research communications
Hirshfeld surface analysis, calculations of crystal voids, interaction energy and energy frameworks as well as density functional theory (DFT) calculations of 3-[2-(morpholin-4-yl)ethyl]-5,5-diphenylimidazolidine-2,4-dione
aLaboratory of Applied Organic Chemistry, Sidi Mohamed Ben Abdellah University, Faculty Of Science And Technology, Road Immouzer, BP 2202 Fez, Morocco, bLaboratory of Plant Chemistry, Organic and Bioorganic Synthesis, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta BP 1014 RP, Morocco, cScience and Technology of Lille USR 3290, Villeneuve d'ascq cedex, France, dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, eDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Türkiye, and fLaboratory of Organic and Physical Chemistry, Applied Bioorganic Chemistry Team, Faculty of Sciences, Ibnou Zohr University, Agadir, Morocco
*Correspondence e-mail: houda.lamssane@usmba.ac.ma
This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.
In the title molecule, C21H23N3O3, the imidazolidine ring slightly deviates from planarity and the morpholine ring exhibits the chair conformation. In the crystal, N—H⋯O and C—H⋯O hydrogen bonds form helical chains of molecules extending parallel to the c axis that are connected by C—H⋯π(ring) interactions. A Hirshfeld surface analysis reveals that the most important contributions for the crystal packing are from H⋯H (55.2%), H⋯C/C⋯H (22.6%) and H⋯O/O⋯H (20.5%) interactions. The volume of the crystal voids and the percentage of free space were calculated to be 236.78 Å3 and 12.71%, respectively. Evaluation of the electrostatic, dispersion and total energy frameworks indicates that the stabilization is dominated by the nearly equal electrostatic and dispersion energy contributions. The DFT-optimized molecular structure at the B3LYP/6-311 G(d,p) level is compared with the experimentally determined molecular structure in the solid state. Moreover, the HOMO–LUMO behaviour was elucidated to determine the energy gap.
CCDC reference: 2340426
1. Chemical context
The investigation of compounds comprising the hydantoin moiety has gained interest in the quest for the development of new drugs because of their similarity to natural amino acids (Śladowska et al., 2016). Such compounds show various pharmacological properties, including antibacterial (Pandeya et al., 2000; Sangeetha et al., 2016), anticonvulsant (Emami et al., 2021), antidiabetic (Salem et al., 2018), antitumor (Żesławska et al., 2021), antinociceptive and anti-inflammatory (Abdel-Aziz et al., 2016; da Silva Guerra et al., 2011) activities. One of the foremost pharmaceutical drugs in the hydantoin class is phenytoin, also known as 5,5-diphenylhydantoin (systematic name: 5,5-diphenylimidazolidine-2,4-dione). This compound and its derivatives are considered to be potential pharmaceutical agents due to their extended shelf life. However, their optimum efficacy depends on how easily they break down in the body (Al-Nuzal et al., 2018). With respect to the biological importance of phenytoin, we were interested in the synthesis of a new derivative thereof, viz. 3-[2-(morpholin-4-yl)ethyl]-5,5-diphenylimidazolidine-2,4-dione, (I), C21H23N3O3, through an alkylation reaction under the conditions of phase transfer catalysis. We report here the molecular and crystal structures as well as the Hirshfeld surface analysis of this compound, as well as intermolecular interaction energies, energy frameworks, and a comparison of the experimentally determined molecular structure in the solid state with that of an optimized structure obtained by density functional theory (DFT).
2. Structural commentary
The molecular structure of (I) is displayed in Fig. 1. The imidazolidine ring deviates from planarity (root-mean-square deviation of the fitted atoms = 0.0273 Å) with atoms C1 and N2 being displaced by 0.0359 (7) and −0.0359 (7) Å, respectively, from the mean plane. The C4–C9 and C10–C15 benzene rings are inclined to the above plane by 76.55 (4) and 65.07 (4)°, respectively. The N1—C2, N1—C3 and N2—C3 distances are 1.367 (2), 1.406 (2) and 1.348 (2) Å. The sums of the bond angles about N1 and N2 of 360.0 and 359° indicate that the lone electron pairs at the nitrogen atoms are involved in N→C π bonding. The morpholine ring adopts a chair conformation [puckering parameters (Cremer & Pople, 1975): Q = 0.5831 (14) Å, θ = 176.90 (14)°, φ = 339 (3)°].
3. Supramolecular features
In the crystal of (I), N2—H2⋯O1 and C14—H14⋯O2 hydrogen bonds (Table 1) form helical chains of molecules extending parallel to the c axis (Fig. 2). Individual molecules are connected by weak C12—H12⋯Cg3 and C18—H18B⋯Cg3 interactions (Table 1) into a tri-periodic network (Fig. 3), which appears to have small pores in agreement with the calculation of a relatively small void space (vide infra).
4. Hirshfeld surface analysis
In order to visualize the intermolecular interactions in the crystal of (I), a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out using CrystalExplorer (Spackman et al., 2021). In the HS plotted over dnorm (Fig. 4), the white surface indicates contacts with distances equal to the sum of van der Waals radii and the red and blue colours indicate distances shorter (in close contact) or longer (distant contact) than the sum of the van der Waals radii, respectively (Venkatesan et al., 2016). The bright-red spots on the surface indicate the roles of adjacent atoms as the respective donors and/or acceptors and they also appear as blue and red regions corresponding to positive (hydrogen-bond donors) and negative (hydrogen-bond acceptors) potentials on the HS mapped over electrostatic potential (Spackman et al., 2008; Jayatilaka et al., 2005), as shown in Fig. 5. The shape-index of the HS is a tool to visualize π–π stacking by the presence of adjacent red and blue triangles. However, Fig. 6 clearly suggests that there are no π–π interactions in the of (I). The overall two-dimensional fingerprint plot, Fig. 7a, and those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H and H⋯N/N⋯H (McKinnon et al., 2007) are illustrated in Fig. 7b–e, respectively, together with their relative contributions to the Hirshfeld surface. The most abundant interaction is H⋯H, contributing with 55.2% to the overall crystal packing, which is reflected in Fig. 7b as widely scattered points of high density due to the large hydrogen content with the tip at de = di = 1.10 Å. The H⋯C/C⋯H contacts, contributing with 22.6% to the overall crystal packing, are shown in Fig. 7c with the tips at de + di = 2.74 Å and are attributed to C—H⋯π interactions. The symmetrical pair of spikes in the fingerprint plot delineated into H⋯O/O⋯H contacts with the tips at de + di = 1.84 Å (Fig. 7d) make a 20.5% contribution to the HS. Finally, the tiny pair of spikes with the tips at de + di = 2.70 Å in the fingerprint plot delineated into H⋯N/N⋯H contacts (Fig. 7e) contributes only 1.7% to the HS.
The nearest neighbour coordination environment of a molecule can be determined from the colour patches on the HS based on how close to other molecules they are. The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H and H⋯O/O⋯H interactions in Fig. 8a–c. The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H and H⋯O/O⋯H interactions suggest that van der Waals interactions and hydrogen-bonding interactions play the major roles in the crystal packing (Hathwar et al., 2015).
5. Crystal voids
The strength of the crystal packing is important for determining the response to an applied mechanical force. If significant voids are present in the crystal, the molecules are not tightly packed and a small amount of applied external mechanical force may easily break the crystal. To check the mechanical stability of the crystal, a void analysis was performed by adding up the electron densities of the spherically symmetric atoms contained in the et al., 2011). The void surface is defined as an isosurface of the procrystal electron density and is calculated for the whole where the void surface meets the boundary of the and capping faces are generated to create an enclosed volume. The volume of the crystal voids (Fig. 9a,b) and the percentage of free space in the were calculated as 236.78 Å3 and 12.71%.
(Turner6. Interaction energy calculations and energy frameworks
The intermolecular interaction energies were calculated using the CE–B3LYP/6–31G(d,p) energy model available in CrystalExplorer (Spackman et al., 2021) where a cluster of molecules is generated by applying operations with respect to a selected central molecule within a radius of 3.8 Å (Turner et al., 2014). The total intermolecular energy (Etot) is the sum of electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange-repulsion (Erep) energies (Turner et al., 2015) with scale factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie et al., 2017). Hydrogen-bonding interaction energies (in kJ mol−1) were calculated to be −50.2(Eele), −12.7 (Epol), −27.6 (Edis), 58.2 (Erep) and −50.5 (Etot) for N2—H2⋯O3 and −17.4 (Eele), −3.7 (Epol), −56.2 (Edis), 43.2 (Erep) and −43.4 (Etot)] for C14—H14⋯O2. Energy frameworks combine the calculation of intermolecular interaction energies with a graphical representation of their magnitude (Turner et al., 2015). Energies between molecular pairs are represented as cylinders joining the centroids of pairs of molecules with the cylinder radius proportional to the relative strength of the corresponding interaction energy. Energy frameworks were constructed for Eele (red cylinders), Edis (green cylinders) and Etot (blue cylinders) and are displayed in Fig. 10a–c. The evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization is dominated by nearly equal electrostatic and dispersion energy contributions in the of (I).
7. DFT calculations
The optimization of the molecular gas-phase structure of (I) was conducted using density functional theory (DFT) with the B3LYP functional and 6-311G(d,p) basis-set calculations, as implemented in GAUSSIAN09 (Becke, 1993; Frisch et al., 2009). The comparison between theoretical and experimental results revealed good agreement (Table 2). Essential parameters, such as the highest-occupied molecular orbital (HOMO) serving as an and the lowest-unoccupied molecular orbital (LUMO) acting as an were examined, whereby a small energy gap indicates high molecular polarizability and reactivity. Numerical parameters of EHOMO, ELUMO, (χ), hardness (η), potential (μ), (ω), and softness (σ) are detailed in Table 3. The values of χ and η are particularly significant for assessing both reactivity and stability. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 11. Both the HOMO and LUMO are localized in the molecular plane. The energy band gap (E = ELUMO − EHOMO) is approximately 4.62 eV, with frontier molecular orbital (FMO) energies, EHOMO and ELUMO, determined as −5.36 and −0.73 eV, respectively.
|
|
8. Database survey
A search of the Cambridge Structural Database (CSD; Groom et al., 2016; updated January 2024) with the fragment (II) (Fig. 12) gave ten hits, one of which (LUHFID; Ooms et al., 2002) is the same as (I) except for having a bromine atom at the 4-position of each phenyl ring. Here, the C—N distances in the ring are similar, indicating delocalization of the π electrons. Although the morpholine ring also adopts a chair conformation, the large displacement ellipsoids for the constituent atoms indicate at least considerable librational motion and likely some degree of positional disorder. The remaining matches have R = H (FEHPUG; Guerrab et al., 2017a), Me (WEMQUD; Guerrab et al., 2017c and WEMQUD01; Trišovic et al., 2019), Et (QENBET; Guerrab et al., 2018a), –(CH2)2Me (GEMSOG; Guerrab et al., 2017b), –(CH2)3Me (QENBOD; Guerrab et al., 2018b), –(CH2)5Me (QAGPAT; Guerrab et al., 2020), –(CH2)7Me (PAJMAS; Guerrab et al., 2022) and Br (NIBMOE; Guerrab et al., 2023). In all cases, the five-membered ring is close to planarity and the nitrogen lone pairs are involved in N→C π bonding.
9. Synthesis and crystallization
In a flask, phenytoin (0.5 g, 1.98 mmol) was mixed with 4-(2-chloroethyl)morpholine hydrochloride (0.37 g, 1.01 mmol) in DMF (20 ml) in the presence of potassium carbonate (0.41 g, 2.96 mmol) and tetra-n-butylammonium bromide (BTBA, 0.07 g, 0.22 mmol). The reaction mixture was agitated for 48 h at room temperature, followed by removal of the solvent under reduced pressure. The residue was purified by recrystallization from methanol. Yield: 85%, Rf: 0.17 (ethyl acetate/hexane: 1/2), m.p. 363 K, LCMS (ESI): 366.1812 [M+H+], 1H NMR (CDCl3-300 MHz): δ (ppm) 7.36–7.47 (m, 10H, HAr); 7.08 (s, 1H, NH), 3.72 (t, 2H, CH2, 3JH–H = 6 MHz), 3.60 (t, 4H, CH2, 3JH–H = 6 MHz), 2.65 (t, 2H, CH2, 3JH–H = 6 MHz), 2.50 (t, 4H, CH2, 3JH–H = 6 MHz), 13C NMR (CDCl3 −75 MHz): δ (ppm) 173.71, 156.65 (C=O); 139.26, 70.19 (Cq); 126.88-128.80 (CHAr); 66.83, 55.26, 53.32, 35.66 (CH2). UV–Visible Wavelength (nm) λmax: 286 in dichloromethane.
10. Refinement
Crystal data, data collection and structure . H atoms attached to C atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included as riding contributions with isotropic displacement parameters 1.2–1.5 times those of the attached atoms. The H atom attached to N2 was found in a difference-Fourier map and refined with a distance of 0.91 (1) Å. Two reflections, 111 and 011, affected by the beamstop were omitted from the final refinement.
details are summarized in Table 4Supporting information
CCDC reference: 2340426
https://doi.org/10.1107/S2056989024002445/wm5711sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024002445/wm5711Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989024002445/wm5711Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989024002445/wm5711Isup4.cml
C21H23N3O3 | Dx = 1.303 Mg m−3 |
Mr = 365.42 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 9478 reflections |
a = 8.4440 (3) Å | θ = 2.8–33.0° |
b = 14.3013 (5) Å | µ = 0.09 mm−1 |
c = 15.4233 (6) Å | T = 150 K |
V = 1862.52 (12) Å3 | Block, colourless |
Z = 4 | 0.28 × 0.18 × 0.17 mm |
F(000) = 776 |
Bruker D8 QUEST PHOTON 3 diffractometer | 7105 independent reflections |
Radiation source: fine-focus sealed tube | 6502 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.052 |
Detector resolution: 7.3910 pixels mm-1 | θmax = 33.2°, θmin = 2.8° |
φ and ω scans | h = −13→13 |
Absorption correction: numerical (SADABS; Krause et al., 2015) | k = −22→22 |
Tmin = 0.98, Tmax = 0.98 | l = −23→23 |
142315 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.037 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.097 | w = 1/[σ2(Fo2) + (0.053P)2 + 0.2332P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
7105 reflections | Δρmax = 0.29 e Å−3 |
247 parameters | Δρmin = −0.19 e Å−3 |
1 restraint | Absolute structure: Flack x determined using 2747 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: dual | Absolute structure parameter: 0.12 (18) |
Experimental. The diffraction data were obtained from 13 sets of frames, each of width 0.5° in ω or φ, collected with scan parameters determined by the "strategy" routine in APEX4. The scan time was 10 sec/frame. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) and were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. That attached to nitrogen was placed in a location derived from a difference map and refined with a DFIX 0.91 0.01 instruction. Two reflections affected by the beamstop were omitted from the final refinement. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.39043 (13) | 0.39185 (7) | 0.33591 (7) | 0.0263 (2) | |
O2 | 0.66443 (13) | 0.37492 (8) | 0.59106 (7) | 0.0278 (2) | |
O3 | 0.95278 (13) | 0.37405 (8) | 0.16772 (6) | 0.0265 (2) | |
N1 | 0.54354 (13) | 0.36178 (7) | 0.45643 (7) | 0.01860 (19) | |
N2 | 0.50404 (13) | 0.49047 (8) | 0.53375 (7) | 0.01892 (19) | |
H2 | 0.518 (2) | 0.5333 (12) | 0.5767 (10) | 0.028* | |
N3 | 0.80935 (12) | 0.33366 (8) | 0.33144 (7) | 0.01897 (19) | |
C1 | 0.42318 (14) | 0.50910 (8) | 0.45190 (7) | 0.01579 (19) | |
C2 | 0.44728 (14) | 0.41472 (8) | 0.40476 (8) | 0.0177 (2) | |
C3 | 0.58023 (14) | 0.40760 (9) | 0.53453 (8) | 0.0191 (2) | |
C4 | 0.24609 (14) | 0.52644 (8) | 0.46447 (8) | 0.0175 (2) | |
C5 | 0.16580 (16) | 0.48701 (9) | 0.53445 (9) | 0.0226 (2) | |
H5 | 0.222361 | 0.451978 | 0.576640 | 0.027* | |
C6 | 0.00231 (18) | 0.49893 (10) | 0.54266 (11) | 0.0296 (3) | |
H6 | −0.052435 | 0.471165 | 0.589914 | 0.036* | |
C7 | −0.07996 (17) | 0.55110 (12) | 0.48207 (12) | 0.0331 (3) | |
H7 | −0.191083 | 0.559368 | 0.487913 | 0.040* | |
C8 | −0.00078 (18) | 0.59125 (11) | 0.41300 (11) | 0.0308 (3) | |
H8 | −0.057409 | 0.627726 | 0.371901 | 0.037* | |
C9 | 0.16234 (16) | 0.57833 (10) | 0.40347 (9) | 0.0233 (2) | |
H9 | 0.216069 | 0.604987 | 0.355331 | 0.028* | |
C10 | 0.50534 (14) | 0.58919 (8) | 0.40337 (8) | 0.01677 (19) | |
C11 | 0.51864 (16) | 0.67518 (9) | 0.44551 (8) | 0.0221 (2) | |
H11 | 0.473587 | 0.683179 | 0.501458 | 0.026* | |
C12 | 0.59746 (18) | 0.74927 (9) | 0.40608 (10) | 0.0264 (3) | |
H12 | 0.607929 | 0.807213 | 0.435648 | 0.032* | |
C13 | 0.66094 (17) | 0.73867 (10) | 0.32348 (10) | 0.0267 (3) | |
H13 | 0.713846 | 0.789458 | 0.296334 | 0.032* | |
C14 | 0.64681 (18) | 0.65389 (11) | 0.28097 (9) | 0.0276 (3) | |
H14 | 0.689747 | 0.646667 | 0.224429 | 0.033* | |
C15 | 0.56972 (16) | 0.57888 (10) | 0.32074 (8) | 0.0234 (2) | |
H15 | 0.561162 | 0.520695 | 0.291395 | 0.028* | |
C16 | 0.60778 (16) | 0.27040 (9) | 0.43367 (9) | 0.0226 (2) | |
H16A | 0.546571 | 0.244049 | 0.384678 | 0.027* | |
H16B | 0.596317 | 0.227562 | 0.483704 | 0.027* | |
C17 | 0.78214 (15) | 0.27672 (9) | 0.40832 (9) | 0.0211 (2) | |
H17A | 0.842599 | 0.303505 | 0.457389 | 0.025* | |
H17B | 0.823018 | 0.212874 | 0.397594 | 0.025* | |
C18 | 0.97742 (15) | 0.35809 (9) | 0.32419 (8) | 0.0207 (2) | |
H18A | 1.041537 | 0.300511 | 0.318035 | 0.025* | |
H18B | 1.012307 | 0.391079 | 0.377290 | 0.025* | |
C19 | 1.00178 (18) | 0.42037 (10) | 0.24594 (9) | 0.0248 (2) | |
H19A | 0.940012 | 0.478672 | 0.253294 | 0.030* | |
H19B | 1.115096 | 0.437442 | 0.241412 | 0.030* | |
C20 | 0.79025 (19) | 0.34662 (12) | 0.17402 (9) | 0.0300 (3) | |
H20A | 0.759366 | 0.312437 | 0.120832 | 0.036* | |
H20B | 0.722946 | 0.403102 | 0.178463 | 0.036* | |
C21 | 0.76244 (18) | 0.28487 (11) | 0.25229 (9) | 0.0275 (3) | |
H21A | 0.648961 | 0.267850 | 0.255688 | 0.033* | |
H21B | 0.824646 | 0.226537 | 0.246373 | 0.033* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0291 (5) | 0.0253 (5) | 0.0245 (4) | 0.0031 (4) | −0.0078 (4) | −0.0074 (4) |
O2 | 0.0265 (5) | 0.0329 (5) | 0.0241 (4) | 0.0036 (4) | −0.0062 (4) | 0.0087 (4) |
O3 | 0.0301 (5) | 0.0309 (5) | 0.0183 (4) | −0.0040 (4) | 0.0023 (4) | 0.0015 (4) |
N1 | 0.0176 (4) | 0.0177 (4) | 0.0204 (4) | 0.0023 (3) | 0.0009 (4) | 0.0018 (3) |
N2 | 0.0198 (4) | 0.0217 (4) | 0.0153 (4) | 0.0013 (4) | −0.0035 (4) | −0.0007 (3) |
N3 | 0.0169 (4) | 0.0219 (4) | 0.0181 (4) | −0.0002 (4) | 0.0000 (4) | 0.0025 (4) |
C1 | 0.0148 (5) | 0.0178 (5) | 0.0148 (4) | 0.0005 (4) | −0.0015 (4) | −0.0007 (4) |
C2 | 0.0159 (5) | 0.0177 (5) | 0.0193 (5) | 0.0007 (4) | 0.0000 (4) | −0.0009 (4) |
C3 | 0.0158 (5) | 0.0228 (5) | 0.0187 (5) | −0.0012 (4) | 0.0002 (4) | 0.0043 (4) |
C4 | 0.0152 (5) | 0.0169 (4) | 0.0202 (5) | 0.0003 (4) | −0.0004 (4) | −0.0016 (4) |
C5 | 0.0205 (5) | 0.0199 (5) | 0.0273 (6) | −0.0007 (4) | 0.0041 (5) | 0.0001 (4) |
C6 | 0.0209 (6) | 0.0281 (6) | 0.0398 (8) | −0.0038 (5) | 0.0087 (6) | −0.0057 (6) |
C7 | 0.0148 (5) | 0.0364 (7) | 0.0480 (9) | 0.0012 (5) | 0.0002 (6) | −0.0126 (7) |
C8 | 0.0211 (6) | 0.0327 (7) | 0.0386 (8) | 0.0062 (5) | −0.0096 (6) | −0.0042 (6) |
C9 | 0.0196 (5) | 0.0252 (6) | 0.0250 (5) | 0.0026 (5) | −0.0048 (5) | 0.0003 (5) |
C10 | 0.0149 (4) | 0.0189 (5) | 0.0165 (4) | 0.0008 (4) | −0.0006 (4) | 0.0005 (4) |
C11 | 0.0248 (6) | 0.0200 (5) | 0.0214 (5) | −0.0001 (4) | 0.0027 (4) | −0.0015 (4) |
C12 | 0.0279 (6) | 0.0198 (5) | 0.0315 (6) | −0.0018 (5) | 0.0004 (5) | 0.0020 (5) |
C13 | 0.0214 (6) | 0.0280 (6) | 0.0305 (6) | −0.0008 (5) | 0.0015 (5) | 0.0100 (5) |
C14 | 0.0249 (6) | 0.0354 (7) | 0.0225 (5) | 0.0010 (5) | 0.0053 (5) | 0.0060 (5) |
C15 | 0.0239 (6) | 0.0274 (6) | 0.0189 (5) | 0.0007 (5) | 0.0030 (4) | −0.0013 (4) |
C16 | 0.0221 (6) | 0.0167 (5) | 0.0288 (6) | 0.0022 (4) | 0.0056 (5) | 0.0039 (4) |
C17 | 0.0196 (5) | 0.0215 (5) | 0.0223 (5) | 0.0048 (4) | 0.0028 (4) | 0.0058 (4) |
C18 | 0.0184 (5) | 0.0246 (5) | 0.0192 (5) | −0.0017 (4) | −0.0007 (4) | 0.0021 (4) |
C19 | 0.0273 (6) | 0.0256 (6) | 0.0214 (5) | −0.0061 (5) | 0.0010 (5) | 0.0020 (5) |
C20 | 0.0290 (7) | 0.0413 (8) | 0.0198 (5) | −0.0061 (6) | −0.0050 (5) | 0.0036 (5) |
C21 | 0.0279 (6) | 0.0321 (7) | 0.0224 (6) | −0.0099 (5) | −0.0031 (5) | 0.0003 (5) |
O1—C2 | 1.2105 (15) | C10—C15 | 1.3933 (17) |
O2—C3 | 1.2183 (15) | C10—C11 | 1.3955 (17) |
O3—C20 | 1.4306 (19) | C11—C12 | 1.3912 (19) |
O3—C19 | 1.4373 (17) | C11—H11 | 0.9500 |
N1—C2 | 1.3670 (16) | C12—C13 | 1.390 (2) |
N1—C3 | 1.4058 (16) | C12—H12 | 0.9500 |
N1—C16 | 1.4579 (16) | C13—C14 | 1.383 (2) |
N2—C3 | 1.3485 (16) | C13—H13 | 0.9500 |
N2—C1 | 1.4597 (15) | C14—C15 | 1.397 (2) |
N2—H2 | 0.910 (12) | C14—H14 | 0.9500 |
N3—C17 | 1.4568 (16) | C15—H15 | 0.9500 |
N3—C21 | 1.4608 (17) | C16—C17 | 1.5260 (18) |
N3—C18 | 1.4658 (16) | C16—H16A | 0.9900 |
C1—C4 | 1.5281 (16) | C16—H16B | 0.9900 |
C1—C10 | 1.5342 (16) | C17—H17A | 0.9900 |
C1—C2 | 1.5465 (16) | C17—H17B | 0.9900 |
C4—C9 | 1.3913 (17) | C18—C19 | 1.5140 (18) |
C4—C5 | 1.3938 (17) | C18—H18A | 0.9900 |
C5—C6 | 1.3967 (19) | C18—H18B | 0.9900 |
C5—H5 | 0.9500 | C19—H19A | 0.9900 |
C6—C7 | 1.383 (2) | C19—H19B | 0.9900 |
C6—H6 | 0.9500 | C20—C21 | 1.514 (2) |
C7—C8 | 1.383 (2) | C20—H20A | 0.9900 |
C7—H7 | 0.9500 | C20—H20B | 0.9900 |
C8—C9 | 1.397 (2) | C21—H21A | 0.9900 |
C8—H8 | 0.9500 | C21—H21B | 0.9900 |
C9—H9 | 0.9500 | ||
C20—O3—C19 | 110.21 (11) | C13—C12—H12 | 119.9 |
C2—N1—C3 | 111.86 (10) | C11—C12—H12 | 119.9 |
C2—N1—C16 | 125.27 (11) | C14—C13—C12 | 119.77 (13) |
C3—N1—C16 | 122.83 (11) | C14—C13—H13 | 120.1 |
C3—N2—C1 | 113.03 (10) | C12—C13—H13 | 120.1 |
C3—N2—H2 | 121.6 (13) | C13—C14—C15 | 120.34 (13) |
C1—N2—H2 | 124.5 (13) | C13—C14—H14 | 119.8 |
C17—N3—C21 | 111.74 (11) | C15—C14—H14 | 119.8 |
C17—N3—C18 | 110.36 (10) | C10—C15—C14 | 120.15 (13) |
C21—N3—C18 | 108.22 (10) | C10—C15—H15 | 119.9 |
N2—C1—C4 | 112.19 (9) | C14—C15—H15 | 119.9 |
N2—C1—C10 | 110.29 (9) | N1—C16—C17 | 111.56 (11) |
C4—C1—C10 | 112.54 (10) | N1—C16—H16A | 109.3 |
N2—C1—C2 | 100.70 (9) | C17—C16—H16A | 109.3 |
C4—C1—C2 | 109.27 (9) | N1—C16—H16B | 109.3 |
C10—C1—C2 | 111.27 (9) | C17—C16—H16B | 109.3 |
O1—C2—N1 | 126.69 (12) | H16A—C16—H16B | 108.0 |
O1—C2—C1 | 126.59 (11) | N3—C17—C16 | 113.19 (10) |
N1—C2—C1 | 106.71 (10) | N3—C17—H17A | 108.9 |
O2—C3—N2 | 128.46 (13) | C16—C17—H17A | 108.9 |
O2—C3—N1 | 124.27 (12) | N3—C17—H17B | 108.9 |
N2—C3—N1 | 107.27 (10) | C16—C17—H17B | 108.9 |
C9—C4—C5 | 119.48 (12) | H17A—C17—H17B | 107.8 |
C9—C4—C1 | 119.88 (11) | N3—C18—C19 | 109.42 (11) |
C5—C4—C1 | 120.57 (11) | N3—C18—H18A | 109.8 |
C4—C5—C6 | 120.11 (13) | C19—C18—H18A | 109.8 |
C4—C5—H5 | 119.9 | N3—C18—H18B | 109.8 |
C6—C5—H5 | 119.9 | C19—C18—H18B | 109.8 |
C7—C6—C5 | 120.07 (14) | H18A—C18—H18B | 108.2 |
C7—C6—H6 | 120.0 | O3—C19—C18 | 111.03 (11) |
C5—C6—H6 | 120.0 | O3—C19—H19A | 109.4 |
C8—C7—C6 | 120.12 (13) | C18—C19—H19A | 109.4 |
C8—C7—H7 | 119.9 | O3—C19—H19B | 109.4 |
C6—C7—H7 | 119.9 | C18—C19—H19B | 109.4 |
C7—C8—C9 | 120.18 (14) | H19A—C19—H19B | 108.0 |
C7—C8—H8 | 119.9 | O3—C20—C21 | 111.28 (12) |
C9—C8—H8 | 119.9 | O3—C20—H20A | 109.4 |
C4—C9—C8 | 120.03 (14) | C21—C20—H20A | 109.4 |
C4—C9—H9 | 120.0 | O3—C20—H20B | 109.4 |
C8—C9—H9 | 120.0 | C21—C20—H20B | 109.4 |
C15—C10—C11 | 119.20 (11) | H20A—C20—H20B | 108.0 |
C15—C10—C1 | 122.93 (11) | N3—C21—C20 | 110.21 (12) |
C11—C10—C1 | 117.85 (10) | N3—C21—H21A | 109.6 |
C12—C11—C10 | 120.40 (12) | C20—C21—H21A | 109.6 |
C12—C11—H11 | 119.8 | N3—C21—H21B | 109.6 |
C10—C11—H11 | 119.8 | C20—C21—H21B | 109.6 |
C13—C12—C11 | 120.12 (13) | H21A—C21—H21B | 108.1 |
C3—N2—C1—C4 | 122.71 (11) | C5—C4—C9—C8 | 0.5 (2) |
C3—N2—C1—C10 | −110.98 (12) | C1—C4—C9—C8 | 177.51 (12) |
C3—N2—C1—C2 | 6.63 (13) | C7—C8—C9—C4 | −1.2 (2) |
C3—N1—C2—O1 | −176.25 (13) | N2—C1—C10—C15 | 120.60 (12) |
C16—N1—C2—O1 | 6.2 (2) | C4—C1—C10—C15 | −113.30 (13) |
C3—N1—C2—C1 | 3.02 (13) | C2—C1—C10—C15 | 9.72 (16) |
C16—N1—C2—C1 | −174.56 (11) | N2—C1—C10—C11 | −57.84 (14) |
N2—C1—C2—O1 | 173.71 (13) | C4—C1—C10—C11 | 68.27 (14) |
C4—C1—C2—O1 | 55.47 (16) | C2—C1—C10—C11 | −168.71 (11) |
C10—C1—C2—O1 | −69.40 (16) | C15—C10—C11—C12 | −1.04 (19) |
N2—C1—C2—N1 | −5.56 (12) | C1—C10—C11—C12 | 177.46 (12) |
C4—C1—C2—N1 | −123.80 (10) | C10—C11—C12—C13 | 1.3 (2) |
C10—C1—C2—N1 | 111.33 (11) | C11—C12—C13—C14 | −0.6 (2) |
C1—N2—C3—O2 | 175.70 (13) | C12—C13—C14—C15 | −0.3 (2) |
C1—N2—C3—N1 | −5.21 (14) | C11—C10—C15—C14 | 0.14 (19) |
C2—N1—C3—O2 | −179.73 (12) | C1—C10—C15—C14 | −178.28 (12) |
C16—N1—C3—O2 | −2.09 (19) | C13—C14—C15—C10 | 0.5 (2) |
C2—N1—C3—N2 | 1.13 (14) | C2—N1—C16—C17 | 103.66 (14) |
C16—N1—C3—N2 | 178.77 (11) | C3—N1—C16—C17 | −73.66 (15) |
N2—C1—C4—C9 | 155.69 (11) | C21—N3—C17—C16 | −74.95 (14) |
C10—C1—C4—C9 | 30.62 (15) | C18—N3—C17—C16 | 164.58 (11) |
C2—C1—C4—C9 | −93.51 (13) | N1—C16—C17—N3 | −62.76 (15) |
N2—C1—C4—C5 | −27.35 (15) | C17—N3—C18—C19 | −177.76 (11) |
C10—C1—C4—C5 | −152.43 (11) | C21—N3—C18—C19 | 59.69 (14) |
C2—C1—C4—C5 | 83.44 (13) | C20—O3—C19—C18 | 57.57 (16) |
C9—C4—C5—C6 | 0.58 (19) | N3—C18—C19—O3 | −59.72 (15) |
C1—C4—C5—C6 | −176.39 (12) | C19—O3—C20—C21 | −56.62 (17) |
C4—C5—C6—C7 | −1.0 (2) | C17—N3—C21—C20 | 179.21 (12) |
C5—C6—C7—C8 | 0.3 (2) | C18—N3—C21—C20 | −59.08 (15) |
C6—C7—C8—C9 | 0.8 (2) | O3—C20—C21—N3 | 58.29 (17) |
Cg3 is the centroid of the C4–C9 benzene ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O3i | 0.91 (1) | 1.95 (1) | 2.8560 (15) | 179 (2) |
C12—H12···Cg3ii | 0.95 | 2.62 | 3.5576 (15) | 169 |
C18—H18B···Cg3iii | 0.99 | 2.65 | 3.5726 (14) | 155 |
Symmetry codes: (i) −x+3/2, −y+1, z+1/2; (ii) −x, y+3/2, −z+3/2; (iii) x+1, y, z. |
Bonds/angles | X-ray | B3LYP/6-311G(d,p) |
O1—C2 | 1.2105 (15) | 1.221 |
O2—C3 | 1.2183 (15) | 1.223 |
O3—C20 | 1.4306 (19) | 1.445 |
N1—C2 | 1.3670 (16) | 1.357 |
N1—C3 | 1.4058 (16) | 1.420 |
N2—C3 | 1.3485 (16) | 1.338 |
N2—H2 | 0.910 (12) | 0.920 |
N3—C17 | 1.4568 (16) | 1.464 |
C20—O3—C19 | 110.21 (11) | 111.25 |
C3—N2—C1 | 113.03 (10) | 114.18 |
N2—C1—C4 | 112.19 (9) | 112.69 |
N2—C1—C10 | 110.29 (9) | 110.87 |
N2—C1—C2 | 100.70 (9) | 100.98 |
O1—C2—N1 | 126.69 (12) | 125.98 |
O2—C3—N2 | 128.46 (13) | 128.52 |
O2—C3—N1 | 124.27 (12) | 124.75 |
N2—C3—N1 | 107.27 (10) | 107.64 |
Molecular Energy (a.u.) (eV) | Compound (I) |
Total Energy, TE (eV) | –32761.48 |
EHOMO (eV) | –5.36 |
ELUMO (eV) | –0.73 |
Gap, ΔE (eV) | 4.62 |
Dipole moment, µ (Debye) | 2.406 |
Ionization potential, I (eV) | –5.36 |
Electron affinity, A | –0.73 |
Electro negativity, χ | –3.04 |
Hardness, η | –2.31 |
Electrophilicity index, ω | –2.00 |
Softness, σ | 0.35 |
Fraction of electrons transferred, ΔN | –2.17 |
Funding information
JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).
References
Abdel-Aziz, A. A. M., El-Azab, A. S., Abou-Zeid, L. A., ElTahir, K. E. H., Abdel-Aziz, N. I., Ayyad, R. R. & Al-Obaid, A. M. (2016). Eur. J. Med. Chem. 115, 121–131. CAS PubMed Google Scholar
Al-Nuzal, S. M. D., Al-Dulaimi, M. F. & Hassan, A. T. (2018). J. Univ. Anbar Pure Sci., 12, 38–53. https://doi.org/10.37652/juaps.2022.17150 Google Scholar
Akrad, R., Guerrab, W., Lazrak, F., Ansar, M., Taoufik, J., Mague, J. T. & Ramli, Y. (2018a). IUCrData, 3, x180934. Google Scholar
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2021). APEX4 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Emami, S., Valipour, M., Kazemi Komishani, F., Sadati-Ashrafi, F., Rasoulian, M., Ghasemian, M., Tajbakhsh, M., Honarchian Masihi, P., Shakiba, A., Irannejad, H. & Ahangar, N. (2021). Bioorg. Chem. 112, 104943. CrossRef PubMed Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
n Google Scholar
Guerrab, W., Akrad, R., Ansar, M., Taoufik, J., Mague, J. T. & Ramli, Y. (2017b). IUCrData, 2, x171693. Google Scholar
Guerrab, W., El Jemli, M., Akachar, J., Demirtaş, G., Mague, J. T., Taoufik, J., Ibrahimi, A., Ansar, M., Alaoui, K. & Ramli, Y. (2022). J. Biomol. Struct. Dynam. 40, 8765–8782. CSD CrossRef CAS Google Scholar
Guerrab, W., El Moutaouakil Ala Allah, A., Alsubari, A., Mague, J. T. & Ramli, Y. (2023). IUCrData, 8, x230060. Google Scholar
Guerrab, W., Mague, J. T. & Ramli, Y. (2020). Z. Krist. New Cryst. Struct. 235, 1425–1427. CAS Google Scholar
Guerrab, W., Mague, J. T., Taoufik, J. & Ramli, Y. (2018b). IUCrData, 3, x180057. Google Scholar
Guerrab, W., Mague, J. T., Akrad, R., Ansar, M., Taoufik, J. & Ramli, Y. (2017c). IUCrData, 2, x171808. Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/ Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814. Google Scholar
Ooms, F., Wouters, J., Oscari, O., Happaerts, T., Bouchard, G., Carrupt, P.-A., Testa, B. & Lambert, D. M. (2002). J. Med. Chem. 45, 1748–1756. CSD CrossRef PubMed CAS Google Scholar
Pandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (2000). Eur. J. Med. Chem. 35, 249–255. Web of Science CrossRef PubMed CAS Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Salem, M. G., Abdel Aziz, Y. M., Elewa, M., Elshihawy, H. A. & Said, M. M. (2018). Bioorg. Chem. 79, 131–144. CrossRef CAS PubMed Google Scholar
Sangeetha, P., Siva, T., Balaji, R., & Tharini2, and K. (2016). World J. Sci. and Res. 1, 26–30. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Silva Guerra, A. S. H. da, do Nascimento Malta, D. J., Morais Laranjeira, L. P., Souza Maia, M. B., Cavalcanti Colaço, N., do Carmo Alves de Lima, M., Galdino, S. L., da Rocha Pitta, I. & Gonçalves-Silva, T. (2011). Int. Immunopharmacol. 11, 1816–1822. PubMed Google Scholar
Śladowska, K., Handzlik, J., Kieć-Kononowicz, K. & Mazur, L. (2016). Indian J. Exp. Biol. 54, 553–559. PubMed Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388. CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Trišović, N., Radovanović, L., Janjić, G. V., Jelić, S. T. & Rogan, J. (2019). Cryst. Growth Des. 19, 2163–2174. Google Scholar
Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255. Web of Science CrossRef CAS PubMed Google Scholar
Turner, M. J., McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2011). CrystEngComm, 13, 1804–1813. Web of Science CrossRef CAS Google Scholar
Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738. Web of Science CrossRef CAS Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636. Web of Science CSD CrossRef CAS PubMed Google Scholar
Żesławska, E., Kucwaj-Brysz, K., Kincses, A., Spengler, G., Szymańska, E., Czopek, A., Marć, M. A., Kaczor, A., Nitek, W., Domínguez-Álvarez, E., Latacz, G., Kieć-Kononowicz, K. & Handzlik, J. (2021). Bioorg. Chem. 109, 104735. Web of Science PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.