023*
C30.47475 (12)0.14584 (10)0.50358 (10)0.0175 (2)
C40.54024 (13)0.15296 (11)0.57161 (10)0.0198 (2)
H40.6347210.1549180.5501000.024*
C50.43909 (13)0.15696 (11)0.68239 (10)0.0199 (2)
H50.4532190.1621820.7489590.024*
C60.31931 (13)0.15184 (10)0.67389 (10)0.0185 (2)
C70.17501 (13)0.15988 (11)0.75523 (10)0.0220 (2)
H7A0.1315410.1145020.7319870.026*
H7B0.1836510.1185170.8313020.026*
N80.08088 (11)0.28896 (10)0.76194 (8)0.0200 (2)
C90.04134 (13)0.35259 (11)0.65683 (10)0.0204 (2)
H9A0.0619790.3976270.6776680.024*
H9B0.0607520.2890990.6113730.024*
C100.11988 (12)0.44237 (11)0.58612 (10)0.0189 (2)
C110.09010 (13)0.56626 (12)0.57983 (10)0.0223 (3)
H110.0063650.6207680.6228200.027*
C120.20853 (13)0.59902 (11)0.49635 (11)0.0221 (2)
H120.2191590.6795790.4731750.027*
C130.30360 (12)0.49285 (11)0.45610 (10)0.0173 (2)
C13A0.44410 (12)0.46902 (10)0.37101 (10)0.0170 (2)
C140.52046 (13)0.55094 (11)0.35073 (10)0.0197 (2)
H140.4802540.6167670.3940830.024*
C150.65231 (13)0.53900 (11)0.26973 (11)0.0223 (2)
H150.7012900.5958940.2582440.027*
C160.71286 (13)0.44340 (12)0.20519 (11)0.0238 (3)
H160.8026730.4351400.1486190.029*
C170.64055 (13)0.36040 (11)0.22444 (10)0.0210 (2)
H170.6816550.2947970.1807360.025*
C17A0.50862 (12)0.37150 (10)0.30676 (10)0.0169 (2)
O180.33994 (9)0.14221 (7)0.56487 (7)0.01775 (17)
O190.25043 (9)0.39580 (7)0.51033 (7)0.01831 (18)
C180.45360 (13)0.25328 (11)0.11787 (10)0.0194 (2)
C190.47466 (14)0.34721 (12)0.02676 (11)0.0231 (3)
H190.4294600.4320360.0368400.028*
C200.56225 (14)0.31628 (13)0.07921 (11)0.0256 (3)
H200.5771910.3805920.1414370.031*
C210.62851 (13)0.19256 (13)0.09572 (11)0.0248 (3)
C220.60615 (16)0.09972 (13)0.00297 (12)0.0298 (3)
H220.6513170.0148440.0128770.036*
C230.51916 (15)0.12903 (12)0.10348 (11)0.0273 (3)
H230.5045260.0648680.1659250.033*
C240.72086 (16)0.15961 (15)0.21168 (12)0.0332 (3)
H24A0.6942670.2297320.2695940.050*
H24B0.7074890.0861910.2219900.050*
H24C0.8207990.1415040.2187760.050*
C250.04484 (13)0.29217 (13)0.86246 (11)0.0241 (3)
H25A0.0897380.2328370.8623080.029*
H25B0.1149170.3765930.8598090.029*
C260.00487 (12)0.25859 (12)0.96982 (10)0.0207 (2)
C270.04248 (13)0.16461 (12)1.05579 (11)0.0240 (3)
H270.0933260.1191801.0468740.029*
C280.00605 (15)0.13668 (13)1.15487 (12)0.0290 (3)
H280.0333770.0733091.2135750.035*
C290.06986 (15)0.20120 (14)1.16770 (12)0.0318 (3)
H290.0957920.1814381.2347270.038*
C300.10807 (15)0.29490 (14)1.08238 (12)0.0306 (3)
H300.1598590.3395131.0911830.037*
C310.07072 (14)0.32339 (13)0.98440 (11)0.0258 (3)
H310.0969090.3878110.9265050.031*
O30.1154 (3)0.0518 (3)0.5446 (2)0.0509 (6)0.5
H30.183 (6)0.085 (5)0.503 (5)0.076*0.5
C320.0470 (6)0.0434 (4)0.4684 (5)0.0246 (10)0.5
H32A0.0117590.1280740.4444170.030*0.5
H32B0.1218870.0121970.3997570.030*0.5
C330.0412 (13)0.0361 (10)0.5180 (10)0.093 (4)0.5
H33A0.0827990.0369830.4626030.140*0.5
H33B0.0164110.1207990.5402000.140*0.5
H33C0.1174280.0047550.5849250.140*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01708 (14)0.02084 (16)0.01848 (15)0.00704 (11)0.00430 (11)0.00365 (11)
O10.0207 (4)0.0262 (5)0.0259 (5)0.0012 (4)0.0080 (4)0.0067 (4)
O20.0265 (5)0.0350 (5)0.0263 (5)0.0196 (4)0.0040 (4)0.0042 (4)
N10.0208 (5)0.0145 (5)0.0166 (5)0.0065 (4)0.0056 (4)0.0018 (4)
C20.0227 (6)0.0136 (5)0.0188 (6)0.0043 (4)0.0053 (5)0.0027 (4)
C30.0185 (5)0.0114 (5)0.0199 (6)0.0040 (4)0.0045 (4)0.0014 (4)
C40.0205 (6)0.0153 (5)0.0233 (6)0.0052 (4)0.0072 (5)0.0027 (4)
C50.0252 (6)0.0155 (5)0.0195 (6)0.0050 (4)0.0086 (5)0.0030 (4)
C60.0238 (6)0.0131 (5)0.0161 (5)0.0040 (4)0.0060 (4)0.0015 (4)
C70.0247 (6)0.0193 (6)0.0196 (6)0.0083 (5)0.0046 (5)0.0008 (4)
N80.0187 (5)0.0216 (5)0.0166 (5)0.0054 (4)0.0039 (4)0.0017 (4)
C90.0184 (5)0.0234 (6)0.0184 (6)0.0068 (5)0.0054 (4)0.0018 (5)
C100.0165 (5)0.0226 (6)0.0156 (5)0.0040 (4)0.0041 (4)0.0039 (4)
C110.0205 (6)0.0212 (6)0.0208 (6)0.0033 (5)0.0032 (5)0.0056 (5)
C120.0237 (6)0.0173 (6)0.0228 (6)0.0053 (5)0.0046 (5)0.0044 (5)
C130.0201 (6)0.0163 (5)0.0161 (5)0.0062 (4)0.0066 (4)0.0013 (4)
C13A0.0186 (5)0.0148 (5)0.0160 (5)0.0039 (4)0.0067 (4)0.0002 (4)
C140.0227 (6)0.0165 (5)0.0205 (6)0.0059 (4)0.0077 (5)0.0027 (4)
C150.0225 (6)0.0201 (6)0.0262 (6)0.0100 (5)0.0078 (5)0.0013 (5)
C160.0185 (6)0.0231 (6)0.0264 (6)0.0074 (5)0.0021 (5)0.0045 (5)
C170.0203 (6)0.0181 (6)0.0222 (6)0.0048 (4)0.0039 (5)0.0051 (4)
C17A0.0182 (5)0.0147 (5)0.0177 (5)0.0057 (4)0.0062 (4)0.0004 (4)
O180.0201 (4)0.0168 (4)0.0162 (4)0.0066 (3)0.0051 (3)0.0019 (3)
O190.0178 (4)0.0160 (4)0.0179 (4)0.0048 (3)0.0029 (3)0.0022 (3)
C180.0199 (5)0.0222 (6)0.0184 (6)0.0071 (5)0.0074 (4)0.0034 (4)
C190.0257 (6)0.0201 (6)0.0230 (6)0.0070 (5)0.0084 (5)0.0018 (5)
C200.0266 (6)0.0291 (7)0.0199 (6)0.0104 (5)0.0079 (5)0.0012 (5)
C210.0211 (6)0.0337 (7)0.0203 (6)0.0057 (5)0.0086 (5)0.0064 (5)
C220.0380 (8)0.0227 (6)0.0261 (7)0.0025 (5)0.0115 (6)0.0076 (5)
C230.0377 (7)0.0210 (6)0.0216 (6)0.0080 (5)0.0100 (5)0.0017 (5)
C240.0290 (7)0.0445 (8)0.0224 (7)0.0046 (6)0.0076 (5)0.0101 (6)
C250.0185 (6)0.0334 (7)0.0197 (6)0.0099 (5)0.0034 (5)0.0041 (5)
C260.0168 (5)0.0245 (6)0.0181 (6)0.0045 (5)0.0029 (4)0.0056 (5)
C270.0223 (6)0.0236 (6)0.0253 (6)0.0075 (5)0.0054 (5)0.0049 (5)
C280.0307 (7)0.0263 (7)0.0251 (7)0.0065 (5)0.0094 (5)0.0008 (5)
C290.0312 (7)0.0378 (8)0.0264 (7)0.0062 (6)0.0143 (6)0.0036 (6)
C300.0260 (7)0.0394 (8)0.0318 (7)0.0122 (6)0.0100 (6)0.0096 (6)
C310.0233 (6)0.0308 (7)0.0234 (6)0.0119 (5)0.0035 (5)0.0044 (5)
O30.0515 (15)0.0704 (18)0.0412 (13)0.0381 (14)0.0009 (11)0.0158 (12)
C320.032 (2)0.0147 (16)0.0178 (17)0.0037 (14)0.0020 (15)0.0027 (13)
C330.103 (8)0.122 (8)0.074 (7)0.060 (6)0.024 (6)0.014 (5)
Geometric parameters (Å, º) top
S1—O11.4309 (9)C16—H160.9500
S1—O21.4339 (9)C17—C17A1.3923 (16)
S1—N11.6246 (10)C17—H170.9500
S1—C181.7688 (12)C18—C191.3880 (17)
N1—C17A1.4435 (14)C18—C231.3900 (18)
N1—C21.4843 (14)C19—C201.3881 (18)
C2—C31.4829 (16)C19—H190.9500
C2—H2A0.9900C20—C211.3915 (19)
C2—H2B0.9900C20—H200.9500
C3—C41.3517 (17)C21—C221.3942 (19)
C3—O181.3688 (14)C21—C241.5090 (18)
C4—C51.4300 (17)C22—C231.3867 (19)
C4—H40.9500C22—H220.9500
C5—C61.3534 (17)C23—H230.9500
C5—H50.9500C24—H24A0.9800
C6—O181.3711 (14)C24—H24B0.9800
C6—C71.4869 (17)C24—H24C0.9800
C7—N81.4712 (15)C25—C261.5101 (17)
C7—H7A0.9900C25—H25A0.9900
C7—H7B0.9900C25—H25B0.9900
N8—C251.4699 (15)C26—C271.3930 (18)
N8—C91.4875 (15)C26—C311.3948 (18)
C9—C101.4912 (16)C27—C281.3952 (19)
C9—H9A0.9900C27—H270.9500
C9—H9B0.9900C28—C291.384 (2)
C10—C111.3544 (18)C28—H280.9500
C10—O191.3725 (14)C29—C301.389 (2)
C11—C121.4235 (17)C29—H290.9500
C11—H110.9500C30—C311.3859 (19)
C12—C131.3609 (17)C30—H300.9500
C12—H120.9500C31—H310.9500
C13—O191.3690 (14)O3—C321.474 (7)
C13—C13A1.4635 (16)O3—H30.88 (6)
C13A—C17A1.4041 (16)C32—C331.438 (7)
C13A—C141.4045 (16)C32—H32A0.9900
C14—C151.3841 (17)C32—H32B0.9900
C14—H140.9500C33—H33A0.9800
C15—C161.3911 (18)C33—H33B0.9800
C15—H150.9500C33—H33C0.9800
C16—C171.3852 (17)
O1—S1—O2120.65 (6)C17A—C17—H17119.4
O1—S1—N1106.82 (5)C17—C17A—C13A120.65 (11)
O2—S1—N1106.39 (5)C17—C17A—N1117.53 (10)
O1—S1—C18107.02 (6)C13A—C17A—N1121.77 (10)
O2—S1—C18107.44 (6)C3—O18—C6106.71 (9)
N1—S1—C18108.00 (5)C13—O19—C10107.37 (9)
C17A—N1—C2116.81 (9)C19—C18—C23120.47 (12)
C17A—N1—S1119.73 (8)C19—C18—S1119.61 (9)
C2—N1—S1119.66 (8)C23—C18—S1119.92 (10)
C3—C2—N1110.33 (9)C18—C19—C20119.50 (12)
C3—C2—H2A109.6C18—C19—H19120.2
N1—C2—H2A109.6C20—C19—H19120.2
C3—C2—H2B109.6C19—C20—C21121.04 (12)
N1—C2—H2B109.6C19—C20—H20119.5
H2A—C2—H2B108.1C21—C20—H20119.5
C4—C3—O18110.28 (10)C20—C21—C22118.49 (12)
C4—C3—C2133.66 (11)C20—C21—C24120.77 (12)
O18—C3—C2115.88 (10)C22—C21—C24120.73 (13)
C3—C4—C5106.38 (11)C23—C22—C21121.19 (12)
C3—C4—H4126.8C23—C22—H22119.4
C5—C4—H4126.8C21—C22—H22119.4
C6—C5—C4106.62 (11)C22—C23—C18119.30 (12)
C6—C5—H5126.7C22—C23—H23120.3
C4—C5—H5126.7C18—C23—H23120.3
C5—C6—O18109.96 (10)C21—C24—H24A109.5
C5—C6—C7133.39 (11)C21—C24—H24B109.5
O18—C6—C7116.59 (10)H24A—C24—H24B109.5
N8—C7—C6112.77 (10)C21—C24—H24C109.5
N8—C7—H7A109.0H24A—C24—H24C109.5
C6—C7—H7A109.0H24B—C24—H24C109.5
N8—C7—H7B109.0N8—C25—C26110.98 (10)
C6—C7—H7B109.0N8—C25—H25A109.4
H7A—C7—H7B107.8C26—C25—H25A109.4
C25—N8—C7109.86 (10)N8—C25—H25B109.4
C25—N8—C9111.95 (9)C26—C25—H25B109.4
C7—N8—C9113.15 (9)H25A—C25—H25B108.0
N8—C9—C10113.10 (10)C27—C26—C31118.74 (12)
N8—C9—H9A109.0C27—C26—C25121.66 (11)
C10—C9—H9A109.0C31—C26—C25119.59 (11)
N8—C9—H9B109.0C26—C27—C28120.51 (12)
C10—C9—H9B109.0C26—C27—H27119.7
H9A—C9—H9B107.8C28—C27—H27119.7
C11—C10—O19109.65 (10)C29—C28—C27120.05 (13)
C11—C10—C9133.17 (11)C29—C28—H28120.0
O19—C10—C9117.17 (10)C27—C28—H28120.0
C10—C11—C12106.75 (11)C28—C29—C30119.86 (13)
C10—C11—H11126.6C28—C29—H29120.1
C12—C11—H11126.6C30—C29—H29120.1
C13—C12—C11106.89 (11)C31—C30—C29120.07 (13)
C13—C12—H12126.6C31—C30—H30120.0
C11—C12—H12126.6C29—C30—H30120.0
C12—C13—O19109.34 (10)C30—C31—C26120.76 (13)
C12—C13—C13A131.60 (11)C30—C31—H31119.6
O19—C13—C13A119.05 (10)C26—C31—H31119.6
C17A—C13A—C14117.06 (11)C32—O3—H3108 (4)
C17A—C13A—C13125.36 (10)C33—C32—O3114.2 (4)
C14—C13A—C13117.58 (10)C33—C32—H32A108.7
C15—C14—C13A122.22 (11)O3—C32—H32A108.7
C15—C14—H14118.9C33—C32—H32B108.7
C13A—C14—H14118.9O3—C32—H32B108.7
C14—C15—C16119.77 (11)H32A—C32—H32B107.6
C14—C15—H15120.1C32—C33—H33A109.5
C16—C15—H15120.1C32—C33—H33B109.5
C17—C16—C15119.17 (11)H33A—C33—H33B109.5
C17—C16—H16120.4C32—C33—H33C109.5
C15—C16—H16120.4H33A—C33—H33C109.5
C16—C17—C17A121.10 (11)H33B—C33—H33C109.5
C16—C17—H17119.4
O1—S1—N1—C17A36.74 (10)C13—C13A—C17A—N15.47 (18)
O2—S1—N1—C17A166.83 (9)C2—N1—C17A—C1768.97 (14)
C18—S1—N1—C17A78.08 (10)S1—N1—C17A—C1788.99 (12)
O1—S1—N1—C2165.92 (8)C2—N1—C17A—C13A108.37 (12)
O2—S1—N1—C235.83 (10)S1—N1—C17A—C13A93.67 (12)
C18—S1—N1—C279.25 (9)C4—C3—O18—C62.15 (12)
C17A—N1—C2—C379.15 (12)C2—C3—O18—C6173.59 (9)
S1—N1—C2—C3122.87 (9)C5—C6—O18—C32.10 (12)
N1—C2—C3—C499.88 (15)C7—C6—O18—C3175.43 (9)
N1—C2—C3—O1874.60 (12)C12—C13—O19—C100.20 (13)
O18—C3—C4—C51.38 (13)C13A—C13—O19—C10179.08 (10)
C2—C3—C4—C5173.32 (12)C11—C10—O19—C130.40 (13)
C3—C4—C5—C60.07 (13)C9—C10—O19—C13179.30 (10)
C4—C5—C6—O181.27 (13)O1—S1—C18—C1914.28 (12)
C4—C5—C6—C7175.70 (12)O2—S1—C18—C19145.20 (10)
C5—C6—C7—N885.18 (16)N1—S1—C18—C19100.41 (10)
O18—C6—C7—N891.63 (12)O1—S1—C18—C23166.03 (10)
C6—C7—N8—C25165.59 (10)O2—S1—C18—C2335.11 (12)
C6—C7—N8—C968.49 (13)N1—S1—C18—C2379.28 (11)
C25—N8—C9—C10131.45 (11)C23—C18—C19—C200.19 (19)
C7—N8—C9—C10103.75 (12)S1—C18—C19—C20179.50 (10)
N8—C9—C10—C1193.30 (16)C18—C19—C20—C210.46 (19)
N8—C9—C10—O1986.32 (13)C19—C20—C21—C220.6 (2)
O19—C10—C11—C120.43 (14)C19—C20—C21—C24178.56 (12)
C9—C10—C11—C12179.21 (13)C20—C21—C22—C230.5 (2)
C10—C11—C12—C130.30 (14)C24—C21—C22—C23178.67 (13)
C11—C12—C13—O190.06 (14)C21—C22—C23—C180.2 (2)
C11—C12—C13—C13A179.21 (12)C19—C18—C23—C220.1 (2)
C12—C13—C13A—C17A154.74 (13)S1—C18—C23—C22179.60 (11)
O19—C13—C13A—C17A26.17 (17)C7—N8—C25—C2668.38 (13)
C12—C13—C13A—C1424.52 (19)C9—N8—C25—C26165.03 (10)
O19—C13—C13A—C14154.57 (10)N8—C25—C26—C27126.60 (12)
C17A—C13A—C14—C151.30 (17)N8—C25—C26—C3153.88 (16)
C13—C13A—C14—C15178.02 (11)C31—C26—C27—C280.49 (19)
C13A—C14—C15—C160.15 (19)C25—C26—C27—C28179.04 (12)
C14—C15—C16—C170.92 (19)C26—C27—C28—C291.0 (2)
C15—C16—C17—C17A0.22 (19)C27—C28—C29—C300.8 (2)
C16—C17—C17A—C13A1.28 (18)C28—C29—C30—C310.3 (2)
C16—C17—C17A—N1176.08 (11)C29—C30—C31—C260.2 (2)
C14—C13A—C17A—C171.99 (17)C27—C26—C31—C300.11 (19)
C13—C13A—C17A—C17177.27 (11)C25—C26—C31—C30179.65 (12)
C14—C13A—C17A—N1175.27 (10)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg3 and Cg5 are the centroids of the O18/C3–C6 furan, C13A/C14–C17/C17A benzene and C26–C31 phenyl rings, respectively.
D—H···AD—HH···AD···AD—H···A
C9—H9A···O1i0.992.533.4057 (17)148
C25—H25B···O1i0.992.593.5125 (18)155
O3—H3···O20.88 (7)2.52 (6)3.251 (3)141 (6)
O3—H3···O180.88 (7)2.47 (7)3.097 (4)129 (5)
C2—H2A···Cg1ii0.992.563.2916 (12)131
C16—H16···Cg5iii0.952.803.5220 (15)133
C20—H20···Cg3iv0.952.833.5707 (15)135
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z+1; (iii) x+1, y, z1; (iv) x+1, y+1, z.
 

Acknowledgements

GMB and EAK thank the Common Use Center "Physical and Chemical Research of New Materials, Substances and Catalytic Systems". The authors' contributions are as follow: Conceptualization, MA and AB; synthesis, GMB and EAK; X-ray analysis, VNK; writing (review and editing of the manuscript) MA and AB; funding acquisition, KIH and NDS; supervision, MA and AB.

Funding information

This publication was supported by the Russian Science Foundation (https://rscf.ru/project/24-73-00231/). This work has also been supported by the Western Caspian University (Azerbaijan), Azerbaijan Medical University and Baku State University.

References

First citationAbdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkbari Afkhami, F., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888–14896.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationAliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C., Gomila, R. M., Frontera, A., Mahmudov, K. T. & Pombeiro, A. J. L. (2024). Cryst. Growth Des. 24, 781–791.  CSD CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBorisova, K. K., Kvyatkovskaya, E. A., Nikitina, E. V., Aysin, R. R., Novikov, R. A. & Zubkov, F. I. (2018a). J. Org. Chem. 83, 4840–4850.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBorisova, K. K., Nikitina, E. V., Novikov, R. A., Khrustalev, V. N., Dorovatovskii, P. V., Zubavichus, Y. V., Kuznetsov, M. L., Zaytsev, V. P., Varlamov, A. V. & Zubkov, F. I. (2018b). Chem. Commun. 54, 2850–2853.  Web of Science CSD CrossRef CAS Google Scholar
First citationChakraborty, T. K., Arora, A., Roy, S., Kumar, N. & Maiti, S. (2007). J. Med. Chem. 50, 5539–5542.  CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuliyeva, N. A., Burkin, G. M., Annadurdyyeva, S., Khrustalev, V. N., Atioğlu, Z., Akkurt, M. & Bhattarai, A. (2024). Acta Cryst. E80, 62–66.  CSD CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022a). Dalton Trans. 51, 1019–1031.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020). Chem. A Eur. J. 26, 14833–14837.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Resnati, G., Mahmudov, K. T. & Pombeiro, A. J. L. (2022b). Cryst. Growth Des. 22, 3932–3940.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190–194.  Web of Science CrossRef CAS Google Scholar
First citationJana, D., Guchhait, T., Subramaniyan, V., Kumar, A. & Mani, G. (2019). Tetrahedron Lett. 60, 151247–151250.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.  Web of Science CrossRef Google Scholar
First citationKopylovich, M. N., Karabach, Y. Y., Mahmudov, K. T., Haukka, M., Kirillov, A. M., Figiel, P. J. & Pombeiro, A. J. L. (2011a). Cryst. Growth Des. 11, 4247–4252.  Web of Science CSD CrossRef CAS Google Scholar
First citationKopylovich, M. N., Mahmudov, K. T., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Kuznetsov, M. L., Silva, T. F. S., Fraústo da Silva, J. J. R. & Pombeiro, A. J. L. (2011b). J. Phys. Org. Chem. 24, 764–773.  Web of Science CrossRef CAS Google Scholar
First citationKopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011c). Inorg. Chim. Acta, 374, 175–180.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192–205.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Zangrando, E., Miroslaw, B., Gurbanov, A. V., Babashkina, M. G., Frontera, A. & Safin, D. A. (2021). Inorg. Chim. Acta, 519, 120279.  Web of Science CSD CrossRef Google Scholar
First citationMahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. pp. 4763–4772.  Web of Science CSD CrossRef Google Scholar
First citationMahmudov, K. T., Huseynov, F. E., Aliyeva, V. A., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Chem. A Eur. J. 27, 14370–14389.  CrossRef CAS Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108–112.  Web of Science CSD CrossRef CAS Google Scholar
First citationMammadova, G. Z., Annadurdyyeva, S., Burkin, G. M., Khrustalev, V. N., Akkurt, M., Yıldırım, S. Ö. & Bhattarai, A. (2023b). Acta Cryst. E79, 499–503.  CSD CrossRef IUCr Journals Google Scholar
First citationMammadova, G. Z., Yakovleva, E. D., Burkin, G. M., Khrustalev, V. N., Akkurt, M., Çelikesir, S. T. & Bhattarai, A. (2023a). Acta Cryst. E79, 747–751.  CSD CrossRef IUCr Journals Google Scholar
First citationMärkl, G., Hafner, M., Kreitmeier, P., Stadler, C., Daub, J., Nöth, H., Schmidt, M. & Gescheidt, G. (1997). Helv. Chim. Acta, 80, 2456–2476.  Google Scholar
First citationMärkl, G., Knott, Th., Kreitmeier, P., Burgemeister, Th. & Kastner, F. (1996). Tetrahedron, 52, 11763–11782.  Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSafavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1183–1185.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSrinivasan, A., Reddy, V. M., Narayanan, S. J., Sridevi, B., Pushpan, S. K., Ravikumar, M. & Chandrashekar, T. K. (1997). Angew. Chem. Int. Ed. Engl. 36, 2598–2601.  CrossRef CAS Google Scholar
First citationYıldırım, S. Ö., Akkurt, M., Ershova, A. A., Grigoriev, M. S., Rocha, B. G. M. & Bhattarai, A. (2023). Acta Cryst. E79, 292–296.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds