research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of 2-phenyl-3-(prop-2-yn-1-yl­­oxy)quin­oxaline

crossmark logo

aLaboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco, bLaboratory of Heterocyclic Organic Chemistry, Faculty of Sciences, Mohammed V University, Rabat, Morocco, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, dLaboratory of Medicinal Chemistry, Faculty of Clinical Pharmacy, 21 September University, Yemen, eDepartment of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran, fDepartment of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail Assir, Saudi Arabia, and gMohammed VI Center for Research and Innovation (CM6), Rabat 10000, Morocco
*Correspondence e-mail: alsubaripharmaco@21umas.edu.ye, y.ramli@um5r.ac.ma

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 6 March 2024; accepted 19 March 2024; online 21 March 2024)

In the title compound, C17H12N2O, the quinoxaline moiety shows deviations of 0.0288 (7) to −0.0370 (7) Å from the mean plane (r.m.s. deviation of fitted atoms = 0.0223 Å). In the crystal, corrugated layers two mol­ecules thick are formed by C—H⋯N hydrogen bonds and π-stacking inter­actions.

1. Chemical context

Quinoxaline derivatives are described extensively among the heterocycles being investigated for the discovery and development of new biologically active mol­ecules. Numerous studies have been published regarding this class of compounds, revealing that quinoxaline is present in a number of well-established drugs with diverse therapeutic activities as well as industrial properties (e.g. Lgaz et al., 2015[Lgaz, H., ELaoufir, Y., Ramli, Y., Larouj, M., Zarrok, H., Salghi, R., Zarrouk, A., Elmidaoui, A., Guenbour, A., Essassi, E. M. & Oudda, H. (2015). Der. Pharma Chem. 7, 36-45.]). In recent decades, the medicinal chemistry of quinoxaline and its deriv­atives have received great attention due to their wide spectrum of biological activities, in particular analgesic, anti-diabetic, anti­viral, anti­bacterial, anti­oxidant, anti-inflammatory, anti­depressant, and anti-tubercular (Ramli & Essassi, 2015[Ramli, Y. & Essassi, E. M. (2015). Adv. Chem. Res. 27, 109-160.]). Our inter­est in quinoxalines results from their simple synthesis and the ease with which X-ray quality crystals can be grown. Following this line of research, and as a continuation of our work in this area (e.g. Missioui et al., 2022[Missioui, M., Said, M., Demirtaş, G., Mague, J. T., Al-Sulami, A., Al-Kaff, N. S. & Ramli, Y. (2022). Arab. J. Chem. 15, 103595.]), based on the therapeutic significance of this scaffold for potential applications in medicinal chemistry, we report herein the synthesis of a new quinoxaline derivative by an alkyl­ation reaction of 3-phenyl­quinoxalin-2(1H)-one using 3-bromo­prop-1-yne as an alkyl­ating reagent and potassium carbonate in the presence of tetra-n-butyl­ammonium bromide as catalyst in phase-transfer catalysis (Fig. 1[link]). A Hirshfeld surface analysis was performed to analyze the inter­molecular inter­actions.

[Scheme 1]
[Figure 1]
Figure 1
Synthesis of the title compound.

2. Structural commentary

In the title mol­ecule, the fused bicyclic ring system is not entirely planar, as indicated by the dihedral angle of 2.25 (6)° between its constituent rings and by the deviations from the mean plane through the ten atoms, which range from 0.0288 (7) Å (C8) to −0.0370 (7) Å (C2) (r.m.s. deviation of fitted atoms = 0.0223 Å). The plane of the benzene ring C12–C17 is inclined to the above plane by 34.04 (4)°, while the methyl­ene carbon of the propynyl group (C9) lies virtually in the plane of the quinoxaline unit, as indicated by the C9—O1—C7—N1 torsion angle of 0.65 (13)°. However, the propynyl group is almost perpendicular to the above plane, as indicated by the C7—O1—C9—C10 torsion angle of −87.0 (1)° (Fig. 2[link]).

[Figure 2]
Figure 2
Mol­ecular structure of the title mol­ecule with labeling scheme and 50% probability ellipsoids.

3. Supra­molecular features

In the crystal, the mol­ecules are connected into chains extending along the b-axis direction by C11—H11⋯N2 hydrogen bonds (Table 1[link] and Fig. 3[link]). The chains are linked into corrugated layers two mol­ecules thick by offset π-stacking inter­actions between the C1–C6 and C1/C6/N1/C7/C8/N2 rings [centroid–centroid distance = 3.6716 (8) Å; dihedral angle = 2.25 (4)°, slippage = 1.262 Å] across inversion centers (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯N2i 0.95 2.44 3.3164 (14) 153
Symmetry code: (i) [x, y+1, z].
[Figure 3]
Figure 3
Packing viewed along the a-axis direction with C—H⋯N hydrogen bonds and π-stacking inter­actions shown, respectively, by black and orange dashed lines. Non-inter­acting hydrogen atoms are omitted for clarity.

To qu­antify the extent of each type of inter­molecular inter­action in the crystal packing, a Hirshfeld surface analysis was performed using CrystalExplorer (Version 21.5; Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). Descriptions of the surfaces generated and their inter­pretation have been published (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]). Fig. 4[link] shows the dnorm surface with Fig. 4[link]a showing two neighboring mol­ecules illustrating the C—H⋯N hydrogen bond and Fig. 4[link]b one neighbor illustrating the π-stacking. From Fig. 4[link]a, it is clear that the C—H⋯N hydrogen bond is the only inter­molecular hydrogen bond in the structure. Fig. 5[link]a shows the surface mapped over shape-index while Fig. 5[link]b shows it mapped over curvature. In both of these, the characteristic features of inter­molecular π-stacking inter­actions are quite evident. Fig. 6[link] presents the 2D fingerprint plots with Fig. 6[link]a giving the total of all inter­molecular inter­actions and Fig. 6[link]b–6e showing those delineated into H⋯H, C⋯H/H⋯C, N⋯H/H⋯N and C⋯C inter­actions. These are the major inter­actions and contribute 42.8%, 36.8%, 8.3% and 6.3% to the total, respectively. In the absence of C—H⋯π(ring) inter­actions, the large contribution of C⋯H/H⋯C inter­actions may seem unusual, but PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) indicates that there are at least six and as many as ten such contacts with distances slightly shorter than to slightly longer than the sum of the respective van der Waals radii.

[Figure 4]
Figure 4
The Hirshfeld surface plotted over dnorm in the range −0.2356 to 1.4819 in arbitrary units) with (a) two neighboring hydrogen bonded mol­ecules and (b) one neighboring π-stacked mol­ecule.
[Figure 5]
Figure 5
The Hirshfeld surface plotted over (a) shape-index and (b) curvature.
[Figure 6]
Figure 6
2D fingerprint plots for (a) all inter­molecular inter­actions, and delineated into (b) H⋯H, (c) N⋯H/H⋯N, (d) C⋯H/H⋯C and (e) C⋯C inter­actions.

4. Database survey

A search of the Cambridge Structural Database (CSD, updated to January 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using fragment A (Fig. 7[link], R = any atom), yielded seven hits similar to the title mol­ecule, viz. FACPEI with R = benzyl (Abad et al., 2020[Abad, N., Lgaz, H., Atioglu, Z., Akkurt, M., Mague, J. T., Ali, I. H., Chung, I.-M., Salghi, R., Essassi, E. M. & Ramli, Y. (2020). J. Mol. Struct. 1221, 128727.]), 3-(2-oxo-3-phenyl­quinoxalin-1(2H)-yl)propyl (KOPKAF; Abad et al., 2024[Abad, N., Mague, J. T., Alsubari, A., Essassi, E. M., Alzahrani, A. Y. A. & Ramli, Y. (2024). Acta Cryst. E80, 300-304.]) and 2-(2-oxooxazolidin-3-yl)ethyl [monoclinic form (UREREP01; Daouda et al., 2020[Daouda, B., Doumbia, M. L., Hökelek, T., Zemmouri, F., Claude, K. A. L., Douira, A., Sebbar, N. K. & Essassi, E. M. (2020). J. Mar. Chim. Heterocycl. 19, 55-69.]) and ortho­rhom­bic form (UREREP; Daouda et al., 2011[Daouda, B., Brelot, L., Doumbia, M. L., Essassi, E. M. & Ng, S. W. (2011). Acta Cryst. E67, o1235.])]. The last three are B (BZOQUX10; Oberti et al., 1978[Oberti, R., Coda, A., Incoccia, L. & Comin, F. (1978). Acta Cryst. B34, 1544-1548.]), C (YEFDUK; Moreau et al., 2012[Moreau, S., Desplat, V., Savrimoutou, S., Massip, S., Deleris, G. & Guillon, J. (2012). Compte Rend. Chim. 15, 753-757.]) and D (VAQNAE; Kumar et al., 2012[Kumar, K. S., Adepu, R., Kapavarapu, R., Rambabu, D., Krishna, G. R., Reddy, C. M., Priya, K. K. K., Parsa, V. L. & Pal, M. (2012). Tetrahedron Lett. 53, 1134-1138.]). The quinoxaline moiety is closest to planar in BZOQUX10 [dihedral angle between constituent planes = 1.13 (1)°], while in UREREP it is furthest from planar [dihedral angle between constituent planes = 3.34 (16)°]. These two compounds also exhibit the smallest [30.60 (1)°] and largest [38.72 (16)°] angles of inclination of the phenyl group. The other structures show inter­mediate values for both angles, except for YEFDUK and VAQNAE where this angle is less than 5° because the phenyl ring is part of a six- or five-membered ring fused to the nitro­gen-containing heterocycle.

[Figure 7]
Figure 7
Search fragment (A), BZOQUX10 (B), VAQNAE (C) and YEFDUK (D).

5. Synthesis and crystallization

3-Phenyl­quinoxalin-2(1H)-one (1 g, 4.5 mmol), 3-bromo­prop-1-yne (0.96 mL, 9 mmol), and potassium carbonate (0.931 g, 6.75 mmol) with an amount of catalytic tetra-n-butyl­ammonium bromide (0.29 g, 0.9 mmol) were stirred in N,N-di­methyl­formamide (DMF) (20 mL) for 48 h (Fig. 1[link]). The solution was filtered, and the solvent was removed under vacuum. Di­chloro­methane (20 mL) was added, and the solution was filtered. The residue was chromatographed on a silica gel column (hexa­ne/ethyl acetate: 9.5/0.5, as mobile phase) to give two fractions. The first fraction was purified by recrystallization in ethanol to afford colorless crystals with a yield of 28.3% (O-alkyl­ated isomer, title compound) while recrystallization of the second fraction gave a yellowish powder with a yield of 53.5% (N-alkyl­ated isomer).

O-alkyl­ated isomer: Yield: 28.3%, m.p. = 370–372 K, 1H NMR (300 MHz, CDCl3) δ ppm: 2.55 (t, 1H, CH, J = 3Hz); 5.265 (d, 2H, O—CH2, J = 3Hz); 7.55–8.20 (m, 9H, CHarom); 13C NMR (75 MHz, CDCl3) δ ppm: 53.93 (O—CH2); 74.85 (CH); 78.57 (–C); 126.85, 127.22, 128.31, 129.06, 129.75, 129.82, 129.86 (CHarom); 136.77, 139.35, 139.49, 146.29 (Cq); 154.11 (Cq—O).

N-alkyl­ated isomer: Yield 53.5%, m.p. = 385–387 K, 1H NMR (300 MHz, CDCl3) δ ppm: 2.35 (t, H, CH, J = 3Hz); 5.155 (d, 2H, N—CH2, J = 3Hz); 7.41–8.36 (m, 9H, CHarom); 13C NMR (75 MHz, CDCl3) δ ppm: 31.69 (N—CH2); 73.19 (CH); 76.96 (–C); 114.07, 124.15, 128.13, 129.61, 130.45, 130.53, 130.63 (CHarom); 131.87, 133.31, 135.78, 153.72 (Cq); 153.98 (C=O).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms were included as riding contributions in idealized positions with isotropic displacement parameters tied to those of the attached atoms.

Table 2
Experimental details

Crystal data
Chemical formula C17H12N2O
Mr 260.29
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 120
a, b, c (Å) 8.4614 (14), 9.0947 (15), 9.5360 (16)
α, β, γ (°) 87.739 (2), 72.963 (2), 69.028 (2)
V3) 653.39 (19)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.34 × 0.33 × 0.14
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.91, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 12629, 3456, 2869
Rint 0.026
(sin θ/λ)max−1) 0.684
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.139, 1.17
No. of reflections 3456
No. of parameters 181
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.42, −0.24
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT, Bruker AXS, Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/1 (Sheldrick, 2015a[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

2-Phenyl-3-(prop-2-yn-1-yloxy)quinoxaline top
Crystal data top
C17H12N2OZ = 2
Mr = 260.29F(000) = 272
Triclinic, P1Dx = 1.323 Mg m3
a = 8.4614 (14) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.0947 (15) ÅCell parameters from 6800 reflections
c = 9.5360 (16) Åθ = 2.2–29.1°
α = 87.739 (2)°µ = 0.08 mm1
β = 72.963 (2)°T = 120 K
γ = 69.028 (2)°Thick plate, colourless
V = 653.39 (19) Å30.34 × 0.33 × 0.14 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3456 independent reflections
Radiation source: fine-focus sealed tube2869 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 8.3333 pixels mm-1θmax = 29.1°, θmin = 2.2°
φ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1212
Tmin = 0.91, Tmax = 0.99l = 1312
12629 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0919P)2]
where P = (Fo2 + 2Fc2)/3
3456 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.24 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 10 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 1.00 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.70891 (9)0.56445 (8)0.38257 (7)0.02033 (18)
N10.46180 (11)0.60416 (9)0.30849 (8)0.01784 (19)
N20.63397 (10)0.29963 (9)0.16411 (8)0.01617 (19)
C10.46804 (12)0.39265 (11)0.15776 (10)0.0163 (2)
C20.38348 (13)0.33437 (11)0.07839 (10)0.0202 (2)
H20.4431920.2334690.0261170.024*
C30.21438 (13)0.42397 (12)0.07686 (11)0.0221 (2)
H30.1572260.3847410.0234610.027*
C40.12524 (13)0.57396 (12)0.15423 (11)0.0227 (2)
H40.0074810.6339520.1540150.027*
C50.20634 (13)0.63425 (11)0.22970 (10)0.0206 (2)
H50.1458020.7362300.2798150.025*
C60.37993 (12)0.54442 (11)0.23271 (10)0.0168 (2)
C70.61911 (12)0.51363 (11)0.31114 (9)0.0161 (2)
C80.71038 (12)0.35506 (10)0.23996 (9)0.0153 (2)
C90.62072 (14)0.72174 (11)0.45585 (10)0.0220 (2)
H9A0.6648950.7266670.5402170.026*
H9B0.4916750.7442610.4945330.026*
C100.65155 (13)0.84189 (11)0.35597 (10)0.0203 (2)
C110.67695 (14)0.94264 (12)0.27984 (11)0.0260 (2)
H110.6972681.0232460.2189290.031*
C120.88656 (12)0.24852 (11)0.24864 (10)0.0164 (2)
C130.93639 (13)0.24226 (12)0.37693 (10)0.0217 (2)
H130.8606410.3139480.4595830.026*
C141.09717 (14)0.13079 (12)0.38327 (11)0.0251 (2)
H141.1295760.1254870.4711920.030*
C151.21016 (13)0.02769 (12)0.26279 (12)0.0259 (2)
H151.3203460.0471280.2675360.031*
C161.16184 (13)0.03400 (12)0.13478 (11)0.0243 (2)
H161.2393390.0363900.0516990.029*
C171.00061 (13)0.14291 (11)0.12807 (10)0.0198 (2)
H170.9675520.1456390.0407220.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0248 (4)0.0157 (3)0.0240 (4)0.0084 (3)0.0109 (3)0.0001 (3)
N10.0202 (4)0.0157 (4)0.0170 (4)0.0062 (3)0.0051 (3)0.0012 (3)
N20.0171 (4)0.0152 (4)0.0165 (4)0.0063 (3)0.0050 (3)0.0025 (3)
C10.0164 (4)0.0157 (4)0.0162 (4)0.0062 (3)0.0042 (3)0.0038 (3)
C20.0216 (5)0.0182 (5)0.0222 (5)0.0084 (4)0.0072 (4)0.0013 (4)
C30.0223 (5)0.0253 (5)0.0238 (5)0.0121 (4)0.0102 (4)0.0049 (4)
C40.0170 (5)0.0259 (5)0.0234 (5)0.0058 (4)0.0069 (4)0.0067 (4)
C50.0198 (5)0.0182 (5)0.0198 (4)0.0031 (4)0.0049 (4)0.0025 (4)
C60.0181 (4)0.0165 (4)0.0151 (4)0.0062 (4)0.0041 (3)0.0024 (3)
C70.0193 (5)0.0155 (4)0.0143 (4)0.0079 (4)0.0044 (3)0.0024 (3)
C80.0171 (4)0.0146 (4)0.0144 (4)0.0066 (3)0.0041 (3)0.0026 (3)
C90.0307 (5)0.0184 (5)0.0189 (4)0.0114 (4)0.0068 (4)0.0011 (4)
C100.0202 (5)0.0182 (5)0.0218 (4)0.0055 (4)0.0064 (4)0.0028 (4)
C110.0289 (6)0.0208 (5)0.0276 (5)0.0092 (4)0.0074 (4)0.0020 (4)
C120.0170 (4)0.0140 (4)0.0203 (4)0.0072 (3)0.0066 (4)0.0033 (3)
C130.0230 (5)0.0217 (5)0.0202 (4)0.0065 (4)0.0081 (4)0.0016 (4)
C140.0277 (5)0.0247 (5)0.0286 (5)0.0095 (4)0.0171 (4)0.0056 (4)
C150.0204 (5)0.0205 (5)0.0385 (6)0.0054 (4)0.0142 (4)0.0049 (4)
C160.0203 (5)0.0188 (5)0.0292 (5)0.0025 (4)0.0064 (4)0.0018 (4)
C170.0210 (5)0.0174 (4)0.0218 (4)0.0065 (4)0.0081 (4)0.0012 (4)
Geometric parameters (Å, º) top
O1—C71.3544 (11)C8—C121.4832 (12)
O1—C91.4493 (12)C9—C101.4648 (13)
N1—C71.2976 (12)C9—H9A0.9900
N1—C61.3751 (12)C9—H9B0.9900
N2—C81.3158 (11)C10—C111.1874 (14)
N2—C11.3733 (11)C11—H110.9500
C1—C21.4094 (12)C12—C171.3961 (13)
C1—C61.4145 (13)C12—C131.3991 (12)
C2—C31.3741 (13)C13—C141.3922 (14)
C2—H20.9500C13—H130.9500
C3—C41.4110 (15)C14—C151.3831 (16)
C3—H30.9500C14—H140.9500
C4—C51.3709 (14)C15—C161.3895 (14)
C4—H40.9500C15—H150.9500
C5—C61.4105 (13)C16—C171.3876 (13)
C5—H50.9500C16—H160.9500
C7—C81.4525 (13)C17—H170.9500
C7—O1—C9117.08 (7)O1—C9—C10111.63 (8)
C7—N1—C6117.06 (8)O1—C9—H9A109.3
C8—N2—C1118.73 (8)C10—C9—H9A109.3
N2—C1—C2119.45 (8)O1—C9—H9B109.3
N2—C1—C6120.70 (8)C10—C9—H9B109.3
C2—C1—C6119.83 (8)H9A—C9—H9B108.0
C3—C2—C1119.79 (9)C11—C10—C9177.21 (10)
C3—C2—H2120.1C10—C11—H11180.0
C1—C2—H2120.1C17—C12—C13119.09 (8)
C2—C3—C4120.30 (9)C17—C12—C8118.53 (8)
C2—C3—H3119.8C13—C12—C8122.21 (8)
C4—C3—H3119.8C14—C13—C12119.89 (9)
C5—C4—C3120.87 (9)C14—C13—H13120.1
C5—C4—H4119.6C12—C13—H13120.1
C3—C4—H4119.6C15—C14—C13120.63 (9)
C4—C5—C6119.81 (9)C15—C14—H14119.7
C4—C5—H5120.1C13—C14—H14119.7
C6—C5—H5120.1C14—C15—C16119.73 (9)
N1—C6—C5120.06 (9)C14—C15—H15120.1
N1—C6—C1120.56 (8)C16—C15—H15120.1
C5—C6—C1119.38 (9)C17—C16—C15120.12 (9)
N1—C7—O1120.57 (8)C17—C16—H16119.9
N1—C7—C8123.68 (8)C15—C16—H16119.9
O1—C7—C8115.75 (8)C16—C17—C12120.54 (8)
N2—C8—C7119.21 (8)C16—C17—H17119.7
N2—C8—C12116.98 (8)C12—C17—H17119.7
C7—C8—C12123.80 (8)
C8—N2—C1—C2179.28 (8)C1—N2—C8—C71.53 (13)
C8—N2—C1—C60.75 (13)C1—N2—C8—C12177.76 (7)
N2—C1—C2—C3177.16 (8)N1—C7—C8—N22.22 (14)
C6—C1—C2—C31.38 (14)O1—C7—C8—N2177.66 (7)
C1—C2—C3—C40.06 (14)N1—C7—C8—C12177.02 (8)
C2—C3—C4—C51.26 (15)O1—C7—C8—C123.10 (13)
C3—C4—C5—C61.21 (15)C7—O1—C9—C1087.00 (10)
C7—N1—C6—C5177.76 (7)N2—C8—C12—C1733.33 (12)
C7—N1—C6—C11.98 (14)C7—C8—C12—C17147.42 (9)
C4—C5—C6—N1179.86 (8)N2—C8—C12—C13141.76 (9)
C4—C5—C6—C10.13 (14)C7—C8—C12—C1337.49 (13)
N2—C1—C6—N12.63 (14)C17—C12—C13—C140.54 (14)
C2—C1—C6—N1178.84 (8)C8—C12—C13—C14174.53 (8)
N2—C1—C6—C5177.10 (8)C12—C13—C14—C151.21 (15)
C2—C1—C6—C51.42 (14)C13—C14—C15—C160.83 (16)
C6—N1—C7—O1179.51 (7)C14—C15—C16—C170.23 (15)
C6—N1—C7—C80.37 (14)C15—C16—C17—C120.90 (14)
C9—O1—C7—N10.65 (13)C13—C12—C17—C160.51 (14)
C9—O1—C7—C8179.47 (7)C8—C12—C17—C16175.76 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···N2i0.952.443.3164 (14)153
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationAbad, N., Lgaz, H., Atioglu, Z., Akkurt, M., Mague, J. T., Ali, I. H., Chung, I.-M., Salghi, R., Essassi, E. M. & Ramli, Y. (2020). J. Mol. Struct. 1221, 128727.  Web of Science CSD CrossRef Google Scholar
First citationAbad, N., Mague, J. T., Alsubari, A., Essassi, E. M., Alzahrani, A. Y. A. & Ramli, Y. (2024). Acta Cryst. E80, 300–304.  CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3 and SAINT, Bruker AXS, Madison, Wisconsin, USA.  Google Scholar
First citationDaouda, B., Brelot, L., Doumbia, M. L., Essassi, E. M. & Ng, S. W. (2011). Acta Cryst. E67, o1235.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDaouda, B., Doumbia, M. L., Hökelek, T., Zemmouri, F., Claude, K. A. L., Douira, A., Sebbar, N. K. & Essassi, E. M. (2020). J. Mar. Chim. Heterocycl. 19, 55–69.  CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKumar, K. S., Adepu, R., Kapavarapu, R., Rambabu, D., Krishna, G. R., Reddy, C. M., Priya, K. K. K., Parsa, V. L. & Pal, M. (2012). Tetrahedron Lett. 53, 1134–1138.  CSD CrossRef CAS Google Scholar
First citationLgaz, H., ELaoufir, Y., Ramli, Y., Larouj, M., Zarrok, H., Salghi, R., Zarrouk, A., Elmidaoui, A., Guenbour, A., Essassi, E. M. & Oudda, H. (2015). Der. Pharma Chem. 7, 36–45.  CAS Google Scholar
First citationMissioui, M., Said, M., Demirtaş, G., Mague, J. T., Al-Sulami, A., Al-Kaff, N. S. & Ramli, Y. (2022). Arab. J. Chem. 15, 103595.  CSD CrossRef PubMed Google Scholar
First citationMoreau, S., Desplat, V., Savrimoutou, S., Massip, S., Deleris, G. & Guillon, J. (2012). Compte Rend. Chim. 15, 753–757.  CSD CrossRef CAS Google Scholar
First citationOberti, R., Coda, A., Incoccia, L. & Comin, F. (1978). Acta Cryst. B34, 1544–1548.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationRamli, Y. & Essassi, E. M. (2015). Adv. Chem. Res. 27, 109–160.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds