research communications
Lithium and sodium 3-(3,4-dihydroxyphenyl)propenoate hydrate
aMartin-Luther-Universität Halle Wittenberg, Naturwissenschaftliche Fakultät II, Institut für Chemie, Germany
*Correspondence e-mail: kurt.merzweiler@chemie.uni-halle.de
Treatment of 3-(3,4-dihydroxyphenyl)propenoic acid (caffeic acid or 3,4-dihydroxycinnamic acid) with the alkali hydroxides MOH (M = Li, Na) in aqueous solution led to the formation of poly[aqua[μ-3-(3,4-dihydroxyphenyl)propenoato]lithium], [Li(C9H7O4)(H2O)]n, 1, and poly[aqua[μ-3-(3,4-dihydroxyphenyl)propenoato]sodium], [Na(C9H7O4)(H2O)]n, 2. The of 1 consists of a lithium cation that is coordinated nearly tetrahedrally by three carboxylate oxygen atoms and a water molecule. The carboxylate groups adopt a μ3-κ3O:O′:O′ coordination mode that leads to a chain-like catenation of Li cations and carboxylate units parallel to the b axis. Moreover, the lithium carboxylate chains are connected by hydrogen bonds between water molecules attached to lithium and catechol OH groups. The of 2 shows a sevenfold coordination of the sodium cation by one water molecule, two monodentately binding carboxylate groups and four oxygen atoms from two catechol groups. The coordination polyhedra are linked by face- and edge-sharing into chains extending parallel to the b axis. The chains are interlinked by the bridging 3-(3,4-dihydroxyphenyl)propenoate units and by intermolecular hydrogen bonds to form the tri-periodic network.
Keywords: crystal structure; caffeic acid; lithium; sodium; hydrogen-bonding.
1. Chemical context
trans-3-(3,4-Dihydroxyphenyl)-2-propenoic acid (caffeic acid) is ubiquitous in plants and plays a role as an intermediate in the biosynthesis of lignin (Boerjan et al., 2003). The first X-ray crystal-structure analysis of caffeic acid dates back to the year 1987 (García-Granda et al., 1987), and a more recent study was published in 2015 (Kumar et al., 2015). In current research, caffeic acid is used as a co-crystallizing agent, particularly for pharmaceutically relevant compounds such as 5-fluorouracil (Yu et al., 2020). The simultaneous presence of the carboxyl and the catechol moieties renders caffeic acid a versatile ligand in coordination chemistry, in particular after deprotonation of the acidic groups (Petrou et al., 1993). However, transition-metal complexes of caffeic acid derivatives have not yet been structurally investigated. Even for simple alkali metal caffeates, reports are rare and, up to now, only potassium caffeate has been studied in detail as the potassium caffeate/caffeic acid co-crystallization product (Lombardo et al., 2011).
Here we report the crystallization and crystal-structure analysis of the lithium and sodium salts of caffeic acid, LiC9H7O4·H2O, 1, and NaC9H7O4·H2O, 2, respectively.
2. Structural commentary
The 1 comprises one Li cation, one 3-(3,4-dihydroxyphenyl)propenoate anion and one water molecule (Fig. 1). The Li cation is coordinated nearly tetrahedrally by three carboxylate O atoms of three caffeate anions and one water molecule. The Li—O distances range from 1.908 (2) to 2.005 (3) Å and the O—Li—O angles from 105.35 (12) to 112.20 (11)° (Table 1). These values are similar to those reported for other lithium carboxylate compounds such as lithium acetate monohydrate [Li—O: 1.920 (2) to 2.031 (2) Å, O—Li—O: 99.78 (10) to 124.21 (11)°; Martínez Casado et al., 2011]. The carboxylate group adopts a μ3-κ3O:O′,O′ coordination mode. This leads to the formation of six-membered Li2O3C rings that are catenated parallel to the b axis by edge-sharing (Fig. 2). Alternatively, the chain structure can be derived from condensation of corner-sharing LiO4 tetrahedra (Fig. 3). The translational period of the 21-type helix corresponds to the length of the b axis and one repeating unit comprises two LiO4 tetrahedra. Chains of corner-sharing LiO4 tetrahedra are not unusual for lithium carboxylate monohydrates, and similar patterns were observed for a lithium chloride glycine adduct (Müller et al., 1994) and lithium 2,4,6-trifluorobenzoate hydrate (Lamann et al., 2012), which may serve as representative examples.
ofIn the 2, the sodium cation adopts a sevenfold coordination from one water oxygen atom, two carboxylate and four catechol oxygen atoms (Fig. 4). According to a SHAPE analysis (SHAPE 2.1; Llunell et al., 2013), the NaO7 polyhedron is roughly related to the face-capped octahedron (CShM 2.807) and to the face-capped trigonal prism (CShM 3.593) with some preference to the former (Llunell et al., 2013; Pinsky & Avnir, 1998; Casanova et al., 2004; Cirera et al., 2005). Numerical data for this analysis are given in Table 2. The centre of Fig. 5 displays the observed NaO7 polyhedron and the idealized CTRP-7 (left) and COC-7 (right) polyhedra in order to illustrate the degree of distortion. The Na—O distances are in the range from 2.3185 (14) to 2.7897 (17) Å (Table 3) and are comparable to those found in monosodium tartrate hydrate [2.3331 (12) to 2.6740 (12) Å], which also displays seven for the sodium cation (Al-Dajani et al., 2010). Generally, sodium carboxylates with seven for the cation are rather rare. A search of the Cambridge Structural Database (CSD, version 2022.5.43; Groom et al., 2016) gave 20 matches. In this selection, the Na—O distances range from 2.299 to 3.017 Å with a median value of 2.44 Å (lower quartile: 2.380 Å, upper quartile: 2.557 Å). Regarding the coordination mode of the carboxylate unit, the sodium salt 2 differs from the lithium salt 1 in the way that only one carboxylate O atom (O2) is involved in coordination. Furthermore, the coordination mode of the catechol groups is also different in the two structures. In the case of 1, the catechol groups are part of the hydrogen-bonding network and there is no direct Li—O coordination from these groups. In contrast, the of 2 reveals a direct coordination by the catechol oxygen atoms. Here, the catechol group acts as a chelating ligand and connects two sodium cations. The coordination mode can be described as μ-κ4 O,O′:O,O′. Up to now, sodium compounds with chelating catechol groups have been observed only rarely. The CSD database search resulted in four structures with this coordination motif, e.g. in sodium quercetin-5′-sulfonate acetone solvate (Maciołek et al., 2022).
of
|
|
The NaO7 polyhedra are linked by edge- (O2 and O2i) and face- (O3iii, O4iii, O3iv, O4iv) sharing to give chains propagating parallel to the b axis (Fig. 6). Additional interlinking of these chains by μ4-bridging (3,4-dihydroxyphenyl)propenoate units (Fig. 7) leads to layers extending parallel to the bc plane.
In the structures of 1 and 2, the bond lengths and angles within the 3-(3,4-dihydroxyphenyl)propenoate anions are very similar (Tables 1 and 3). The anions are nearly planar apart from a slight tilt [1: 6.3 (2)°, 2: 1.4 (2)°] of the carboxylate group along the C1—C2 bond.
3. Supramolecular features
The supramolecular structure of lithium caffeate hydrate is governed by O—H⋯O hydrogen bonds (Table 4). Both hydrogen atoms H5A and H5B of the water molecule are involved in hydrogen bonds to adjacent catechol groups (Fig. 8). H5B is part of a bifurcated hydrogen bond that connects the catechol oxygen atoms O3 and O4 with the water oxygen atom O5 (type a1 and a2 in Fig. 8). H5A forms a hydrogen bond to another neighbouring catechol oxygen atom O4 (type b). Moreover, the water oxygen atom O5 acts as an acceptor for the O4—H4 hydroxyl group of a further catechol unit in the surrounding (type c). An additional type of hydrogen bond is formed between the catechol group O3—H3 as the donor and the carboxylate oxygen atom O2 as an acceptor (type d). The corresponding hydrogen bonds can be considered as medium-strong to weak, with the shortest O⋯O distance found for the d type [2.734 (2) Å] hydrogen bond and the largest for the bifurcated a1 type hydrogen bond [3.042 (2) Å].
|
Regarding the LiO4 tetrahedra chains, the hydrogen bonds are essential for intra-chain and inter-chain supramolecular organization. Within a chain, directly adjacent LiO4 tetrahedra are linked pairwise (1,2 connection) by a sequence of hydrogen bonds of the type a1–d starting from O5 (Figs. 9, 10). Additionally, there is a c–b hydrogen-bonding sequence starting from O5 that links two LiO4 tetrahedra, which are separated by one LiO4 unit (1,3 connection). The interconnection of the LiO4 tetrahedra chains is based on two a2-c hydrogen-bonding sequences starting from O5 or its centrosymmetric equivalent in the neighbouring chain. This leads to R22(24) motifs (Fig. 11).
As in the case of 1, O—H⋯O hydrogen bonds are essential for the supramolecular organisation within the of 2 (Table 5). The water molecule (H5A—O1—H5B) participates in two hydrogen bonds (Fig. 12). The hydrogen bond O5i—H5Bi⋯O1 with the carboxylate oxygen atom as an acceptor (equivalent to O5xi—H5Bxi ⋯O1xii, type a in Fig. 12) acts as an intra-layer linkage, and the hydrogen bond O5xi—H5Axi—O1 (equivalent to O5i—H5Ai⋯O1xii, type b in Fig. 12) connects adjacent layers (Fig. 13).
|
Fig. 14 represents the position of the intra-chain hydrogen bonds. Furthermore, the catechol groups are involved in hydrogen-bonding interactions. The O3—H3 group acts as the donor with respect to the carboxylate oxygen atom O1 of a neighbouring chain (Oiv in Fig. 12, type c). This leads to an R22(18) motif between adjacent 3-(3,4-dihydroxyphenyl)-2-propenoate units (Fig. 13). Finally, the cross-linking of the chains is completed by hydrogen bonds of the type d with the O4—H4 group as the donor and the water oxygen atom O5 of a neighbouring chain as acceptor. The position of the different hydrogen-bonding types is displayed in Fig. 15. Fig. 16 shows a packing diagram with the complete hydrogen-bonding network of 2. In direct comparison with 1, the hydrogen bonds in 2 are significantly stronger, with the closest O⋯O distance being 2.6350 (19) Å (Table 5).
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 2022.3; Groom et al., 2016) for metal caffeates revealed only the of the potassium caffeate/caffeic acid co-crystallization product (CSD code GIFXEA; Lombardo et al., 2012). Furthermore, there are 16 crystal structures containing caffeic acid as free acid, hydrate or co-crystals with various organic molecules.
5. Synthesis and crystallization
2 mmol of the alkali hydroxide (48 mg, LiOH, 80 mg NaOH) and 2 mmol of caffeic acid (360 mg) were dissolved in 5 ml of water to give a clear solution. After slow evaporation the products were isolated as colourless solids in nearly quantitative yield. Single crystals were obtained by recrystallization from water.
Compound 1: IR: 1643 m, 1616 w, 1548 s, 1524 m, 1441 w, 1401 vs, 1360 w, 1304 w, 1249 vs, 1195 w, 1164 s, 1109 s, 971 s, 859 s, 809 s, 714 s, 602 w, 581 s cm−1.
Compound 2: IR: 1641 m, 1601 m, 1519 s, 1474 w, 1409 w, 1369 s, 1290 w, 1273 m, 1250 s, 1224 w, 1195 m, 1012 w, 969 s, 829 w, 873 w, 859 m, 814 s, 739 m, 695 m, 600 m, 564 s, 516 m cm−1.
6. Refinement
Crystal data, data collection and structure . All carbon-bound hydrogen atoms were positioned geometrically (C—H = 0.94 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C). Hydrogen atoms bound to oxygen were found in difference-Fourier maps. The O—H distances of 2 were restricted to 0.82 Å.
details are summarized in Table 6
|
Supporting information
https://doi.org/10.1107/S2056989024002494/wm5710sup1.cif
contains datablocks 1, 2, New_Global_Publ_Block. DOI:Structure factors: contains datablock 1. DOI: https://doi.org/10.1107/S2056989024002494/wm57101sup2.hkl
Structure factors: contains datablock 2. DOI: https://doi.org/10.1107/S2056989024002494/wm57102sup3.hkl
[Li(C9H7O4)(H2O)] | F(000) = 424 |
Mr = 204.10 | Dx = 1.506 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 8.3083 (12) Å | Cell parameters from 3964 reflections |
b = 4.8511 (5) Å | θ = 2.5–26.0° |
c = 22.587 (4) Å | µ = 0.12 mm−1 |
β = 98.572 (18)° | T = 220 K |
V = 900.2 (2) Å3 | Block, colourless |
Z = 4 | 0.46 × 0.15 × 0.15 mm |
Stoe IPDS 2 diffractometer | 1314 reflections with I > 2σ(I) |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus, Incoatec Iµs | Rint = 0.027 |
Plane graphite monochromator | θmax = 26.1°, θmin = 2.5° |
Detector resolution: 6.67 pixels mm-1 | h = −10→10 |
rotation method scans | k = −5→5 |
4973 measured reflections | l = −27→27 |
1735 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.032 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.079 | w = 1/[σ2(Fo2) + (0.047P)2 + 0.0259P] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max = 0.001 |
1735 reflections | Δρmax = 0.19 e Å−3 |
152 parameters | Δρmin = −0.15 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.71575 (16) | 0.1874 (3) | 0.65653 (5) | 0.0232 (3) | |
C2 | 0.74035 (18) | 0.0573 (3) | 0.59901 (6) | 0.0297 (3) | |
H2 | 0.787147 | −0.119367 | 0.599929 | 0.036* | |
C3 | 0.69907 (16) | 0.1798 (3) | 0.54634 (6) | 0.0274 (3) | |
H3A | 0.647720 | 0.352195 | 0.547117 | 0.033* | |
C4 | 0.72381 (16) | 0.0791 (3) | 0.48705 (6) | 0.0265 (3) | |
C5 | 0.64958 (16) | 0.2210 (3) | 0.43618 (6) | 0.0279 (3) | |
H5 | 0.579486 | 0.369071 | 0.440744 | 0.034* | |
C6 | 0.67740 (16) | 0.1475 (3) | 0.37929 (6) | 0.0272 (3) | |
C7 | 0.78474 (16) | −0.0658 (3) | 0.37246 (6) | 0.0271 (3) | |
C8 | 0.85657 (17) | −0.2130 (3) | 0.42205 (6) | 0.0307 (3) | |
H8 | 0.926536 | −0.360889 | 0.417203 | 0.037* | |
C9 | 0.82555 (18) | −0.1427 (3) | 0.47885 (6) | 0.0315 (3) | |
H9 | 0.873489 | −0.245454 | 0.512161 | 0.038* | |
Li | 0.7956 (3) | 0.6632 (5) | 0.71799 (10) | 0.0283 (5) | |
O1 | 0.75014 (12) | 0.0450 (2) | 0.70375 (4) | 0.0297 (3) | |
O2 | 0.66671 (12) | 0.43357 (19) | 0.65694 (4) | 0.0294 (3) | |
O3 | 0.60783 (14) | 0.2806 (2) | 0.32801 (4) | 0.0376 (3) | |
H3 | 0.525 (3) | 0.395 (4) | 0.3355 (9) | 0.060 (6)* | |
O4 | 0.81610 (14) | −0.1140 (3) | 0.31514 (4) | 0.0362 (3) | |
H4 | 0.869 (3) | −0.271 (5) | 0.3134 (9) | 0.068 (7)* | |
O5 | 1.03368 (14) | 0.5915 (3) | 0.71894 (5) | 0.0361 (3) | |
H5A | 1.082 (3) | 0.740 (6) | 0.7122 (11) | 0.092 (9)* | |
H5B | 1.070 (3) | 0.548 (5) | 0.7522 (11) | 0.070 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0269 (7) | 0.0219 (7) | 0.0211 (7) | −0.0027 (6) | 0.0043 (5) | 0.0003 (5) |
C2 | 0.0412 (8) | 0.0232 (7) | 0.0258 (7) | −0.0006 (6) | 0.0089 (6) | −0.0027 (6) |
C3 | 0.0281 (7) | 0.0301 (8) | 0.0245 (7) | −0.0019 (6) | 0.0056 (5) | −0.0028 (6) |
C4 | 0.0272 (7) | 0.0298 (8) | 0.0232 (7) | −0.0049 (6) | 0.0056 (5) | −0.0021 (6) |
C5 | 0.0265 (7) | 0.0327 (8) | 0.0255 (7) | 0.0004 (6) | 0.0068 (5) | −0.0031 (6) |
C6 | 0.0268 (7) | 0.0327 (8) | 0.0217 (7) | −0.0033 (6) | 0.0026 (5) | −0.0009 (5) |
C7 | 0.0276 (7) | 0.0323 (8) | 0.0222 (7) | −0.0048 (6) | 0.0063 (5) | −0.0052 (6) |
C8 | 0.0329 (8) | 0.0283 (8) | 0.0314 (7) | 0.0030 (7) | 0.0061 (6) | −0.0039 (6) |
C9 | 0.0377 (8) | 0.0315 (8) | 0.0249 (7) | −0.0022 (7) | 0.0034 (6) | 0.0005 (6) |
Li | 0.0389 (13) | 0.0229 (11) | 0.0239 (11) | 0.0025 (10) | 0.0075 (9) | −0.0009 (9) |
O1 | 0.0468 (6) | 0.0226 (5) | 0.0208 (5) | 0.0037 (4) | 0.0087 (4) | 0.0015 (4) |
O2 | 0.0406 (6) | 0.0227 (5) | 0.0242 (5) | 0.0047 (5) | 0.0019 (4) | −0.0011 (4) |
O3 | 0.0420 (6) | 0.0486 (7) | 0.0220 (5) | 0.0132 (6) | 0.0038 (4) | 0.0016 (5) |
O4 | 0.0455 (6) | 0.0419 (7) | 0.0229 (5) | 0.0066 (6) | 0.0106 (4) | −0.0046 (5) |
O5 | 0.0378 (6) | 0.0444 (7) | 0.0261 (6) | 0.0060 (6) | 0.0049 (5) | 0.0005 (5) |
C1—C2 | 1.4855 (18) | C7—O4 | 1.3781 (16) |
C1—O1 | 1.2669 (16) | C8—H8 | 0.9400 |
C1—O2 | 1.2624 (16) | C8—C9 | 1.388 (2) |
C2—H2 | 0.9400 | C9—H9 | 0.9400 |
C2—C3 | 1.3285 (19) | Li—Lii | 2.979 (3) |
C3—H3A | 0.9400 | Li—Lii | 2.979 (3) |
C3—C4 | 1.4685 (18) | Li—O1ii | 1.949 (2) |
C4—C5 | 1.401 (2) | Li—O1iii | 1.908 (2) |
C4—C9 | 1.398 (2) | Li—O2 | 1.962 (2) |
C5—H5 | 0.9400 | Li—O5 | 2.005 (3) |
C5—C6 | 1.3857 (18) | O3—H3 | 0.92 (2) |
C6—C7 | 1.390 (2) | O4—H4 | 0.88 (3) |
C6—O3 | 1.3757 (17) | O5—H5A | 0.85 (3) |
C7—C8 | 1.386 (2) | O5—H5B | 0.79 (3) |
O1—C1—C2 | 117.48 (12) | C8—C9—H9 | 119.6 |
O2—C1—C2 | 119.66 (12) | Lii—Li—Liii | 109.00 (13) |
O2—C1—O1 | 122.83 (12) | O1iii—Li—Liii | 39.93 (3) |
C1—C2—H2 | 118.6 | O1iii—Li—Lii | 144.46 (14) |
C3—C2—C1 | 122.84 (13) | O1ii—Li—Lii | 38.92 (9) |
C3—C2—H2 | 118.6 | O1ii—Li—Liii | 72.61 (11) |
C2—C3—H3A | 116.0 | O1iii—Li—O1ii | 112.20 (11) |
C2—C3—C4 | 127.96 (14) | O1ii—Li—O2 | 108.08 (12) |
C4—C3—H3A | 116.0 | O1iii—Li—O2 | 111.04 (12) |
C5—C4—C3 | 118.68 (13) | O1ii—Li—O5 | 105.35 (12) |
C9—C4—C3 | 123.15 (12) | O1iii—Li—O5 | 109.92 (12) |
C9—C4—C5 | 118.07 (12) | O2—Li—Lii | 74.16 (8) |
C4—C5—H5 | 119.3 | O2—Li—Liii | 130.66 (15) |
C6—C5—C4 | 121.35 (14) | O2—Li—O5 | 110.08 (11) |
C6—C5—H5 | 119.3 | O5—Li—Lii | 100.11 (11) |
C5—C6—C7 | 119.53 (12) | O5—Li—Liii | 117.27 (13) |
O3—C6—C5 | 123.57 (13) | C1—O1—Liiv | 133.25 (11) |
O3—C6—C7 | 116.87 (11) | C1—O1—Lii | 123.58 (11) |
C8—C7—C6 | 120.01 (12) | Liiv—O1—Lii | 101.15 (8) |
O4—C7—C6 | 116.41 (12) | C1—O2—Li | 113.53 (11) |
O4—C7—C8 | 123.56 (13) | C6—O3—H3 | 111.2 (12) |
C7—C8—H8 | 119.9 | C7—O4—H4 | 110.7 (14) |
C7—C8—C9 | 120.23 (13) | Li—O5—H5A | 110.0 (18) |
C9—C8—H8 | 119.9 | Li—O5—H5B | 106.7 (16) |
C4—C9—H9 | 119.6 | H5A—O5—H5B | 106 (2) |
C8—C9—C4 | 120.72 (13) | ||
C1—C2—C3—C4 | 176.94 (13) | C5—C6—C7—O4 | −175.22 (12) |
C2—C1—O1—Liiv | −12.6 (2) | C6—C7—C8—C9 | −2.0 (2) |
C2—C1—O1—Lii | −173.12 (12) | C7—C8—C9—C4 | −1.0 (2) |
C2—C1—O2—Li | −131.35 (13) | C9—C4—C5—C6 | −0.9 (2) |
C2—C3—C4—C5 | 170.59 (14) | O1—C1—C2—C3 | 175.69 (13) |
C2—C3—C4—C9 | −13.2 (2) | O1—C1—O2—Li | 46.58 (17) |
C3—C4—C5—C6 | 175.49 (13) | O2—C1—C2—C3 | −6.3 (2) |
C3—C4—C9—C8 | −173.87 (13) | O2—C1—O1—Liiv | 169.48 (14) |
C4—C5—C6—C7 | −1.9 (2) | O2—C1—O1—Lii | 8.9 (2) |
C4—C5—C6—O3 | −179.85 (13) | O3—C6—C7—C8 | −178.57 (13) |
C5—C4—C9—C8 | 2.4 (2) | O3—C6—C7—O4 | 2.84 (18) |
C5—C6—C7—C8 | 3.4 (2) | O4—C7—C8—C9 | 176.53 (13) |
Symmetry codes: (i) −x+3/2, y−1/2, −z+3/2; (ii) −x+3/2, y+1/2, −z+3/2; (iii) x, y+1, z; (iv) x, y−1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O2v | 0.92 (2) | 1.83 (2) | 2.734 (2) | 168 (2) |
O4—H4···O5vi | 0.88 (2) | 1.94 (2) | 2.793 (2) | 160.7 (2) |
O5—H5A···O4vii | 0.85 (3) | 2.13 (2) | 2.977 (2) | 173 (2) |
O5—H5B···O3viii | 0.80 (2) | 2.33 (2) | 3.042 (2) | 150 (2) |
O5—H5B···O4viii | 0.80 (2) | 2.33 (2) | 2.953 (2) | 136 (2) |
Symmetry codes: (v) −x+1, −y+1, −z+1; (vi) −x+2, −y, −z+1; (vii) −x+2, −y+1, −z+1; (viii) x+1/2, −y+1/2, z+1/2. |
[Na(C9H7O4)(H2O)] | Z = 2 |
Mr = 220.15 | F(000) = 228 |
Triclinic, P1 | Dx = 1.594 Mg m−3 |
a = 6.3289 (13) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 6.8126 (14) Å | Cell parameters from 2529 reflections |
c = 11.253 (2) Å | θ = 3.1–26.0° |
α = 75.05 (2)° | µ = 0.17 mm−1 |
β = 86.39 (2)° | T = 293 K |
γ = 78.09 (2)° | Plate, colourless |
V = 458.64 (17) Å3 | 0.4 × 0.2 × 0.08 mm |
Stoe IPDS 2 diffractometer | 1331 reflections with I > 2σ(I) |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus, Incoatec Iµs | Rint = 0.048 |
Plane graphite monochromator | θmax = 26.1°, θmin = 3.2° |
Detector resolution: 6.67 pixels mm-1 | h = −7→7 |
rotation method scans | k = −8→8 |
7192 measured reflections | l = −13→13 |
1798 independent reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.035 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.095 | w = 1/[σ2(Fo2) + (0.0615P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max < 0.001 |
1798 reflections | Δρmax = 0.24 e Å−3 |
152 parameters | Δρmin = −0.22 e Å−3 |
4 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.7621 (3) | 0.0311 (2) | 0.28917 (15) | 0.0254 (4) | |
C2 | 0.7226 (3) | 0.1072 (2) | 0.15528 (14) | 0.0264 (4) | |
H2 | 0.8399 | 0.1004 | 0.1013 | 0.032* | |
C3 | 0.5262 (3) | 0.1847 (2) | 0.10941 (15) | 0.0255 (4) | |
H3A | 0.4138 | 0.1903 | 0.1666 | 0.031* | |
C4 | 0.4642 (3) | 0.2624 (2) | −0.01989 (14) | 0.0227 (3) | |
C5 | 0.6151 (3) | 0.2576 (2) | −0.11683 (15) | 0.0251 (4) | |
H5 | 0.7604 | 0.2042 | −0.0994 | 0.030* | |
C6 | 0.5499 (3) | 0.3310 (2) | −0.23713 (14) | 0.0251 (4) | |
C7 | 0.3322 (3) | 0.4163 (2) | −0.26497 (14) | 0.0228 (3) | |
C8 | 0.1815 (3) | 0.4196 (2) | −0.17098 (14) | 0.0259 (4) | |
H8 | 0.0363 | 0.4734 | −0.1888 | 0.031* | |
C9 | 0.2482 (3) | 0.3420 (2) | −0.04956 (14) | 0.0260 (4) | |
H9 | 0.1458 | 0.3434 | 0.0134 | 0.031* | |
Na | 0.44737 (11) | 0.27100 (10) | 0.47948 (6) | 0.0348 (2) | |
O1 | 0.95808 (19) | −0.0433 (2) | 0.32325 (11) | 0.0363 (3) | |
O2 | 0.60826 (19) | 0.04183 (18) | 0.36431 (10) | 0.0328 (3) | |
O3 | 0.6857 (2) | 0.3298 (2) | −0.33673 (11) | 0.0387 (3) | |
H3 | 0.800 (3) | 0.243 (4) | −0.314 (2) | 0.070 (8)* | |
O4 | 0.2845 (2) | 0.48950 (18) | −0.38767 (10) | 0.0304 (3) | |
H4 | 0.164 (3) | 0.558 (3) | −0.391 (2) | 0.053 (7)* | |
O5 | 0.0849 (2) | 0.2438 (2) | 0.43233 (13) | 0.0345 (3) | |
H5A | 0.070 (4) | 0.163 (3) | 0.391 (2) | 0.061 (8)* | |
H5B | 0.070 (4) | 0.187 (4) | 0.5048 (17) | 0.059 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0297 (9) | 0.0243 (8) | 0.0217 (8) | −0.0013 (6) | −0.0040 (6) | −0.0074 (6) |
C2 | 0.0302 (9) | 0.0310 (8) | 0.0179 (8) | −0.0074 (7) | 0.0019 (6) | −0.0054 (6) |
C3 | 0.0320 (9) | 0.0251 (8) | 0.0190 (8) | −0.0054 (6) | 0.0016 (6) | −0.0054 (6) |
C4 | 0.0291 (8) | 0.0213 (7) | 0.0177 (8) | −0.0046 (6) | −0.0009 (6) | −0.0048 (6) |
C5 | 0.0235 (8) | 0.0271 (8) | 0.0220 (8) | −0.0018 (6) | −0.0030 (6) | −0.0031 (6) |
C6 | 0.0274 (8) | 0.0261 (8) | 0.0197 (8) | −0.0039 (6) | 0.0036 (6) | −0.0042 (6) |
C7 | 0.0293 (9) | 0.0215 (7) | 0.0164 (8) | −0.0023 (6) | −0.0033 (6) | −0.0042 (6) |
C8 | 0.0238 (8) | 0.0268 (8) | 0.0240 (9) | 0.0009 (6) | −0.0024 (6) | −0.0050 (6) |
C9 | 0.0278 (8) | 0.0287 (8) | 0.0199 (8) | −0.0025 (6) | 0.0035 (6) | −0.0066 (6) |
Na | 0.0381 (4) | 0.0366 (4) | 0.0316 (4) | −0.0084 (3) | 0.0087 (3) | −0.0132 (3) |
O1 | 0.0302 (7) | 0.0487 (7) | 0.0270 (7) | 0.0046 (5) | −0.0078 (5) | −0.0123 (5) |
O2 | 0.0343 (7) | 0.0399 (7) | 0.0195 (6) | 0.0017 (5) | 0.0019 (5) | −0.0068 (5) |
O3 | 0.0304 (7) | 0.0546 (8) | 0.0191 (6) | 0.0056 (6) | 0.0051 (5) | −0.0004 (5) |
O4 | 0.0323 (7) | 0.0360 (6) | 0.0165 (6) | 0.0050 (5) | −0.0046 (5) | −0.0033 (5) |
O5 | 0.0356 (7) | 0.0375 (7) | 0.0262 (7) | −0.0005 (5) | −0.0078 (5) | −0.0039 (6) |
C1—C2 | 1.481 (2) | Na—Naii | 3.4689 (15) |
C1—O2 | 1.252 (2) | Na—O2i | 2.4608 (15) |
C1—O1 | 1.282 (2) | Na—O2 | 2.3185 (14) |
C2—H2 | 0.9300 | Na—O3iii | 2.7897 (17) |
C2—C3 | 1.327 (2) | Na—O3iv | 2.7668 (16) |
C3—H3A | 0.9300 | Na—O4iv | 2.5810 (16) |
C3—C4 | 1.463 (2) | Na—O4iii | 2.4153 (15) |
C4—C5 | 1.406 (2) | Na—O5 | 2.4411 (16) |
C4—C9 | 1.390 (2) | Na—H5B | 2.55 (2) |
C5—H5 | 0.9300 | O2—Nai | 2.4608 (15) |
C5—C6 | 1.374 (2) | O3—Nav | 2.7897 (17) |
C6—C7 | 1.401 (2) | O3—Naiv | 2.7669 (16) |
C6—O3 | 1.3695 (19) | O3—H3 | 0.841 (17) |
C7—C8 | 1.380 (2) | O4—Naiv | 2.5810 (16) |
C7—O4 | 1.3715 (19) | O4—Nav | 2.4153 (15) |
C8—H8 | 0.9300 | O4—H4 | 0.803 (16) |
C8—C9 | 1.390 (2) | O5—H5A | 0.827 (17) |
C9—H9 | 0.9300 | O5—H5B | 0.816 (17) |
Na—Nai | 3.5262 (15) | ||
O1—C1—C2 | 117.18 (14) | O3iii—Na—Naii | 51.08 (4) |
O2—C1—C2 | 120.37 (14) | O3iv—Na—Nai | 151.40 (5) |
O2—C1—O1 | 122.45 (15) | O3iii—Na—Nai | 104.16 (5) |
C1—C2—H2 | 118.8 | O3iv—Na—Naii | 51.67 (4) |
C3—C2—C1 | 122.43 (15) | O3iv—Na—O3iii | 102.74 (4) |
C3—C2—H2 | 118.8 | O3iv—Na—H5B | 94.7 (5) |
C2—C3—H3A | 116.0 | O3iii—Na—H5B | 126.0 (4) |
C2—C3—C4 | 128.09 (15) | O4iii—Na—Nai | 132.15 (5) |
C4—C3—H3A | 116.0 | O4iii—Na—Naii | 48.03 (4) |
C5—C4—C3 | 122.50 (15) | O4iv—Na—Naii | 44.09 (3) |
C9—C4—C3 | 119.45 (14) | O4iv—Na—Nai | 125.28 (5) |
C9—C4—C5 | 118.04 (14) | O4iii—Na—O2i | 91.26 (5) |
C4—C5—H5 | 119.7 | O4iv—Na—O3iv | 57.67 (4) |
C6—C5—C4 | 120.66 (15) | O4iii—Na—O3iv | 71.38 (4) |
C6—C5—H5 | 119.7 | O4iv—Na—O3iii | 68.74 (4) |
C5—C6—C7 | 120.37 (15) | O4iii—Na—O3iii | 59.01 (4) |
O3—C6—C5 | 124.36 (15) | O4iii—Na—O4iv | 92.12 (5) |
O3—C6—C7 | 115.27 (14) | O4iii—Na—O5 | 88.31 (5) |
C8—C7—C6 | 119.71 (14) | O4iv—Na—H5B | 152.3 (5) |
O4—C7—C6 | 115.86 (14) | O4iii—Na—H5B | 80.0 (5) |
O4—C7—C8 | 124.43 (14) | O5—Na—Nai | 83.14 (5) |
C7—C8—H8 | 120.2 | O5—Na—Naii | 121.25 (5) |
C7—C8—C9 | 119.57 (14) | O5—Na—O2i | 77.91 (5) |
C9—C8—H8 | 120.2 | O5—Na—O3iv | 81.58 (5) |
C4—C9—H9 | 119.2 | O5—Na—O3iii | 142.21 (5) |
C8—C9—C4 | 121.62 (15) | O5—Na—O4iv | 136.45 (5) |
C8—C9—H9 | 119.2 | O5—Na—H5B | 18.6 (4) |
Naii—Na—Nai | 153.76 (5) | C1—O2—Na | 136.46 (11) |
Naii—Na—H5B | 122.5 (6) | C1—O2—Nai | 119.95 (10) |
Nai—Na—H5B | 77.2 (5) | Na—O2—Nai | 95.05 (5) |
O2—Na—Nai | 44.04 (4) | C6—O3—Nav | 106.29 (10) |
O2i—Na—Nai | 40.91 (3) | C6—O3—Naiv | 101.08 (9) |
O2—Na—Naii | 134.17 (5) | C6—O3—H3 | 108.4 (19) |
O2i—Na—Naii | 128.97 (5) | Naiv—O3—Nav | 77.26 (4) |
O2—Na—O2i | 84.95 (5) | Naiv—O3—H3 | 140.1 (19) |
O2i—Na—O3iii | 83.95 (5) | Nav—O3—H3 | 117.7 (19) |
O2—Na—O3iii | 118.94 (5) | C7—O4—Nav | 116.66 (9) |
O2—Na—O3iv | 112.69 (5) | C7—O4—Naiv | 105.73 (10) |
O2i—Na—O3iv | 153.47 (5) | C7—O4—H4 | 105.9 (17) |
O2—Na—O4iii | 175.93 (5) | Nav—O4—Naiv | 87.88 (5) |
O2—Na—O4iv | 90.18 (5) | Nav—O4—H4 | 127.7 (17) |
O2i—Na—O4iv | 145.56 (5) | Naiv—O4—H4 | 109.1 (17) |
O2—Na—O5 | 92.33 (5) | Na—O5—H5A | 119.7 (18) |
O2—Na—H5B | 99.4 (5) | Na—O5—H5B | 88.4 (18) |
O2i—Na—H5B | 61.8 (5) | H5A—O5—H5B | 108 (2) |
C1—C2—C3—C4 | −179.15 (14) | C6—C7—O4—Naiv | −50.68 (14) |
C2—C1—O2—Na | −94.99 (19) | C6—C7—O4—Nav | 44.96 (17) |
C2—C1—O2—Nai | 126.10 (13) | C7—C6—O3—Naiv | 46.19 (15) |
C2—C3—C4—C5 | 2.1 (3) | C7—C6—O3—Nav | −33.62 (16) |
C2—C3—C4—C9 | −178.71 (16) | C7—C8—C9—C4 | 0.6 (2) |
C3—C4—C5—C6 | 179.58 (14) | C8—C7—O4—Nav | −134.11 (14) |
C3—C4—C9—C8 | 179.34 (14) | C8—C7—O4—Naiv | 130.25 (14) |
C4—C5—C6—C7 | 1.5 (2) | C9—C4—C5—C6 | 0.4 (2) |
C4—C5—C6—O3 | −179.20 (15) | O1—C1—C2—C3 | 179.07 (15) |
C5—C4—C9—C8 | −1.5 (2) | O1—C1—O2—Nai | −54.4 (2) |
C5—C6—C7—C8 | −2.3 (2) | O1—C1—O2—Na | 84.5 (2) |
C5—C6—C7—O4 | 178.54 (14) | O2—C1—C2—C3 | −1.4 (2) |
C5—C6—O3—Naiv | −133.17 (15) | O3—C6—C7—C8 | 178.27 (15) |
C5—C6—O3—Nav | 147.02 (14) | O3—C6—C7—O4 | −0.8 (2) |
C6—C7—C8—C9 | 1.3 (2) | O4—C7—C8—C9 | −179.66 (14) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, −y+1, −z+1; (iii) x, y, z+1; (iv) −x+1, −y+1, −z; (v) x, y, z−1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O1vi | 0.84 (2) | 1.84 (2) | 2.6437 (19) | 158 (2) |
O4—H4···O5vii | 0.81 (2) | 1.85 (2) | 2.6350 (19) | 166 (2) |
O5—H5A···O1viii | 0.83 (2) | 2.02 (2) | 2.826 (2) | 163 (2) |
O5—H5B···O1i | 0.82 (2) | 1.95 (2) | 2.7614 (19) | 178 (3) |
Symmetry codes: (i) −x+1, −y, −z+1; (vi) −x+2, −y, −z; (vii) −x, −y+1, −z; (viii) x−1, y, z. |
Heptagon HP-7 | 32.482 |
Hexagonal pyramid HPY-7 | 20.852 |
Pentagonal bipyramid PBPY-7 | 5.863 |
Capped octahedron COC-7 | 2.807 |
Capped trigonal prism CTPR-7 | 3.593 |
Johnson pentagonal bipyramid JPBPY-7 | 8.482 |
Johnson elongated triangular pyramid JETPY-7 | 20.721 |
Acknowledgements
We acknowledge the financial support of the Open Access Publication Fund of the Martin-Luther-University Halle-Wittenberg.
References
Al-Dajani, M. T. M., Abdallah, H. H., Mohamed, N., Quah, C. K. & Fun, H.-K. (2010). Acta Cryst. E66, m138–m139. CSD CrossRef IUCr Journals Google Scholar
Boerjan, W., Ralph, J. & Baucher, M. (2003). Annu. Rev. Plant Biol. 54, 519–546. Web of Science CrossRef PubMed CAS Google Scholar
Brandenburg, K. & Putz, H. (2019). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Casanova, D., Cirera, J., Llunell, M., Alemany, P., Avnir, D. & Alvarez, S. (2004). J. Am. Chem. Soc. 126, 1755–1763. Web of Science CrossRef PubMed CAS Google Scholar
Cirera, J., Ruiz, E. & Alvarez, S. (2005). Organometallics, 24, 1556–1562. Web of Science CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
García-Granda, S., Beurskens, G., Beurskens, P. T., Krishna, T. S. R. & Desiraju, G. R. (1987). Acta Cryst. C43, 683–685. CSD CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Kumar, N., Pruthi, V. & Goel, N. (2015). J. Mol. Struct. 1085, 242–248. CSD CrossRef CAS Google Scholar
Lamann, R., Hülsen, M., Dolg, M. & Ruschewitz, U. (2012). Z. Anorg. Allg. Chem. 638, 1424–1431. CSD CrossRef CAS Google Scholar
Llunell, M., Casanova, D., Cirera, J., Alemany, P. & Alvarez, S. (2013). SHAPE 2.1. Shape software, Barcelona, Spain. Google Scholar
Lombardo, G. M., Portalone, G., Chiacchio, U., Rescifina, A. & Punzo, F. (2012). Dalton Trans. 41, 14337. CSD CrossRef PubMed Google Scholar
Lombardo, G. M., Portalone, G., Colapietro, M., Rescifina, A. & Punzo, F. (2011). J. Mol. Struct. 994, 87–96. CSD CrossRef CAS Google Scholar
Maciołek, U., Mendyk, E., Kamiński, D. M., Dranka, M., Mazur, L., Kuźniar, A., Kalembkiewicz, J. & Kozioł, A. E. (2022). Polyhedron, 226, 116083. Google Scholar
Martínez Casado, F. J., Ramos Riesco, M., Redondo, M. I., Choquesillo-Lazarte, D., López-Andrés, S. & Cheda, J. A. R. (2011). Cryst. Growth Des. 11, 1021–1032. Google Scholar
Müller, G., Maier, G.-M. & Lutz, M. (1994). Inorg. Chim. Acta, 218, 121–131. CSD CrossRef Web of Science Google Scholar
Petrou, A. L., Koromantzou, M. V. & Tsangaris, J. M. (1993). Chim. Chron, 22, 189–204. CAS Google Scholar
Pinsky, M. & Avnir, D. (1998). Inorg. Chem. 37, 5575–5582. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stoe & Cie (2016). X-AREA. Stoe & Cie, Darmstadt, Germany. Google Scholar
Yu, Y.-M., Wang, L.-Y., Bu, F.-Z., Wang, L.-L., Li, Y.-T., Wang, C. & Wu, Z.-Y. (2020). CrystEngComm, 22, 7992–8006. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.