research communications
Synthesis and N-phenyl-2-(phenylsulfanyl)acetamide
ofaChemistry of Natural & Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Center, Cairo, Egypt, bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10, 3AT, United Kingdom, and cDepartment of Chemistry, Faculty of Science, Helwan University, Helwan, Cairo, Egypt
*Correspondence e-mail: ra.mohamed-ezzat@nrc.sci.eg
This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.
N-Phenyl-2-(phenylsulfanyl)acetamide, C14H13NOS, was synthesized and structurally characterized. In the crystal, N—H⋯O hydrogen bonding leads to the formation of chains of molecules along the [100] direction. The chains are linked by C—H⋯π interactions, forming a three-dimensional network. The crystal studied was twinned by a twofold rotation around [100].
Keywords: crystal structure; acetamide; sulfide; synthesis.
CCDC reference: 2311395
1. Chemical context
The acetamide moiety possesses therapeutic potential for targeting various diseases. Acetamide-containing drugs are used for inflammation control, cyclooxygenase (COX) enzyme inhibition, and as antiviral drugs (Agrawal et al., 2010; Orzalesi et al., 1977). Recently, starting from acetamides, we have synthesized various that exhibit diverse activities, including anti-SARS CoV-2 (Mohamed-Ezzat & Elgemeie, 2023), antimicrobial (Elgemeie et al., 2017a,b), antitumor properties (Elgemeie & Mohamed-Ezzat, 2022; Mohamed-Ezzat et al., 2023a,b), as well as potential for other applications (Elgemeie et al., 2015, 2017a,b, 2019; Mohamed-Ezzat et al., 2021, 2023a,b).
Additionally, the evolution of the pharmaceutical industry has been greatly aided by the discovery of sulfur-based therapies. Sulfur-derived functional groups can be found in a broad range of natural products and pharmaceuticals. Sulfur remains the dominant heteroatom integrated into a variety of FDA-approved sulfur-containing medications (Feng et al., 2016).
Sulfides have been presented inter alia as precursors for sulfonyl chloride synthesis (Langler et al., 1979). Advanced methods previously reported for the transformation of include, for example, using sulfate-modified multi-walled carbon nanotubes (S-MWCNT) and mesoporous carbon (S-MC) as heterogenous catalysts to facilitate the synthesis of acetamide derivatives (Minchitha et al., 2018).
Herein, we report the first synthesis of a sulfide from a sulfonyl derivative via an alternative new, direct and efficient approach. Upon reaction of the sulfonylguanidine derivative with 2-chloro-N-phenylacetamide, the title compound N-phenyl-2-(phenylsulfanyl)acetamide (3) is formed. Its chemical structure was confirmed by spectroscopic techniques and elemental analysis. The 1H NMR spectrum has a singlet signal of the methylene group at δ 3.84 ppm, the multiplet aromatic protons at δ 7.30 ppm, as well as the amine proton at δ 9.15 ppm, which is roughly in accordance with previously reported data (Motherwell et al., 2002). Confirmation of the molecular structure is provided by means of single crystal X-ray diffraction structural analysis which provides the first and geometric parameters for the title compound.
2. Structural commentary
The ). The molecules of 3 consist of three planar segments, namely sulfanylbenzene [sb1 (C1–C6/S1) and sb2 (C15–C21/S2)], acetamide [ac1 (C7/C8/N1/O1) and ac2 (C22/C23/N2/O2)], and phenyl [ph1 (C9–C14) and ph2 (C24–C29)] groups. The conformations of the two independent molecules in the structure are similar but not identical. The twist angles sb/ac are 85.12 (11) and 77.58 (11)° for molecules 1 and 2, respectively, and twist angles sb/ph are 28.30 (10) and 30.60 (10)° for molecules 1 and 2, respectively. Thus, the phenyl and acetamide groups are almost coplanar whereas the sulfanylbenzene groups are almost perpendicular to this plane. The Cphenyl—S-C—Ccarbonyl torsion angles are 72.1 (3)° for C1—S1—C7—C8 and −65.13 (3)° for C15—S2—C22—C23. A similar molecular conformation is observed in the crystal structures of the related compounds N-(2-hydroxy-5-chlorophenyl)thiophenylacetamide (Tarimci et al., 1998) and 2-[(2-aminophenyl)sulfanyl]-N-(2-nitrophenyl)acetamide (Murtaza et al., 2019) in which the Cphenyl—S—C—Ccarbonyl torsion angles are ca 80°.
of the is composed of two independent molecules of the title compound (Fig. 13. Supramolecular features
The packing in the 3 is shown in Fig. 2a. In the crystal, the acetamide groups of each set of independent molecules interact through weak N—H⋯O contacts (Table 1), forming chains parallel to [100] (Fig. 2b).
of
|
Adjacent chains are linked by weak C—H⋯π contacts between methylene and phenyl groups. The rings involved in the contacts are ph1 (C9–C14, Cg1) and ph2# (C24–C29, Cg2#) where is x + 1, y, z. The associated H⋯π distances H7A⋯ph2#, and H22B⋯ph1 are 2.80 Å and 2.94 Å, respectively. The H⋯centroid distances H7A⋯Cg2# and H22B⋯Cg1 are 3.00 and 3.10 Å, respectively. The C—H⋯centroid angles for C7—H7A⋯Cg2# and C22—H22B⋯Cg1 are 129 and 128°, respectively.
4. Database survey
A search of the CSD (version 5.44, April 2023; Groom et al., 2016) using the routine ConQuest (Bruno et al., 2002) for crystal structures containing the N-phenyl-2-(phenylsulfanyl)acetamide fragment returned N-(2-hydroxy-5-chlorophenyl)thiophenylacetamide (NILWEK; Tarimci et al., 1998) and 2-[(2-aminophenyl)sulfanyl]-N-(2-nitrophenyl)acetamide (NULZOM; Murtaza et al., 2019), which both have similar conformational geometries to compound 3. In contrast, 2-[(2-aminophenyl)sulfanyl]-N-(4-methoxyphenyl)acetamide (PAXTEP; Murtaza et al., 2012) has a Cphenyl—S—C—Ccarbonyl torsion angle of 159° compared to the values of ca 80° in NILWEK and NULZOM and even more acute ones are observed in the crystal of the title compound.
5. Synthesis and crystallization
A mixture of benzenesulfonylguanidine (1) (0.01 mol) with 2-chloro-N-phenylacetamide 2 (0.01 mol) in dry 1,4-dioxane (20 mL) containing potassium hydroxide (0.015 mol) was refluxed for 1 h. The reaction mixture was poured onto ice–water and then neutralized using hydrochloric acid (Fig. 3).
The solid precipitate that formed was then filtered, washed thoroughly with water and left in the open to dry at room temperature. The solid obtained was recrystallized from water to afford colorless crystals of compound 3 in 83% yield; mp > 573 K; 1H NMR (400 MHz, DMSO-d6): δ 3.84 (s, 2H, CH2), 7.30 (m, 10H, Ar-H), 9.15 (s, 1H, NH); analysis calculated for C14H13NOS (243.32): C, 69.11; H, 5.39; N, 5.76; S, 13.18. Found: C, 69.07; H, 5.35; N, 5.75; S, 13.16.
6. Refinement
Crystal data, data collection and structure . The crystal studied was twinned by a twofold rotation around [100]. This problem was addressed using a HKLF5 file for The N-bound hydrogen atoms were refined with regard to location while the displacement parameters were constrained to those of their parent atoms [Uiso(H) = 1.2Ueq(N)]. All other hydrogen atoms were placed in idealized positions (C—H = 0.93–0.97 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 2Supporting information
CCDC reference: 2311395
https://doi.org/10.1107/S2056989024002573/yz2049sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024002573/yz2049Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989024002573/yz2049Isup3.cml
C14H13NOS | Z = 4 |
Mr = 243.31 | F(000) = 512 |
Triclinic, P1 | Dx = 1.325 Mg m−3 |
a = 5.6768 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 12.0747 (6) Å | Cell parameters from 3492 reflections |
c = 18.1912 (9) Å | θ = 3.7–28.1° |
α = 87.071 (4)° | µ = 0.25 mm−1 |
β = 82.110 (4)° | T = 293 K |
γ = 81.110 (4)° | Needle, yellow |
V = 1219.72 (11) Å3 | 0.54 × 0.17 × 0.09 mm |
Agilent SuperNova, Dual, Cu at home/near, Atlas diffractometer | 5708 reflections with I > 2σ(I) |
ω scans | Rint = 0.040 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2023) | θmax = 29.7°, θmin = 3.4° |
Tmin = 0.662, Tmax = 1.000 | h = −7→6 |
7742 measured reflections | k = −15→15 |
7742 independent reflections | l = −24→24 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.058 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.162 | w = 1/[σ2(Fo2) + (0.0737P)2 + 0.551P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
7742 reflections | Δρmax = 0.23 e Å−3 |
314 parameters | Δρmin = −0.23 e Å−3 |
0 restraints |
Experimental. Single-crystal XRD data were collected at room temperature on an Agilent SuperNova Dual Atlas diffractometer using mirror-monochromated Mo Kα radiation. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component twin. |
x | y | z | Uiso*/Ueq | ||
C1 | 1.1641 (5) | −0.1130 (2) | 0.11013 (13) | 0.0415 (6) | |
C2 | 1.3815 (5) | −0.1806 (3) | 0.08899 (15) | 0.0532 (7) | |
H2 | 1.506625 | −0.150022 | 0.060835 | 0.064* | |
C3 | 1.4122 (6) | −0.2916 (3) | 0.10934 (17) | 0.0600 (8) | |
H3 | 1.558973 | −0.335965 | 0.095112 | 0.072* | |
C4 | 1.2294 (6) | −0.3390 (3) | 0.15062 (17) | 0.0591 (8) | |
H4 | 1.251613 | −0.414900 | 0.164104 | 0.071* | |
C5 | 1.0147 (6) | −0.2730 (3) | 0.17151 (17) | 0.0560 (8) | |
H5 | 0.890629 | −0.304415 | 0.199571 | 0.067* | |
C6 | 0.9792 (5) | −0.1608 (2) | 0.15170 (15) | 0.0512 (7) | |
H6 | 0.831850 | −0.116989 | 0.166072 | 0.061* | |
C7 | 0.8387 (6) | 0.0859 (3) | 0.10985 (15) | 0.0551 (8) | |
H7A | 0.807561 | 0.158969 | 0.085390 | 0.066* | |
H7B | 0.741087 | 0.037878 | 0.090528 | 0.066* | |
C8 | 0.7505 (6) | 0.0994 (2) | 0.19250 (15) | 0.0480 (7) | |
C9 | 0.8784 (5) | 0.1283 (2) | 0.31338 (14) | 0.0434 (6) | |
C10 | 1.0655 (5) | 0.0928 (3) | 0.35418 (16) | 0.0534 (7) | |
H10 | 1.212546 | 0.058503 | 0.330670 | 0.064* | |
C11 | 1.0350 (7) | 0.1082 (3) | 0.42985 (17) | 0.0648 (9) | |
H11 | 1.161619 | 0.084293 | 0.457099 | 0.078* | |
C12 | 0.8180 (7) | 0.1586 (3) | 0.46490 (18) | 0.0689 (10) | |
H12 | 0.796532 | 0.167685 | 0.515957 | 0.083* | |
C13 | 0.6343 (6) | 0.1953 (3) | 0.42445 (18) | 0.0658 (9) | |
H13 | 0.488293 | 0.230248 | 0.448232 | 0.079* | |
C14 | 0.6618 (6) | 0.1812 (2) | 0.34868 (17) | 0.0557 (7) | |
H14 | 0.535726 | 0.207188 | 0.321611 | 0.067* | |
C15 | 0.6954 (5) | 0.6251 (2) | 0.38739 (14) | 0.0483 (7) | |
C16 | 0.8379 (6) | 0.6999 (3) | 0.40561 (17) | 0.0594 (8) | |
H16 | 0.958419 | 0.676480 | 0.435258 | 0.071* | |
C17 | 0.8000 (7) | 0.8093 (3) | 0.37954 (19) | 0.0677 (9) | |
H17 | 0.897550 | 0.859209 | 0.391344 | 0.081* | |
C18 | 0.6223 (6) | 0.8462 (3) | 0.33670 (19) | 0.0655 (9) | |
H18 | 0.598021 | 0.920754 | 0.320109 | 0.079* | |
C19 | 0.4793 (6) | 0.7723 (3) | 0.31825 (19) | 0.0667 (9) | |
H19 | 0.357922 | 0.796749 | 0.289068 | 0.080* | |
C21 | 0.5166 (6) | 0.6616 (3) | 0.34325 (17) | 0.0579 (8) | |
H21 | 0.421285 | 0.611422 | 0.330344 | 0.069* | |
C22 | 1.0326 (6) | 0.4309 (3) | 0.38916 (15) | 0.0568 (8) | |
H22A | 1.133364 | 0.478430 | 0.407477 | 0.068* | |
H22B | 1.070250 | 0.356802 | 0.411605 | 0.068* | |
C23 | 1.1052 (6) | 0.4220 (2) | 0.30651 (15) | 0.0467 (7) | |
C24 | 0.9628 (5) | 0.3906 (2) | 0.18839 (14) | 0.0405 (6) | |
C25 | 0.7707 (5) | 0.4253 (3) | 0.14992 (16) | 0.0529 (7) | |
H25 | 0.626080 | 0.460022 | 0.174787 | 0.063* | |
C26 | 0.7913 (6) | 0.4091 (3) | 0.07505 (18) | 0.0619 (8) | |
H26 | 0.661178 | 0.434012 | 0.049420 | 0.074* | |
C27 | 1.0032 (6) | 0.3561 (3) | 0.03737 (16) | 0.0604 (8) | |
H27 | 1.017265 | 0.344880 | −0.013342 | 0.072* | |
C28 | 1.1923 (6) | 0.3204 (3) | 0.07640 (17) | 0.0596 (8) | |
H28 | 1.335639 | 0.284254 | 0.051660 | 0.071* | |
C29 | 1.1747 (5) | 0.3368 (2) | 0.15161 (16) | 0.0508 (7) | |
H29 | 1.304784 | 0.311726 | 0.177232 | 0.061* | |
N1 | 0.9169 (5) | 0.1113 (2) | 0.23607 (13) | 0.0484 (6) | |
H1 | 1.062 (6) | 0.103 (3) | 0.2146 (16) | 0.058* | |
N2 | 0.9320 (5) | 0.4085 (2) | 0.26590 (13) | 0.0483 (6) | |
H2A | 0.790 (6) | 0.419 (3) | 0.2863 (17) | 0.058* | |
O1 | 0.5380 (4) | 0.1003 (2) | 0.21474 (12) | 0.0656 (6) | |
O2 | 1.3142 (4) | 0.4238 (2) | 0.28135 (11) | 0.0618 (6) | |
S1 | 1.14801 (15) | 0.03015 (6) | 0.08281 (4) | 0.0539 (2) | |
S2 | 0.72463 (16) | 0.48404 (7) | 0.42268 (4) | 0.0584 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0422 (15) | 0.0485 (15) | 0.0349 (12) | −0.0088 (13) | −0.0048 (11) | −0.0066 (11) |
C2 | 0.0443 (17) | 0.0652 (19) | 0.0493 (15) | −0.0133 (15) | 0.0039 (13) | −0.0050 (14) |
C3 | 0.0466 (18) | 0.061 (2) | 0.0661 (18) | 0.0059 (16) | 0.0017 (15) | −0.0047 (15) |
C4 | 0.057 (2) | 0.0507 (17) | 0.0667 (19) | −0.0023 (16) | −0.0053 (16) | −0.0001 (14) |
C5 | 0.0492 (18) | 0.0543 (18) | 0.0622 (18) | −0.0114 (15) | 0.0047 (15) | −0.0020 (14) |
C6 | 0.0398 (16) | 0.0535 (17) | 0.0564 (16) | −0.0038 (14) | 0.0059 (13) | −0.0061 (13) |
C7 | 0.0588 (19) | 0.0538 (17) | 0.0507 (16) | −0.0015 (15) | −0.0099 (14) | 0.0036 (13) |
C8 | 0.0507 (18) | 0.0408 (15) | 0.0500 (15) | −0.0009 (14) | −0.0054 (14) | 0.0007 (12) |
C9 | 0.0444 (16) | 0.0380 (14) | 0.0481 (14) | −0.0100 (12) | −0.0025 (12) | −0.0018 (11) |
C10 | 0.0424 (16) | 0.0593 (18) | 0.0573 (16) | −0.0067 (14) | −0.0027 (14) | −0.0027 (13) |
C11 | 0.063 (2) | 0.080 (2) | 0.0559 (17) | −0.0175 (19) | −0.0163 (17) | −0.0002 (16) |
C12 | 0.069 (2) | 0.090 (3) | 0.0513 (17) | −0.031 (2) | 0.0012 (17) | −0.0101 (17) |
C13 | 0.056 (2) | 0.077 (2) | 0.065 (2) | −0.0172 (18) | 0.0091 (17) | −0.0246 (17) |
C14 | 0.0471 (17) | 0.0543 (18) | 0.0642 (18) | −0.0019 (15) | −0.0043 (15) | −0.0125 (14) |
C15 | 0.0422 (16) | 0.0599 (17) | 0.0417 (13) | −0.0109 (14) | 0.0069 (12) | −0.0134 (12) |
C16 | 0.058 (2) | 0.070 (2) | 0.0545 (17) | −0.0202 (17) | −0.0063 (15) | −0.0116 (15) |
C17 | 0.073 (2) | 0.065 (2) | 0.070 (2) | −0.0277 (19) | −0.0017 (18) | −0.0116 (17) |
C18 | 0.060 (2) | 0.0559 (19) | 0.074 (2) | −0.0052 (17) | 0.0098 (18) | −0.0068 (16) |
C19 | 0.0473 (19) | 0.076 (2) | 0.073 (2) | 0.0004 (18) | −0.0070 (17) | −0.0035 (18) |
C21 | 0.0455 (17) | 0.067 (2) | 0.0643 (18) | −0.0162 (16) | −0.0031 (15) | −0.0167 (16) |
C22 | 0.0571 (19) | 0.0625 (19) | 0.0470 (16) | −0.0046 (16) | 0.0001 (14) | 0.0019 (14) |
C23 | 0.0483 (17) | 0.0410 (15) | 0.0475 (15) | −0.0046 (13) | 0.0011 (14) | 0.0025 (12) |
C24 | 0.0411 (15) | 0.0329 (13) | 0.0468 (14) | −0.0094 (12) | 0.0013 (12) | −0.0017 (10) |
C25 | 0.0381 (16) | 0.0572 (18) | 0.0602 (18) | −0.0038 (14) | 0.0000 (14) | 0.0000 (14) |
C26 | 0.0539 (19) | 0.073 (2) | 0.0614 (19) | −0.0130 (17) | −0.0140 (16) | 0.0021 (16) |
C27 | 0.063 (2) | 0.074 (2) | 0.0471 (15) | −0.0232 (18) | 0.0012 (15) | −0.0110 (14) |
C28 | 0.0445 (18) | 0.066 (2) | 0.0653 (19) | −0.0062 (16) | 0.0060 (15) | −0.0216 (15) |
C29 | 0.0419 (16) | 0.0496 (16) | 0.0593 (17) | 0.0012 (14) | −0.0058 (14) | −0.0126 (13) |
N1 | 0.0421 (14) | 0.0522 (14) | 0.0491 (13) | −0.0056 (12) | −0.0002 (11) | −0.0045 (11) |
N2 | 0.0395 (13) | 0.0554 (14) | 0.0475 (13) | −0.0088 (12) | 0.0058 (11) | −0.0037 (10) |
O1 | 0.0461 (13) | 0.0878 (16) | 0.0626 (13) | −0.0066 (12) | −0.0069 (11) | −0.0105 (11) |
O2 | 0.0508 (13) | 0.0819 (15) | 0.0526 (11) | −0.0155 (12) | 0.0021 (10) | −0.0084 (10) |
S1 | 0.0569 (5) | 0.0547 (4) | 0.0488 (4) | −0.0124 (4) | 0.0008 (4) | 0.0004 (3) |
S2 | 0.0579 (5) | 0.0655 (5) | 0.0487 (4) | −0.0162 (4) | 0.0119 (4) | −0.0027 (3) |
C1—C2 | 1.388 (4) | C15—C21 | 1.385 (4) |
C1—C6 | 1.389 (4) | C15—S2 | 1.781 (3) |
C1—S1 | 1.767 (3) | C16—C17 | 1.375 (5) |
C2—C3 | 1.363 (4) | C16—H16 | 0.9300 |
C2—H2 | 0.9300 | C17—C18 | 1.366 (5) |
C3—C4 | 1.376 (5) | C17—H17 | 0.9300 |
C3—H3 | 0.9300 | C18—C19 | 1.378 (5) |
C4—C5 | 1.368 (4) | C18—H18 | 0.9300 |
C4—H4 | 0.9300 | C19—C21 | 1.385 (5) |
C5—C6 | 1.375 (4) | C19—H19 | 0.9300 |
C5—H5 | 0.9300 | C21—H21 | 0.9300 |
C6—H6 | 0.9300 | C22—C23 | 1.508 (4) |
C7—C8 | 1.527 (4) | C22—S2 | 1.800 (3) |
C7—S1 | 1.791 (3) | C22—H22A | 0.9700 |
C7—H7A | 0.9700 | C22—H22B | 0.9700 |
C7—H7B | 0.9700 | C23—O2 | 1.215 (4) |
C8—O1 | 1.217 (4) | C23—N2 | 1.342 (4) |
C8—N1 | 1.342 (4) | C24—C25 | 1.376 (4) |
C9—C10 | 1.380 (4) | C24—C29 | 1.378 (4) |
C9—C14 | 1.384 (4) | C24—N2 | 1.420 (3) |
C9—N1 | 1.414 (3) | C25—C26 | 1.373 (4) |
C10—C11 | 1.382 (4) | C25—H25 | 0.9300 |
C10—H10 | 0.9300 | C26—C27 | 1.381 (5) |
C11—C12 | 1.373 (5) | C26—H26 | 0.9300 |
C11—H11 | 0.9300 | C27—C28 | 1.370 (5) |
C12—C13 | 1.364 (5) | C27—H27 | 0.9300 |
C12—H12 | 0.9300 | C28—C29 | 1.380 (4) |
C13—C14 | 1.382 (4) | C28—H28 | 0.9300 |
C13—H13 | 0.9300 | C29—H29 | 0.9300 |
C14—H14 | 0.9300 | N1—H1 | 0.86 (3) |
C15—C16 | 1.382 (4) | N2—H2A | 0.83 (3) |
C2—C1—C6 | 118.9 (3) | C17—C16—H16 | 120.3 |
C2—C1—S1 | 116.2 (2) | C15—C16—H16 | 120.3 |
C6—C1—S1 | 124.9 (2) | C18—C17—C16 | 121.5 (3) |
C3—C2—C1 | 120.2 (3) | C18—C17—H17 | 119.3 |
C3—C2—H2 | 119.9 | C16—C17—H17 | 119.3 |
C1—C2—H2 | 119.9 | C17—C18—C19 | 119.5 (3) |
C2—C3—C4 | 121.0 (3) | C17—C18—H18 | 120.2 |
C2—C3—H3 | 119.5 | C19—C18—H18 | 120.2 |
C4—C3—H3 | 119.5 | C18—C19—C21 | 119.8 (3) |
C5—C4—C3 | 119.0 (3) | C18—C19—H19 | 120.1 |
C5—C4—H4 | 120.5 | C21—C19—H19 | 120.1 |
C3—C4—H4 | 120.5 | C19—C21—C15 | 120.2 (3) |
C4—C5—C6 | 121.1 (3) | C19—C21—H21 | 119.9 |
C4—C5—H5 | 119.5 | C15—C21—H21 | 119.9 |
C6—C5—H5 | 119.5 | C23—C22—S2 | 118.5 (2) |
C5—C6—C1 | 119.8 (3) | C23—C22—H22A | 107.7 |
C5—C6—H6 | 120.1 | S2—C22—H22A | 107.7 |
C1—C6—H6 | 120.1 | C23—C22—H22B | 107.7 |
C8—C7—S1 | 118.2 (2) | S2—C22—H22B | 107.7 |
C8—C7—H7A | 107.8 | H22A—C22—H22B | 107.1 |
S1—C7—H7A | 107.8 | O2—C23—N2 | 124.4 (3) |
C8—C7—H7B | 107.8 | O2—C23—C22 | 118.9 (3) |
S1—C7—H7B | 107.8 | N2—C23—C22 | 116.6 (3) |
H7A—C7—H7B | 107.1 | C25—C24—C29 | 119.6 (3) |
O1—C8—N1 | 124.2 (3) | C25—C24—N2 | 118.3 (2) |
O1—C8—C7 | 119.3 (3) | C29—C24—N2 | 122.2 (3) |
N1—C8—C7 | 116.5 (3) | C26—C25—C24 | 120.4 (3) |
C10—C9—C14 | 119.4 (3) | C26—C25—H25 | 119.8 |
C10—C9—N1 | 118.5 (3) | C24—C25—H25 | 119.8 |
C14—C9—N1 | 122.0 (3) | C25—C26—C27 | 120.7 (3) |
C9—C10—C11 | 120.2 (3) | C25—C26—H26 | 119.7 |
C9—C10—H10 | 119.9 | C27—C26—H26 | 119.7 |
C11—C10—H10 | 119.9 | C28—C27—C26 | 118.5 (3) |
C12—C11—C10 | 120.1 (3) | C28—C27—H27 | 120.8 |
C12—C11—H11 | 119.9 | C26—C27—H27 | 120.8 |
C10—C11—H11 | 119.9 | C27—C28—C29 | 121.5 (3) |
C13—C12—C11 | 119.7 (3) | C27—C28—H28 | 119.3 |
C13—C12—H12 | 120.2 | C29—C28—H28 | 119.3 |
C11—C12—H12 | 120.2 | C24—C29—C28 | 119.4 (3) |
C12—C13—C14 | 121.0 (3) | C24—C29—H29 | 120.3 |
C12—C13—H13 | 119.5 | C28—C29—H29 | 120.3 |
C14—C13—H13 | 119.5 | C8—N1—C9 | 127.0 (3) |
C13—C14—C9 | 119.5 (3) | C8—N1—H1 | 115 (2) |
C13—C14—H14 | 120.2 | C9—N1—H1 | 118 (2) |
C9—C14—H14 | 120.2 | C23—N2—C24 | 126.2 (2) |
C16—C15—C21 | 119.5 (3) | C23—N2—H2A | 118 (2) |
C16—C15—S2 | 121.9 (2) | C24—N2—H2A | 115 (2) |
C21—C15—S2 | 118.5 (2) | C1—S1—C7 | 103.55 (14) |
C17—C16—C15 | 119.4 (3) | C15—S2—C22 | 102.38 (14) |
C6—C1—C2—C3 | −0.5 (4) | S2—C15—C21—C19 | 176.3 (2) |
S1—C1—C2—C3 | 178.3 (2) | S2—C22—C23—O2 | 155.3 (3) |
C1—C2—C3—C4 | 0.4 (5) | S2—C22—C23—N2 | −27.0 (4) |
C2—C3—C4—C5 | −0.3 (5) | C29—C24—C25—C26 | −1.6 (4) |
C3—C4—C5—C6 | 0.3 (5) | N2—C24—C25—C26 | −179.5 (3) |
C4—C5—C6—C1 | −0.4 (5) | C24—C25—C26—C27 | 1.1 (5) |
C2—C1—C6—C5 | 0.5 (4) | C25—C26—C27—C28 | −0.1 (5) |
S1—C1—C6—C5 | −178.2 (2) | C26—C27—C28—C29 | −0.3 (5) |
S1—C7—C8—O1 | −155.7 (3) | C25—C24—C29—C28 | 1.2 (4) |
S1—C7—C8—N1 | 25.3 (4) | N2—C24—C29—C28 | 179.0 (3) |
C14—C9—C10—C11 | 1.3 (4) | C27—C28—C29—C24 | −0.2 (5) |
N1—C9—C10—C11 | 179.9 (3) | O1—C8—N1—C9 | −0.9 (5) |
C9—C10—C11—C12 | 0.1 (5) | C7—C8—N1—C9 | 178.0 (2) |
C10—C11—C12—C13 | −1.2 (5) | C10—C9—N1—C8 | 153.0 (3) |
C11—C12—C13—C14 | 0.8 (5) | C14—C9—N1—C8 | −28.4 (4) |
C12—C13—C14—C9 | 0.6 (5) | O2—C23—N2—C24 | 2.1 (5) |
C10—C9—C14—C13 | −1.6 (4) | C22—C23—N2—C24 | −175.4 (2) |
N1—C9—C14—C13 | 179.8 (3) | C25—C24—N2—C23 | −152.4 (3) |
C21—C15—C16—C17 | −0.1 (4) | C29—C24—N2—C23 | 29.7 (4) |
S2—C15—C16—C17 | −177.0 (2) | C2—C1—S1—C7 | 173.7 (2) |
C15—C16—C17—C18 | 0.8 (5) | C6—C1—S1—C7 | −7.6 (3) |
C16—C17—C18—C19 | −0.8 (5) | C8—C7—S1—C1 | 72.1 (3) |
C17—C18—C19—C21 | 0.0 (5) | C16—C15—S2—C22 | −59.3 (3) |
C18—C19—C21—C15 | 0.7 (5) | C21—C15—S2—C22 | 123.7 (2) |
C16—C15—C21—C19 | −0.7 (4) | C23—C22—S2—C15 | −65.1 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.86 (3) | 2.70 (3) | 3.477 (3) | 152 (3) |
N2—H2A···O2ii | 0.83 (3) | 2.71 (4) | 3.456 (3) | 150 (3) |
Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z. |
Acknowledgements
We are grateful for support by the National Research Center, Cairo, Egypt, Cardiff University, Wales, and Helwan University, Cairo, Egypt.
References
Agrawal, R., Rewatkar, P. V., Kokil, G. R., Verma, A. & Kalra, A. (2010). Med. Chem. 6, 247–251. CrossRef CAS PubMed Google Scholar
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. Web of Science CrossRef CAS IUCr Journals Google Scholar
Elgemeie, G. H., Alkhursani, S. A. & Mohamed, R. A. (2019). Nucleosides Nucleotides Nucleic Acids, 38, 1–11. PubMed Google Scholar
Elgemeie, G. H., Mohamed, R. A., Hussein, H. A. & Jones, P. G. (2015). Acta Cryst. E71, 1322–1324. Web of Science CSD CrossRef IUCr Journals Google Scholar
Elgemeie, G. H. & Mohamed-Ezzat, R. A. (2022). New Strategies Targeting Cancer Metabolism, pp. 1–619. Amsterdam: Elsevier. ISBN: 978-0-12-821783-2. Google Scholar
Elgemeie, G. H., Salah, A. M., Abbas, N. S., Hussein, H. A. & Mohamed, R. A. (2017a). Nucleosides Nucleotides Nucleic Acids, 36, 139–150. CrossRef CAS PubMed Google Scholar
Elgemeie, G. H., Salah, A. M., Abbas, N. S., Hussein, H. A. & Mohamed, R. A. (2017b). Nucleosides Nucleotides Nucleic Acids, 36, 213–223. CrossRef CAS PubMed Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Feng, M., Tang, B., Liang, S. H. & Jiang, X. (2016). Curr. Top. Med. Chem. 16, 1200–1216. CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Langler, R. F., Marini, Z. A. & Spalding, E. S. (1979). Can. J. Chem. 57, 3193–3199. CrossRef CAS Google Scholar
Minchitha, K. U., Hareesh, H. N., Nagaraju, N. & Kathyayini, N. (2018). J Nanosci. Nanotechnol. 18, 426–433. CrossRef CAS PubMed Google Scholar
Mohamed-Ezzat, R. A. & Elgemeie, G. H. (2023). Egypt. J. Chem. 66, 167–185. Google Scholar
Mohamed-Ezzat, R. A., Elgemeie, G. H. & Jones, P. G. (2021). Acta Cryst. E77, 547–550. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mohamed-Ezzat, R. A., Hashem, A. H. & Dacrory, S. (2023a). BMC Chem. 17, 88, 1–13. Google Scholar
Mohamed-Ezzat, R. A., Kariuki, B. M. & Elgemeie, G. H. (2023b). Egypt. J. Chem. 66, 225–239. Google Scholar
Motherwell, W. B., Greaney, M. F., Edmunds, J. J. & Steed, J. W. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 2816–2826. CSD CrossRef Google Scholar
Murtaza, S., Altaf, A. A., Hamayun, M., Iftikhar, K., Tahir, M. N., Tariq, J. & Faiz, K. (2019). Eur. J. Chem. 10, 358–366. CSD CrossRef CAS Google Scholar
Murtaza, S., Tahir, M. N., Tariq, J., Abbas, A. & Kausar, N. (2012). Acta Cryst. E68, o1968. CSD CrossRef IUCr Journals Google Scholar
Orzalesi, G., Selleri, R., Caldini, O., Volpato, I., Innocenti, F., Colome, J., Sacristan, A. & Varez, G. (1977). Arzneimittelforsch. 27, 1006–1012. CAS PubMed Google Scholar
Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Tarimci, Ç., Ercan, F., Koçog¯lu, M. & Ören, İ. (1998). Acta Cryst. C54, 488–489. CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.