research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Lithium and sodium 3-(3,4-di­hy­droxy­phen­yl)propenoate hydrate

crossmark logo

aMartin-Luther-Universität Halle Wittenberg, Naturwissenschaftliche Fakultät II, Institut für Chemie, Germany
*Correspondence e-mail: kurt.merzweiler@chemie.uni-halle.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 22 January 2024; accepted 15 March 2024; online 26 March 2024)

Treatment of 3-(3,4-di­hydroxy­phen­yl)propenoic acid (caffeic acid or 3,4-di­hydroxy­cinnamic acid) with the alkali hydroxides MOH (M = Li, Na) in aqueous solution led to the formation of poly[aqua­[μ-3-(3,4-di­hydroxy­phen­yl)propenoato]lithium], [Li(C9H7O4)(H2O)]n, 1, and poly[aqua­[μ-3-(3,4-di­hydroxy­phen­yl)propenoato]sodium], [Na(C9H7O4)(H2O)]n, 2. The crystal structure of 1 consists of a lithium cation that is coordinated nearly tetra­hedrally by three carboxyl­ate oxygen atoms and a water mol­ecule. The carboxyl­ate groups adopt a μ3-κ3O:O′:O′ coordination mode that leads to a chain-like catenation of Li cations and carboxyl­ate units parallel to the b axis. Moreover, the lithium carboxyl­ate chains are connected by hydrogen bonds between water mol­ecules attached to lithium and catechol OH groups. The crystal structure of 2 shows a sevenfold coordination of the sodium cation by one water mol­ecule, two monodentately binding carboxyl­ate groups and four oxygen atoms from two catechol groups. The coordination polyhedra are linked by face- and edge-sharing into chains extending parallel to the b axis. The chains are inter­linked by the bridging 3-(3,4-di­hydroxy­phen­yl)propenoate units and by inter­molecular hydrogen bonds to form the tri-periodic network.

1. Chemical context

trans-3-(3,4-Di­hydroxy­phen­yl)-2-propenoic acid (caffeic acid) is ubiquitous in plants and plays a role as an inter­mediate in the biosynthesis of lignin (Boerjan et al., 2003[Boerjan, W., Ralph, J. & Baucher, M. (2003). Annu. Rev. Plant Biol. 54, 519-546.]). The first X-ray crystal-structure analysis of caffeic acid dates back to the year 1987 (García-Granda et al., 1987[García-Granda, S., Beurskens, G., Beurskens, P. T., Krishna, T. S. R. & Desiraju, G. R. (1987). Acta Cryst. C43, 683-685.]), and a more recent study was published in 2015 (Kumar et al., 2015[Kumar, N., Pruthi, V. & Goel, N. (2015). J. Mol. Struct. 1085, 242-248.]). In current research, caffeic acid is used as a co-crystallizing agent, particularly for pharmaceutically relevant compounds such as 5-fluoro­uracil (Yu et al., 2020[Yu, Y.-M., Wang, L.-Y., Bu, F.-Z., Wang, L.-L., Li, Y.-T., Wang, C. & Wu, Z.-Y. (2020). CrystEngComm, 22, 7992-8006.]). The simultaneous presence of the carboxyl and the catechol moieties renders caffeic acid a versatile ligand in coordination chemistry, in particular after deprot­on­ation of the acidic groups (Petrou et al., 1993[Petrou, A. L., Koromantzou, M. V. & Tsangaris, J. M. (1993). Chim. Chron, 22, 189-204.]). However, transition-metal complexes of caffeic acid derivatives have not yet been structurally investigated. Even for simple alkali metal caffeates, reports are rare and, up to now, only potassium caffeate has been studied in detail as the potassium caffeate/caffeic acid co-crystallization product (Lombardo et al., 2011[Lombardo, G. M., Portalone, G., Colapietro, M., Rescifina, A. & Punzo, F. (2011). J. Mol. Struct. 994, 87-96.]).

[Scheme 1]

Here we report the crystallization and crystal-structure analysis of the lithium and sodium salts of caffeic acid, LiC9H7O4·H2O, 1, and NaC9H7O4·H2O, 2, respectively.

2. Structural commentary

The asymmetric unit of 1 comprises one Li cation, one 3-(3,4-di­hydroxy­phen­yl)propenoate anion and one water mol­ecule (Fig. 1[link]). The Li cation is coordinated nearly tetra­hedrally by three carboxyl­ate O atoms of three caffeate anions and one water mol­ecule. The Li—O distances range from 1.908 (2) to 2.005 (3) Å and the O—Li—O angles from 105.35 (12) to 112.20 (11)° (Table 1[link]). These values are similar to those reported for other lithium carboxyl­ate compounds such as lithium acetate monohydrate [Li—O: 1.920 (2) to 2.031 (2) Å, O—Li—O: 99.78 (10) to 124.21 (11)°; Martínez Casado et al., 2011[Martínez Casado, F. J., Ramos Riesco, M., Redondo, M. I., Choquesillo-Lazarte, D., López-Andrés, S. & Cheda, J. A. R. (2011). Cryst. Growth Des. 11, 1021-1032.]]. The carboxyl­ate group adopts a μ3-κ3O:O′,O′ coordination mode. This leads to the formation of six-membered Li2O3C rings that are catenated parallel to the b axis by edge-sharing (Fig. 2[link]). Alternatively, the chain structure can be derived from condensation of corner-sharing LiO4 tetra­hedra (Fig. 3[link]). The translational period of the 21-type helix corresponds to the length of the b axis and one repeating unit comprises two LiO4 tetra­hedra. Chains of corner-sharing LiO4 tetra­hedra are not unusual for lithium carboxyl­ate monohydrates, and similar patterns were observed for a lithium chloride glycine adduct (Müller et al., 1994[Müller, G., Maier, G.-M. & Lutz, M. (1994). Inorg. Chim. Acta, 218, 121-131.]) and lithium 2,4,6-tri­fluoro­benzoate hydrate (Lamann et al., 2012[Lamann, R., Hülsen, M., Dolg, M. & Ruschewitz, U. (2012). Z. Anorg. Allg. Chem. 638, 1424-1431.]), which may serve as representative examples.

Table 1
Selected geometric parameters (Å, °) for 1[link]

C1—C2 1.4855 (18) C7—O4 1.3781 (16)
C1—O1 1.2669 (16) Li—O1i 1.949 (2)
C1—O2 1.2624 (16) Li—O1ii 1.908 (2)
C2—C3 1.3285 (19) Li—O2 1.962 (2)
C3—C4 1.4685 (18) Li—O5 2.005 (3)
C6—O3 1.3757 (17)    
       
O1—C1—C2 117.48 (12) O1i—Li—O5 105.35 (12)
O1ii—Li—O1i 112.20 (11) O1ii—Li—O5 109.92 (12)
O1i—Li—O2 108.08 (12) O2—Li—O5 110.08 (11)
O1ii—Li—O2 111.04 (12) Liiii—O1—Liiv 101.15 (8)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, y+1, z]; (iii) [x, y-1, z]; (iv) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
Mol­ecular structure of the (3,4-di­hydroxy­phen­yl)propenoate anion in compound 1 along with the coordination sphere of the lithium cation. The asymmetric unit is displayed with filled bonds. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Symmetry codes refer to Table 1[link].
[Figure 2]
Figure 2
Section of the crystal structure of 1 showing the six-membered Li2O3C rings.
[Figure 3]
Figure 3
Section of the crystal structure of 1 showing the linkage of the LiO4 tetra­hedra.

In the crystal structure of 2, the sodium cation adopts a sevenfold coordination from one water oxygen atom, two carboxyl­ate and four catechol oxygen atoms (Fig. 4[link]). According to a SHAPE analysis (SHAPE 2.1; Llunell et al., 2013[Llunell, M., Casanova, D., Cirera, J., Alemany, P. & Alvarez, S. (2013). SHAPE 2.1. Shape software, Barcelona, Spain.]), the NaO7 polyhedron is roughly related to the face-capped octa­hedron (CShM 2.807) and to the face-capped trigonal prism (CShM 3.593) with some preference to the former (Llunell et al., 2013[Llunell, M., Casanova, D., Cirera, J., Alemany, P. & Alvarez, S. (2013). SHAPE 2.1. Shape software, Barcelona, Spain.]; Pinsky & Avnir, 1998[Pinsky, M. & Avnir, D. (1998). Inorg. Chem. 37, 5575-5582.]; Casanova et al., 2004[Casanova, D., Cirera, J., Llunell, M., Alemany, P., Avnir, D. & Alvarez, S. (2004). J. Am. Chem. Soc. 126, 1755-1763.]; Cirera et al., 2005[Cirera, J., Ruiz, E. & Alvarez, S. (2005). Organometallics, 24, 1556-1562.]). Numerical data for this analysis are given in Table 2[link]. The centre of Fig. 5[link] displays the observed NaO7 polyhedron and the idealized CTRP-7 (left) and COC-7 (right) polyhedra in order to illustrate the degree of distortion. The Na—O distances are in the range from 2.3185 (14) to 2.7897 (17) Å (Table 3[link]) and are comparable to those found in monosodium tartrate hydrate [2.3331 (12) to 2.6740 (12) Å], which also displays coordination number seven for the sodium cation (Al-Dajani et al., 2010[Al-Dajani, M. T. M., Abdallah, H. H., Mohamed, N., Quah, C. K. & Fun, H.-K. (2010). Acta Cryst. E66, m138-m139.]). Generally, sodium carboxyl­ates with coordination number seven for the cation are rather rare. A search of the Cambridge Structural Database (CSD, version 2022.5.43; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave 20 matches. In this selection, the Na—O distances range from 2.299 to 3.017 Å with a median value of 2.44 Å (lower quartile: 2.380 Å, upper quartile: 2.557 Å). Regarding the coordination mode of the carboxyl­ate unit, the sodium salt 2 differs from the lithium salt 1 in the way that only one carboxyl­ate O atom (O2) is involved in coordination. Furthermore, the coordination mode of the catechol groups is also different in the two structures. In the case of 1, the catechol groups are part of the hydrogen-bonding network and there is no direct Li—O coordination from these groups. In contrast, the crystal structure of 2 reveals a direct coordination by the catechol oxygen atoms. Here, the catechol group acts as a chelating ligand and connects two sodium cations. The coordination mode can be described as μ-κ4 O,O′:O,O′. Up to now, sodium compounds with chelating catechol groups have been observed only rarely. The CSD database search resulted in four structures with this coordination motif, e.g. in sodium quercetin-5′-sulfonate acetone solvate (Maciołek et al., 2022[Maciołek, U., Mendyk, E., Kamiński, D. M., Dranka, M., Mazur, L., Kuźniar, A., Kalembkiewicz, J. & Kozioł, A. E. (2022). Polyhedron, 226, 116083.]).

Table 2
Continuous shape measurement (CShM) values (SHAPE 2.1) for the seven-coordinate sodium ion of 2

Heptagon HP-7 32.482
Hexagonal pyramid HPY-7 20.852
Penta­gonal bipyramid PBPY-7 5.863
Capped octa­hedron COC-7 2.807
Capped trigonal prism CTPR-7 3.593
Johnson penta­gonal bipyramid JPBPY-7 8.482
Johnson elongated triangular pyramid JETPY-7 20.721

Table 3
Selected geometric parameters (Å, °) for 2[link]

C1—C2 1.481 (2) Na—O2i 2.4608 (15)
C1—O2 1.252 (2) Na—O2 2.3185 (14)
C1—O1 1.282 (2) Na—O3ii 2.7897 (17)
C2—C3 1.327 (2) Na—O3iii 2.7668 (16)
C3—C4 1.463 (2) Na—O4iii 2.5810 (16)
C6—O3 1.3695 (19) Na—O4ii 2.4153 (15)
C7—O4 1.3715 (19) Na—O5 2.4411 (16)
       
O2—C1—C2 120.37 (14) O2—Na—O4ii 175.93 (5)
O2—Na—O2i 84.95 (5) O2—Na—O4iii 90.18 (5)
O2i—Na—O3ii 83.95 (5) O2i—Na—O4iii 145.56 (5)
O2—Na—O3ii 118.94 (5) O2—Na—O5 92.33 (5)
O2—Na—O3iii 112.69 (5) Na—O2—Nai 95.05 (5)
Symmetry codes: (i) [-x+1, -y, -z+1]; (ii) [x, y, z+1]; (iii) [-x+1, -y+1, -z].
[Figure 4]
Figure 4
Mol­ecular structure of the caffeate anion in compound 2 along with the coordination sphere of the sodium cation. The asymmetric unit is displayed with filled bonds. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Symmetry codes refer to Table 2[link]. Additional symmetry codes: (vii) −x + 1, −y, −z + 1; (viii) x, y − 1, z + 1; (ix) x, y, z − 1.
[Figure 5]
Figure 5
Representation of the NaO7 polyhedron in 2 (centre) and the best fitting regular polyhedra TRP-7 (left) and COC-7 (right).

The NaO7 polyhedra are linked by edge- (O2 and O2i) and face- (O3iii, O4iii, O3iv, O4iv) sharing to give chains propagating parallel to the b axis (Fig. 6[link]). Additional inter­linking of these chains by μ4-bridging (3,4-di­hydroxy­phen­yl)propenoate units (Fig. 7[link]) leads to layers extending parallel to the bc plane.

[Figure 6]
Figure 6
Linkage of the NaO7 polyhedra by edge- and face-sharing in the crystal structure of 2.
[Figure 7]
Figure 7
Linkage of the NaO7 polyhedral chains by (3,4-di­hydroxy­phen­yl)propenoate units in the crystal structure of 2.

In the structures of 1 and 2, the bond lengths and angles within the 3-(3,4-di­hydroxy­phen­yl)propenoate anions are very similar (Tables 1[link] and 3[link]). The anions are nearly planar apart from a slight tilt [1: 6.3 (2)°, 2: 1.4 (2)°] of the carboxyl­ate group along the C1—C2 bond.

3. Supra­molecular features

The supra­molecular structure of lithium caffeate hydrate is governed by O—H⋯O hydrogen bonds (Table 4[link]). Both hydrogen atoms H5A and H5B of the water mol­ecule are involved in hydrogen bonds to adjacent catechol groups (Fig. 8[link]). H5B is part of a bifurcated hydrogen bond that connects the catechol oxygen atoms O3 and O4 with the water oxygen atom O5 (type a1 and a2 in Fig. 8[link]). H5A forms a hydrogen bond to another neighbouring catechol oxygen atom O4 (type b). Moreover, the water oxygen atom O5 acts as an acceptor for the O4—H4 hydroxyl group of a further catechol unit in the surrounding (type c). An additional type of hydrogen bond is formed between the catechol group O3—H3 as the donor and the carboxyl­ate oxygen atom O2 as an acceptor (type d). The corresponding hydrogen bonds can be considered as medium-strong to weak, with the shortest O⋯O distance found for the d type [2.734 (2) Å] hydrogen bond and the largest for the bifurcated a1 type hydrogen bond [3.042 (2) Å].

Table 4
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2v 0.92 (2) 1.83 (2) 2.734 (2) 168 (2)
O4—H4⋯O5vi 0.88 (2) 1.94 (2) 2.793 (2) 160.7 (2)
O5—H5A⋯O4vii 0.85 (3) 2.13 (2) 2.977 (2) 173 (2)
O5—H5B⋯O3viii 0.80 (2) 2.33 (2) 3.042 (2) 150 (2)
O5—H5B⋯O4viii 0.80 (2) 2.33 (2) 2.953 (2) 136 (2)
Symmetry codes: (v) [-x+1, -y+1, -z+1]; (vi) [-x+2, -y, -z+1]; (vii) [-x+2, -y+1, -z+1]; (viii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 8]
Figure 8
Hydrogen-bonding patterns in 1. Symmetry codes refer to Table 4[link]. Additional symmetry codes: (x) −x + 2, −y, −z; (xi) x + 1, y, z; (xii) x - 2, −y, −z + 1.

Regarding the LiO4 tetra­hedra chains, the hydrogen bonds are essential for intra-chain and inter-chain supra­molecular organization. Within a chain, directly adjacent LiO4 tetra­hedra are linked pairwise (1,2 connection) by a sequence of hydrogen bonds of the type a1d starting from O5 (Figs. 9[link], 10[link]). Additionally, there is a c–b hydrogen-bonding sequence starting from O5 that links two LiO4 tetra­hedra, which are separated by one LiO4 unit (1,3 connection). The inter­connection of the LiO4 tetra­hedra chains is based on two a2-c hydrogen-bonding sequences starting from O5 or its centrosymmetric equivalent in the neighbouring chain. This leads to R22(24) motifs (Fig. 11[link]).

[Figure 9]
Figure 9
Inter­connection of the LiO4 tetra­hedra chains of 1 by hydrogen bonds (dashed lines). Symmetry codes refer to Tables 1[link] and 4[link]. Additional symmetry code: (xii) x − 2, −y, −z + 1.
[Figure 10]
Figure 10
Position of the hydrogen bonds (dashed lines) along the LiO4 tetra­hedra chains in the crystal structure of 1.
[Figure 11]
Figure 11
Section of the crystal structure of 1 with the complete hydrogen-bonding network.

As in the case of 1, O—H⋯O hydrogen bonds are essential for the supra­molecular organisation within the crystal structure of 2 (Table 5[link]). The water mol­ecule (H5A—O1—H5B) participates in two hydrogen bonds (Fig. 12[link]). The hydrogen bond O5i—H5Bi⋯O1 with the carboxyl­ate oxygen atom as an acceptor (equivalent to O5xi—H5Bxi ⋯O1xii, type a in Fig. 12[link]) acts as an intra-layer linkage, and the hydrogen bond O5xi—H5Axi—O1 (equivalent to O5i—H5Ai⋯O1xii, type b in Fig. 12[link]) connects adjacent layers (Fig. 13[link]).

Table 5
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1iv 0.84 (2) 1.84 (2) 2.6437 (19) 158 (2)
O4—H4⋯O5v 0.81 (2) 1.85 (2) 2.6350 (19) 166 (2)
O5—H5A⋯O1vi 0.83 (2) 2.02 (2) 2.826 (2) 163 (2)
O5—H5B⋯O1i 0.82 (2) 1.95 (2) 2.7614 (19) 178 (3)
Symmetry codes: (i) [-x+1, -y, -z+1]; (iv) [-x+2, -y, -z]; (v) [-x, -y+1, -z]; (vi) [x-1, y, z].
[Figure 12]
Figure 12
Hydrogen-bonding patterns in the crystal structure of 2. Symmetry codes refer to Table 5[link].
[Figure 13]
Figure 13
Inter-layer hydrogen bonds in 2. Symmetry codes refer to Table 5[link].

Fig. 14[link] represents the position of the intra-chain hydrogen bonds. Furthermore, the catechol groups are involved in hydrogen-bonding inter­actions. The O3—H3 group acts as the donor with respect to the carboxyl­ate oxygen atom O1 of a neighbouring chain (Oiv in Fig. 12[link], type c). This leads to an R22(18) motif between adjacent 3-(3,4-di­hydroxy­phen­yl)-2-propenoate units (Fig. 13[link]). Finally, the cross-linking of the chains is completed by hydrogen bonds of the type d with the O4—H4 group as the donor and the water oxygen atom O5 of a neighbouring chain as acceptor. The position of the different hydrogen-bonding types is displayed in Fig. 15[link]. Fig. 16[link] shows a packing diagram with the complete hydrogen-bonding network of 2. In direct comparison with 1, the hydrogen bonds in 2 are significantly stronger, with the closest O⋯O distance being 2.6350 (19) Å (Table 5[link]).

[Figure 14]
Figure 14
Intra-chain hydrogen bonds in compound 2.
[Figure 15]
Figure 15
Position of the hydrogen bonds (dashed lines) along the NaO7 polyhedral chains in the crystal structure of 2. Symmetry codes refer to Table 3[link]. Additional symmetry codes: (x) x − 1, y + 1, z; (xi) x + 1, y, z.
[Figure 16]
Figure 16
Section of the crystal structure of 2 showing the complete hydrogen-bonding network (dashed lines).

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 2022.3; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for metal caffeates revealed only the crystal structure of the potassium caffeate/caffeic acid co-crystallization product (CSD code GIFXEA; Lombardo et al., 2012[Lombardo, G. M., Portalone, G., Chiacchio, U., Rescifina, A. & Punzo, F. (2012). Dalton Trans. 41, 14337.]). Furthermore, there are 16 crystal structures containing caffeic acid as free acid, hydrate or co-crystals with various organic mol­ecules.

5. Synthesis and crystallization

2 mmol of the alkali hydroxide (48 mg, LiOH, 80 mg NaOH) and 2 mmol of caffeic acid (360 mg) were dissolved in 5 ml of water to give a clear solution. After slow evaporation the products were isolated as colourless solids in nearly qu­anti­tative yield. Single crystals were obtained by recrystallization from water.

Compound 1: IR: 1643 m, 1616 w, 1548 s, 1524 m, 1441 w, 1401 vs, 1360 w, 1304 w, 1249 vs, 1195 w, 1164 s, 1109 s, 971 s, 859 s, 809 s, 714 s, 602 w, 581 s cm−1.

Compound 2: IR: 1641 m, 1601 m, 1519 s, 1474 w, 1409 w, 1369 s, 1290 w, 1273 m, 1250 s, 1224 w, 1195 m, 1012 w, 969 s, 829 w, 873 w, 859 m, 814 s, 739 m, 695 m, 600 m, 564 s, 516 m cm−1.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 6[link]. All carbon-bound hydrogen atoms were positioned geometrically (C—H = 0.94 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C). Hydrogen atoms bound to oxygen were found in difference-Fourier maps. The O—H distances of 2 were restricted to 0.82 Å.

Table 6
Experimental details

  1 2
Crystal data
Chemical formula [Li(C9H7O4)(H2O)] [Na(C9H7O4)(H2O)]
Mr 204.10 220.15
Crystal system, space group Monoclinic, P21/n Triclinic, P[\overline{1}]
Temperature (K) 220 293
a, b, c (Å) 8.3083 (12), 4.8511 (5), 22.587 (4) 6.3289 (13), 6.8126 (14), 11.253 (2)
α, β, γ (°) 90, 98.572 (18), 90 75.05 (2), 86.39 (2), 78.09 (2)
V3) 900.2 (2) 458.64 (17)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.12 0.17
Crystal size (mm) 0.46 × 0.15 × 0.15 0.4 × 0.2 × 0.08
 
Data collection
Diffractometer Stoe IPDS 2 Stoe IPDS 2
No. of measured, independent and observed [I > 2σ(I)] reflections 4973, 1735, 1314 7192, 1798, 1331
Rint 0.027 0.048
(sin θ/λ)max−1) 0.619 0.619
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.079, 1.01 0.035, 0.095, 1.00
No. of reflections 1735 1798
No. of parameters 152 152
No. of restraints 0 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.19, −0.15 0.24, −0.22
Computer programs: X-AREA (Stoe & Cie, 2016[Stoe & Cie (2016). X-AREA. Stoe & Cie, Darmstadt, Germany.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2019[Brandenburg, K. & Putz, H. (2019). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Poly[aqua[µ-3-(3,4-dihydroxyphenyl)propenoato]lithium] (1) top
Crystal data top
[Li(C9H7O4)(H2O)]F(000) = 424
Mr = 204.10Dx = 1.506 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.3083 (12) ÅCell parameters from 3964 reflections
b = 4.8511 (5) Åθ = 2.5–26.0°
c = 22.587 (4) ŵ = 0.12 mm1
β = 98.572 (18)°T = 220 K
V = 900.2 (2) Å3Block, colourless
Z = 40.46 × 0.15 × 0.15 mm
Data collection top
Stoe IPDS 2
diffractometer
1314 reflections with I > 2σ(I)
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus, Incoatec IµsRint = 0.027
Plane graphite monochromatorθmax = 26.1°, θmin = 2.5°
Detector resolution: 6.67 pixels mm-1h = 1010
rotation method scansk = 55
4973 measured reflectionsl = 2727
1735 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.047P)2 + 0.0259P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
1735 reflectionsΔρmax = 0.19 e Å3
152 parametersΔρmin = 0.15 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.71575 (16)0.1874 (3)0.65653 (5)0.0232 (3)
C20.74035 (18)0.0573 (3)0.59901 (6)0.0297 (3)
H20.7871470.1193670.5999290.036*
C30.69907 (16)0.1798 (3)0.54634 (6)0.0274 (3)
H3A0.6477200.3521950.5471170.033*
C40.72381 (16)0.0791 (3)0.48705 (6)0.0265 (3)
C50.64958 (16)0.2210 (3)0.43618 (6)0.0279 (3)
H50.5794860.3690710.4407440.034*
C60.67740 (16)0.1475 (3)0.37929 (6)0.0272 (3)
C70.78474 (16)0.0658 (3)0.37246 (6)0.0271 (3)
C80.85657 (17)0.2130 (3)0.42205 (6)0.0307 (3)
H80.9265360.3608890.4172030.037*
C90.82555 (18)0.1427 (3)0.47885 (6)0.0315 (3)
H90.8734890.2454540.5121610.038*
Li0.7956 (3)0.6632 (5)0.71799 (10)0.0283 (5)
O10.75014 (12)0.0450 (2)0.70375 (4)0.0297 (3)
O20.66671 (12)0.43357 (19)0.65694 (4)0.0294 (3)
O30.60783 (14)0.2806 (2)0.32801 (4)0.0376 (3)
H30.525 (3)0.395 (4)0.3355 (9)0.060 (6)*
O40.81610 (14)0.1140 (3)0.31514 (4)0.0362 (3)
H40.869 (3)0.271 (5)0.3134 (9)0.068 (7)*
O51.03368 (14)0.5915 (3)0.71894 (5)0.0361 (3)
H5A1.082 (3)0.740 (6)0.7122 (11)0.092 (9)*
H5B1.070 (3)0.548 (5)0.7522 (11)0.070 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0269 (7)0.0219 (7)0.0211 (7)0.0027 (6)0.0043 (5)0.0003 (5)
C20.0412 (8)0.0232 (7)0.0258 (7)0.0006 (6)0.0089 (6)0.0027 (6)
C30.0281 (7)0.0301 (8)0.0245 (7)0.0019 (6)0.0056 (5)0.0028 (6)
C40.0272 (7)0.0298 (8)0.0232 (7)0.0049 (6)0.0056 (5)0.0021 (6)
C50.0265 (7)0.0327 (8)0.0255 (7)0.0004 (6)0.0068 (5)0.0031 (6)
C60.0268 (7)0.0327 (8)0.0217 (7)0.0033 (6)0.0026 (5)0.0009 (5)
C70.0276 (7)0.0323 (8)0.0222 (7)0.0048 (6)0.0063 (5)0.0052 (6)
C80.0329 (8)0.0283 (8)0.0314 (7)0.0030 (7)0.0061 (6)0.0039 (6)
C90.0377 (8)0.0315 (8)0.0249 (7)0.0022 (7)0.0034 (6)0.0005 (6)
Li0.0389 (13)0.0229 (11)0.0239 (11)0.0025 (10)0.0075 (9)0.0009 (9)
O10.0468 (6)0.0226 (5)0.0208 (5)0.0037 (4)0.0087 (4)0.0015 (4)
O20.0406 (6)0.0227 (5)0.0242 (5)0.0047 (5)0.0019 (4)0.0011 (4)
O30.0420 (6)0.0486 (7)0.0220 (5)0.0132 (6)0.0038 (4)0.0016 (5)
O40.0455 (6)0.0419 (7)0.0229 (5)0.0066 (6)0.0106 (4)0.0046 (5)
O50.0378 (6)0.0444 (7)0.0261 (6)0.0060 (6)0.0049 (5)0.0005 (5)
Geometric parameters (Å, º) top
C1—C21.4855 (18)C7—O41.3781 (16)
C1—O11.2669 (16)C8—H80.9400
C1—O21.2624 (16)C8—C91.388 (2)
C2—H20.9400C9—H90.9400
C2—C31.3285 (19)Li—Lii2.979 (3)
C3—H3A0.9400Li—Lii2.979 (3)
C3—C41.4685 (18)Li—O1ii1.949 (2)
C4—C51.401 (2)Li—O1iii1.908 (2)
C4—C91.398 (2)Li—O21.962 (2)
C5—H50.9400Li—O52.005 (3)
C5—C61.3857 (18)O3—H30.92 (2)
C6—C71.390 (2)O4—H40.88 (3)
C6—O31.3757 (17)O5—H5A0.85 (3)
C7—C81.386 (2)O5—H5B0.79 (3)
O1—C1—C2117.48 (12)C8—C9—H9119.6
O2—C1—C2119.66 (12)Lii—Li—Liii109.00 (13)
O2—C1—O1122.83 (12)O1iii—Li—Liii39.93 (3)
C1—C2—H2118.6O1iii—Li—Lii144.46 (14)
C3—C2—C1122.84 (13)O1ii—Li—Lii38.92 (9)
C3—C2—H2118.6O1ii—Li—Liii72.61 (11)
C2—C3—H3A116.0O1iii—Li—O1ii112.20 (11)
C2—C3—C4127.96 (14)O1ii—Li—O2108.08 (12)
C4—C3—H3A116.0O1iii—Li—O2111.04 (12)
C5—C4—C3118.68 (13)O1ii—Li—O5105.35 (12)
C9—C4—C3123.15 (12)O1iii—Li—O5109.92 (12)
C9—C4—C5118.07 (12)O2—Li—Lii74.16 (8)
C4—C5—H5119.3O2—Li—Liii130.66 (15)
C6—C5—C4121.35 (14)O2—Li—O5110.08 (11)
C6—C5—H5119.3O5—Li—Lii100.11 (11)
C5—C6—C7119.53 (12)O5—Li—Liii117.27 (13)
O3—C6—C5123.57 (13)C1—O1—Liiv133.25 (11)
O3—C6—C7116.87 (11)C1—O1—Lii123.58 (11)
C8—C7—C6120.01 (12)Liiv—O1—Lii101.15 (8)
O4—C7—C6116.41 (12)C1—O2—Li113.53 (11)
O4—C7—C8123.56 (13)C6—O3—H3111.2 (12)
C7—C8—H8119.9C7—O4—H4110.7 (14)
C7—C8—C9120.23 (13)Li—O5—H5A110.0 (18)
C9—C8—H8119.9Li—O5—H5B106.7 (16)
C4—C9—H9119.6H5A—O5—H5B106 (2)
C8—C9—C4120.72 (13)
C1—C2—C3—C4176.94 (13)C5—C6—C7—O4175.22 (12)
C2—C1—O1—Liiv12.6 (2)C6—C7—C8—C92.0 (2)
C2—C1—O1—Lii173.12 (12)C7—C8—C9—C41.0 (2)
C2—C1—O2—Li131.35 (13)C9—C4—C5—C60.9 (2)
C2—C3—C4—C5170.59 (14)O1—C1—C2—C3175.69 (13)
C2—C3—C4—C913.2 (2)O1—C1—O2—Li46.58 (17)
C3—C4—C5—C6175.49 (13)O2—C1—C2—C36.3 (2)
C3—C4—C9—C8173.87 (13)O2—C1—O1—Liiv169.48 (14)
C4—C5—C6—C71.9 (2)O2—C1—O1—Lii8.9 (2)
C4—C5—C6—O3179.85 (13)O3—C6—C7—C8178.57 (13)
C5—C4—C9—C82.4 (2)O3—C6—C7—O42.84 (18)
C5—C6—C7—C83.4 (2)O4—C7—C8—C9176.53 (13)
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+3/2, y+1/2, z+3/2; (iii) x, y+1, z; (iv) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2v0.92 (2)1.83 (2)2.734 (2)168 (2)
O4—H4···O5vi0.88 (2)1.94 (2)2.793 (2)160.7 (2)
O5—H5A···O4vii0.85 (3)2.13 (2)2.977 (2)173 (2)
O5—H5B···O3viii0.80 (2)2.33 (2)3.042 (2)150 (2)
O5—H5B···O4viii0.80 (2)2.33 (2)2.953 (2)136 (2)
Symmetry codes: (v) x+1, y+1, z+1; (vi) x+2, y, z+1; (vii) x+2, y+1, z+1; (viii) x+1/2, y+1/2, z+1/2.
Poly[aqua[µ-3-(3,4-dihydroxyphenyl)propenoato]sodium] (2) top
Crystal data top
[Na(C9H7O4)(H2O)]Z = 2
Mr = 220.15F(000) = 228
Triclinic, P1Dx = 1.594 Mg m3
a = 6.3289 (13) ÅMo Kα radiation, λ = 0.71073 Å
b = 6.8126 (14) ÅCell parameters from 2529 reflections
c = 11.253 (2) Åθ = 3.1–26.0°
α = 75.05 (2)°µ = 0.17 mm1
β = 86.39 (2)°T = 293 K
γ = 78.09 (2)°Plate, colourless
V = 458.64 (17) Å30.4 × 0.2 × 0.08 mm
Data collection top
Stoe IPDS 2
diffractometer
1331 reflections with I > 2σ(I)
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus, Incoatec IµsRint = 0.048
Plane graphite monochromatorθmax = 26.1°, θmin = 3.2°
Detector resolution: 6.67 pixels mm-1h = 77
rotation method scansk = 88
7192 measured reflectionsl = 1313
1798 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0615P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1798 reflectionsΔρmax = 0.24 e Å3
152 parametersΔρmin = 0.22 e Å3
4 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7621 (3)0.0311 (2)0.28917 (15)0.0254 (4)
C20.7226 (3)0.1072 (2)0.15528 (14)0.0264 (4)
H20.83990.10040.10130.032*
C30.5262 (3)0.1847 (2)0.10941 (15)0.0255 (4)
H3A0.41380.19030.16660.031*
C40.4642 (3)0.2624 (2)0.01989 (14)0.0227 (3)
C50.6151 (3)0.2576 (2)0.11683 (15)0.0251 (4)
H50.76040.20420.09940.030*
C60.5499 (3)0.3310 (2)0.23713 (14)0.0251 (4)
C70.3322 (3)0.4163 (2)0.26497 (14)0.0228 (3)
C80.1815 (3)0.4196 (2)0.17098 (14)0.0259 (4)
H80.03630.47340.18880.031*
C90.2482 (3)0.3420 (2)0.04956 (14)0.0260 (4)
H90.14580.34340.01340.031*
Na0.44737 (11)0.27100 (10)0.47948 (6)0.0348 (2)
O10.95808 (19)0.0433 (2)0.32325 (11)0.0363 (3)
O20.60826 (19)0.04183 (18)0.36431 (10)0.0328 (3)
O30.6857 (2)0.3298 (2)0.33673 (11)0.0387 (3)
H30.800 (3)0.243 (4)0.314 (2)0.070 (8)*
O40.2845 (2)0.48950 (18)0.38767 (10)0.0304 (3)
H40.164 (3)0.558 (3)0.391 (2)0.053 (7)*
O50.0849 (2)0.2438 (2)0.43233 (13)0.0345 (3)
H5A0.070 (4)0.163 (3)0.391 (2)0.061 (8)*
H5B0.070 (4)0.187 (4)0.5048 (17)0.059 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0297 (9)0.0243 (8)0.0217 (8)0.0013 (6)0.0040 (6)0.0074 (6)
C20.0302 (9)0.0310 (8)0.0179 (8)0.0074 (7)0.0019 (6)0.0054 (6)
C30.0320 (9)0.0251 (8)0.0190 (8)0.0054 (6)0.0016 (6)0.0054 (6)
C40.0291 (8)0.0213 (7)0.0177 (8)0.0046 (6)0.0009 (6)0.0048 (6)
C50.0235 (8)0.0271 (8)0.0220 (8)0.0018 (6)0.0030 (6)0.0031 (6)
C60.0274 (8)0.0261 (8)0.0197 (8)0.0039 (6)0.0036 (6)0.0042 (6)
C70.0293 (9)0.0215 (7)0.0164 (8)0.0023 (6)0.0033 (6)0.0042 (6)
C80.0238 (8)0.0268 (8)0.0240 (9)0.0009 (6)0.0024 (6)0.0050 (6)
C90.0278 (8)0.0287 (8)0.0199 (8)0.0025 (6)0.0035 (6)0.0066 (6)
Na0.0381 (4)0.0366 (4)0.0316 (4)0.0084 (3)0.0087 (3)0.0132 (3)
O10.0302 (7)0.0487 (7)0.0270 (7)0.0046 (5)0.0078 (5)0.0123 (5)
O20.0343 (7)0.0399 (7)0.0195 (6)0.0017 (5)0.0019 (5)0.0068 (5)
O30.0304 (7)0.0546 (8)0.0191 (6)0.0056 (6)0.0051 (5)0.0004 (5)
O40.0323 (7)0.0360 (6)0.0165 (6)0.0050 (5)0.0046 (5)0.0033 (5)
O50.0356 (7)0.0375 (7)0.0262 (7)0.0005 (5)0.0078 (5)0.0039 (6)
Geometric parameters (Å, º) top
C1—C21.481 (2)Na—Naii3.4689 (15)
C1—O21.252 (2)Na—O2i2.4608 (15)
C1—O11.282 (2)Na—O22.3185 (14)
C2—H20.9300Na—O3iii2.7897 (17)
C2—C31.327 (2)Na—O3iv2.7668 (16)
C3—H3A0.9300Na—O4iv2.5810 (16)
C3—C41.463 (2)Na—O4iii2.4153 (15)
C4—C51.406 (2)Na—O52.4411 (16)
C4—C91.390 (2)Na—H5B2.55 (2)
C5—H50.9300O2—Nai2.4608 (15)
C5—C61.374 (2)O3—Nav2.7897 (17)
C6—C71.401 (2)O3—Naiv2.7669 (16)
C6—O31.3695 (19)O3—H30.841 (17)
C7—C81.380 (2)O4—Naiv2.5810 (16)
C7—O41.3715 (19)O4—Nav2.4153 (15)
C8—H80.9300O4—H40.803 (16)
C8—C91.390 (2)O5—H5A0.827 (17)
C9—H90.9300O5—H5B0.816 (17)
Na—Nai3.5262 (15)
O1—C1—C2117.18 (14)O3iii—Na—Naii51.08 (4)
O2—C1—C2120.37 (14)O3iv—Na—Nai151.40 (5)
O2—C1—O1122.45 (15)O3iii—Na—Nai104.16 (5)
C1—C2—H2118.8O3iv—Na—Naii51.67 (4)
C3—C2—C1122.43 (15)O3iv—Na—O3iii102.74 (4)
C3—C2—H2118.8O3iv—Na—H5B94.7 (5)
C2—C3—H3A116.0O3iii—Na—H5B126.0 (4)
C2—C3—C4128.09 (15)O4iii—Na—Nai132.15 (5)
C4—C3—H3A116.0O4iii—Na—Naii48.03 (4)
C5—C4—C3122.50 (15)O4iv—Na—Naii44.09 (3)
C9—C4—C3119.45 (14)O4iv—Na—Nai125.28 (5)
C9—C4—C5118.04 (14)O4iii—Na—O2i91.26 (5)
C4—C5—H5119.7O4iv—Na—O3iv57.67 (4)
C6—C5—C4120.66 (15)O4iii—Na—O3iv71.38 (4)
C6—C5—H5119.7O4iv—Na—O3iii68.74 (4)
C5—C6—C7120.37 (15)O4iii—Na—O3iii59.01 (4)
O3—C6—C5124.36 (15)O4iii—Na—O4iv92.12 (5)
O3—C6—C7115.27 (14)O4iii—Na—O588.31 (5)
C8—C7—C6119.71 (14)O4iv—Na—H5B152.3 (5)
O4—C7—C6115.86 (14)O4iii—Na—H5B80.0 (5)
O4—C7—C8124.43 (14)O5—Na—Nai83.14 (5)
C7—C8—H8120.2O5—Na—Naii121.25 (5)
C7—C8—C9119.57 (14)O5—Na—O2i77.91 (5)
C9—C8—H8120.2O5—Na—O3iv81.58 (5)
C4—C9—H9119.2O5—Na—O3iii142.21 (5)
C8—C9—C4121.62 (15)O5—Na—O4iv136.45 (5)
C8—C9—H9119.2O5—Na—H5B18.6 (4)
Naii—Na—Nai153.76 (5)C1—O2—Na136.46 (11)
Naii—Na—H5B122.5 (6)C1—O2—Nai119.95 (10)
Nai—Na—H5B77.2 (5)Na—O2—Nai95.05 (5)
O2—Na—Nai44.04 (4)C6—O3—Nav106.29 (10)
O2i—Na—Nai40.91 (3)C6—O3—Naiv101.08 (9)
O2—Na—Naii134.17 (5)C6—O3—H3108.4 (19)
O2i—Na—Naii128.97 (5)Naiv—O3—Nav77.26 (4)
O2—Na—O2i84.95 (5)Naiv—O3—H3140.1 (19)
O2i—Na—O3iii83.95 (5)Nav—O3—H3117.7 (19)
O2—Na—O3iii118.94 (5)C7—O4—Nav116.66 (9)
O2—Na—O3iv112.69 (5)C7—O4—Naiv105.73 (10)
O2i—Na—O3iv153.47 (5)C7—O4—H4105.9 (17)
O2—Na—O4iii175.93 (5)Nav—O4—Naiv87.88 (5)
O2—Na—O4iv90.18 (5)Nav—O4—H4127.7 (17)
O2i—Na—O4iv145.56 (5)Naiv—O4—H4109.1 (17)
O2—Na—O592.33 (5)Na—O5—H5A119.7 (18)
O2—Na—H5B99.4 (5)Na—O5—H5B88.4 (18)
O2i—Na—H5B61.8 (5)H5A—O5—H5B108 (2)
C1—C2—C3—C4179.15 (14)C6—C7—O4—Naiv50.68 (14)
C2—C1—O2—Na94.99 (19)C6—C7—O4—Nav44.96 (17)
C2—C1—O2—Nai126.10 (13)C7—C6—O3—Naiv46.19 (15)
C2—C3—C4—C52.1 (3)C7—C6—O3—Nav33.62 (16)
C2—C3—C4—C9178.71 (16)C7—C8—C9—C40.6 (2)
C3—C4—C5—C6179.58 (14)C8—C7—O4—Nav134.11 (14)
C3—C4—C9—C8179.34 (14)C8—C7—O4—Naiv130.25 (14)
C4—C5—C6—C71.5 (2)C9—C4—C5—C60.4 (2)
C4—C5—C6—O3179.20 (15)O1—C1—C2—C3179.07 (15)
C5—C4—C9—C81.5 (2)O1—C1—O2—Nai54.4 (2)
C5—C6—C7—C82.3 (2)O1—C1—O2—Na84.5 (2)
C5—C6—C7—O4178.54 (14)O2—C1—C2—C31.4 (2)
C5—C6—O3—Naiv133.17 (15)O3—C6—C7—C8178.27 (15)
C5—C6—O3—Nav147.02 (14)O3—C6—C7—O40.8 (2)
C6—C7—C8—C91.3 (2)O4—C7—C8—C9179.66 (14)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x, y, z+1; (iv) x+1, y+1, z; (v) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1vi0.84 (2)1.84 (2)2.6437 (19)158 (2)
O4—H4···O5vii0.81 (2)1.85 (2)2.6350 (19)166 (2)
O5—H5A···O1viii0.83 (2)2.02 (2)2.826 (2)163 (2)
O5—H5B···O1i0.82 (2)1.95 (2)2.7614 (19)178 (3)
Symmetry codes: (i) x+1, y, z+1; (vi) x+2, y, z; (vii) x, y+1, z; (viii) x1, y, z.
Continuous shape measurement (CShM) values (SHAPE 2.1) for the seven-coordinate sodium ion of 2 top
Heptagon HP-732.482
Hexagonal pyramid HPY-720.852
Pentagonal bipyramid PBPY-75.863
Capped octahedron COC-72.807
Capped trigonal prism CTPR-73.593
Johnson pentagonal bipyramid JPBPY-78.482
Johnson elongated triangular pyramid JETPY-720.721
 

Acknowledgements

We acknowledge the financial support of the Open Access Publication Fund of the Martin-Luther-University Halle-Wittenberg.

References

First citationAl-Dajani, M. T. M., Abdallah, H. H., Mohamed, N., Quah, C. K. & Fun, H.-K. (2010). Acta Cryst. E66, m138–m139.  CSD CrossRef IUCr Journals Google Scholar
First citationBoerjan, W., Ralph, J. & Baucher, M. (2003). Annu. Rev. Plant Biol. 54, 519–546.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2019). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCasanova, D., Cirera, J., Llunell, M., Alemany, P., Avnir, D. & Alvarez, S. (2004). J. Am. Chem. Soc. 126, 1755–1763.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCirera, J., Ruiz, E. & Alvarez, S. (2005). Organometallics, 24, 1556–1562.  Web of Science CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGarcía-Granda, S., Beurskens, G., Beurskens, P. T., Krishna, T. S. R. & Desiraju, G. R. (1987). Acta Cryst. C43, 683–685.  CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKumar, N., Pruthi, V. & Goel, N. (2015). J. Mol. Struct. 1085, 242–248.  CSD CrossRef CAS Google Scholar
First citationLamann, R., Hülsen, M., Dolg, M. & Ruschewitz, U. (2012). Z. Anorg. Allg. Chem. 638, 1424–1431.  CSD CrossRef CAS Google Scholar
First citationLlunell, M., Casanova, D., Cirera, J., Alemany, P. & Alvarez, S. (2013). SHAPE 2.1. Shape software, Barcelona, Spain.  Google Scholar
First citationLombardo, G. M., Portalone, G., Chiacchio, U., Rescifina, A. & Punzo, F. (2012). Dalton Trans. 41, 14337.  CSD CrossRef PubMed Google Scholar
First citationLombardo, G. M., Portalone, G., Colapietro, M., Rescifina, A. & Punzo, F. (2011). J. Mol. Struct. 994, 87–96.  CSD CrossRef CAS Google Scholar
First citationMaciołek, U., Mendyk, E., Kamiński, D. M., Dranka, M., Mazur, L., Kuźniar, A., Kalembkiewicz, J. & Kozioł, A. E. (2022). Polyhedron, 226, 116083.  Google Scholar
First citationMartínez Casado, F. J., Ramos Riesco, M., Redondo, M. I., Choquesillo-Lazarte, D., López-Andrés, S. & Cheda, J. A. R. (2011). Cryst. Growth Des. 11, 1021–1032.  Google Scholar
First citationMüller, G., Maier, G.-M. & Lutz, M. (1994). Inorg. Chim. Acta, 218, 121–131.  CSD CrossRef Web of Science Google Scholar
First citationPetrou, A. L., Koromantzou, M. V. & Tsangaris, J. M. (1993). Chim. Chron, 22, 189–204.  CAS Google Scholar
First citationPinsky, M. & Avnir, D. (1998). Inorg. Chem. 37, 5575–5582.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2016). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationYu, Y.-M., Wang, L.-Y., Bu, F.-Z., Wang, L.-L., Li, Y.-T., Wang, C. & Wu, Z.-Y. (2020). CrystEngComm, 22, 7992–8006.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds