research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of ten phosphane chalcogenide complexes of gold(III) chloride and bromide

crossmark logo

aInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-braunschweig.de

Edited by C. Schulzke, Universität Greifswald, Germany (Received 5 February 2024; accepted 1 March 2024; online 12 March 2024)

Phosphane chalcogenides and their metal complexes, Part 7. Part 6: Upmann et al. (2024).

The structures of ten phosphane chalcogenide complexes of gold(III) halides, with general formula R13–nR2nPEAuX3 (R1 = t-butyl; R2 = i-propyl; n = 0 to 3; E = S or Se; X = Cl or Br) are presented. The eight possible chlorido derivatives are: 9a, n = 3, E = S; 10a, n = 2, E = S; 11a, n = 1, E = S; 12a, n = 0, E = S; 13a, n = 3, E = Se; 14a, n = 2, E = Se; 15a, n = 1, E = Se; and 16a, n = 0, E = Se, and the corresponding bromido derivatives are 9b16b in the same order. Structures were obtained for 9a, 10a (and a second polymorph 10aa), 11a (and its deutero­chloro­form monosolvate 11aa), 12a (as its di­chloro­methane monosolvate), 14a, 15a (as its deutero­chloro­form monosolvate 15aa, in which the solvent mol­ecule is disordered over two positions), 9b, 11b, 13b and 15b. The structures of 11a, 15a, 11b and 15b form an isotypic set, and those of compounds 10aa and 14a form an isotypic pair. All structures have Z′ = 1. The gold(III) centres show square-planar coordination geometry and the chalcogenide atoms show approximately tetra­hedral angles (except for the very wide angle in 12a, probably associated with the bulky t-butyl groups). The bond lengths at the gold atoms are lengthened with respect to the known gold(I) derivatives, and demonstrate a considerable trans influence of S and Se donor atoms on a trans Au—Cl bond. Each compound with an isopropyl group shows a short intra­molecular contact of the type C—HmethineXcis; these may be regarded as intra­molecular ‘weak’ hydrogen bonds, and they determine the orientation of the AuX3 groups. The mol­ecular packing is analysed in terms of various short contacts such as weak hydrogen bonds C—H⋯X and contacts between the heavier atoms, such as XX (9a, 10aa, 11aa, 15aa and 9b), S⋯S (10aa, 11a and 12a) and S⋯Cl (10a). The packing of the polymorphs 10a and 10aa is thus quite different. The solvent mol­ecules take part in C—H⋯Cl hydrogen bonds; for 15aa, a disordered solvent region at z ≃ 0 is observed. Structure 13b involves unusual inversion-symmetric dimers with Se⋯Au and Se⋯Br contacts, further connected by Br⋯Br contacts.

1. Chemical context

In Part 6 of this series (Upmann et al., 2024[Upmann, D., Jones, P. G., Bockfeld, D. & Târcoveanu, E. (2024). Acta Cryst. E80, 34-49.]), we presented the structures of sixteen halogenido-gold(I) complexes of various tri­alkyl­phosphane chalcogenides. Appropriate background material, together with a summary of our previous results, can be found in that publication and is not repeated here.

In this paper, we report the structures of ten tri­alkyl­phosphane chalcogenide complexes of gold(III) trihalides, with general formula (tBu3–niPrnP=E)AuX3, of which there are sixteen possible permutations of n, the chalcogenide E (restricted to S or Se) and X (for X = Cl or Br; tri­iodido complexes are generally not accessible). The eight theoretically obtainable tri­chlorido derivatives are: 9a, n = 3, E = S; 10a, n = 2, E = S; 11a, n = 1, E = S; 12a, n = 0, E = S; 13a, n = 3, E = Se; 14a, n = 2, E = Se; 15a, n = 1, E = Se; and 16a, n = 0, E = Se, and the corresponding tri­bromido derivatives are 9b16b in the same order. These are generally obtained from the gold(I) precursors (numbered analogously as 1a8a and 1b8b in our previous publication; Upmann et al., 2024[Upmann, D., Jones, P. G., Bockfeld, D. & Târcoveanu, E. (2024). Acta Cryst. E80, 34-49.]) using one mole equivalent of elemental bromine or PhICl2 [commonly known as iodo­benzene dichloride; systematic name di­chloro­(phen­yl)-λ3-iodane] as oxidizing agents. However, tBu3P = SeAuCl, 8a, was found to be unstable, thus ruling out the preparation of 16a; 13a also proved to be unstable; and the attempted syntheses of 10b, 12b, 14b and 16b led to different products, to be described in future publications. This left ten successfully synthesized compounds, leading to thirteen structures; 10a was obtained as two polymorphs (the second termed 10aa), whereas structures of 11a and 15a were determined both solvent-free and as the deutero­chloro­form monosolvates 11aa and 15aa. Compound 12a was obtained as a di­chloro­methane monosolvate. The structures of 10a, 11a, 14a and 15aa were briefly presented in a preliminary communication (Upmann & Jones, 2013[Upmann, D. & Jones, P. G. (2013). Dalton Trans. 42, 7526-7528.]), but have been re-refined using a much more recent version of SHELXL (2019 rather than 1997; Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and are discussed in more detail here. Details of the composition of each compound studied are given in Table 1[link].

Table 1
Compositions of the R1R2R3PEAuX3 structures presented in this paper (see Scheme)

Compound R1 R2 R3 E X Comments
9a iPr iPr iPr S Cl  
10a iPr iPr tBu S Cl  
10aa iPr iPr tBu S Cl Second polymorph of 10a
11a iPr tBu tBu S Cl  
11aa iPr tBu tBu S Cl CDCl3 solvate of 11a
12a tBu tBu tBu S Cl CH2Cl2 solvate
14a iPr iPr tBu Se Cl  
15a iPr tBu tBu Se Cl  
15aa iPr tBu tBu Se Cl CDCl3 solvate of 15a
9b iPr iPr iPr S Br  
11b iPr tBu tBu S Br  
13b iPr iPr iPr Se Br  
15b iPr tBu tBu Se Br  

We had earlier synthesized all four permutations (E = S or Se, X = Cl or Br) of Ph3PEAuX3 (Taouss et al., 2015[Taouss, C., Jones, P. G., Upmann, D. & Bockfeld, D. (2015). Z. Naturforsch. B, 70, 911-927.]), but were unable to determine any of the structures because of extensive ‘streaking’ of the diffraction images.

[Scheme 1]

2. Structural commentary

General comments: All compounds crystallize with one formula unit in the asymmetric unit. The mol­ecular structures are shown in Figs. 1[link]–13[link][link][link][link][link][link][link][link][link][link][link][link]; selected mol­ecular dimensions are given in Tables 2[link]–14[link][link][link][link][link][link][link][link][link][link][link][link]. The trans (to E) halogen atoms are numbered as X1 throughout. All comparisons to the analogous series of gold(I) compounds refer to our previous paper (Upmann et al., 2024[Upmann, D., Jones, P. G., Bockfeld, D. & Târcoveanu, E. (2024). Acta Cryst. E80, 34-49.]). As expected, all compounds show square planar coordination geometry (angle ranges ca 87–95 and 172–179°) at the gold(III) centres; the largest mean deviation from the plane containing the gold atom and all donor atoms is 0.078 Å for 11b. The approximately tetra­hedral angles (except for 12a) at the chalcogenide atoms would also be expected (discussed below in more detail).

Table 2
Selected geometric parameters (Å, °) for 9a[link]

Au1—Cl3 2.2818 (5) S1—P1 2.0574 (7)
Au1—Cl2 2.2846 (5) P1—C2 1.829 (2)
Au1—Cl1 2.3064 (5) P1—C3 1.8317 (19)
Au1—S1 2.3250 (5) P1—C1 1.8387 (19)
       
Cl3—Au1—Cl2 175.341 (18) C2—P1—C3 108.01 (9)
Cl3—Au1—Cl1 90.151 (18) C2—P1—C1 115.39 (9)
Cl2—Au1—Cl1 88.999 (19) C3—P1—C1 106.80 (9)
Cl3—Au1—S1 92.249 (18) C2—P1—S1 111.92 (7)
Cl2—Au1—S1 88.545 (18) C3—P1—S1 113.32 (7)
Cl1—Au1—S1 177.472 (17) C1—P1—S1 101.34 (7)
P1—S1—Au1 106.70 (2)    
       
Cl3—Au1—S1—P1 −72.41 (3) Au1—S1—P1—C3 −51.87 (8)
Cl2—Au1—S1—P1 112.19 (3) Au1—S1—P1—C1 −165.92 (7)
Au1—S1—P1—C2 70.57 (7)    

Table 3
Selected geometric parameters (Å, °) for 10a[link]

Au1—Cl3 2.2818 (6) S1—P1 2.0538 (9)
Au1—Cl2 2.2837 (6) P1—C2 1.843 (3)
Au1—Cl1 2.2989 (7) P1—C3 1.845 (2)
Au1—S1 2.3294 (7) P1—C1 1.875 (3)
       
Cl3—Au1—Cl2 177.46 (2) C2—P1—C3 109.58 (12)
Cl3—Au1—Cl1 88.54 (2) C2—P1—C1 109.67 (13)
Cl2—Au1—Cl1 89.23 (3) C3—P1—C1 109.94 (12)
Cl3—Au1—S1 94.93 (2) C2—P1—S1 102.70 (10)
Cl2—Au1—S1 87.39 (2) C3—P1—S1 111.45 (9)
Cl1—Au1—S1 174.30 (2) C1—P1—S1 113.25 (9)
P1—S1—Au1 111.29 (3)    
       
Cl3—Au1—S1—P1 56.17 (4) Au1—S1—P1—C3 −77.45 (10)
Cl2—Au1—S1—P1 −122.80 (4) Au1—S1—P1—C1 47.12 (11)
Au1—S1—P1—C2 165.31 (9)    

Table 4
Selected geometric parameters (Å, °) for 10aa[link]

Au1—Cl3 2.2815 (8) S1—P1 2.0592 (11)
Au1—Cl2 2.2851 (8) P1—C3 1.836 (3)
Au1—Cl1 2.3116 (8) P1—C2 1.839 (3)
Au1—S1 2.3281 (8) P1—C1 1.871 (3)
       
Cl3—Au1—Cl2 176.43 (3) C3—P1—C2 110.36 (15)
Cl3—Au1—Cl1 90.10 (3) C3—P1—C1 108.88 (16)
Cl2—Au1—Cl1 89.18 (3) C2—P1—C1 111.39 (14)
Cl3—Au1—S1 93.11 (3) C3—P1—S1 111.66 (12)
Cl2—Au1—S1 87.51 (3) C2—P1—S1 101.38 (11)
Cl1—Au1—S1 176.43 (3) C1—P1—S1 113.03 (11)
P1—S1—Au1 111.18 (4)    
       
Cl3—Au1—S1—P1 61.27 (5) Au1—S1—P1—C2 168.88 (11)
Cl2—Au1—S1—P1 −122.25 (5) Au1—S1—P1—C1 49.55 (12)
Au1—S1—P1—C3 −73.62 (13)    

Table 5
Selected geometric parameters (Å, °) for 11a[link]

Au1—Cl2 2.2881 (5) S1—P1 2.0665 (6)
Au1—Cl3 2.2889 (5) P1—C3 1.8442 (19)
Au1—Cl1 2.3080 (5) P1—C2 1.8741 (18)
Au1—S1 2.3346 (5) P1—C1 1.8765 (18)
       
Cl2—Au1—Cl3 175.769 (17) C3—P1—C2 112.66 (9)
Cl2—Au1—Cl1 89.44 (2) C3—P1—C1 108.88 (9)
Cl3—Au1—Cl1 89.35 (2) C2—P1—C1 113.61 (8)
Cl2—Au1—S1 87.963 (19) C3—P1—S1 109.17 (7)
Cl3—Au1—S1 93.175 (19) C2—P1—S1 101.48 (6)
Cl1—Au1—S1 177.237 (19) C1—P1—S1 110.81 (6)
P1—S1—Au1 111.35 (2)    
       
Cl2—Au1—S1—P1 −117.55 (3) Au1—S1—P1—C2 169.16 (6)
Cl3—Au1—S1—P1 66.53 (3) Au1—S1—P1—C1 48.21 (7)
Au1—S1—P1—C3 −71.70 (7)    

Table 6
Selected geometric parameters (Å, °) for 11aa[link]

Au1—Cl3 2.2871 (5) S1—P1 2.0622 (6)
Au1—Cl2 2.2903 (5) P1—C3 1.8465 (19)
Au1—Cl1 2.3060 (4) P1—C1 1.8737 (18)
Au1—S1 2.3312 (4) P1—C2 1.8778 (18)
       
Cl3—Au1—Cl2 177.050 (16) C3—P1—C1 108.94 (8)
Cl3—Au1—Cl1 88.505 (17) C3—P1—C2 112.62 (8)
Cl2—Au1—Cl1 89.783 (17) C1—P1—C2 114.39 (8)
Cl3—Au1—S1 92.936 (17) C3—P1—S1 108.73 (6)
Cl2—Au1—S1 88.609 (16) C1—P1—S1 110.75 (6)
Cl1—Au1—S1 175.816 (16) C2—P1—S1 101.09 (6)
P1—S1—Au1 111.96 (2)    
       
Cl3—Au1—S1—P1 69.79 (3) Au1—S1—P1—C1 52.74 (7)
Cl2—Au1—S1—P1 −112.73 (3) Au1—S1—P1—C2 174.37 (6)
Au1—S1—P1—C3 −66.93 (7)    

Table 7
Selected geometric parameters (Å, °) for 12a[link]

Au1—Cl3 2.2860 (5) P1—C3 1.888 (2)
Au1—Cl2 2.2894 (6) P1—C2 1.8906 (19)
Au1—Cl1 2.3013 (5) P1—C1 1.906 (2)
Au1—S1 2.3323 (5) P1—S1 2.0658 (6)
       
Cl3—Au1—Cl2 176.996 (18) C3—P1—C1 111.29 (9)
Cl3—Au1—Cl1 88.53 (2) C2—P1—C1 111.38 (9)
Cl2—Au1—Cl1 89.55 (2) C3—P1—S1 110.17 (6)
Cl3—Au1—S1 93.402 (18) C2—P1—S1 111.66 (6)
Cl2—Au1—S1 88.30 (2) C1—P1—S1 99.33 (6)
Cl1—Au1—S1 174.441 (19) P1—S1—Au1 117.50 (3)
C3—P1—C2 112.33 (9)    
       
C3—P1—S1—Au1 −78.75 (7) Cl3—Au1—S1—P1 82.19 (3)
C2—P1—S1—Au1 46.80 (8) Cl2—Au1—S1—P1 −100.28 (3)
C1—P1—S1—Au1 164.36 (6)    

Table 8
Selected geometric parameters (Å, °) for 14a[link]

Au1—Cl3 2.2803 (19) Se1—P1 2.211 (2)
Au1—Cl2 2.283 (2) P1—C3 1.832 (8)
Au1—Cl1 2.326 (2) P1—C2 1.845 (8)
Au1—Se1 2.4393 (8) P1—C1 1.864 (8)
       
Cl3—Au1—Cl2 176.18 (8) C3—P1—C2 110.8 (4)
Cl3—Au1—Cl1 90.53 (7) C3—P1—C1 108.9 (4)
Cl2—Au1—Cl1 89.72 (8) C2—P1—C1 111.3 (4)
Cl3—Au1—Se1 92.70 (5) C3—P1—Se1 111.7 (3)
Cl2—Au1—Se1 86.98 (6) C2—P1—Se1 101.0 (3)
Cl1—Au1—Se1 176.59 (6) C1—P1—Se1 113.0 (3)
P1—Se1—Au1 108.25 (6)    
       
Cl3—Au1—Se1—P1 58.66 (8) Au1—Se1—P1—C2 169.6 (3)
Cl2—Au1—Se1—P1 −125.16 (8) Au1—Se1—P1—C1 50.7 (3)
Au1—Se1—P1—C3 −72.6 (3)    

Table 9
Selected geometric parameters (Å, °) for 15a[link]

Au1—Cl2 2.2871 (5) Se1—P1 2.2240 (5)
Au1—Cl3 2.2889 (5) P1—C3 1.8435 (18)
Au1—Cl1 2.3207 (5) P1—C2 1.8762 (18)
Au1—Se1 2.4460 (2) P1—C1 1.8802 (17)
       
Cl2—Au1—Cl3 176.794 (17) C3—P1—C2 112.81 (8)
Cl2—Au1—Cl1 89.966 (18) C3—P1—C1 108.96 (8)
Cl3—Au1—Cl1 89.946 (18) C2—P1—C1 114.08 (8)
Cl2—Au1—Se1 87.383 (14) C3—P1—Se1 109.45 (6)
Cl3—Au1—Se1 92.617 (13) C2—P1—Se1 101.19 (6)
Cl1—Au1—Se1 176.951 (14) C1—P1—Se1 110.07 (5)
P1—Se1—Au1 108.487 (14)    
       
Cl2—Au1—Se1—P1 −118.493 (18) Au1—Se1—P1—C2 170.76 (6)
Cl3—Au1—Se1—P1 64.717 (19) Au1—Se1—P1—C1 49.76 (6)
Au1—Se1—P1—C3 −69.97 (6)    

Table 10
Selected geometric parameters (Å, °) for 15aa[link]

Au1—Cl3 2.2825 (7) Se1—P1 2.2232 (6)
Au1—Cl2 2.2889 (6) P1—C3 1.844 (3)
Au1—Cl1 2.3172 (6) P1—C2 1.874 (2)
Au1—Se1 2.4476 (3) P1—C1 1.878 (2)
       
Cl3—Au1—Cl2 177.64 (2) C3—P1—C2 112.97 (12)
Cl3—Au1—Cl1 89.67 (2) C3—P1—C1 108.44 (11)
Cl2—Au1—Cl1 89.66 (2) C2—P1—C1 114.23 (11)
Cl3—Au1—Se1 92.332 (18) C3—P1—Se1 108.64 (9)
Cl2—Au1—Se1 88.238 (18) C2—P1—Se1 101.78 (8)
Cl1—Au1—Se1 176.855 (18) C1—P1—Se1 110.54 (8)
P1—Se1—Au1 107.617 (18)    
       
Cl3—Au1—Se1—P1 68.16 (3) Au1—Se1—P1—C2 170.69 (8)
Cl2—Au1—Se1—P1 −114.14 (3) Au1—Se1—P1—C1 48.97 (9)
Au1—Se1—P1—C3 −69.90 (9)    

Table 11
Selected geometric parameters (Å, °) for 9b[link]

Au1—S1 2.3413 (7) P1—C2 1.828 (3)
Au1—Br3 2.4233 (3) P1—C3 1.830 (3)
Au1—Br2 2.4333 (3) P1—C1 1.832 (3)
Au1—Br1 2.4341 (3) P1—S1 2.0523 (10)
       
S1—Au1—Br3 92.317 (19) C2—P1—C1 114.26 (14)
S1—Au1—Br2 88.43 (2) C3—P1—C1 106.86 (14)
Br3—Au1—Br2 175.188 (12) C2—P1—S1 111.90 (10)
S1—Au1—Br1 177.35 (2) C3—P1—S1 113.79 (11)
Br3—Au1—Br1 89.771 (11) C1—P1—S1 102.26 (11)
Br2—Au1—Br1 89.350 (11) P1—S1—Au1 107.77 (4)
C2—P1—C3 107.76 (14)    
       
C2—P1—S1—Au1 72.07 (10) Br3—Au1—S1—P1 −74.36 (4)
C3—P1—S1—Au1 −50.38 (12) Br2—Au1—S1—P1 110.40 (4)
C1—P1—S1—Au1 −165.21 (10)    

Table 12
Selected geometric parameters (Å, °) for 11b[link]

Au1—S1 2.3477 (6) P1—C3 1.847 (2)
Au1—Br3 2.4310 (3) P1—C2 1.872 (2)
Au1—Br2 2.4330 (3) P1—C1 1.877 (2)
Au1—Br1 2.4399 (4) P1—S1 2.0640 (8)
       
S1—Au1—Br3 93.532 (19) C3—P1—C1 108.53 (11)
S1—Au1—Br2 87.959 (19) C2—P1—C1 113.56 (10)
Br3—Au1—Br2 172.720 (9) C3—P1—S1 109.09 (8)
S1—Au1—Br1 177.293 (16) C2—P1—S1 101.70 (7)
Br3—Au1—Br1 89.099 (14) C1—P1—S1 111.23 (7)
Br2—Au1—Br1 89.510 (14) P1—S1—Au1 111.56 (3)
C3—P1—C2 112.57 (10)    
       
C3—P1—S1—Au1 −70.82 (8) Br3—Au1—S1—P1 70.22 (3)
C2—P1—S1—Au1 170.07 (8) Br2—Au1—S1—P1 −116.91 (3)
C1—P1—S1—Au1 48.86 (9)    

Table 13
Selected geometric parameters (Å, °) for 13b[link]

Au1—Br2 2.4241 (4) P1—C2 1.831 (4)
Au1—Br3 2.4321 (4) P1—C1 1.835 (4)
Au1—Se1 2.4535 (4) P1—C3 1.835 (4)
Au1—Br1 2.4597 (5) P1—Se1 2.2085 (11)
       
Br2—Au1—Br3 178.373 (15) C2—P1—C3 107.15 (18)
Br2—Au1—Se1 87.616 (16) C1—P1—C3 107.53 (19)
Br3—Au1—Se1 91.709 (14) C2—P1—Se1 112.81 (14)
Br2—Au1—Br1 90.566 (17) C1—P1—Se1 101.08 (14)
Br3—Au1—Br1 90.031 (16) C3—P1—Se1 112.75 (13)
Se1—Au1—Br1 176.522 (15) P1—Se1—Au1 107.24 (3)
C2—P1—C1 115.50 (19)    
       
C2—P1—Se1—Au1 67.97 (14) Br2—Au1—Se1—P1 114.96 (3)
C1—P1—Se1—Au1 −168.10 (13) Br3—Au1—Se1—P1 −66.53 (3)
C3—P1—Se1—Au1 −53.58 (15)    

Table 14
Selected geometric parameters (Å, °) for 15b[link]

Au1—Br2 2.4302 (3) P1—C3 1.847 (2)
Au1—Br3 2.4320 (3) P1—C2 1.875 (3)
Au1—Br1 2.4549 (3) P1—C1 1.883 (3)
Au1—Se1 2.4606 (3) P1—Se1 2.2247 (7)
       
Br2—Au1—Br3 174.078 (10) C3—P1—C1 108.84 (11)
Br2—Au1—Br1 90.066 (11) C2—P1—C1 114.02 (11)
Br3—Au1—Br1 89.729 (12) C3—P1—Se1 109.35 (9)
Br2—Au1—Se1 87.317 (11) C2—P1—Se1 101.46 (8)
Br3—Au1—Se1 92.892 (11) C1—P1—Se1 110.34 (8)
Br1—Au1—Se1 177.377 (9) P1—Se1—Au1 108.81 (2)
C3—P1—C2 112.60 (11)    
       
C3—P1—Se1—Au1 −69.41 (9) Br2—Au1—Se1—P1 −117.58 (2)
C2—P1—Se1—Au1 171.47 (8) Br3—Au1—Se1—P1 68.34 (2)
C1—P1—Se1—Au1 50.27 (9)    
[Figure 1]
Figure 1
The structure of compound 9a in the crystal. Ellipsoids represent 50% probability levels. The dashed line represents an intra­molecular hydrogen bond (see text).
[Figure 2]
Figure 2
The structure of compound 10a (the first polymorph) in the crystal. Ellipsoids represent 50% probability levels.
[Figure 3]
Figure 3
Structure 10aa (the second polymorph of 10a) in the crystal. Ellipsoids represent 50% probability levels.
[Figure 4]
Figure 4
The structure of compound 11a (the solvent-free form) in the crystal. Ellipsoids represent 50% probability levels.
[Figure 5]
Figure 5
Structure 11aa (the CDCl3 solvate of 11a) in the crystal. Ellipsoids represent 50% probability levels. The dashed lines represent ‘weak’ hydrogen bonds.
[Figure 6]
Figure 6
The structure of compound 12a in the crystal. Ellipsoids represent 50% probability levels. The dashed line represents a ‘weak’ hydrogen bond.
[Figure 7]
Figure 7
The structure of compound 14a in the crystal. Ellipsoids represent 30% probability levels.
[Figure 8]
Figure 8
The structure of compound 15a (the solvent-free form) in the crystal. Ellipsoids represent 50% probability levels.
[Figure 9]
Figure 9
The structure of 15aa (the CDCl3 solvate of 15a) in the crystal. Ellipsoids represent 50% probability levels. Only one position of the disordered solvent is shown. The dashed line indicates a weak D⋯Cl hydrogen bond.
[Figure 10]
Figure 10
The structure of compound 9b in the crystal. Ellipsoids represent 50% probability levels.
[Figure 11]
Figure 11
The structure of compound 11b in the crystal. Ellipsoids represent 50% probability levels.
[Figure 12]
Figure 12
The structure of compound 13b in the crystal. Ellipsoids represent 50% probability levels.
[Figure 13]
Figure 13
The structure of compound 15b in the crystal. Ellipsoids represent 50% probability levels.

Isotypy: In an extensive series of closely analogous structures, several would be expected to be isotypic. Indeed, the four compounds 11a, 15a, 11b and 15b form an isotypic set, and compounds 10aa and 14a form an isotypic pair.

Bond lengths and angles (1). P—E—Au—X3 groups: The P—S and P—Se bond lengths lie in the ranges 2.0523–2.0665 (av. 2.0602) and 2.2085–2.2247 (av. 2.2183) Å, respectively, significantly longer than in the gold(I) derivatives (av. 2.0368 and 2.1938 Å, respectively); this further lengthening with respect to the ‘standard’ bond lengths of ca 1.95 and 2.11 Å, respectively, in the free ligands implies a slightly higher contribution of the ‘resonance’ form with a P—E single bond to the overall bonding. The bond lengths at the gold atoms are in general considerably lengthened with respect to the gold(I) derivatives; the average bond lengths (Å), with the corres­ponding AuI values in square brackets, are Au—S 2.3337 [2.2760], Au—Se 2.4494 [2.3845], Au—Cl trans to E 2.3107 [2.2840], cis to E 2.2855, Au—Br trans to E 2.4471 [2.3979], cis to E 2.4336.

The considerable trans influence of S and Se donor atoms on a trans Au—Cl bond is striking. Thus the six Au—Cl bonds trans to S have an average length of 2.3054 Å, with twelve shorter cis bond lengths, average 2.2857 Å; three Au—Cl bond lengths trans to Se have an average length of 2.3213 Å, with six shorter cis bond lengths, average 2.2851 Å. However, few other clear trends can be recognized; the Au—S and Au—Se bonds are slightly longer trans to Br (av. 2.3445 and 2.4571 Å) than trans to Cl (av. 2.3301 and 2.4443 Å), but the differences and the sample sizes are both small. This would be consistent with similar trans influences for S, Se and Br.

The angles P—S—Au lie in the range 106.70–111.96 (av. 110.29°), with P—Se—Au = 107.24–108.49 (av. 108.08°). The angles are appreciably wider than for the AuI derivatives (av. 106.17 and 103.86°). Here we have, however, excluded the extreme outlier 12a, with a P—S—Au angle of 117.50 (3)°, which we tentatively attribute to steric effects; 12a is the only tBu3P=E derivative reported in this paper (see also Section 4).

Bond lengths and angles (2). Phosphane chalcogenide ligands: For the AuI derivatives involving both types of alkyl groups, the carbon atom anti­periplanar to Au across the Au—E—P—C sequence generally belongs to an i-propyl group (the exceptions are the tBu2iPrP=E derivatives 3a and 3b). For the AuIII derivatives, however, all six structures involving such ligands have an anti­periplanar t-butyl group. Because of the bulky alkyl substituents at phospho­rus, most C—P—C bond angles are greater than the ideal tetra­hedral value. As compensation for this, the E—P—C angles to the carbon atom anti­periplanar to E are narrower, with values in the range 99.3–102.7°. The steric crowding is also reflected in several short intra­molecular contacts involving the hydrogen atoms. These are listed for convenience in the tables of hydrogen bonds. In particular, contacts of the type C—H⋯Xcis, invariably involving a methine hydrogen (except for the tBu3P=S derivative 12a, which has no methine hydrogens), are short enough to be regarded as intra­molecular ‘weak’ hydrogen bonds; we suggest that the formation of these hydrogen bonds overrides the tendency for the i-propyl group to adopt the anti­periplanar position. The halogen atoms are numbered such that X3 is the intra­molecular hydrogen-bond acceptor. This hydrogen bond is drawn explicitly only for compound 9a (Fig. 1[link]), although the C—H group pointing towards X3 can easily be recognized for several other compounds. Another effect associated with these hydrogen bonds is the consistent positioning of the AuX3 group, with X—Au—E—P torsion angles of ca 65° for the hydrogen-bonded X atom and ca 115° (with the opposite sign) for the other cis X; again, the tBu3P=S derivative 12a behaves differently, with X—Au—E—P torsion angles of 82.19 (3) and −100.28 (3)°. The C—H⋯Au contacts (the latter with H⋯Au as short as 2.68 Å) all involve methyl groups and could be regarded as an inevitable consequence of the crowding effects rather than any significant inter­action. This applies a fortiori to the short C—H⋯E contacts, which have very narrow angles at the hydrogen atom.

For the compounds with two structure determinations, least-squares fits were performed (for non-hydrogen atoms) using the program XP (Bruker, 1998[Bruker (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.]). The r.m.s. deviations were 0.20 Å for 10a/10aa (0.10 Å if methyl carbon atoms were omitted; Fig. 14[link]), 0.13 Å for 11a/11aa and 0.05 Å for 15a/15aa (the latter were fitted with one structure inverted).

[Figure 14]
Figure 14
A least-squares fit of structures 10a/10aa (the latter with dashed bonds). The fitted atoms (which exclude the methyl carbons) are labelled. The r.m.s. deviation is 0.10 Å for all fitted atoms (max. 0.23 Å for Cl3).

Mol­ecular volumes: For the gold(I) species, the change in mol­ecular volume (cell volume/Z) on changing the elements E or X (for the same phosphine) was calculated for six pairs S/Se and for six pairs Cl/Br. The values thus obtained were generally consistent with the atomic volumes calculated by Hofmann (2002[Hofmann, D. W. M. (2002). Acta Cryst. B58, 489-493.]), namely S 25.5, Se 30.3, Cl 25.8 and Br 32.7 Å3. For the gold(III) series, fewer pairs are available, but the results are less convincing. The two polymorphs 10a/10aa already differ by 4.4 Å3, which is comparable to the difference in volume between S and Se according to the density rule postulated by Kitaigorodskii (1961[Kitaigorodskii, A. I. (1961). Organic Chemical Crystallography. New York: Consultants Bureau.]). More ‘rational’ (denser) crystal packing should correspond to a more stable polymorph, so that 10aa (Dx = 2.073 Mg m−3) should be more stable than 10a (Dx = 2.051 Mg m−3). For three pairs Cl/Br, the volume increases range from 13 to 20 Å3, but for four pairs S/Se, the differences range from 1.5 to 7 Å3 and for the pair 9b/13b the difference has the wrong sign (the sulfur-containing 9b has a slightly larger volume, by 1 Å3). Clearly such a simple additive model for the mol­ecular volumes does not apply well here.

3. Supra­molecular features

For general aspects of packing and types of secondary inter­action, as applied to these compounds, a series of general articles are quoted in our previous paper (Upmann et al., 2024[Upmann, D., Jones, P. G., Bockfeld, D. & Târcoveanu, E. (2024). Acta Cryst. E80, 34-49.]). Hydrogen bonds are given in Tables 15[link]–27[link][link][link][link][link][link][link][link][link][link][link][link]; these include intra­molecular contacts (see above) and several borderline cases. The corresponding symmetry operators, not given explicitly in the following discussion, may also be found in those Tables. In all packing diagrams presented here, hydrogen atoms not involved in hydrogen bonding are omitted for clarity, and the atom labels indicate the asymmetric unit. It is worth repeating the caveat that X-ray methods reveal short inter­molecular contacts, but not the corresponding energies, so that descriptions of mol­ecular packing in terms of particular secondary contacts must to some extent be subjective. Similarly, there is no clear objective judgement, on the basis of contact lengths and angles, as to which contacts should be regarded as more important or less important for the packing. Finally, the exposed nature of the one-coordinate halogen atoms, combined with the large number of hydrogen atoms, means that some short H⋯X contacts are inevitable. Nevertheless, it is possible to obtain informative packing diagrams.

Table 15
Hydrogen-bond geometry (Å, °) for 9a[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C32—H32C⋯Au1 0.98 2.69 3.485 (2) 138
C2—H2⋯Cl3 1.00 2.68 3.437 (2) 133
C12—H12B⋯S1 0.98 2.73 3.310 (2) 118
C1—H1⋯Cl2i 1.00 2.82 3.506 (2) 126
C11—H11C⋯Cl2i 0.98 2.91 3.582 (2) 127
C22—H22A⋯Cl1ii 0.98 2.86 3.803 (2) 161
C2—H2⋯Cl3ii 1.00 2.86 3.688 (2) 141
C32—H32A⋯Cl2iii 0.98 2.87 3.847 (2) 180
C3—H3⋯Cl2iv 1.00 2.95 3.881 (2) 155
Symmetry codes: (i) [-x+1, -y+1, -z]; (ii) [-x+1, -y, -z+1]; (iii) [-x+1, -y, -z]; (iv) [x-1, y, z].

Table 16
Hydrogen-bond geometry (Å, °) for 10a[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C32—H32B⋯Cl3 0.98 2.75 3.452 (3) 130
C3—H3⋯Cl3 1.00 2.89 3.476 (3) 118
C13—H13A⋯Cl3 0.98 2.85 3.729 (3) 150
C13—H13B⋯Cl2i 0.98 2.77 3.704 (3) 160
C31—H31A⋯Cl1ii 0.98 2.87 3.372 (3) 113
C13—H13C⋯Cl2iii 0.98 2.91 3.878 (3) 170
C32—H32A⋯Cl3iv 0.98 2.91 3.800 (3) 152
Symmetry codes: (i) [x-1, y, z]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+1, -y+1, -z+2]; (iv) [-x, -y+1, -z+1].

Table 17
Hydrogen-bond geometry (Å, °) for 10aa[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cl3 1.00 2.70 3.427 (3) 130
C3—H3⋯Cl2i 1.00 2.95 3.665 (3) 129
C21—H21C⋯Cl2ii 0.98 2.99 3.706 (4) 131
C22—H22A⋯Cl2ii 0.98 2.94 3.675 (4) 133
C13—H13C⋯Cl3iii 0.98 2.99 3.832 (4) 145
Symmetry codes: (i) [x+1, y, z]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 18
Hydrogen-bond geometry (Å, °) for 11a[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13A⋯Au1 0.98 2.71 3.6142 (19) 154
C12—H12C⋯S1 0.98 2.86 3.391 (2) 115
C3—H3⋯Cl3 1.00 2.62 3.451 (2) 140
C12—H12C⋯Cl2 0.98 2.81 3.788 (2) 174
C13—H13C⋯Cl2i 0.98 2.91 3.851 (2) 161
Symmetry code: (i) [-x+1, -y+1, -z+1].

Table 19
Hydrogen-bond geometry (Å, °) for 11aa[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13B⋯Au1 0.98 2.68 3.6027 (19) 156
C21—H21A⋯S1 0.98 2.63 3.1082 (19) 110
C12—H12C⋯S1 0.98 2.86 3.411 (2) 116
C3—H3⋯Cl3 1.00 2.65 3.4471 (18) 137
C12—H12C⋯Cl2 0.98 2.78 3.755 (2) 171
C99—D99⋯Cl1 1.00 2.74 3.537 (2) 137
C99—D99⋯Cl2 1.00 2.69 3.489 (2) 137
C12—H12A⋯Cl1i 0.98 2.91 3.596 (2) 128
Symmetry code: (i) [-x+1, -y+1, -z+1].

Table 20
Hydrogen-bond geometry (Å, °) for 12a[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23A⋯Au1 0.98 2.69 3.438 (2) 134
C13—H13B⋯S1 0.98 2.61 3.131 (2) 114
C32—H32A⋯S1 0.98 2.83 3.323 (2) 112
C23—H23A⋯Cl2 0.98 2.82 3.778 (2) 168
C32—H32A⋯Cl3 0.98 2.88 3.759 (2) 150
C33—H33B⋯Cl3 0.98 2.73 3.623 (2) 152
C99—H99A⋯Cl2 0.99 2.84 3.749 (3) 153
C99—H99B⋯Cl3i 0.99 2.96 3.903 (3) 160
C22—H22A⋯Cl3i 0.98 2.82 3.791 (2) 171
Symmetry code: (i) [x+1, y, z].

Table 21
Hydrogen-bond geometry (Å, °) for 14a[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cl3 1.00 2.74 3.445 (9) 128
C3—H3⋯Cl2i 1.00 2.99 3.714 (8) 130
C21—H21C⋯Cl2ii 0.98 2.98 3.730 (10) 135
C22—H22A⋯Cl2ii 0.98 2.94 3.646 (11) 130
C13—H13C⋯Cl3iii 0.98 2.98 3.860 (10) 151
Symmetry codes: (i) [x+1, y, z]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 22
Hydrogen-bond geometry (Å, °) for 15a[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13A⋯Au1 0.98 2.76 3.6818 (18) 158
C21—H21C⋯Se1 0.98 2.68 3.1887 (19) 113
C12—H12C⋯Se1 0.98 2.92 3.4566 (18) 116
C3—H3⋯Cl3 1.00 2.65 3.4842 (19) 141
C12—H12C⋯Cl2 0.98 2.94 3.9145 (19) 174
C13—H13C⋯Cl2i 0.98 2.93 3.8489 (19) 157
Symmetry code: (i) [-x+1, -y+1, -z+1].

Table 23
Hydrogen-bond geometry (Å, °) for 15aa[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C99—D99⋯Cl2 1.00 2.76 3.580 (7) 139
C13—H13A⋯Au1 0.98 2.69 3.618 (3) 158
C21—H21C⋯Se1 0.98 2.70 3.208 (3) 112
C3—H3⋯Cl3 1.00 2.65 3.497 (3) 142
C13—H13C⋯Cl2i 0.98 2.92 3.866 (3) 163
Symmetry code: (i) [-x, -y+1, -z+1].

Table 24
Hydrogen-bond geometry (Å, °) for 9b[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C32—H32C⋯Au1 0.98 2.76 3.473 (3) 131
C12—H12B⋯S1 0.98 2.68 3.261 (3) 118
C2—H2⋯Br3 1.00 2.71 3.560 (3) 143
C22—H22B⋯Au1i 0.98 2.98 3.551 (3) 119
C21—H21C⋯Br1ii 0.98 3.02 3.829 (3) 141
C3—H3⋯Br2i 1.00 2.91 3.796 (3) 148
C32—H32A⋯Br2iii 0.98 3.06 3.900 (3) 145
C11—H11C⋯Br2iv 0.98 2.91 3.661 (3) 134
Symmetry codes: (i) [x, y-1, z]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x, -y+1, -z+1]; (iv) [-x+1, -y+1, -z+1].

Table 25
Hydrogen-bond geometry (Å, °) for 11b[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13B⋯Au1 0.98 2.69 3.607 (2) 156
C21—H21A⋯S1 0.98 2.63 3.109 (2) 110
C12—H12A⋯S1 0.98 2.89 3.417 (2) 114
C3—H3⋯Br3 1.00 2.71 3.546 (2) 141
C12—H12A⋯Br2 0.98 2.89 3.863 (2) 174
C13—H13A⋯Br2i 0.98 3.00 3.931 (2) 159
Symmetry code: (i) [-x+1, -y+1, -z+1].

Table 26
Hydrogen-bond geometry (Å, °) for 13b[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C32—H32C⋯Au1 0.98 2.77 3.578 (5) 140
C12—H12B⋯Se1 0.98 2.90 3.479 (5) 119
C2—H2⋯Br3 1.00 2.71 3.497 (4) 136
C11—H11C⋯Br3i 0.98 2.78 3.752 (5) 171
C32—H32A⋯Br2ii 0.98 2.99 3.933 (4) 163
Symmetry codes: (i) [x, y-1, z]; (ii) [-x+2, -y+1, -z+1].

Table 27
Hydrogen-bond geometry (Å, °) for 15b[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13B⋯Au1 0.98 2.74 3.679 (3) 160
C21—H21A⋯Se1 0.98 2.69 3.197 (3) 113
C12—H12A⋯Se1 0.98 2.96 3.484 (3) 115
C3—H3⋯Br3 1.00 2.75 3.585 (3) 142
C12—H12A⋯Br2 0.98 3.01 3.980 (3) 173
C13—H13A⋯Br2i 0.98 3.02 3.929 (3) 156
Symmetry code: (i) [-x+1, -y+1, -z+1].

For compound 9a, five H⋯Cl contacts (from H1, H2, H3, H22A and H11C) combine to form a layer structure parallel to (011) (Fig. 15[link]). A short Cl3⋯Cl3 contact of 3.625 (1) Å, operator 1 − x, −y, 1 − z, is also observed. We have previously noted the tendency of tetra­halogenidoaurate(III) anions to display short XX contacts (Döring & Jones, 2016[Döring, C. & Jones, P. G. (2016). Z. Anorg. Allg. Chem. 642, 930-936.]), and these are also observed in some neutral trihalogenidogold(III) complexes such as tri­bromido­(piperidine)­gold(III) (Döring & Jones, 2023[Döring, C. & Jones, P. G. (2023). Acta Cryst. E79, 1017-1027.]).

[Figure 15]
Figure 15
Packing diagram of 9a, showing the formation of a layer structure parallel to (011) in the region y ≃ 0.25, z ≃ 0.25. Dashed lines indicate H⋯Cl contacts (thin) or Cl⋯Cl contacts (thick).

Compound 10a also forms a layer structure, parallel to the ac plane, involving three H⋯Cl contacts (from H13B, H13C and H32A) and one S⋯Cl contact [S1⋯Cl3(1 − x, 1 − y, 1 − z) = 3.6746 (9) Å] (Fig. 16[link]). The second polymorph 10aa has a completely different packing; there are no H⋯Cl contacts < 2.94 Å, but instead the mol­ecules associate to form dimers (Fig. 17[link]) with a short S1⋯S1 contact of 3.622 (2) Å (operator 1 − x, −y, 1 − z). The corresponding S1⋯Au1 distance is 4.0282 (8) Å, and there is a borderline H22C⋯Au1 contact of 3.18 Å. Dimers are linked to form a chain parallel to the a axis by the contact Cl2⋯Cl3 3.5885 (11) Å (operator −1 + x, y, z; Fig. 18[link]). The packing of 11a is similar to that of 10a, again involving inversion-symmetric dimers [S1⋯S1 = 3.4257 (9), S1⋯Au1 = 4.0467 (5), H21C⋯Au1 = 3.03 Å, operator 1 − x, 1 − y, −z], but with these being linked by the contact H13⋯Cl2 to form chains parallel to the c axis (Fig. 19[link]). Compound 14a (isotypic to 10aa) has contact distances Se1⋯Se1′ = 3.615 (2) and Cl2⋯Cl3′ = 3.511 (3) Å. Compounds 11b, 15a and 15b (isotypic to 11a) have distances Se1⋯Se1′ = 3.3447 (4), S1⋯S1′ = 3.4513 (11) and Se1⋯Se1′ = 3.3734 (5) Å, respectively. The primes indicate the operators given above for the parent structures.

[Figure 16]
Figure 16
Packing diagram of 10a viewed parallel to the b axis in the region y ≃ 0.5. Dashed lines indicate H⋯Cl contacts (thin) or S⋯Cl contacts (thick).
[Figure 17]
Figure 17
The inversion-symmetric dimer of 10aa. The short S1⋯S1 contact is shown by the thick dashed line. Thin dashed lines indicate the borderline contacts S1⋯Au1 and H22C⋯Au1.
[Figure 18]
Figure 18
Structure 10aa: Association of dimers to form chains parallel to the a axis. The two chains lie in the regions y ≃ 0.5, z ≃ 0 and y ≃ 0, z ≃ 0.5. Thick dashed lines indicate Cl⋯Cl and S⋯S contacts; the latter are viewed almost end-on. Hydrogen atoms are omitted.
[Figure 19]
Figure 19
Compound 11a: Association of dimers to form chains parallel to the c axis. The view direction is perpendicular to the ab plane. Dashed lines indicate H⋯Cl and S⋯S contacts (thick) or borderline S⋯Au and H⋯Au contacts (thin).

For compound 11aa, which is the deutero­chloro­form solvate of 11a, the solvent mol­ecule is well-ordered, and its deuterium atom is involved in a three-centre hydrogen bond to Cl1 and Cl2. The residues are further linked by the short contact Cl3⋯Cl6 = 3.6706 (7) Å (operator x, −1 + y, z), forming chains parallel to the b axis (Fig. 20[link]). There are no H⋯Cl contacts < 2.91 Å.

[Figure 20]
Figure 20
Compound 11aa: Association of residues to form chains parallel to the b axis. The view direction is perpendicular to the ab plane. Dashed lines indicate hydrogen bonds or Cl⋯Cl contacts.

Compound 12a, which is a di­chloro­methane solvate, has a three-dimensional packing in which the most striking feature is the formation of dimers via the contact S1⋯S1(1 − x, 1 − y, 1 − z) = 3.4357 (10) Å. The packing involves layers parallel to (011); these include the solvent contacts H99A⋯Cl2 (also shown in Fig. 6[link]) = 2.84, H99B⋯Cl3 = 2.96 and Cl5⋯Cl5(2 − x, 2 − y, −z) = 3.3990 (14) Å (Fig. 21[link]). The alkyl groups of one layer project into the gaps of neighbouring layers. The contacts H22A⋯Cl3 are not shown in Fig. 21[link].

[Figure 21]
Figure 21
Compound 12a: The layer structure parallel to (011), viewed perpendicular to this plane in the region x ≃ 1. Dashed lines indicate S⋯S and Cl⋯Cl contacts (thick) or H⋯Cl contacts (thin).

Compound 15aa, the deutero­chloro­form solvate of 15a, has few short contacts between the mol­ecules of the gold complex itself; the contact Cl1⋯Cl1(−x, 2 − y, 1 − z) = 3.5208 (13) Å links the mol­ecules into simple dimers. Instead it is the disordered solvent, occupying the region at z ≃ 0, that lies between and thus connects the mol­ecules of the gold complex. Fig. 22[link] shows this pattern for the major disorder component, with D99⋯Cl2 = 2.76, Au1⋯Cl5 = 3.547 (2) and Cl2⋯Cl5 = 3.603 (2) Å (both −x, 2 − y, −z) and Cl6⋯Cl6 = 3.546 (6) Å (−x, 1 − y, −z). The minor component, somewhat displaced from its major counterpart [C99⋯C99′ = 0.59 (1) Å, angle between C—D vectors = 9°], makes a similar series of contacts, which we do not discuss explicitly.

[Figure 22]
Figure 22
Compound 15aa: The disordered solvent, only the major component of which is shown here, lies between the mol­ecules of the gold complex, forming a variety of short contacts Au⋯Cl, H⋯Cl and Cl⋯Cl (dashed lines). The view direction is perpendicular to the ab plane in the region x ≃ 0.

Compound 9b has a short Br1⋯Br3(−x, [{1\over 2}] + y, [{1\over 2}] − z) contact of 3.7110 (4) Å. This combines with four H⋯Br contacts and one H⋯Au contact to form a layer structure parallel to (10[\overline{2}]) (Fig. 23[link]).

[Figure 23]
Figure 23
Compound 9b: The layer structure parallel to (10[\overline{2}]), formed by Br⋯Br contacts (thick dashed lines) and five weak hydrogen bonds (thin dashed lines).

The packing of compound 13b involves the formation of striking inversion-symmetric dimers, with short contacts Au1⋯Se1′ = 3.7472 (5) and Se1⋯Br3′ = 3.4874 (6) Å, via the operator 1 − x, 1 − y, −z (Fig. 24[link]). The corresponding Au1⋯Au1′ and Au1⋯Br2′ distances of 4.1897 (3) and 4.0038 (5) Å are probably too long to represent any significant inter­action. The dimer formation is reminiscent of the stacking of AuX3 moieties, as observed for example for the infinite stacks in four polymorphs of tri­chlorido­(tetra­hydro­thio­phene)­gold(III) (Upmann & Jones, 2017[Upmann, D., Näther, C., Jess, I. & Jones, P. G. (2017). Z. Anorg. Allg. Chem. 643, 311-316.]), but with the important difference that the Se atom of 13b is also involved. The dimers are linked by a short Br2⋯Br3 contact of 3.5478 Å (operator 1 + x, y, z), forming a chain parallel to the a axis (Fig. 25[link]).

[Figure 24]
Figure 24
Compound 13b: Dimer formation via short Se⋯Au and Se⋯Br contacts (thick dashed lines)
[Figure 25]
Figure 25
Compound 13b: Linkage of dimers parallel to the a axis via a short Br⋯Br inter­action. The view direction is parallel to the b axis.

4. Database survey

The searches employed the routine ConQuest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]), part of Version 2022.3.0 of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]).

A search for all structures containing the moiety R3P=S—TM (coordination numbers of 4 for P and 2 for S, bond orders unspecified, TM = any transition metal), excluding any structure in which the P=S or S—TM bonds were involved in rings, gave 83 hits. The 108 bond angles at sulfur ranged from 95.6–127.9°, so that this angle is clearly highly variable. The largest value of 127.88 (2)° was observed for the only structure involving tBu3P=S, namely [(tBu3PS)Fe(CO)2Cp][PF6] (RIDJUK; Kuckmann et al., 2007[Kuckmann, T. J., Dornhaus, F., Bolte, M., Lerner, H.-W., Holthausen, M. C. & Wagner, M. (2007). Eur. J. Inorg. Chem. pp. 1989-2003.]), cf. structure 12a above. Similarly, 39 hits for R3P=Se—TM were registered, with 58 angles at selenium in the range 92.1–113.3°. One of the smallest angles, 92.91 (12)°, was observed for (9-phenanthr­yl)Ph2PSeAuCl (as its benzene solvate); the analogous sulfur derivative (solvent-free) had a P—S—Au angle of 100.85 (6)° (DUGSAB & DUGFOC; Breshears et al., 2015[Breshears, A. T., Behrle, A. C., Barnes, C. L., Laber, C. H., Baker, G. A. & Walensky, J. R. (2015). Polyhedron, 100, 333-343.]).

Searches for other compounds of the type (R3P=E)AuX3 gave only our own structures, i.e. all four permutations (E = S or Se, X = Cl or Br) of (PCP)iPr2EAuX3 (PCP = [2.2]para­cyclo­phanyl; Upmann et al., 2019[Upmann, D., Koneczny, M., Rass, J. & Jones, P. G. (2019). Z. Naturforsch. B, 74, 389-404.]).

5. Synthesis and crystallization

For several of the compounds, the syntheses can be found in the PhD thesis of D. Upmann (Upmann, 2015[Upmann, D. (2015). Phosphanchalkogenide und ihre Edelmetall-komplexe. Dissertation, Technical University of Braunschweig, Germany (ISBN: 978-3-8439-1972-2).]). The following do not appear there:

Compound 9a. 125 mg (0.3 mmol) of iPr3PSAuCl were dissolved in 5 mL of di­chloro­methane, and a solution of iodo­benzene dichloride (82 mg, 0.3 mmol) in 5 mL of di­chloro­methane was added. The red solution was stirred for 30 min. The solvent was removed under vacuum. The product, a red solid, was precipitated with n-pentane and dried under vacuum. The yield was not recorded. 31P-NMR (200 MHz, CDCl3, 300 K): δ (ppm) 78.64 (s). Elemental analysis (%): calculated: C 21.81, H 4.27, S 6.47; found: C 22.06, H 4.07, S 6.26. Single crystals were obtained by liquid diffusion of n-pentane into a solution of 9a in di­chloro­methane. Similar attempts to synthesize the selenium analogue (which would have been compound 13a) were unsuccessful; the product was always an intra­ctable gum that decomposed.

Compound 9b. 187.4 mg (0.399 mmol) of iPr3PSAuBr were dissolved in 3 mL of di­chloro­methane, and 4.16 mL of a 0.096 M solution of bromine in di­chloro­methane were added. The product, a red solid, was precipitated with n-pentane and dried under vacuum. Yield: 132.6 mg (0.211 mmol, 53%). 31P-NMR (81 MHz, CDCl3, 300 K): δ (ppm) 77.17 (s). Elemental analysis (%): calculated: C 17.19, H 3.37, S 5.10; found: C 17.42, H 3.40, S 5.31. Single crystals were obtained by liquid diffusion of n-pentane into a solution of 9b in di­chloro­methane.

Compound 11b. 336 mg (0.675 mmol) of iPr2tBuPSAuBr were dissolved in 3 mL of di­chloro­methane, and 6.7 mL of a 0.1 M solution of bromine in di­chloro­methane were added. The solution was overlayered with n-pentane and stored in a refrigerator (278 K) overnight. Crystals suitable for structure determination formed. After removal of the solvent under vacuum, the product was recrystallized from a mixture of di­chloro­methane and n-pentane as a dark-red solid. Yield: 341 mg (0.685 mmol, qu­anti­tative). 31P-NMR (81 MHz, CDCl3, 300 K): δ (ppm) 85.18 (s). Elemental analysis (%): calculated: C 20.11, H 3.84, S 4.88; found: C 20.98, H 4.01, S 4.97.

Compound 12a was synthesized by the same general method as the other chloro derivatives (e.g. 9a, see above), but the details have unfortunately been lost.

Compound 13b. 194.7 mg (0.377 mmol) of iPr3PSeAuBr were dissolved in 3 mL of di­chloro­methane, and 3.93 mL of a 0.096 M solution of bromine in di­chloro­methane were added. The product, a red solid, was precipitated with n-pentane and dried under vacuum. Yield: 141.2 mg (0.209 mmol, 55%). 31P-NMR (81 MHz, CDCl3, 300 K): δ (ppm) 74.46 (s, 1JP–Se = 520 Hz). Single crystals were obtained by liquid diffusion of n-pentane into a solution of 13b in di­chloro­methane. Elemental analysis (%): calculated: C 15.99, H 3.13; found: C 16.22, H 3.18.

Compound 15b. 303 mg (0.557 mmol) of iPrtBu2PSeAuBr were dissolved in 3 mL of di­chloro­methane, and 5.6 mL of a 0.1 M solution of bromine in di­chloro­methane were added. The solution was overlayered with n-pentane and stored in a refrigerator (278 K) overnight. After removal of the solvent under vacuum, the product was recrystallized twice from a mixture of di­chloro­methane and n-pentane as a dark red solid, from which a crystal was selected for measurement. The yield was only ca 20%, and neither the elemental analyses nor the 31P-NMR results were satisfactory (despite the successful structure determination). We suspect partial decomposition of the product.

The conditions under which the polymorph 10aa arose were unfortunately not recorded. Crystals of the deutero­chloro­form solvates 11aa and 15aa were obtained fortuitously by evaporation from the corresponding NMR solutions.

6. Refinement

Details of the measurements and refinements are given in Table 28[link]. Structures were refined anisotropically on F2. Methine and methyl­ene hydrogens were included at calculated positions and refined using a riding model with C—H = 1.00 or 0.99 Å respectively and Uiso(H) = 1.2 × Ueq(C). Methyl groups were refined, using the command AFIX 137, as idealized rigid groups allowed to rotate but not tip, with C—H = 0.98 Å, H—C—H = 109.5° and Uiso(H) = 1.5 × Ueq(C). The use of this command determines the initial hydrogen positions (before refinement) by analysis of maxima in the residual electron density at suitable C—H distances, and these peaks may not be entirely reliable in the presence of a very heavy atom (although in general the refinement seemed to proceed satisfactorily), so that any postulated hydrogen bonds involving methyl hydrogen atoms should be inter­preted with caution.

Table 28
Experimental details

  9a 10a 10aa 11a 11aa
Crystal data
Chemical formula [AuCl3(C9H21PS)] [AuCl3(C10H23PS)] [AuCl3(C10H23PS)] [AuCl3(C11H25PS)] [AuCl3(C11H25PS)]·CDCl3
Mr 495.60 509.63 509.63 523.66 644.03
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/n Monoclinic, P21/n Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 100 100 100 100 101
a, b, c (Å) 8.0262 (3), 9.0839 (3), 10.7162 (3) 8.4533 (2), 17.0563 (4), 11.4826 (3) 7.9363 (3), 14.4096 (4), 14.2851 (4) 8.6034 (4), 9.7779 (4), 11.4231 (4) 9.6382 (4), 10.2787 (3), 11.8483 (5)
α, β, γ (°) 86.185 (2), 85.730 (3), 84.468 (3) 90, 94.525 (2), 90 90, 91.774 (3), 90 78.876 (3), 71.456 (4), 72.702 (4) 75.115 (3), 68.875 (4), 89.728 (3)
V3) 774.13 (4) 1650.43 (7) 1632.85 (9) 864.69 (7) 1053.13 (8)
Z 2 4 4 2 2
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 10.23 9.60 9.70 9.16 7.91
Crystal size (mm) 0.22 × 0.05 × 0.01 0.3 × 0.2 × 0.02 0.3 × 0.2 × 0.2 0.15 × 0.15 × 0.08 0.15 × 0.06 × 0.05
 
Data collection
Diffractometer Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO, Version 1.171.41.93a (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO, Version 1.171.41.93a (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO, Version 1.171.41.93a (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO, Version 1.171.41.93a (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO, Version 1.171.41.93a (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.])
Tmin, Tmax 0.421, 1.000 0.192, 1.000 0.159, 0.247 0.577, 1.000 0.454, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 56439, 4632, 4428 40041, 4863, 4483 42542, 4881, 4296 68815, 5155, 4939 76947, 6247, 5976
Rint 0.037 0.040 0.046 0.038 0.038
(sin θ/λ)max−1) 0.720 0.722 0.721 0.721 0.723
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.015, 0.033, 1.05 0.021, 0.046, 1.07 0.025, 0.045, 1.12 0.016, 0.036, 1.08 0.016, 0.033, 1.05
No. of reflections 4632 4863 4881 5155 6247
No. of parameters 142 152 152 163 199
No. of restraints 0 0 0 0 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.05, −0.96 2.15, −1.41 2.52, −1.50 1.64, −0.93 1.02, −0.95
Extinction method None None None Fc* = kFc[1 + 0.001 Fc2λ3/sin(2θ)]-1/4 (SHELXL2019/3; Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) Fc* = kFc[1 + 0.001 Fc2λ3/sin(2θ)]-1/4 (SHELXL2019/3; Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.])
Extinction coefficient 0.00097 (14) 0.00133 (9)
  12a 14a 15a 15aa 9b
Crystal data
Chemical formula [AuCl3(C12H27PS)]·CH2Cl2 [AuCl3(C10H23PSe)] [AuCl3(C11H25PSe)] [AuCl3(C11H25PSe)]·CDCl3 [AuBr3(C10H23PS)]
Mr 622.61 556.53 570.55 690.93 628.98
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/n Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Monoclinic, P21/c
Temperature (K) 100 100 100 100 100
a, b, c (Å) 8.4202 (3), 11.2194 (4), 11.8355 (4) 7.92516 (18), 14.5559 (4), 14.3635 (4) 8.5878 (4), 9.8435 (4), 11.5022 (5) 8.5343 (2), 9.7185 (3), 14.0759 (4) 9.1341 (2), 7.9039 (2), 22.6420 (4)
α, β, γ (°) 98.398 (3), 101.174 (3), 95.991 (3) 90, 91.264 (2), 90 78.391 (3), 71.168 (4), 73.463 (4) 74.398 (2), 78.121 (2), 73.257 (2) 90, 94.519 (2), 90
V3) 1074.95 (7) 1656.54 (7) 875.78 (7) 1066.31 (5) 1629.56 (6)
Z 2 4 2 2 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 7.63 11.64 11.01 9.42 16.58
Crystal size (mm) 0.15 × 0.1 × 0.1 0.15 × 0.15 × 0.1 0.18 × 0.15 × 0.12 0.4 × 0.25 × 0.08 0.15 × 0.1 × 0.1
 
Data collection
Diffractometer Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO, Version 1.171.41.93a (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO, Version 1.171.41.93a (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO, Version 1.171.41.93a (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO, Version 1.171.41.93a (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO, Version 1.171.41.93a (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.])
Tmin, Tmax 0.783, 1.000 0.483, 1.000 0.700, 1.000 0.151, 1.000 0.486, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 157605, 6558, 6124 196706, 4112, 3878 54532, 5231, 4984 76069, 6287, 6060 64266, 4964, 4633
Rint 0.054 0.084 0.032 0.040 0.037
(sin θ/λ)max−1) 0.727 0.667 0.722 0.721 0.722
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.037, 1.05 0.043, 0.093, 1.32 0.014, 0.030, 1.10 0.021, 0.048, 1.10 0.022, 0.038, 1.23
No. of reflections 6558 4112 5231 6287 4964
No. of parameters 199 152 163 235 143
No. of restraints 0 0 0 39 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.76, −1.01 3.81, −2.41 0.84, −0.73 1.88, −1.30 1.58, −0.95
Extinction method None None Fc* = kFc[1 + 0.001 Fc2λ3/sin(2θ)]-1/4 (SHELXL2019/3; Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) None Fc* = kFc[1 + 0.001 Fc2λ3/sin(2θ)]-1/4 (SHELXL2019/3; Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.])
Extinction coefficient 0.00113 (8) 0.00043 (2)
  11b 13b 15b
Crystal data
Chemical formula [AuBr3(C11H25PS)] [AuBr3(C9H21PSe)] [AuBr3(C11H25PSe)]
Mr 657.04 675.88 703.93
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 100 100 100
a, b, c (Å) 8.6067 (8), 10.1161 (12), 11.5123 (12) 8.3928 (2), 10.1417 (4), 10.7567 (4) 8.6000 (5), 10.2045 (7), 11.5987 (7)
α, β, γ (°) 77.873 (10), 70.257 (10), 71.867 (10) 94.419 (3), 105.612 (3), 110.113 (3) 77.475 (6), 69.764 (6), 72.601 (6)
V3) 890.37 (18) 813.33 (5) 904.02 (11)
Z 2 2 2
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 15.18 18.72 16.85
Crystal size (mm) 0.2 × 0.2 × 0.2 0.2 × 0.1 × 0.01 0.2 × 0.06 × 0.04
 
Data collection
Diffractometer Oxford Diffaction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos Oxford Diffraction Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO, Version 1.171.41.93a (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO, Version 1.171.41.93a (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO, Version 1.171.41.93a (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.])
Tmin, Tmax 0.447, 1.000 0.200, 1.000 0.376, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 65025, 5297, 5057 44535, 4825, 4278 25566, 5282, 4719
Rint 0.038 0.059 0.033
(sin θ/λ)max−1) 0.721 0.724 0.721
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.036, 1.14 0.028, 0.074, 1.05 0.020, 0.036, 1.05
No. of reflections 5297 4825 5282
No. of parameters 163 142 163
No. of restraints 0 0 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.08, −1.43 1.43, −1.49 1.04, −0.80
Extinction method Fc* = kFc[1 + 0.001 Fc2λ3/sin(2θ)]-1/4 (SHELXL2019/3; Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) None Fc* = kFc[1 + 0.001 Fc2λ3/sin(2θ)]-1/4 (SHELXL2019/3; Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.])
Extinction coefficient 0.00557 (11) 0.00115 (6)
Computer programs: CrysAlis PRO (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO, Version 1.171.41.93a (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2019/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and XP (Bruker, 1998[Bruker (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.]).

Special features: The deutero­chloro­form mol­ecule of 15aa is disordered over two positions with occupation factors 0.525 (4) and 0.475 (4). Appropriate restraints were employed to improve refinement stability, but the dimensions of disordered groups should always be inter­preted with caution. The data for 14a were significantly affected by the presence of a small (and at first undetected) satellite crystal, rotated by ca 5° from the main crystal. Attempts to treat the structure using procedures developed for non-merohedral twins did not lead to any improvement, and no better crystals were found. The U values are significantly higher than for the other structures, and the ellipsoid plot (Fig. 7[link]) is drawn at 30% rather than 50% levels.

Supporting information


Computing details top

Trichlorido(tripropan-2-ylphosphane sulfide-κS)gold(III) (9a) top
Crystal data top
[AuCl3(C9H21PS)]Z = 2
Mr = 495.60F(000) = 472
Triclinic, P1Dx = 2.126 Mg m3
a = 8.0262 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.0839 (3) ÅCell parameters from 25652 reflections
c = 10.7162 (3) Åθ = 2.3–30.7°
α = 86.185 (2)°µ = 10.23 mm1
β = 85.730 (3)°T = 100 K
γ = 84.468 (3)°Plate, dichroic orange / yellow
V = 774.13 (4) Å30.22 × 0.05 × 0.01 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
4632 independent reflections
Radiation source: Enhance (Mo) X-ray source4428 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.037
ω scansθmax = 30.8°, θmin = 2.3°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
h = 1111
Tmin = 0.421, Tmax = 1.000k = 1212
56439 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.015Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.033H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0167P)2 + 0.4566P]
where P = (Fo2 + 2Fc2)/3
4632 reflections(Δ/σ)max = 0.002
142 parametersΔρmax = 1.05 e Å3
0 restraintsΔρmin = 0.96 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.74127 (2)0.15601 (2)0.24499 (2)0.01058 (3)
Cl10.90254 (7)0.06826 (5)0.24307 (5)0.02024 (10)
Cl30.67060 (6)0.11336 (6)0.45357 (5)0.01749 (9)
Cl20.83231 (6)0.20433 (6)0.04060 (4)0.01903 (10)
S10.58505 (6)0.38531 (5)0.23869 (5)0.01309 (9)
P10.33654 (6)0.34414 (5)0.25253 (4)0.01036 (9)
C10.2343 (2)0.5273 (2)0.20553 (19)0.0136 (4)
H10.2788770.5503330.1174750.016*
C20.2705 (2)0.2697 (2)0.40925 (18)0.0136 (4)
H20.3426800.1748440.4233510.016*
C30.2864 (3)0.2158 (2)0.13891 (19)0.0152 (4)
H30.1613220.2173200.1439590.018*
C110.0440 (3)0.5277 (2)0.2004 (2)0.0235 (5)
H11A0.0080720.5166360.2858050.035*
H11B0.0192450.4451820.1524450.035*
H11C0.0010150.6214460.1597930.035*
C120.2796 (3)0.6527 (2)0.2818 (2)0.0257 (5)
H12A0.2388610.7483200.2419440.039*
H12B0.4016720.6476720.2851290.039*
H12C0.2270920.6423060.3670690.039*
C210.3038 (3)0.3672 (2)0.5135 (2)0.0214 (4)
H21A0.2259000.4571440.5107290.032*
H21B0.4193960.3943100.5018830.032*
H21C0.2873520.3127340.5948640.032*
C220.0893 (3)0.2277 (3)0.4200 (2)0.0211 (4)
H22A0.0660950.1759910.5017160.032*
H22B0.0738060.1626800.3531950.032*
H22C0.0120400.3176890.4118990.032*
C310.3395 (3)0.2667 (3)0.0039 (2)0.0232 (5)
H31A0.4620410.2644020.0062640.035*
H31B0.2897040.3679070.0143470.035*
H31C0.3006900.2002770.0539410.035*
C320.3543 (3)0.0551 (2)0.1703 (2)0.0203 (4)
H32A0.3068010.0105840.1161740.030*
H32B0.3226880.0275780.2582170.030*
H32C0.4768510.0455900.1564680.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.00962 (4)0.01142 (4)0.01073 (4)0.00084 (2)0.00111 (2)0.00061 (2)
Cl10.0213 (2)0.0167 (2)0.0215 (2)0.00572 (18)0.00174 (19)0.00262 (19)
Cl30.0157 (2)0.0213 (2)0.0138 (2)0.00148 (17)0.00099 (17)0.00419 (18)
Cl20.0198 (2)0.0250 (2)0.0116 (2)0.00060 (19)0.00136 (17)0.00064 (18)
S10.0115 (2)0.0108 (2)0.0169 (2)0.00201 (16)0.00067 (17)0.00050 (17)
P10.0103 (2)0.0095 (2)0.0114 (2)0.00047 (16)0.00153 (17)0.00085 (17)
C10.0149 (9)0.0102 (8)0.0152 (9)0.0012 (7)0.0019 (7)0.0012 (7)
C20.0120 (9)0.0155 (9)0.0131 (9)0.0022 (7)0.0006 (7)0.0012 (7)
C30.0135 (9)0.0157 (9)0.0172 (9)0.0004 (7)0.0033 (7)0.0061 (7)
C110.0144 (10)0.0197 (10)0.0344 (13)0.0032 (8)0.0019 (9)0.0055 (9)
C120.0358 (13)0.0118 (9)0.0303 (12)0.0047 (9)0.0124 (10)0.0050 (8)
C210.0293 (12)0.0221 (10)0.0131 (9)0.0061 (9)0.0016 (8)0.0023 (8)
C220.0141 (9)0.0290 (11)0.0200 (10)0.0058 (8)0.0013 (8)0.0062 (9)
C310.0294 (12)0.0268 (11)0.0147 (10)0.0027 (9)0.0048 (9)0.0057 (8)
C320.0228 (10)0.0131 (9)0.0264 (11)0.0026 (8)0.0044 (9)0.0070 (8)
Geometric parameters (Å, º) top
Au1—Cl32.2818 (5)C11—H11B0.9800
Au1—Cl22.2846 (5)C11—H11C0.9800
Au1—Cl12.3064 (5)C12—H12A0.9800
Au1—S12.3250 (5)C12—H12B0.9800
S1—P12.0574 (7)C12—H12C0.9800
P1—C21.829 (2)C21—H21A0.9800
P1—C31.8317 (19)C21—H21B0.9800
P1—C11.8387 (19)C21—H21C0.9800
C1—C121.531 (3)C22—H22A0.9800
C1—C111.532 (3)C22—H22B0.9800
C1—H11.0000C22—H22C0.9800
C2—C211.525 (3)C31—H31A0.9800
C2—C221.534 (3)C31—H31B0.9800
C2—H21.0000C31—H31C0.9800
C3—C311.531 (3)C32—H32A0.9800
C3—C321.533 (3)C32—H32B0.9800
C3—H31.0000C32—H32C0.9800
C11—H11A0.9800
Cl3—Au1—Cl2175.341 (18)C1—C11—H11C109.5
Cl3—Au1—Cl190.151 (18)H11A—C11—H11C109.5
Cl2—Au1—Cl188.999 (19)H11B—C11—H11C109.5
Cl3—Au1—S192.249 (18)C1—C12—H12A109.5
Cl2—Au1—S188.545 (18)C1—C12—H12B109.5
Cl1—Au1—S1177.472 (17)H12A—C12—H12B109.5
P1—S1—Au1106.70 (2)C1—C12—H12C109.5
C2—P1—C3108.01 (9)H12A—C12—H12C109.5
C2—P1—C1115.39 (9)H12B—C12—H12C109.5
C3—P1—C1106.80 (9)C2—C21—H21A109.5
C2—P1—S1111.92 (7)C2—C21—H21B109.5
C3—P1—S1113.32 (7)H21A—C21—H21B109.5
C1—P1—S1101.34 (7)C2—C21—H21C109.5
C12—C1—C11111.53 (18)H21A—C21—H21C109.5
C12—C1—P1113.93 (14)H21B—C21—H21C109.5
C11—C1—P1112.89 (14)C2—C22—H22A109.5
C12—C1—H1105.9C2—C22—H22B109.5
C11—C1—H1105.9H22A—C22—H22B109.5
P1—C1—H1105.9C2—C22—H22C109.5
C21—C2—C22111.88 (17)H22A—C22—H22C109.5
C21—C2—P1113.49 (14)H22B—C22—H22C109.5
C22—C2—P1113.14 (14)C3—C31—H31A109.5
C21—C2—H2105.8C3—C31—H31B109.5
C22—C2—H2105.8H31A—C31—H31B109.5
P1—C2—H2105.8C3—C31—H31C109.5
C31—C3—C32111.51 (17)H31A—C31—H31C109.5
C31—C3—P1112.32 (14)H31B—C31—H31C109.5
C32—C3—P1113.08 (14)C3—C32—H32A109.5
C31—C3—H3106.5C3—C32—H32B109.5
C32—C3—H3106.5H32A—C32—H32B109.5
P1—C3—H3106.5C3—C32—H32C109.5
C1—C11—H11A109.5H32A—C32—H32C109.5
C1—C11—H11B109.5H32B—C32—H32C109.5
H11A—C11—H11B109.5
Cl3—Au1—S1—P172.41 (3)C1—P1—C2—C2160.06 (17)
Cl2—Au1—S1—P1112.19 (3)S1—P1—C2—C2155.13 (16)
Au1—S1—P1—C270.57 (7)C3—P1—C2—C2250.58 (17)
Au1—S1—P1—C351.87 (8)C1—P1—C2—C2268.81 (17)
Au1—S1—P1—C1165.92 (7)S1—P1—C2—C22176.00 (13)
C2—P1—C1—C1266.59 (18)C2—P1—C3—C31179.04 (14)
C3—P1—C1—C12173.36 (16)C1—P1—C3—C3156.26 (17)
S1—P1—C1—C1254.51 (16)S1—P1—C3—C3154.47 (16)
C2—P1—C1—C1161.96 (17)C2—P1—C3—C3251.75 (17)
C3—P1—C1—C1158.09 (17)C1—P1—C3—C32176.45 (15)
S1—P1—C1—C11176.93 (14)S1—P1—C3—C3272.83 (16)
C3—P1—C2—C21179.45 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C32—H32C···Au10.982.693.485 (2)138
C2—H2···Cl31.002.683.437 (2)133
C12—H12B···S10.982.733.310 (2)118
C1—H1···Cl2i1.002.823.506 (2)126
C11—H11C···Cl2i0.982.913.582 (2)127
C22—H22A···Cl1ii0.982.863.803 (2)161
C2—H2···Cl3ii1.002.863.688 (2)141
C32—H32A···Cl2iii0.982.873.847 (2)180
C3—H3···Cl2iv1.002.953.881 (2)155
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z+1; (iii) x+1, y, z; (iv) x1, y, z.
(tert-Butyldipropan-2-ylphosphane sulfide-κS)trichloridogold(III) (10a) top
Crystal data top
[AuCl3(C10H23PS)]F(000) = 976
Mr = 509.63Dx = 2.051 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.4533 (2) ÅCell parameters from 16512 reflections
b = 17.0563 (4) Åθ = 2.1–30.8°
c = 11.4826 (3) ŵ = 9.60 mm1
β = 94.525 (2)°T = 100 K
V = 1650.43 (7) Å3Plate, dichroic red / orange
Z = 40.3 × 0.2 × 0.02 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
4863 independent reflections
Radiation source: Enhance (Mo) X-ray Source4483 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.040
ω scanθmax = 30.9°, θmin = 2.4°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
h = 1211
Tmin = 0.192, Tmax = 1.000k = 2423
40041 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.046H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0188P)2 + 1.7957P]
where P = (Fo2 + 2Fc2)/3
4863 reflections(Δ/σ)max = 0.004
152 parametersΔρmax = 2.15 e Å3
0 restraintsΔρmin = 1.41 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.53732 (2)0.45811 (2)0.69892 (2)0.01252 (3)
Cl10.60148 (8)0.33007 (4)0.74376 (6)0.02142 (13)
Cl20.78118 (7)0.49571 (4)0.77945 (6)0.01953 (13)
Cl30.29411 (8)0.41592 (4)0.62396 (6)0.01961 (13)
S10.49553 (7)0.58842 (4)0.64406 (6)0.01545 (12)
P10.29578 (8)0.63290 (4)0.71079 (5)0.01203 (12)
C10.2845 (3)0.61053 (17)0.8698 (2)0.0175 (5)
C20.3186 (3)0.73939 (16)0.6906 (2)0.0181 (5)
H20.2257430.7651910.7235850.022*
C30.1136 (3)0.59893 (16)0.6267 (2)0.0136 (5)
H30.0868010.5468070.6598530.016*
C110.1916 (4)0.6760 (2)0.9271 (3)0.0302 (7)
H11A0.0870350.6819550.8847540.045*
H11B0.2502470.7253980.9244470.045*
H11C0.1784120.6621051.0086260.045*
C120.4522 (3)0.60526 (18)0.9316 (2)0.0210 (6)
H12A0.4448650.5992191.0158250.032*
H12B0.5111440.6532370.9166220.032*
H12C0.5076730.5599590.9015810.032*
C130.2002 (4)0.53228 (19)0.8846 (3)0.0255 (7)
H13A0.2510770.4915590.8403530.038*
H13B0.0884820.5371250.8554900.038*
H13C0.2069340.5179890.9675330.038*
C210.4686 (4)0.77242 (18)0.7570 (3)0.0269 (7)
H21A0.5624570.7474740.7283840.040*
H21B0.4654040.7617350.8406540.040*
H21C0.4736070.8291620.7444030.040*
C220.3144 (4)0.76266 (18)0.5614 (3)0.0255 (6)
H22A0.3273660.8195620.5551110.038*
H22B0.2124470.7470820.5216010.038*
H22C0.4007840.7361990.5249100.038*
C310.0295 (3)0.65284 (17)0.6416 (2)0.0181 (5)
H31A0.0087460.7047910.6096830.027*
H31B0.0463080.6576060.7247690.027*
H31C0.1244610.6304250.5997960.027*
C320.1375 (3)0.58531 (16)0.4971 (2)0.0165 (5)
H32A0.0382940.5662330.4569760.025*
H32B0.2213060.5462960.4901330.025*
H32C0.1680640.6347070.4615340.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01036 (5)0.01403 (6)0.01301 (5)0.00005 (4)0.00001 (3)0.00017 (3)
Cl10.0212 (3)0.0170 (3)0.0257 (3)0.0027 (3)0.0009 (2)0.0029 (3)
Cl20.0117 (3)0.0263 (4)0.0201 (3)0.0019 (3)0.0024 (2)0.0002 (3)
Cl30.0141 (3)0.0168 (3)0.0270 (3)0.0017 (2)0.0045 (2)0.0010 (3)
S10.0124 (3)0.0152 (3)0.0192 (3)0.0010 (2)0.0032 (2)0.0019 (2)
P10.0111 (3)0.0123 (3)0.0124 (3)0.0007 (2)0.0011 (2)0.0005 (2)
C10.0145 (12)0.0266 (15)0.0110 (11)0.0018 (11)0.0019 (9)0.0000 (10)
C20.0157 (12)0.0137 (13)0.0244 (13)0.0018 (10)0.0016 (10)0.0023 (10)
C30.0120 (11)0.0154 (12)0.0128 (11)0.0020 (10)0.0023 (9)0.0008 (9)
C110.0291 (16)0.045 (2)0.0170 (13)0.0155 (15)0.0014 (11)0.0051 (13)
C120.0196 (13)0.0261 (15)0.0165 (12)0.0013 (12)0.0041 (10)0.0012 (11)
C130.0257 (15)0.0347 (18)0.0157 (13)0.0060 (13)0.0006 (11)0.0074 (12)
C210.0222 (15)0.0180 (14)0.0392 (17)0.0055 (12)0.0059 (12)0.0050 (13)
C220.0287 (16)0.0194 (15)0.0284 (15)0.0054 (13)0.0026 (12)0.0058 (12)
C310.0119 (12)0.0204 (14)0.0214 (13)0.0011 (11)0.0020 (9)0.0029 (10)
C320.0185 (13)0.0181 (13)0.0124 (11)0.0003 (11)0.0026 (9)0.0005 (10)
Geometric parameters (Å, º) top
Au1—Cl32.2818 (6)C11—H11C0.9800
Au1—Cl22.2837 (6)C12—H12A0.9800
Au1—Cl12.2989 (7)C12—H12B0.9800
Au1—S12.3294 (7)C12—H12C0.9800
S1—P12.0538 (9)C13—H13A0.9800
P1—C21.843 (3)C13—H13B0.9800
P1—C31.845 (2)C13—H13C0.9800
P1—C11.875 (3)C21—H21A0.9800
C1—C131.529 (4)C21—H21B0.9800
C1—C121.537 (4)C21—H21C0.9800
C1—C111.542 (4)C22—H22A0.9800
C2—C211.534 (4)C22—H22B0.9800
C2—C221.534 (4)C22—H22C0.9800
C2—H21.0000C31—H31A0.9800
C3—C321.535 (3)C31—H31B0.9800
C3—C311.540 (4)C31—H31C0.9800
C3—H31.0000C32—H32A0.9800
C11—H11A0.9800C32—H32B0.9800
C11—H11B0.9800C32—H32C0.9800
Cl3—Au1—Cl2177.46 (2)C1—C12—H12A109.5
Cl3—Au1—Cl188.54 (2)C1—C12—H12B109.5
Cl2—Au1—Cl189.23 (3)H12A—C12—H12B109.5
Cl3—Au1—S194.93 (2)C1—C12—H12C109.5
Cl2—Au1—S187.39 (2)H12A—C12—H12C109.5
Cl1—Au1—S1174.30 (2)H12B—C12—H12C109.5
P1—S1—Au1111.29 (3)C1—C13—H13A109.5
C2—P1—C3109.58 (12)C1—C13—H13B109.5
C2—P1—C1109.67 (13)H13A—C13—H13B109.5
C3—P1—C1109.94 (12)C1—C13—H13C109.5
C2—P1—S1102.70 (10)H13A—C13—H13C109.5
C3—P1—S1111.45 (9)H13B—C13—H13C109.5
C1—P1—S1113.25 (9)C2—C21—H21A109.5
C13—C1—C12108.6 (2)C2—C21—H21B109.5
C13—C1—C11109.1 (3)H21A—C21—H21B109.5
C12—C1—C11109.1 (2)C2—C21—H21C109.5
C13—C1—P1110.25 (18)H21A—C21—H21C109.5
C12—C1—P1110.19 (19)H21B—C21—H21C109.5
C11—C1—P1109.59 (19)C2—C22—H22A109.5
C21—C2—C22109.9 (2)C2—C22—H22B109.5
C21—C2—P1113.0 (2)H22A—C22—H22B109.5
C22—C2—P1112.4 (2)C2—C22—H22C109.5
C21—C2—H2107.0H22A—C22—H22C109.5
C22—C2—H2107.0H22B—C22—H22C109.5
P1—C2—H2107.0C3—C31—H31A109.5
C32—C3—C31111.2 (2)C3—C31—H31B109.5
C32—C3—P1112.74 (18)H31A—C31—H31B109.5
C31—C3—P1112.65 (18)C3—C31—H31C109.5
C32—C3—H3106.6H31A—C31—H31C109.5
C31—C3—H3106.6H31B—C31—H31C109.5
P1—C3—H3106.6C3—C32—H32A109.5
C1—C11—H11A109.5C3—C32—H32B109.5
C1—C11—H11B109.5H32A—C32—H32B109.5
H11A—C11—H11B109.5C3—C32—H32C109.5
C1—C11—H11C109.5H32A—C32—H32C109.5
H11A—C11—H11C109.5H32B—C32—H32C109.5
H11B—C11—H11C109.5
Cl3—Au1—S1—P156.17 (4)S1—P1—C1—C11150.83 (18)
Cl2—Au1—S1—P1122.80 (4)C3—P1—C2—C21179.5 (2)
Au1—S1—P1—C2165.31 (9)C1—P1—C2—C2159.7 (2)
Au1—S1—P1—C377.45 (10)S1—P1—C2—C2160.9 (2)
Au1—S1—P1—C147.12 (11)C3—P1—C2—C2254.4 (2)
C2—P1—C1—C13156.8 (2)C1—P1—C2—C22175.1 (2)
C3—P1—C1—C1336.3 (2)S1—P1—C2—C2264.2 (2)
S1—P1—C1—C1389.1 (2)C2—P1—C3—C3281.7 (2)
C2—P1—C1—C1283.3 (2)C1—P1—C3—C32157.68 (19)
C3—P1—C1—C12156.11 (19)S1—P1—C3—C3231.3 (2)
S1—P1—C1—C1230.7 (2)C2—P1—C3—C3145.2 (2)
C2—P1—C1—C1136.8 (2)C1—P1—C3—C3175.4 (2)
C3—P1—C1—C1183.8 (2)S1—P1—C3—C31158.18 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C32—H32B···Cl30.982.753.452 (3)130
C3—H3···Cl31.002.893.476 (3)118
C13—H13A···Cl30.982.853.729 (3)150
C13—H13B···Cl2i0.982.773.704 (3)160
C31—H31A···Cl1ii0.982.873.372 (3)113
C13—H13C···Cl2iii0.982.913.878 (3)170
C32—H32A···Cl3iv0.982.913.800 (3)152
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+1/2, z+3/2; (iii) x+1, y+1, z+2; (iv) x, y+1, z+1.
(tert-Butyldipropan-2-ylphosphane sulfide-κS)trichloridogold(III) (10aa) top
Crystal data top
[AuCl3(C10H23PS)]F(000) = 976
Mr = 509.63Dx = 2.073 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.9363 (3) ÅCell parameters from 14677 reflections
b = 14.4096 (4) Åθ = 2.8–30.4°
c = 14.2851 (4) ŵ = 9.70 mm1
β = 91.774 (3)°T = 100 K
V = 1632.85 (9) Å3Block, red
Z = 40.3 × 0.2 × 0.2 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
4881 independent reflections
Radiation source: Enhance (Mo) X-ray Source4296 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.046
ω scanθmax = 30.8°, θmin = 2.8°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
h = 1111
Tmin = 0.159, Tmax = 0.247k = 2019
42542 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.045H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0115P)2 + 2.5557P]
where P = (Fo2 + 2Fc2)/3
4881 reflections(Δ/σ)max = 0.001
152 parametersΔρmax = 2.52 e Å3
0 restraintsΔρmin = 1.50 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.47137 (2)0.07045 (2)0.32157 (2)0.01326 (4)
Cl10.43370 (11)0.01606 (6)0.17013 (5)0.02278 (17)
Cl20.18806 (10)0.09762 (6)0.32608 (6)0.02314 (17)
Cl30.75081 (10)0.03377 (6)0.31862 (6)0.02016 (16)
S10.49165 (10)0.12326 (5)0.47552 (5)0.01625 (16)
P10.65482 (10)0.23397 (5)0.48821 (5)0.01177 (15)
C10.6113 (4)0.3267 (2)0.3991 (2)0.0177 (7)
C20.6125 (4)0.2749 (2)0.6072 (2)0.0164 (6)
H20.7015340.3213150.6248800.020*
C30.8755 (4)0.1971 (2)0.4808 (2)0.0217 (7)
H30.8895220.1773940.4143480.026*
C110.6778 (4)0.4205 (2)0.4368 (2)0.0226 (7)
H11A0.6641360.4678850.3879200.034*
H11B0.7974480.4145010.4547910.034*
H11C0.6140840.4386480.4915010.034*
C120.4234 (5)0.3349 (3)0.3759 (3)0.0324 (9)
H12A0.3633740.3494230.4330180.049*
H12B0.3815450.2760830.3498100.049*
H12C0.4042010.3845910.3299030.049*
C130.7034 (6)0.3016 (2)0.3089 (2)0.0331 (9)
H13A0.6691560.2393510.2881110.050*
H13B0.8254290.3026580.3214900.050*
H13C0.6739480.3467380.2597450.050*
C210.4421 (5)0.3221 (2)0.6167 (2)0.0247 (8)
H21A0.3519000.2779800.6003470.037*
H21B0.4346120.3755980.5744830.037*
H21C0.4302370.3429530.6814600.037*
C220.6245 (5)0.1950 (3)0.6794 (2)0.0278 (8)
H22A0.6126840.2202190.7425660.042*
H22B0.7340420.1641980.6752590.042*
H22C0.5342060.1500640.6660930.042*
C311.0042 (5)0.2758 (3)0.4984 (4)0.0467 (13)
H31A0.9879410.3026400.5605310.070*
H31B0.9876100.3239880.4505860.070*
H31C1.1187120.2508440.4953470.070*
C320.9210 (5)0.1124 (3)0.5405 (3)0.0389 (11)
H32A1.0252320.0846180.5183260.058*
H32B0.8295550.0667600.5354280.058*
H32C0.9374410.1312860.6060220.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01406 (6)0.01090 (6)0.01491 (6)0.00074 (5)0.00199 (4)0.00097 (4)
Cl10.0267 (4)0.0249 (4)0.0166 (4)0.0004 (3)0.0017 (3)0.0040 (3)
Cl20.0141 (4)0.0280 (4)0.0274 (4)0.0012 (3)0.0008 (3)0.0010 (3)
Cl30.0158 (4)0.0216 (4)0.0232 (4)0.0025 (3)0.0025 (3)0.0077 (3)
S10.0198 (4)0.0138 (4)0.0154 (4)0.0050 (3)0.0055 (3)0.0016 (3)
P10.0117 (4)0.0104 (4)0.0132 (4)0.0005 (3)0.0017 (3)0.0007 (3)
C10.0267 (17)0.0126 (15)0.0141 (15)0.0007 (13)0.0026 (13)0.0024 (12)
C20.0171 (15)0.0186 (16)0.0136 (14)0.0001 (12)0.0031 (12)0.0049 (12)
C30.0162 (16)0.0229 (18)0.0261 (18)0.0047 (13)0.0000 (13)0.0079 (14)
C110.0268 (18)0.0126 (16)0.0287 (18)0.0035 (13)0.0069 (14)0.0010 (13)
C120.036 (2)0.0202 (19)0.040 (2)0.0030 (16)0.0183 (18)0.0052 (16)
C130.064 (3)0.0171 (18)0.0192 (17)0.0021 (18)0.0139 (18)0.0036 (14)
C210.0299 (19)0.0241 (18)0.0205 (17)0.0074 (15)0.0094 (15)0.0023 (14)
C220.036 (2)0.033 (2)0.0152 (16)0.0104 (17)0.0005 (15)0.0009 (15)
C310.0168 (19)0.046 (3)0.077 (3)0.0011 (18)0.001 (2)0.037 (2)
C320.032 (2)0.054 (3)0.031 (2)0.029 (2)0.0032 (17)0.0061 (19)
Geometric parameters (Å, º) top
Au1—Cl32.2815 (8)C11—H11C0.9800
Au1—Cl22.2851 (8)C12—H12A0.9800
Au1—Cl12.3116 (8)C12—H12B0.9800
Au1—S12.3281 (8)C12—H12C0.9800
S1—P12.0592 (11)C13—H13A0.9800
P1—C31.836 (3)C13—H13B0.9800
P1—C21.839 (3)C13—H13C0.9800
P1—C11.871 (3)C21—H21A0.9800
C1—C121.522 (5)C21—H21B0.9800
C1—C111.541 (4)C21—H21C0.9800
C1—C131.544 (4)C22—H22A0.9800
C2—C211.524 (4)C22—H22B0.9800
C2—C221.546 (5)C22—H22C0.9800
C2—H21.0000C31—H31A0.9800
C3—C321.527 (5)C31—H31B0.9800
C3—C311.542 (5)C31—H31C0.9800
C3—H31.0000C32—H32A0.9800
C11—H11A0.9800C32—H32B0.9800
C11—H11B0.9800C32—H32C0.9800
Cl3—Au1—Cl2176.43 (3)C1—C12—H12A109.5
Cl3—Au1—Cl190.10 (3)C1—C12—H12B109.5
Cl2—Au1—Cl189.18 (3)H12A—C12—H12B109.5
Cl3—Au1—S193.11 (3)C1—C12—H12C109.5
Cl2—Au1—S187.51 (3)H12A—C12—H12C109.5
Cl1—Au1—S1176.43 (3)H12B—C12—H12C109.5
P1—S1—Au1111.18 (4)C1—C13—H13A109.5
C3—P1—C2110.36 (15)C1—C13—H13B109.5
C3—P1—C1108.88 (16)H13A—C13—H13B109.5
C2—P1—C1111.39 (14)C1—C13—H13C109.5
C3—P1—S1111.66 (12)H13A—C13—H13C109.5
C2—P1—S1101.38 (11)H13B—C13—H13C109.5
C1—P1—S1113.03 (11)C2—C21—H21A109.5
C12—C1—C11109.3 (3)C2—C21—H21B109.5
C12—C1—C13108.8 (3)H21A—C21—H21B109.5
C11—C1—C13109.3 (3)C2—C21—H21C109.5
C12—C1—P1111.3 (2)H21A—C21—H21C109.5
C11—C1—P1109.5 (2)H21B—C21—H21C109.5
C13—C1—P1108.6 (2)C2—C22—H22A109.5
C21—C2—C22108.0 (3)C2—C22—H22B109.5
C21—C2—P1114.4 (2)H22A—C22—H22B109.5
C22—C2—P1111.6 (2)C2—C22—H22C109.5
C21—C2—H2107.5H22A—C22—H22C109.5
C22—C2—H2107.5H22B—C22—H22C109.5
P1—C2—H2107.5C3—C31—H31A109.5
C32—C3—C31110.7 (3)C3—C31—H31B109.5
C32—C3—P1114.1 (3)H31A—C31—H31B109.5
C31—C3—P1113.9 (2)C3—C31—H31C109.5
C32—C3—H3105.8H31A—C31—H31C109.5
C31—C3—H3105.8H31B—C31—H31C109.5
P1—C3—H3105.8C3—C32—H32A109.5
C1—C11—H11A109.5C3—C32—H32B109.5
C1—C11—H11B109.5H32A—C32—H32B109.5
H11A—C11—H11B109.5C3—C32—H32C109.5
C1—C11—H11C109.5H32A—C32—H32C109.5
H11A—C11—H11C109.5H32B—C32—H32C109.5
H11B—C11—H11C109.5
Cl3—Au1—S1—P161.27 (5)S1—P1—C1—C1385.6 (3)
Cl2—Au1—S1—P1122.25 (5)C3—P1—C2—C21170.2 (2)
Au1—S1—P1—C373.62 (13)C1—P1—C2—C2149.1 (3)
Au1—S1—P1—C2168.88 (11)S1—P1—C2—C2171.3 (2)
Au1—S1—P1—C149.55 (12)C3—P1—C2—C2266.8 (3)
C3—P1—C1—C12158.8 (2)C1—P1—C2—C22172.2 (2)
C2—P1—C1—C1279.2 (3)S1—P1—C2—C2251.7 (2)
S1—P1—C1—C1234.1 (3)C2—P1—C3—C3265.5 (3)
C3—P1—C1—C1180.2 (2)C1—P1—C3—C32172.0 (3)
C2—P1—C1—C1141.7 (3)S1—P1—C3—C3246.5 (3)
S1—P1—C1—C11155.07 (19)C2—P1—C3—C3163.0 (3)
C3—P1—C1—C1339.1 (3)C1—P1—C3—C3159.6 (3)
C2—P1—C1—C13161.0 (2)S1—P1—C3—C31174.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Cl31.002.703.427 (3)130
C3—H3···Cl2i1.002.953.665 (3)129
C21—H21C···Cl2ii0.982.993.706 (4)131
C22—H22A···Cl2ii0.982.943.675 (4)133
C13—H13C···Cl3iii0.982.993.832 (4)145
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+3/2, y+1/2, z+1/2.
Trichlorido[di-tert-butyl(propan-2-yl)phosphane sulfide-κS]gold(III) (11a) top
Crystal data top
[AuCl3(C11H25PS)]Z = 2
Mr = 523.66F(000) = 504
Triclinic, P1Dx = 2.011 Mg m3
a = 8.6034 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.7779 (4) ÅCell parameters from 31596 reflections
c = 11.4231 (4) Åθ = 2.2–30.8°
α = 78.876 (3)°µ = 9.16 mm1
β = 71.456 (4)°T = 100 K
γ = 72.702 (4)°Plate, red
V = 864.69 (7) Å30.15 × 0.15 × 0.08 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
5155 independent reflections
Radiation source: Enhance (Mo) X-ray Source4939 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.038
ω scanθmax = 30.8°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
h = 1212
Tmin = 0.577, Tmax = 1.000k = 1414
68815 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.016H-atom parameters constrained
wR(F2) = 0.036 w = 1/[σ2(Fo2) + (0.0168P)2 + 0.7385P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.003
5155 reflectionsΔρmax = 1.64 e Å3
163 parametersΔρmin = 0.93 e Å3
0 restraintsExtinction correction: SHELXL-2019/3 (Sheldrick, 2015), Fc* = kFc[1 + 0.001 Fc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00097 (14)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.46476 (2)0.35014 (2)0.24072 (2)0.01322 (3)
Cl10.53637 (8)0.12179 (5)0.34127 (5)0.02358 (11)
Cl20.73242 (6)0.37151 (5)0.21222 (5)0.02016 (10)
Cl30.20542 (7)0.31734 (5)0.25815 (5)0.02182 (10)
S10.40624 (6)0.58036 (5)0.13465 (4)0.01345 (9)
P10.21575 (6)0.72281 (5)0.24712 (4)0.00958 (8)
C10.2568 (2)0.7093 (2)0.40129 (16)0.0120 (3)
C20.2277 (2)0.8996 (2)0.15054 (16)0.0129 (3)
C30.0119 (2)0.6799 (2)0.27290 (18)0.0144 (4)
H30.0284730.5776690.3116030.017*
C110.1566 (3)0.8445 (2)0.46903 (18)0.0166 (4)
H11A0.1754630.8303390.5512280.025*
H11B0.0354820.8606540.4783650.025*
H11C0.1953080.9284040.4205050.025*
C120.4458 (2)0.6884 (2)0.38625 (18)0.0160 (4)
H12A0.4648840.6742790.4683680.024*
H12B0.4814110.7738600.3384570.024*
H12C0.5118380.6036220.3423370.024*
C130.2023 (3)0.5771 (2)0.48235 (17)0.0154 (4)
H13A0.2615770.4912740.4385340.023*
H13B0.0796700.5924220.4991180.023*
H13C0.2308810.5635230.5609950.023*
C210.2573 (3)0.8834 (2)0.01298 (18)0.0187 (4)
H21A0.2495790.9782720.0354940.028*
H21B0.1709710.8414590.0055950.028*
H21C0.3700120.8201300.0186030.028*
C220.0615 (3)1.0154 (2)0.19359 (19)0.0172 (4)
H22A0.0738031.1091410.1480520.026*
H22B0.0362611.0204470.2828050.026*
H22C0.0312810.9903370.1772970.026*
C230.3768 (3)0.9485 (2)0.15964 (19)0.0179 (4)
H23A0.4818930.8731380.1352930.027*
H23B0.3574710.9662810.2453170.027*
H23C0.3864031.0373640.1041320.027*
C310.0281 (3)0.6790 (2)0.1513 (2)0.0231 (4)
H31A0.1163730.6278570.1680740.035*
H31B0.0745820.6301930.0920180.035*
H31C0.0679010.7783490.1163370.035*
C320.1431 (3)0.7650 (2)0.3650 (2)0.0204 (4)
H32A0.1662240.8673470.3332100.031*
H32B0.1200540.7530220.4455600.031*
H32C0.2418040.7288600.3749720.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01600 (5)0.01034 (4)0.01333 (4)0.00004 (3)0.00561 (3)0.00404 (2)
Cl10.0333 (3)0.0125 (2)0.0272 (2)0.00151 (19)0.0165 (2)0.00033 (18)
Cl20.0157 (2)0.0205 (2)0.0245 (2)0.00003 (18)0.00744 (18)0.00704 (18)
Cl30.0195 (2)0.0144 (2)0.0338 (3)0.00423 (18)0.0088 (2)0.00533 (18)
S10.0157 (2)0.0119 (2)0.01053 (18)0.00038 (16)0.00253 (16)0.00305 (15)
P10.0100 (2)0.00913 (19)0.00972 (19)0.00157 (16)0.00349 (16)0.00143 (15)
C10.0121 (9)0.0137 (8)0.0104 (7)0.0006 (7)0.0049 (6)0.0026 (6)
C20.0159 (9)0.0111 (8)0.0114 (8)0.0040 (7)0.0039 (7)0.0006 (6)
C30.0118 (9)0.0122 (8)0.0209 (9)0.0040 (7)0.0074 (7)0.0008 (7)
C110.0174 (10)0.0167 (9)0.0146 (8)0.0000 (7)0.0041 (7)0.0067 (7)
C120.0121 (9)0.0194 (9)0.0176 (9)0.0008 (7)0.0066 (7)0.0053 (7)
C130.0185 (10)0.0145 (9)0.0115 (8)0.0015 (7)0.0050 (7)0.0003 (6)
C210.0268 (11)0.0170 (9)0.0128 (8)0.0073 (8)0.0065 (8)0.0017 (7)
C220.0186 (10)0.0113 (8)0.0205 (9)0.0012 (7)0.0074 (8)0.0004 (7)
C230.0198 (10)0.0167 (9)0.0179 (9)0.0086 (8)0.0034 (7)0.0000 (7)
C310.0244 (12)0.0246 (11)0.0282 (11)0.0105 (9)0.0169 (9)0.0023 (8)
C320.0096 (9)0.0199 (10)0.0283 (10)0.0027 (7)0.0033 (8)0.0007 (8)
Geometric parameters (Å, º) top
Au1—Cl22.2881 (5)C12—H12B0.9800
Au1—Cl32.2889 (5)C12—H12C0.9800
Au1—Cl12.3080 (5)C13—H13A0.9800
Au1—S12.3346 (5)C13—H13B0.9800
S1—P12.0665 (6)C13—H13C0.9800
P1—C31.8442 (19)C21—H21A0.9800
P1—C21.8741 (18)C21—H21B0.9800
P1—C11.8765 (18)C21—H21C0.9800
C1—C121.534 (3)C22—H22A0.9800
C1—C131.540 (3)C22—H22B0.9800
C1—C111.543 (3)C22—H22C0.9800
C2—C231.535 (3)C23—H23A0.9800
C2—C221.541 (3)C23—H23B0.9800
C2—C211.542 (3)C23—H23C0.9800
C3—C311.535 (3)C31—H31A0.9800
C3—C321.537 (3)C31—H31B0.9800
C3—H31.0000C31—H31C0.9800
C11—H11A0.9800C32—H32A0.9800
C11—H11B0.9800C32—H32B0.9800
C11—H11C0.9800C32—H32C0.9800
C12—H12A0.9800
Cl2—Au1—Cl3175.769 (17)C1—C12—H12C109.5
Cl2—Au1—Cl189.44 (2)H12A—C12—H12C109.5
Cl3—Au1—Cl189.35 (2)H12B—C12—H12C109.5
Cl2—Au1—S187.963 (19)C1—C13—H13A109.5
Cl3—Au1—S193.175 (19)C1—C13—H13B109.5
Cl1—Au1—S1177.237 (19)H13A—C13—H13B109.5
P1—S1—Au1111.35 (2)C1—C13—H13C109.5
C3—P1—C2112.66 (9)H13A—C13—H13C109.5
C3—P1—C1108.88 (9)H13B—C13—H13C109.5
C2—P1—C1113.61 (8)C2—C21—H21A109.5
C3—P1—S1109.17 (7)C2—C21—H21B109.5
C2—P1—S1101.48 (6)H21A—C21—H21B109.5
C1—P1—S1110.81 (6)C2—C21—H21C109.5
C12—C1—C13108.33 (16)H21A—C21—H21C109.5
C12—C1—C11108.22 (16)H21B—C21—H21C109.5
C13—C1—C11108.84 (15)C2—C22—H22A109.5
C12—C1—P1111.17 (13)C2—C22—H22B109.5
C13—C1—P1108.09 (13)H22A—C22—H22B109.5
C11—C1—P1112.11 (13)C2—C22—H22C109.5
C23—C2—C22109.55 (16)H22A—C22—H22C109.5
C23—C2—C21107.67 (16)H22B—C22—H22C109.5
C22—C2—C21108.83 (16)C2—C23—H23A109.5
C23—C2—P1110.43 (13)C2—C23—H23B109.5
C22—C2—P1110.44 (13)H23A—C23—H23B109.5
C21—C2—P1109.85 (13)C2—C23—H23C109.5
C31—C3—C32110.93 (17)H23A—C23—H23C109.5
C31—C3—P1112.85 (14)H23B—C23—H23C109.5
C32—C3—P1116.89 (14)C3—C31—H31A109.5
C31—C3—H3105.0C3—C31—H31B109.5
C32—C3—H3105.0H31A—C31—H31B109.5
P1—C3—H3105.0C3—C31—H31C109.5
C1—C11—H11A109.5H31A—C31—H31C109.5
C1—C11—H11B109.5H31B—C31—H31C109.5
H11A—C11—H11B109.5C3—C32—H32A109.5
C1—C11—H11C109.5C3—C32—H32B109.5
H11A—C11—H11C109.5H32A—C32—H32B109.5
H11B—C11—H11C109.5C3—C32—H32C109.5
C1—C12—H12A109.5H32A—C32—H32C109.5
C1—C12—H12B109.5H32B—C32—H32C109.5
H12A—C12—H12B109.5
Cl2—Au1—S1—P1117.55 (3)C1—P1—C2—C2341.02 (16)
Cl3—Au1—S1—P166.53 (3)S1—P1—C2—C2377.95 (13)
Au1—S1—P1—C371.70 (7)C3—P1—C2—C2244.11 (16)
Au1—S1—P1—C2169.16 (6)C1—P1—C2—C2280.31 (15)
Au1—S1—P1—C148.21 (7)S1—P1—C2—C22160.72 (12)
C3—P1—C1—C12159.11 (13)C3—P1—C2—C2175.95 (16)
C2—P1—C1—C1274.46 (15)C1—P1—C2—C21159.63 (13)
S1—P1—C1—C1239.02 (14)S1—P1—C2—C2140.66 (14)
C3—P1—C1—C1340.34 (15)C2—P1—C3—C3156.54 (17)
C2—P1—C1—C13166.77 (12)C1—P1—C3—C31176.48 (14)
S1—P1—C1—C1379.75 (13)S1—P1—C3—C3155.39 (15)
C3—P1—C1—C1179.62 (15)C2—P1—C3—C3273.88 (16)
C2—P1—C1—C1146.82 (16)C1—P1—C3—C3253.10 (16)
S1—P1—C1—C11160.30 (12)S1—P1—C3—C32174.19 (13)
C3—P1—C2—C23165.44 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···Au10.982.713.6142 (19)154
C12—H12C···S10.982.863.391 (2)115
C3—H3···Cl31.002.623.451 (2)140
C12—H12C···Cl20.982.813.788 (2)174
C13—H13C···Cl2i0.982.913.851 (2)161
Symmetry code: (i) x+1, y+1, z+1.
Trichlorido[di-tert-butyl(propan-2-yl)phosphane sulfide-κS]gold(III) chloroform-d monosilvate (11aa) top
Crystal data top
[AuCl3(C11H25PS)]·CDCl3Z = 2
Mr = 644.03F(000) = 620
Triclinic, P1Dx = 2.031 Mg m3
a = 9.6382 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.2787 (3) ÅCell parameters from 35195 reflections
c = 11.8483 (5) Åθ = 2.3–30.9°
α = 75.115 (3)°µ = 7.91 mm1
β = 68.875 (4)°T = 101 K
γ = 89.728 (3)°Plate, dichroic red / orange
V = 1053.13 (8) Å30.15 × 0.06 × 0.05 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
6247 independent reflections
Radiation source: fine-focus sealed tube5976 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.038
ω scanθmax = 30.9°, θmin = 2.3°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
h = 1313
Tmin = 0.454, Tmax = 1.000k = 1414
76947 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.016H-atom parameters constrained
wR(F2) = 0.033 w = 1/[σ2(Fo2) + (0.0135P)2 + 0.8433P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
6247 reflectionsΔρmax = 1.02 e Å3
199 parametersΔρmin = 0.95 e Å3
0 restraintsExtinction correction: SHELXL-2019/3 (Sheldrick, 2015), Fc* = kFc[1 + 0.001 Fc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00133 (9)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.71266 (2)0.36753 (2)0.29738 (2)0.01055 (3)
Cl10.85075 (5)0.38930 (5)0.41619 (4)0.01711 (9)
Cl20.62356 (5)0.57177 (5)0.31290 (5)0.01741 (9)
Cl30.81385 (5)0.16897 (5)0.27791 (4)0.01599 (9)
S10.58436 (5)0.35877 (5)0.16572 (4)0.01218 (8)
P10.41142 (5)0.20633 (5)0.24806 (4)0.00919 (8)
C10.28613 (19)0.21927 (19)0.40702 (17)0.0122 (3)
C20.3218 (2)0.23846 (19)0.12786 (17)0.0124 (3)
C30.4907 (2)0.04179 (18)0.26592 (18)0.0130 (3)
H30.5539040.0453020.3161950.016*
C110.1340 (2)0.1352 (2)0.45315 (18)0.0163 (4)
H11A0.0803150.1734340.3978910.024*
H11B0.0745310.1373800.5392880.024*
H11C0.1505190.0414300.4515380.024*
C120.2587 (2)0.3669 (2)0.40576 (19)0.0171 (4)
H12A0.2030300.3718370.4917470.026*
H12B0.2007080.4009800.3531360.026*
H12C0.3547550.4221520.3715870.026*
C130.3657 (2)0.1650 (2)0.49907 (18)0.0168 (4)
H13A0.3045360.1740260.5825470.025*
H13B0.4631100.2169980.4689320.025*
H13C0.3798860.0694800.5042860.025*
C210.4419 (2)0.2753 (2)0.00570 (18)0.0168 (4)
H21A0.4981510.3616080.0217240.025*
H21B0.3939930.2834220.0670860.025*
H21C0.5102910.2043450.0134150.025*
C220.2238 (2)0.1106 (2)0.14607 (19)0.0164 (4)
H22A0.1724670.1301200.0865400.025*
H22B0.1496950.0834150.2322450.025*
H22C0.2870560.0371310.1309720.025*
C230.2252 (2)0.3569 (2)0.13874 (19)0.0175 (4)
H23A0.1913710.3805260.0679320.026*
H23B0.2841110.4351020.1373230.026*
H23C0.1382210.3306730.2179060.026*
C310.5994 (2)0.0242 (2)0.1402 (2)0.0194 (4)
H31A0.5427610.0049960.0913570.029*
H31B0.6586400.0511770.1564290.029*
H31C0.6662690.1074160.0927790.029*
C320.3807 (2)0.0861 (2)0.3403 (2)0.0188 (4)
H32A0.4358000.1664230.3393730.028*
H32B0.3072850.0903000.3013680.028*
H32C0.3290150.0828750.4273310.028*
C990.9953 (2)0.7075 (2)0.19499 (19)0.0174 (4)
D990.9089010.6508660.2673270.021*
Cl41.15235 (7)0.69803 (6)0.23818 (6)0.03287 (13)
Cl51.02700 (7)0.64377 (7)0.06444 (5)0.03256 (13)
Cl60.94906 (6)0.87534 (5)0.16252 (6)0.02991 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.00947 (3)0.00984 (4)0.01275 (4)0.00047 (2)0.00505 (2)0.00240 (2)
Cl10.0184 (2)0.0171 (2)0.0213 (2)0.00185 (17)0.01281 (18)0.00659 (18)
Cl20.0179 (2)0.0133 (2)0.0260 (2)0.00321 (16)0.01179 (18)0.00836 (18)
Cl30.01472 (19)0.0135 (2)0.0228 (2)0.00333 (16)0.00933 (17)0.00660 (17)
S10.01193 (18)0.0116 (2)0.01239 (19)0.00215 (15)0.00557 (16)0.00065 (16)
P10.00947 (18)0.0086 (2)0.0102 (2)0.00033 (15)0.00460 (16)0.00252 (16)
C10.0111 (7)0.0147 (9)0.0112 (8)0.0001 (6)0.0038 (6)0.0045 (7)
C20.0139 (8)0.0125 (9)0.0126 (8)0.0009 (6)0.0074 (7)0.0029 (7)
C30.0146 (8)0.0104 (8)0.0168 (9)0.0029 (6)0.0089 (7)0.0037 (7)
C110.0116 (8)0.0188 (10)0.0167 (9)0.0022 (7)0.0029 (7)0.0049 (7)
C120.0163 (8)0.0169 (10)0.0192 (9)0.0021 (7)0.0051 (7)0.0093 (8)
C130.0170 (9)0.0215 (10)0.0116 (8)0.0005 (7)0.0059 (7)0.0031 (7)
C210.0206 (9)0.0180 (10)0.0128 (8)0.0012 (7)0.0079 (7)0.0034 (7)
C220.0183 (9)0.0157 (9)0.0192 (9)0.0001 (7)0.0111 (7)0.0055 (7)
C230.0179 (9)0.0155 (9)0.0229 (10)0.0046 (7)0.0122 (8)0.0049 (8)
C310.0216 (9)0.0184 (10)0.0230 (10)0.0086 (8)0.0102 (8)0.0112 (8)
C320.0227 (9)0.0109 (9)0.0251 (10)0.0003 (7)0.0134 (8)0.0025 (8)
C990.0163 (8)0.0164 (10)0.0190 (9)0.0002 (7)0.0071 (7)0.0034 (8)
Cl40.0319 (3)0.0245 (3)0.0538 (4)0.0034 (2)0.0308 (3)0.0084 (3)
Cl50.0323 (3)0.0471 (4)0.0242 (3)0.0140 (3)0.0109 (2)0.0191 (3)
Cl60.0246 (2)0.0168 (2)0.0473 (3)0.0038 (2)0.0153 (2)0.0042 (2)
Geometric parameters (Å, º) top
Au1—Cl32.2871 (5)C13—H13A0.9800
Au1—Cl22.2903 (5)C13—H13B0.9800
Au1—Cl12.3060 (4)C13—H13C0.9800
Au1—S12.3312 (4)C21—H21A0.9800
S1—P12.0622 (6)C21—H21B0.9800
P1—C31.8465 (19)C21—H21C0.9800
P1—C11.8737 (18)C22—H22A0.9800
P1—C21.8778 (18)C22—H22B0.9800
C1—C121.537 (3)C22—H22C0.9800
C1—C131.541 (2)C23—H23A0.9800
C1—C111.545 (2)C23—H23B0.9800
C2—C231.532 (3)C23—H23C0.9800
C2—C211.538 (3)C31—H31A0.9800
C2—C221.544 (3)C31—H31B0.9800
C3—C311.536 (3)C31—H31C0.9800
C3—C321.540 (3)C32—H32A0.9800
C3—H31.0000C32—H32B0.9800
C11—H11A0.9800C32—H32C0.9800
C11—H11B0.9800C99—Cl51.758 (2)
C11—H11C0.9800C99—Cl41.759 (2)
C12—H12A0.9800C99—Cl61.761 (2)
C12—H12B0.9800C99—D991.0000
C12—H12C0.9800
Cl3—Au1—Cl2177.050 (16)C1—C13—H13A109.5
Cl3—Au1—Cl188.505 (17)C1—C13—H13B109.5
Cl2—Au1—Cl189.783 (17)H13A—C13—H13B109.5
Cl3—Au1—S192.936 (17)C1—C13—H13C109.5
Cl2—Au1—S188.609 (16)H13A—C13—H13C109.5
Cl1—Au1—S1175.816 (16)H13B—C13—H13C109.5
P1—S1—Au1111.96 (2)C2—C21—H21A109.5
C3—P1—C1108.94 (8)C2—C21—H21B109.5
C3—P1—C2112.62 (8)H21A—C21—H21B109.5
C1—P1—C2114.39 (8)C2—C21—H21C109.5
C3—P1—S1108.73 (6)H21A—C21—H21C109.5
C1—P1—S1110.75 (6)H21B—C21—H21C109.5
C2—P1—S1101.09 (6)C2—C22—H22A109.5
C12—C1—C13108.22 (15)C2—C22—H22B109.5
C12—C1—C11108.90 (15)H22A—C22—H22B109.5
C13—C1—C11109.41 (15)C2—C22—H22C109.5
C12—C1—P1111.28 (13)H22A—C22—H22C109.5
C13—C1—P1107.56 (12)H22B—C22—H22C109.5
C11—C1—P1111.40 (12)C2—C23—H23A109.5
C23—C2—C21107.64 (15)C2—C23—H23B109.5
C23—C2—C22109.35 (15)H23A—C23—H23B109.5
C21—C2—C22108.61 (15)C2—C23—H23C109.5
C23—C2—P1110.76 (13)H23A—C23—H23C109.5
C21—C2—P1110.35 (12)H23B—C23—H23C109.5
C22—C2—P1110.07 (12)C3—C31—H31A109.5
C31—C3—C32110.45 (16)C3—C31—H31B109.5
C31—C3—P1112.59 (13)H31A—C31—H31B109.5
C32—C3—P1117.44 (13)C3—C31—H31C109.5
C31—C3—H3105.0H31A—C31—H31C109.5
C32—C3—H3105.0H31B—C31—H31C109.5
P1—C3—H3105.0C3—C32—H32A109.5
C1—C11—H11A109.5C3—C32—H32B109.5
C1—C11—H11B109.5H32A—C32—H32B109.5
H11A—C11—H11B109.5C3—C32—H32C109.5
C1—C11—H11C109.5H32A—C32—H32C109.5
H11A—C11—H11C109.5H32B—C32—H32C109.5
H11B—C11—H11C109.5Cl5—C99—Cl4110.93 (11)
C1—C12—H12A109.5Cl5—C99—Cl6110.46 (11)
C1—C12—H12B109.5Cl4—C99—Cl6110.43 (11)
H12A—C12—H12B109.5Cl5—C99—D99108.3
C1—C12—H12C109.5Cl4—C99—D99108.3
H12A—C12—H12C109.5Cl6—C99—D99108.3
H12B—C12—H12C109.5
Cl3—Au1—S1—P169.79 (3)C1—P1—C2—C2340.95 (16)
Cl2—Au1—S1—P1112.73 (3)S1—P1—C2—C2378.08 (13)
Au1—S1—P1—C366.93 (7)C3—P1—C2—C2174.85 (15)
Au1—S1—P1—C152.74 (7)C1—P1—C2—C21160.04 (13)
Au1—S1—P1—C2174.37 (6)S1—P1—C2—C2141.01 (14)
C3—P1—C1—C12161.09 (12)C3—P1—C2—C2245.01 (15)
C2—P1—C1—C1271.89 (14)C1—P1—C2—C2280.10 (15)
S1—P1—C1—C1241.54 (13)S1—P1—C2—C22160.87 (12)
C3—P1—C1—C1342.71 (14)C1—P1—C3—C31178.11 (13)
C2—P1—C1—C13169.73 (12)C2—P1—C3—C3153.87 (15)
S1—P1—C1—C1376.84 (13)S1—P1—C3—C3157.31 (14)
C3—P1—C1—C1177.18 (14)C1—P1—C3—C3251.93 (16)
C2—P1—C1—C1149.84 (16)C2—P1—C3—C3276.10 (16)
S1—P1—C1—C11163.27 (11)S1—P1—C3—C32172.72 (12)
C3—P1—C2—C23166.06 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13B···Au10.982.683.6027 (19)156
C21—H21A···S10.982.633.1082 (19)110
C12—H12C···S10.982.863.411 (2)116
C3—H3···Cl31.002.653.4471 (18)137
C12—H12C···Cl20.982.783.755 (2)171
C99—D99···Cl11.002.743.537 (2)137
C99—D99···Cl21.002.693.489 (2)137
C12—H12A···Cl1i0.982.913.596 (2)128
Symmetry code: (i) x+1, y+1, z+1.
Trichlorido(tri-tert-butylphosphane sulfide-κS)gold(III) dichloromethane monosolvate (12a) top
Crystal data top
[AuCl3(C12H27PS)]·CH2Cl2Z = 2
Mr = 622.61F(000) = 604
Triclinic, P1Dx = 1.924 Mg m3
a = 8.4202 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.2194 (4) ÅCell parameters from 47731 reflections
c = 11.8355 (4) Åθ = 2.8–30.6°
α = 98.398 (3)°µ = 7.63 mm1
β = 101.174 (3)°T = 100 K
γ = 95.991 (3)°Block, red
V = 1074.95 (7) Å30.15 × 0.1 × 0.1 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
6558 independent reflections
Radiation source: Enhance (Mo) X-ray Source6124 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.054
ω–scanθmax = 31.1°, θmin = 2.3°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
h = 1212
Tmin = 0.783, Tmax = 1.000k = 1616
157605 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.037H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0147P)2 + 0.9642P]
where P = (Fo2 + 2Fc2)/3
6558 reflections(Δ/σ)max = 0.002
199 parametersΔρmax = 1.76 e Å3
0 restraintsΔρmin = 1.01 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.53561 (2)0.65489 (2)0.29756 (2)0.01423 (3)
P10.63223 (6)0.33330 (4)0.26499 (4)0.01110 (9)
S10.55574 (6)0.47197 (4)0.36749 (4)0.01588 (10)
Cl10.51329 (8)0.84355 (5)0.24639 (6)0.03068 (13)
Cl20.78232 (7)0.73160 (5)0.41951 (5)0.02751 (12)
Cl30.28358 (6)0.58666 (4)0.18025 (5)0.01819 (10)
C10.6853 (2)0.23096 (17)0.37810 (18)0.0147 (4)
C20.8182 (2)0.38937 (18)0.21024 (18)0.0156 (4)
C30.4579 (2)0.25575 (17)0.14205 (18)0.0152 (4)
C110.7890 (3)0.13553 (18)0.3356 (2)0.0189 (4)
H11A0.8962880.1762370.3320150.028*
H11B0.7337360.0919590.2577320.028*
H11C0.8031830.0776620.3901330.028*
C120.5282 (3)0.16507 (19)0.4010 (2)0.0187 (4)
H12A0.5560460.1216500.4667250.028*
H12B0.4723650.1068690.3310720.028*
H12C0.4560610.2246970.4199710.028*
C130.7792 (3)0.3055 (2)0.49633 (19)0.0204 (4)
H13A0.8068880.2505220.5521040.031*
H13B0.7107420.3627040.5264090.031*
H13C0.8797010.3507960.4856680.031*
C210.8590 (3)0.2910 (2)0.1190 (2)0.0210 (4)
H21A0.9598390.3207580.0962820.031*
H21B0.7692140.2724750.0499610.031*
H21C0.8738610.2171240.1527340.031*
C220.9645 (3)0.4278 (2)0.3140 (2)0.0217 (4)
H22A1.0555080.4697940.2880680.033*
H22B0.9982830.3555820.3442790.033*
H22C0.9330900.4826920.3757080.033*
C230.7922 (3)0.50296 (19)0.1537 (2)0.0198 (4)
H23A0.7850610.5711390.2136480.030*
H23B0.6906940.4861820.0938390.030*
H23C0.8843670.5238570.1174850.030*
C310.4816 (3)0.12534 (18)0.0939 (2)0.0209 (4)
H31A0.3927960.0913820.0265510.031*
H31B0.4804600.0749770.1548790.031*
H31C0.5865120.1265800.0696780.031*
C320.2951 (2)0.25318 (19)0.1836 (2)0.0186 (4)
H32A0.2770110.3365540.2103550.028*
H32B0.2997460.2071140.2482010.028*
H32C0.2052600.2142340.1188180.028*
C330.4420 (3)0.32898 (19)0.04080 (19)0.0191 (4)
H33A0.5382130.3254490.0059220.029*
H33B0.4340620.4138480.0707280.029*
H33C0.3435010.2941820.0186030.029*
C991.0588 (4)0.8679 (2)0.2453 (2)0.0322 (6)
H99A0.9638550.8200520.2629900.039*
H99B1.1414900.8130270.2347830.039*
Cl41.14230 (7)0.98659 (5)0.36326 (5)0.02400 (11)
Cl50.99590 (10)0.92468 (7)0.11422 (6)0.04378 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01635 (4)0.01008 (3)0.01700 (5)0.00177 (2)0.00743 (3)0.00052 (2)
P10.0114 (2)0.0111 (2)0.0110 (2)0.00285 (16)0.00292 (18)0.00101 (17)
S10.0220 (2)0.0139 (2)0.0133 (2)0.00565 (17)0.00704 (19)0.00088 (17)
Cl10.0464 (3)0.0118 (2)0.0372 (3)0.0048 (2)0.0158 (3)0.0055 (2)
Cl20.0202 (2)0.0244 (3)0.0320 (3)0.00319 (19)0.0049 (2)0.0094 (2)
Cl30.0174 (2)0.0178 (2)0.0199 (3)0.00508 (17)0.00395 (19)0.00340 (18)
C10.0158 (9)0.0145 (8)0.0148 (10)0.0040 (7)0.0026 (8)0.0052 (7)
C20.0149 (9)0.0168 (9)0.0174 (11)0.0031 (7)0.0079 (8)0.0041 (7)
C30.0148 (9)0.0131 (8)0.0157 (10)0.0031 (7)0.0012 (8)0.0016 (7)
C110.0204 (10)0.0179 (9)0.0206 (11)0.0084 (8)0.0043 (8)0.0063 (8)
C120.0190 (9)0.0193 (9)0.0197 (11)0.0018 (7)0.0063 (8)0.0071 (8)
C130.0225 (10)0.0235 (10)0.0150 (11)0.0048 (8)0.0008 (9)0.0054 (8)
C210.0214 (10)0.0226 (10)0.0229 (12)0.0087 (8)0.0117 (9)0.0034 (8)
C220.0152 (9)0.0253 (10)0.0239 (12)0.0011 (8)0.0044 (9)0.0047 (9)
C230.0231 (10)0.0186 (9)0.0212 (12)0.0036 (8)0.0109 (9)0.0058 (8)
C310.0230 (10)0.0152 (9)0.0208 (12)0.0048 (8)0.0004 (9)0.0037 (8)
C320.0114 (8)0.0190 (9)0.0237 (12)0.0019 (7)0.0012 (8)0.0013 (8)
C330.0217 (10)0.0204 (10)0.0144 (11)0.0069 (8)0.0011 (8)0.0010 (8)
C990.0485 (15)0.0211 (11)0.0241 (13)0.0000 (10)0.0032 (12)0.0043 (9)
Cl40.0240 (2)0.0242 (2)0.0232 (3)0.00542 (19)0.0015 (2)0.0053 (2)
Cl50.0588 (5)0.0443 (4)0.0230 (3)0.0033 (3)0.0035 (3)0.0075 (3)
Geometric parameters (Å, º) top
Au1—Cl32.2860 (5)C13—H13B0.9800
Au1—Cl22.2894 (6)C13—H13C0.9800
Au1—Cl12.3013 (5)C21—H21A0.9800
Au1—S12.3323 (5)C21—H21B0.9800
P1—C31.888 (2)C21—H21C0.9800
P1—C21.8906 (19)C22—H22A0.9800
P1—C11.906 (2)C22—H22B0.9800
P1—S12.0658 (6)C22—H22C0.9800
C1—C121.537 (3)C23—H23A0.9800
C1—C111.540 (3)C23—H23B0.9800
C1—C131.541 (3)C23—H23C0.9800
C2—C221.536 (3)C31—H31A0.9800
C2—C231.540 (3)C31—H31B0.9800
C2—C211.542 (3)C31—H31C0.9800
C3—C311.538 (3)C32—H32A0.9800
C3—C331.542 (3)C32—H32B0.9800
C3—C321.542 (3)C32—H32C0.9800
C11—H11A0.9800C33—H33A0.9800
C11—H11B0.9800C33—H33B0.9800
C11—H11C0.9800C33—H33C0.9800
C12—H12A0.9800C99—Cl41.760 (3)
C12—H12B0.9800C99—Cl51.770 (3)
C12—H12C0.9800C99—H99A0.9900
C13—H13A0.9800C99—H99B0.9900
Cl3—Au1—Cl2176.996 (18)C1—C13—H13C109.5
Cl3—Au1—Cl188.53 (2)H13A—C13—H13C109.5
Cl2—Au1—Cl189.55 (2)H13B—C13—H13C109.5
Cl3—Au1—S193.402 (18)C2—C21—H21A109.5
Cl2—Au1—S188.30 (2)C2—C21—H21B109.5
Cl1—Au1—S1174.441 (19)H21A—C21—H21B109.5
C3—P1—C2112.33 (9)C2—C21—H21C109.5
C3—P1—C1111.29 (9)H21A—C21—H21C109.5
C2—P1—C1111.38 (9)H21B—C21—H21C109.5
C3—P1—S1110.17 (6)C2—C22—H22A109.5
C2—P1—S1111.66 (6)C2—C22—H22B109.5
C1—P1—S199.33 (6)H22A—C22—H22B109.5
P1—S1—Au1117.50 (3)C2—C22—H22C109.5
C12—C1—C11108.93 (16)H22A—C22—H22C109.5
C12—C1—C13106.51 (17)H22B—C22—H22C109.5
C11—C1—C13109.07 (17)C2—C23—H23A109.5
C12—C1—P1110.11 (14)C2—C23—H23B109.5
C11—C1—P1110.82 (14)H23A—C23—H23B109.5
C13—C1—P1111.28 (13)C2—C23—H23C109.5
C22—C2—C23106.45 (17)H23A—C23—H23C109.5
C22—C2—C21110.01 (17)H23B—C23—H23C109.5
C23—C2—C21108.11 (17)C3—C31—H31A109.5
C22—C2—P1109.39 (14)C3—C31—H31B109.5
C23—C2—P1111.29 (13)H31A—C31—H31B109.5
C21—C2—P1111.46 (14)C3—C31—H31C109.5
C31—C3—C33108.18 (17)H31A—C31—H31C109.5
C31—C3—C32109.39 (16)H31B—C31—H31C109.5
C33—C3—C32106.69 (17)C3—C32—H32A109.5
C31—C3—P1112.55 (14)C3—C32—H32B109.5
C33—C3—P1109.73 (13)H32A—C32—H32B109.5
C32—C3—P1110.12 (14)C3—C32—H32C109.5
C1—C11—H11A109.5H32A—C32—H32C109.5
C1—C11—H11B109.5H32B—C32—H32C109.5
H11A—C11—H11B109.5C3—C33—H33A109.5
C1—C11—H11C109.5C3—C33—H33B109.5
H11A—C11—H11C109.5H33A—C33—H33B109.5
H11B—C11—H11C109.5C3—C33—H33C109.5
C1—C12—H12A109.5H33A—C33—H33C109.5
C1—C12—H12B109.5H33B—C33—H33C109.5
H12A—C12—H12B109.5Cl4—C99—Cl5111.42 (13)
C1—C12—H12C109.5Cl4—C99—H99A109.3
H12A—C12—H12C109.5Cl5—C99—H99A109.3
H12B—C12—H12C109.5Cl4—C99—H99B109.3
C1—C13—H13A109.5Cl5—C99—H99B109.3
C1—C13—H13B109.5H99A—C99—H99B108.0
H13A—C13—H13B109.5
C3—P1—S1—Au178.75 (7)S1—P1—C2—C2266.86 (15)
C2—P1—S1—Au146.80 (8)C3—P1—C2—C2373.86 (16)
C1—P1—S1—Au1164.36 (6)C1—P1—C2—C23160.53 (14)
Cl3—Au1—S1—P182.19 (3)S1—P1—C2—C2350.49 (16)
Cl2—Au1—S1—P1100.28 (3)C3—P1—C2—C2146.91 (17)
C3—P1—C1—C1241.56 (16)C1—P1—C2—C2178.70 (17)
C2—P1—C1—C12167.75 (13)S1—P1—C2—C21171.26 (13)
S1—P1—C1—C1274.48 (14)C2—P1—C3—C3177.86 (17)
C3—P1—C1—C1179.02 (16)C1—P1—C3—C3147.81 (17)
C2—P1—C1—C1147.17 (16)S1—P1—C3—C31156.98 (13)
S1—P1—C1—C11164.93 (13)C2—P1—C3—C3342.66 (16)
C3—P1—C1—C13159.43 (13)C1—P1—C3—C33168.32 (13)
C2—P1—C1—C1374.39 (16)S1—P1—C3—C3382.51 (13)
S1—P1—C1—C1343.38 (14)C2—P1—C3—C32159.80 (13)
C3—P1—C2—C22168.80 (13)C1—P1—C3—C3274.54 (15)
C1—P1—C2—C2243.18 (16)S1—P1—C3—C3234.64 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23A···Au10.982.693.438 (2)134
C13—H13B···S10.982.613.131 (2)114
C32—H32A···S10.982.833.323 (2)112
C23—H23A···Cl20.982.823.778 (2)168
C32—H32A···Cl30.982.883.759 (2)150
C33—H33B···Cl30.982.733.623 (2)152
C99—H99A···Cl20.992.843.749 (3)153
C99—H99B···Cl3i0.992.963.903 (3)160
C22—H22A···Cl3i0.982.823.791 (2)171
Symmetry code: (i) x+1, y, z.
(tert-Butyldipropan-2-ylphosphane selenide-κS)trichloridogold(III) (14a) top
Crystal data top
[AuCl3(C10H23PSe)]F(000) = 1048
Mr = 556.53Dx = 2.231 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.92516 (18) ÅCell parameters from 44121 reflections
b = 14.5559 (4) Åθ = 2.8–29.0°
c = 14.3635 (4) ŵ = 11.64 mm1
β = 91.264 (2)°T = 100 K
V = 1656.54 (7) Å3Block, red
Z = 40.15 × 0.15 × 0.1 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
4112 independent reflections
Radiation source: Enhance (Mo) X-ray Source3878 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.084
Detector resolution: 16.1419 pixels mm-1θmax = 28.3°, θmin = 2.8°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
k = 1919
Tmin = 0.483, Tmax = 1.000l = 1919
196706 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + 30.9095P]
where P = (Fo2 + 2Fc2)/3
S = 1.32(Δ/σ)max = 0.001
4112 reflectionsΔρmax = 3.81 e Å3
152 parametersΔρmin = 2.41 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.45922 (4)0.06629 (2)0.31589 (2)0.01738 (8)
Cl10.4313 (3)0.01307 (15)0.16364 (15)0.0276 (4)
Cl20.1741 (2)0.08748 (16)0.31991 (16)0.0292 (5)
Cl30.7414 (2)0.03567 (14)0.31613 (14)0.0239 (4)
Se10.47042 (10)0.12099 (5)0.47644 (6)0.01951 (17)
P10.6495 (2)0.23732 (13)0.48512 (13)0.0145 (4)
C10.6072 (12)0.3269 (5)0.3948 (6)0.0240 (17)
C20.6083 (10)0.2813 (6)0.6029 (6)0.0207 (16)
H20.6933020.3303930.6171880.025*
C30.8687 (10)0.1988 (6)0.4766 (6)0.0240 (17)
H30.8837050.1809110.4100970.029*
C110.6701 (12)0.4210 (6)0.4307 (6)0.0270 (18)
H11A0.6513270.4675170.3822690.041*
H11B0.7909570.4172080.4462730.041*
H11C0.6081110.4380570.4864050.041*
C120.4190 (13)0.3337 (7)0.3704 (8)0.039 (2)
H12A0.3563240.3473670.4268220.058*
H12B0.3795810.2752470.3439940.058*
H12C0.4003360.3829030.3247540.058*
C130.7024 (16)0.3017 (7)0.3058 (7)0.040 (3)
H13A0.6603260.2429390.2815120.061*
H13B0.8233810.2965140.3205880.061*
H13C0.6841250.3497460.2588700.061*
C210.4334 (11)0.3234 (6)0.6129 (6)0.0265 (18)
H21A0.3476610.2751840.6061450.040*
H21B0.4149590.3700330.5645780.040*
H21C0.4252610.3519000.6744470.040*
C220.6290 (15)0.2065 (7)0.6771 (6)0.040 (3)
H22A0.6007850.2317110.7381090.060*
H22B0.7461350.1848550.6788010.060*
H22C0.5534650.1551020.6620010.060*
C310.9989 (13)0.2759 (8)0.4970 (10)0.054 (3)
H31A0.9870310.2975740.5610920.081*
H31B0.9789800.3270340.4537430.081*
H31C1.1132130.2518720.4889800.081*
C320.9129 (13)0.1140 (8)0.5341 (7)0.039 (3)
H32A1.0144000.0851510.5095590.059*
H32B0.8188520.0703210.5306780.059*
H32C0.9338710.1319090.5991050.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01636 (13)0.01447 (14)0.02152 (15)0.00068 (11)0.00488 (10)0.00236 (11)
Cl10.0283 (10)0.0306 (11)0.0237 (10)0.0010 (8)0.0005 (8)0.0059 (8)
Cl20.0167 (9)0.0371 (12)0.0340 (11)0.0028 (8)0.0031 (8)0.0006 (9)
Cl30.0179 (8)0.0261 (10)0.0281 (10)0.0015 (7)0.0052 (7)0.0103 (8)
Se10.0227 (4)0.0153 (4)0.0209 (4)0.0047 (3)0.0098 (3)0.0021 (3)
P10.0151 (8)0.0122 (8)0.0162 (9)0.0010 (7)0.0047 (7)0.0006 (7)
C10.039 (5)0.012 (3)0.022 (4)0.002 (3)0.011 (3)0.002 (3)
C20.022 (4)0.019 (4)0.021 (4)0.002 (3)0.006 (3)0.004 (3)
C30.017 (4)0.024 (4)0.031 (4)0.005 (3)0.003 (3)0.007 (4)
C110.034 (5)0.016 (4)0.031 (5)0.001 (3)0.011 (4)0.004 (3)
C120.048 (6)0.022 (5)0.045 (6)0.007 (4)0.017 (5)0.003 (4)
C130.075 (8)0.021 (5)0.027 (5)0.005 (5)0.022 (5)0.001 (4)
C210.029 (4)0.027 (4)0.024 (4)0.005 (3)0.013 (3)0.001 (3)
C220.064 (7)0.041 (6)0.016 (4)0.021 (5)0.001 (4)0.005 (4)
C310.025 (5)0.047 (7)0.091 (10)0.004 (5)0.002 (5)0.034 (7)
C320.036 (5)0.050 (6)0.031 (5)0.031 (5)0.003 (4)0.003 (5)
Geometric parameters (Å, º) top
Au1—Cl32.2803 (19)C1—C121.528 (13)
Au1—Cl22.283 (2)C1—C131.543 (12)
Au1—Cl12.326 (2)C1—C111.543 (12)
Au1—Se12.4393 (8)C2—C211.524 (11)
Se1—P12.211 (2)C2—C221.530 (13)
P1—C31.832 (8)C3—C321.522 (13)
P1—C21.845 (8)C3—C311.548 (13)
P1—C11.864 (8)
Cl3—Au1—Cl2176.18 (8)C12—C1—C13108.6 (9)
Cl3—Au1—Cl190.53 (7)C12—C1—C11109.0 (7)
Cl2—Au1—Cl189.72 (8)C13—C1—C11109.1 (7)
Cl3—Au1—Se192.70 (5)C12—C1—P1111.4 (6)
Cl2—Au1—Se186.98 (6)C13—C1—P1109.1 (6)
Cl1—Au1—Se1176.59 (6)C11—C1—P1109.7 (6)
P1—Se1—Au1108.25 (6)C21—C2—C22107.7 (7)
C3—P1—C2110.8 (4)C21—C2—P1113.9 (6)
C3—P1—C1108.9 (4)C22—C2—P1111.9 (6)
C2—P1—C1111.3 (4)C32—C3—C31109.9 (9)
C3—P1—Se1111.7 (3)C32—C3—P1114.8 (6)
C2—P1—Se1101.0 (3)C31—C3—P1113.3 (6)
C1—P1—Se1113.0 (3)
Cl3—Au1—Se1—P158.66 (8)Se1—P1—C1—C11152.6 (5)
Cl2—Au1—Se1—P1125.16 (8)C3—P1—C2—C21174.3 (6)
Au1—Se1—P1—C372.6 (3)C1—P1—C2—C2153.0 (7)
Au1—Se1—P1—C2169.6 (3)Se1—P1—C2—C2167.1 (6)
Au1—Se1—P1—C150.7 (3)C3—P1—C2—C2263.2 (8)
C3—P1—C1—C12156.7 (6)C1—P1—C2—C22175.5 (7)
C2—P1—C1—C1281.0 (7)Se1—P1—C2—C2255.3 (7)
Se1—P1—C1—C1231.9 (7)C2—P1—C3—C3267.7 (8)
C3—P1—C1—C1336.8 (8)C1—P1—C3—C32169.6 (7)
C2—P1—C1—C13159.2 (7)Se1—P1—C3—C3244.0 (7)
Se1—P1—C1—C1388.0 (7)C2—P1—C3—C3159.6 (9)
C3—P1—C1—C1182.6 (6)C1—P1—C3—C3163.0 (9)
C2—P1—C1—C1139.8 (7)Se1—P1—C3—C31171.4 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Cl31.002.743.445 (9)128
C3—H3···Cl2i1.002.993.714 (8)130
C21—H21C···Cl2ii0.982.983.730 (10)135
C22—H22A···Cl2ii0.982.943.646 (11)130
C13—H13C···Cl3iii0.982.983.860 (10)151
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+3/2, y+1/2, z+1/2.
Trichlorido[di-tert-butyl(propan-2-yl)phosphane selenide-κS]gold(III) (15a) top
Crystal data top
[AuCl3(C11H25PSe)]Z = 2
Mr = 570.55F(000) = 540
Triclinic, P1Dx = 2.164 Mg m3
a = 8.5878 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.8435 (4) ÅCell parameters from 26441 reflections
c = 11.5022 (5) Åθ = 2.2–30.8°
α = 78.391 (3)°µ = 11.01 mm1
β = 71.168 (4)°T = 100 K
γ = 73.463 (4)°Block, dark red
V = 875.78 (7) Å30.18 × 0.15 × 0.12 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
5231 independent reflections
Radiation source: Enhance (Mo) X-ray Source4984 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.032
ω scansθmax = 30.9°, θmin = 2.2°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
h = 1212
Tmin = 0.700, Tmax = 1.000k = 1414
54532 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.014H-atom parameters constrained
wR(F2) = 0.030 w = 1/[σ2(Fo2) + (0.0102P)2 + 0.6517P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.002
5231 reflectionsΔρmax = 0.84 e Å3
163 parametersΔρmin = 0.73 e Å3
0 restraintsExtinction correction: SHELXL-2019/3 (Sheldrick, 2015), Fc* = kFc[1 + 0.001 Fc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00113 (8)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.47065 (2)0.34817 (2)0.24083 (2)0.01225 (3)
Cl10.53440 (7)0.12047 (5)0.34417 (5)0.02266 (10)
Cl20.73944 (6)0.36884 (5)0.21249 (4)0.01954 (9)
Cl30.20708 (6)0.32192 (5)0.25905 (5)0.02097 (9)
Se10.41932 (2)0.58622 (2)0.12550 (2)0.01264 (4)
P10.21270 (5)0.73111 (5)0.24893 (4)0.00884 (8)
C10.2579 (2)0.71444 (18)0.40126 (15)0.0110 (3)
C20.2204 (2)0.90901 (18)0.15358 (16)0.0119 (3)
C30.0106 (2)0.68238 (19)0.27683 (17)0.0139 (3)
H30.0296410.5804480.3147170.017*
C110.1588 (2)0.8456 (2)0.47037 (16)0.0154 (3)
H11A0.1785880.8297090.5518460.023*
H11B0.0375540.8602090.4806890.023*
H11C0.1971240.9302490.4225470.023*
C120.4474 (2)0.6965 (2)0.38347 (17)0.0160 (4)
H12A0.4678660.6845010.4643830.024*
H12B0.4829360.7813600.3334250.024*
H12C0.5124490.6121400.3412340.024*
C130.2056 (2)0.58019 (19)0.48112 (16)0.0151 (3)
H13A0.2616240.4976340.4349140.023*
H13B0.0825290.5943520.5017940.023*
H13C0.2394100.5631970.5574280.023*
C210.2454 (3)0.8959 (2)0.01674 (16)0.0171 (4)
H21A0.2356230.9909310.0308060.026*
H21B0.1585200.8528400.0113310.026*
H21C0.3578280.8355790.0170680.026*
C220.0541 (2)1.01974 (19)0.19973 (17)0.0164 (4)
H22A0.0310621.0223390.2885340.025*
H22B0.0390810.9932750.1850040.025*
H22C0.0642931.1141410.1550430.025*
C230.3698 (2)0.9605 (2)0.15942 (17)0.0164 (4)
H23A0.3778071.0492990.1037100.025*
H23B0.4747900.8874820.1340060.025*
H23C0.3522860.9775110.2442770.025*
C310.0328 (3)0.6819 (2)0.15753 (19)0.0222 (4)
H31A0.1216440.6301110.1761100.033*
H31B0.0685160.6349260.0973990.033*
H31C0.0729200.7804090.1229080.033*
C320.1437 (2)0.7623 (2)0.37100 (19)0.0191 (4)
H32A0.1692700.8640120.3399530.029*
H32B0.1182720.7502110.4501560.029*
H32C0.2416040.7234260.3828530.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01513 (4)0.00940 (3)0.01254 (4)0.00065 (2)0.00576 (2)0.00410 (2)
Cl10.0321 (3)0.0122 (2)0.0273 (2)0.00214 (18)0.0176 (2)0.00029 (17)
Cl20.0152 (2)0.0192 (2)0.0244 (2)0.00072 (16)0.00806 (17)0.00586 (17)
Cl30.0193 (2)0.0132 (2)0.0327 (3)0.00315 (16)0.00950 (19)0.00519 (18)
Se10.01521 (8)0.01085 (8)0.00931 (7)0.00077 (6)0.00215 (6)0.00334 (6)
P10.00901 (19)0.00871 (19)0.00890 (18)0.00114 (15)0.00311 (15)0.00166 (14)
C10.0116 (8)0.0127 (8)0.0084 (7)0.0003 (6)0.0034 (6)0.0031 (6)
C20.0139 (8)0.0100 (7)0.0116 (8)0.0028 (6)0.0038 (6)0.0006 (6)
C30.0121 (8)0.0128 (8)0.0183 (8)0.0040 (6)0.0071 (7)0.0009 (6)
C110.0169 (8)0.0144 (8)0.0133 (8)0.0007 (7)0.0031 (7)0.0062 (6)
C120.0123 (8)0.0210 (9)0.0159 (8)0.0001 (7)0.0066 (7)0.0065 (7)
C130.0173 (8)0.0148 (8)0.0110 (8)0.0013 (7)0.0037 (7)0.0007 (6)
C210.0238 (10)0.0153 (8)0.0117 (8)0.0047 (7)0.0061 (7)0.0015 (6)
C220.0171 (9)0.0109 (8)0.0195 (9)0.0004 (7)0.0066 (7)0.0007 (7)
C230.0169 (9)0.0154 (8)0.0171 (9)0.0062 (7)0.0027 (7)0.0026 (7)
C310.0235 (10)0.0226 (10)0.0275 (10)0.0089 (8)0.0157 (8)0.0004 (8)
C320.0098 (8)0.0177 (9)0.0263 (10)0.0019 (7)0.0038 (7)0.0011 (7)
Geometric parameters (Å, º) top
Au1—Cl22.2871 (5)C12—H12B0.9800
Au1—Cl32.2889 (5)C12—H12C0.9800
Au1—Cl12.3207 (5)C13—H13A0.9800
Au1—Se12.4460 (2)C13—H13B0.9800
Se1—P12.2240 (5)C13—H13C0.9800
P1—C31.8435 (18)C21—H21A0.9800
P1—C21.8762 (18)C21—H21B0.9800
P1—C11.8802 (17)C21—H21C0.9800
C1—C121.535 (2)C22—H22A0.9800
C1—C111.541 (2)C22—H22B0.9800
C1—C131.541 (2)C22—H22C0.9800
C2—C231.532 (3)C23—H23A0.9800
C2—C221.539 (2)C23—H23B0.9800
C2—C211.545 (2)C23—H23C0.9800
C3—C311.535 (3)C31—H31A0.9800
C3—C321.539 (3)C31—H31B0.9800
C3—H31.0000C31—H31C0.9800
C11—H11A0.9800C32—H32A0.9800
C11—H11B0.9800C32—H32B0.9800
C11—H11C0.9800C32—H32C0.9800
C12—H12A0.9800
Cl2—Au1—Cl3176.794 (17)C1—C12—H12C109.5
Cl2—Au1—Cl189.966 (18)H12A—C12—H12C109.5
Cl3—Au1—Cl189.946 (18)H12B—C12—H12C109.5
Cl2—Au1—Se187.383 (14)C1—C13—H13A109.5
Cl3—Au1—Se192.617 (13)C1—C13—H13B109.5
Cl1—Au1—Se1176.951 (14)H13A—C13—H13B109.5
P1—Se1—Au1108.487 (14)C1—C13—H13C109.5
C3—P1—C2112.81 (8)H13A—C13—H13C109.5
C3—P1—C1108.96 (8)H13B—C13—H13C109.5
C2—P1—C1114.08 (8)C2—C21—H21A109.5
C3—P1—Se1109.45 (6)C2—C21—H21B109.5
C2—P1—Se1101.19 (6)H21A—C21—H21B109.5
C1—P1—Se1110.07 (5)C2—C21—H21C109.5
C12—C1—C11108.31 (15)H21A—C21—H21C109.5
C12—C1—C13108.25 (14)H21B—C21—H21C109.5
C11—C1—C13109.14 (14)C2—C22—H22A109.5
C12—C1—P1111.25 (11)C2—C22—H22B109.5
C11—C1—P1111.89 (12)H22A—C22—H22B109.5
C13—C1—P1107.91 (12)C2—C22—H22C109.5
C23—C2—C22109.72 (15)H22A—C22—H22C109.5
C23—C2—C21107.75 (14)H22B—C22—H22C109.5
C22—C2—C21108.65 (15)C2—C23—H23A109.5
C23—C2—P1110.50 (12)C2—C23—H23B109.5
C22—C2—P1110.36 (12)H23A—C23—H23B109.5
C21—C2—P1109.82 (12)C2—C23—H23C109.5
C31—C3—C32110.83 (15)H23A—C23—H23C109.5
C31—C3—P1113.41 (13)H23B—C23—H23C109.5
C32—C3—P1116.45 (13)C3—C31—H31A109.5
C31—C3—H3105.0C3—C31—H31B109.5
C32—C3—H3105.0H31A—C31—H31B109.5
P1—C3—H3105.0C3—C31—H31C109.5
C1—C11—H11A109.5H31A—C31—H31C109.5
C1—C11—H11B109.5H31B—C31—H31C109.5
H11A—C11—H11B109.5C3—C32—H32A109.5
C1—C11—H11C109.5C3—C32—H32B109.5
H11A—C11—H11C109.5H32A—C32—H32B109.5
H11B—C11—H11C109.5C3—C32—H32C109.5
C1—C12—H12A109.5H32A—C32—H32C109.5
C1—C12—H12B109.5H32B—C32—H32C109.5
H12A—C12—H12B109.5
Cl2—Au1—Se1—P1118.493 (18)C1—P1—C2—C2341.28 (14)
Cl3—Au1—Se1—P164.717 (19)Se1—P1—C2—C2376.86 (12)
Au1—Se1—P1—C369.97 (6)C3—P1—C2—C2244.79 (15)
Au1—Se1—P1—C2170.76 (6)C1—P1—C2—C2280.24 (14)
Au1—Se1—P1—C149.76 (6)Se1—P1—C2—C22161.62 (11)
C3—P1—C1—C12158.15 (12)C3—P1—C2—C2174.96 (14)
C2—P1—C1—C1274.80 (14)C1—P1—C2—C21160.01 (12)
Se1—P1—C1—C1238.13 (14)Se1—P1—C2—C2141.87 (13)
C3—P1—C1—C1180.54 (14)C2—P1—C3—C3156.35 (16)
C2—P1—C1—C1146.50 (15)C1—P1—C3—C31175.89 (13)
Se1—P1—C1—C11159.43 (11)Se1—P1—C3—C3155.48 (14)
C3—P1—C1—C1339.54 (14)C2—P1—C3—C3274.05 (15)
C2—P1—C1—C13166.59 (11)C1—P1—C3—C3253.71 (15)
Se1—P1—C1—C1380.49 (11)Se1—P1—C3—C32174.13 (12)
C3—P1—C2—C23166.31 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···Au10.982.763.6818 (18)158
C21—H21C···Se10.982.683.1887 (19)113
C12—H12C···Se10.982.923.4566 (18)116
C3—H3···Cl31.002.653.4842 (19)141
C12—H12C···Cl20.982.943.9145 (19)174
C13—H13C···Cl2i0.982.933.8489 (19)157
Symmetry code: (i) x+1, y+1, z+1.
Trichlorido[di-tert-butyl(propan-2-yl)phosphane selenide-κS]gold(III) chloroform-d monosolvate (15aa) top
Crystal data top
[AuCl3(C11H25PSe)]·CDCl3Z = 2
Mr = 690.93F(000) = 656
Triclinic, P1Dx = 2.152 Mg m3
a = 8.5343 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.7185 (3) ÅCell parameters from 34566 reflections
c = 14.0759 (4) Åθ = 2.2–30.8°
α = 74.398 (2)°µ = 9.42 mm1
β = 78.121 (2)°T = 100 K
γ = 73.257 (2)°Tablet, red
V = 1066.31 (5) Å30.4 × 0.25 × 0.08 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
6287 independent reflections
Radiation source: Enhance (Mo) X-ray Source6060 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.040
ω scansθmax = 30.8°, θmin = 2.3°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
h = 1211
Tmin = 0.151, Tmax = 1.000k = 1313
76069 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.048H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0179P)2 + 2.4716P]
where P = (Fo2 + 2Fc2)/3
6287 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 1.88 e Å3
39 restraintsΔρmin = 1.30 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Au10.19009 (2)0.76455 (2)0.29588 (2)0.01280 (3)
Se10.31024 (3)0.58178 (3)0.19374 (2)0.01509 (5)
Cl10.06715 (8)0.94493 (7)0.38594 (5)0.02097 (13)
Cl20.06581 (8)0.75760 (7)0.27413 (5)0.01900 (12)
Cl30.44411 (8)0.78057 (7)0.31290 (5)0.02113 (13)
P10.43631 (7)0.37535 (7)0.29102 (4)0.00998 (11)
C10.2963 (3)0.3257 (3)0.40964 (18)0.0121 (4)
C20.4876 (3)0.2413 (3)0.20853 (19)0.0145 (4)
C30.6212 (3)0.4055 (3)0.32273 (19)0.0147 (5)
H30.5793710.4925720.3540510.018*
C110.3539 (3)0.1623 (3)0.46191 (19)0.0164 (5)
H11A0.2807790.1411140.5246060.025*
H11B0.4672640.1422100.4757660.025*
H11C0.3502890.0997700.4185880.025*
C120.1176 (3)0.3544 (3)0.3902 (2)0.0174 (5)
H12A0.0470170.3304910.4535860.026*
H12B0.1140780.2924540.3464490.026*
H12C0.0779290.4584170.3582810.026*
C130.2968 (3)0.4237 (3)0.47907 (18)0.0155 (5)
H13A0.2586430.5275740.4462770.023*
H13B0.4091340.4052590.4940720.023*
H13C0.2227980.4006090.5410980.023*
C210.5491 (4)0.3147 (3)0.1006 (2)0.0231 (6)
H21A0.5870490.2408260.0599350.035*
H21B0.6406760.3564610.1009950.035*
H21C0.4584950.3934670.0726990.035*
C220.6250 (3)0.1067 (3)0.2467 (2)0.0196 (5)
H22A0.5908960.0635700.3166690.029*
H22B0.7267610.1377780.2408970.029*
H22C0.6447560.0332180.2068810.029*
C230.3345 (4)0.1911 (3)0.2054 (2)0.0201 (5)
H23A0.3615510.1279020.1575540.030*
H23B0.2452810.2776250.1848290.030*
H23C0.2986480.1358500.2716440.030*
C310.7423 (4)0.4521 (3)0.2310 (2)0.0238 (6)
H31A0.8167320.4977480.2494540.036*
H31B0.6805300.5231860.1793600.036*
H31C0.8070630.3652760.2053800.036*
C320.7134 (3)0.2816 (3)0.4007 (2)0.0192 (5)
H32A0.7563840.1915890.3749770.029*
H32B0.6371760.2627350.4623030.029*
H32C0.8053310.3114930.4142880.029*
C990.1097 (9)0.8164 (8)0.0177 (5)0.0278 (16)0.525 (4)
D990.0551370.8302950.0697260.033*0.525 (4)
Cl40.3237 (7)0.8542 (6)0.0573 (4)0.0381 (9)0.525 (4)
Cl50.0625 (3)0.9393 (2)0.09447 (12)0.0435 (7)0.525 (4)
Cl60.0308 (2)0.6342 (3)0.00484 (14)0.0420 (6)0.525 (4)
C99'0.1635 (10)0.8634 (8)0.0319 (6)0.0296 (19)0.475 (4)
D99'0.1264840.8828440.0889500.036*0.475 (4)
Cl4'0.3518 (8)0.8272 (8)0.0703 (6)0.0483 (14)0.475 (4)
Cl5'0.1902 (5)1.0248 (3)0.06191 (19)0.0700 (13)0.475 (4)
Cl6'0.0189 (3)0.7176 (4)0.0073 (3)0.0579 (8)0.475 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01412 (5)0.00834 (5)0.01369 (5)0.00048 (3)0.00226 (3)0.00097 (3)
Se10.01999 (12)0.01043 (11)0.01201 (11)0.00044 (9)0.00387 (9)0.00108 (8)
Cl10.0216 (3)0.0152 (3)0.0250 (3)0.0012 (2)0.0004 (2)0.0090 (2)
Cl20.0154 (3)0.0172 (3)0.0222 (3)0.0003 (2)0.0059 (2)0.0025 (2)
Cl30.0174 (3)0.0139 (3)0.0333 (3)0.0034 (2)0.0038 (2)0.0075 (2)
P10.0093 (3)0.0086 (3)0.0116 (3)0.0015 (2)0.0014 (2)0.0022 (2)
C10.0100 (10)0.0103 (10)0.0133 (10)0.0010 (8)0.0008 (8)0.0002 (8)
C20.0171 (11)0.0118 (11)0.0153 (11)0.0031 (9)0.0015 (9)0.0055 (9)
C30.0114 (10)0.0151 (11)0.0201 (12)0.0048 (9)0.0016 (9)0.0070 (9)
C110.0159 (11)0.0117 (11)0.0180 (11)0.0022 (9)0.0026 (9)0.0015 (9)
C120.0096 (10)0.0185 (12)0.0219 (12)0.0037 (9)0.0021 (9)0.0009 (10)
C130.0158 (11)0.0153 (11)0.0133 (11)0.0011 (9)0.0005 (9)0.0039 (9)
C210.0325 (15)0.0219 (13)0.0133 (11)0.0051 (12)0.0026 (10)0.0073 (10)
C220.0189 (12)0.0150 (12)0.0246 (13)0.0015 (10)0.0036 (10)0.0096 (10)
C230.0238 (13)0.0179 (12)0.0227 (13)0.0058 (10)0.0082 (10)0.0070 (10)
C310.0191 (13)0.0278 (15)0.0274 (14)0.0140 (11)0.0043 (11)0.0077 (12)
C320.0111 (11)0.0204 (13)0.0272 (13)0.0009 (9)0.0078 (10)0.0084 (11)
C990.033 (4)0.037 (5)0.017 (3)0.018 (4)0.003 (3)0.002 (3)
Cl40.044 (2)0.0402 (17)0.0314 (16)0.0052 (13)0.0013 (12)0.0194 (15)
Cl50.0657 (14)0.0527 (13)0.0210 (7)0.0413 (11)0.0127 (8)0.0107 (7)
Cl60.0357 (9)0.0418 (13)0.0336 (8)0.0004 (9)0.0073 (7)0.0026 (8)
C99'0.044 (5)0.024 (4)0.016 (3)0.002 (3)0.002 (3)0.005 (3)
Cl4'0.040 (2)0.058 (3)0.041 (2)0.0050 (17)0.0056 (15)0.0084 (18)
Cl5'0.141 (3)0.0371 (13)0.0460 (14)0.0363 (17)0.0559 (18)0.0142 (10)
Cl6'0.0431 (13)0.0568 (19)0.0751 (18)0.0098 (13)0.0053 (11)0.0429 (16)
Geometric parameters (Å, º) top
Au1—Cl32.2825 (7)C13—H13C0.9800
Au1—Cl22.2889 (6)C21—H21A0.9800
Au1—Cl12.3172 (6)C21—H21B0.9800
Au1—Se12.4476 (3)C21—H21C0.9800
Se1—P12.2232 (6)C22—H22A0.9800
P1—C31.844 (3)C22—H22B0.9800
P1—C21.874 (2)C22—H22C0.9800
P1—C11.878 (2)C23—H23A0.9800
C1—C121.537 (3)C23—H23B0.9800
C1—C131.538 (3)C23—H23C0.9800
C1—C111.541 (3)C31—H31A0.9800
C2—C231.533 (4)C31—H31B0.9800
C2—C221.540 (4)C31—H31C0.9800
C2—C211.548 (4)C32—H32A0.9800
C3—C311.532 (4)C32—H32B0.9800
C3—C321.540 (4)C32—H32C0.9800
C3—H31.0000C99—Cl61.748 (7)
C11—H11A0.9800C99—Cl41.756 (8)
C11—H11B0.9800C99—Cl51.756 (7)
C11—H11C0.9800C99—D991.0000
C12—H12A0.9800C99'—Cl4'1.692 (9)
C12—H12B0.9800C99'—Cl6'1.723 (7)
C12—H12C0.9800C99'—Cl5'1.749 (8)
C13—H13A0.9800C99'—D99'1.0000
C13—H13B0.9800
Cl3—Au1—Cl2177.64 (2)C1—C13—H13C109.5
Cl3—Au1—Cl189.67 (2)H13A—C13—H13C109.5
Cl2—Au1—Cl189.66 (2)H13B—C13—H13C109.5
Cl3—Au1—Se192.332 (18)C2—C21—H21A109.5
Cl2—Au1—Se188.238 (18)C2—C21—H21B109.5
Cl1—Au1—Se1176.855 (18)H21A—C21—H21B109.5
P1—Se1—Au1107.617 (18)C2—C21—H21C109.5
C3—P1—C2112.97 (12)H21A—C21—H21C109.5
C3—P1—C1108.44 (11)H21B—C21—H21C109.5
C2—P1—C1114.23 (11)C2—C22—H22A109.5
C3—P1—Se1108.64 (9)C2—C22—H22B109.5
C2—P1—Se1101.78 (8)H22A—C22—H22B109.5
C1—P1—Se1110.54 (8)C2—C22—H22C109.5
C12—C1—C13108.0 (2)H22A—C22—H22C109.5
C12—C1—C11108.3 (2)H22B—C22—H22C109.5
C13—C1—C11109.4 (2)C2—C23—H23A109.5
C12—C1—P1111.35 (17)C2—C23—H23B109.5
C13—C1—P1108.18 (17)H23A—C23—H23B109.5
C11—C1—P1111.60 (16)C2—C23—H23C109.5
C23—C2—C22109.8 (2)H23A—C23—H23C109.5
C23—C2—C21107.5 (2)H23B—C23—H23C109.5
C22—C2—C21108.7 (2)C3—C31—H31A109.5
C23—C2—P1110.79 (18)C3—C31—H31B109.5
C22—C2—P1109.77 (17)H31A—C31—H31B109.5
C21—C2—P1110.23 (18)C3—C31—H31C109.5
C31—C3—C32110.6 (2)H31A—C31—H31C109.5
C31—C3—P1113.10 (19)H31B—C31—H31C109.5
C32—C3—P1116.51 (18)C3—C32—H32A109.5
C31—C3—H3105.2C3—C32—H32B109.5
C32—C3—H3105.2H32A—C32—H32B109.5
P1—C3—H3105.2C3—C32—H32C109.5
C1—C11—H11A109.5H32A—C32—H32C109.5
C1—C11—H11B109.5H32B—C32—H32C109.5
H11A—C11—H11B109.5Cl6—C99—Cl4111.3 (4)
C1—C11—H11C109.5Cl6—C99—Cl5110.4 (4)
H11A—C11—H11C109.5Cl4—C99—Cl5110.9 (4)
H11B—C11—H11C109.5Cl6—C99—D99108.0
C1—C12—H12A109.5Cl4—C99—D99108.0
C1—C12—H12B109.5Cl5—C99—D99108.0
H12A—C12—H12B109.5Cl4'—C99'—Cl6'111.9 (5)
C1—C12—H12C109.5Cl4'—C99'—Cl5'106.4 (5)
H12A—C12—H12C109.5Cl6'—C99'—Cl5'112.7 (5)
H12B—C12—H12C109.5Cl4'—C99'—D99'108.6
C1—C13—H13A109.5Cl6'—C99'—D99'108.6
C1—C13—H13B109.5Cl5'—C99'—D99'108.6
H13A—C13—H13B109.5
Cl3—Au1—Se1—P168.16 (3)C1—P1—C2—C2341.5 (2)
Cl2—Au1—Se1—P1114.14 (3)Se1—P1—C2—C2377.67 (18)
Au1—Se1—P1—C369.90 (9)C3—P1—C2—C2244.6 (2)
Au1—Se1—P1—C2170.69 (8)C1—P1—C2—C2280.0 (2)
Au1—Se1—P1—C148.97 (9)Se1—P1—C2—C22160.85 (17)
C3—P1—C1—C12159.02 (17)C3—P1—C2—C2175.1 (2)
C2—P1—C1—C1274.0 (2)C1—P1—C2—C21160.34 (18)
Se1—P1—C1—C1240.02 (19)Se1—P1—C2—C2141.2 (2)
C3—P1—C1—C1340.54 (19)C2—P1—C3—C3154.3 (2)
C2—P1—C1—C13167.49 (16)C1—P1—C3—C31178.01 (19)
Se1—P1—C1—C1378.46 (16)Se1—P1—C3—C3157.8 (2)
C3—P1—C1—C1179.9 (2)C2—P1—C3—C3275.4 (2)
C2—P1—C1—C1147.1 (2)C1—P1—C3—C3252.2 (2)
Se1—P1—C1—C11161.13 (15)Se1—P1—C3—C32172.41 (16)
C3—P1—C2—C23166.03 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C99—D99···Cl21.002.763.580 (7)139
C13—H13A···Au10.982.693.618 (3)158
C21—H21C···Se10.982.703.208 (3)112
C3—H3···Cl31.002.653.497 (3)142
C13—H13C···Cl2i0.982.923.866 (3)163
Symmetry code: (i) x, y+1, z+1.
Tribromrido(tripropan-2-ylphosphane sulfide-κS)gold(III) (9b) top
Crystal data top
[AuBr3(C10H23PS)]F(000) = 1160
Mr = 628.98Dx = 2.564 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.1341 (2) ÅCell parameters from 22624 reflections
b = 7.9039 (2) Åθ = 2.2–30.8°
c = 22.6420 (4) ŵ = 16.58 mm1
β = 94.519 (2)°T = 100 K
V = 1629.56 (6) Å3Plate, red
Z = 40.15 × 0.1 × 0.1 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
4964 independent reflections
Radiation source: Enhance (Mo) X-ray Source4633 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.037
ω scansθmax = 30.9°, θmin = 2.2°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
h = 1313
Tmin = 0.486, Tmax = 1.000k = 1111
64266 measured reflectionsl = 3231
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.038 w = 1/[σ2(Fo2) + (0.007P)2 + 3.9739P]
where P = (Fo2 + 2Fc2)/3
S = 1.23(Δ/σ)max = 0.003
4964 reflectionsΔρmax = 1.58 e Å3
143 parametersΔρmin = 0.95 e Å3
0 restraintsExtinction correction: SHELXL-2019/3 (Sheldrick, 2015), Fc* = kFc[1 + 0.001 Fc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00043 (2)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.14463 (2)0.72099 (2)0.36757 (2)0.01115 (3)
Br10.10011 (3)0.84484 (4)0.36034 (2)0.02107 (7)
Br30.11734 (3)0.65623 (4)0.26267 (2)0.01764 (6)
Br20.17679 (4)0.81030 (4)0.47063 (2)0.02013 (7)
P10.36854 (8)0.35281 (10)0.37465 (3)0.01090 (13)
S10.38356 (8)0.61179 (9)0.37761 (3)0.01358 (13)
C10.5535 (3)0.2875 (4)0.40279 (14)0.0171 (6)
H10.5627880.3169480.4458760.021*
C20.3126 (3)0.2763 (4)0.30005 (12)0.0131 (5)
H20.2216920.3405840.2866790.016*
C30.2412 (3)0.2647 (4)0.42503 (13)0.0153 (6)
H30.2520100.1389460.4232060.018*
C110.5728 (4)0.0942 (5)0.39940 (16)0.0269 (8)
H11A0.5777700.0602730.3579720.040*
H11B0.4892270.0382080.4157240.040*
H11C0.6638210.0612000.4223350.040*
C120.6787 (3)0.3807 (5)0.37507 (15)0.0256 (7)
H12A0.7721710.3544560.3974750.038*
H12B0.6611100.5028750.3761560.038*
H12C0.6828520.3440920.3338720.038*
C210.4268 (3)0.3213 (4)0.25618 (13)0.0173 (6)
H21A0.5141620.2503850.2640970.026*
H21B0.4542730.4407030.2608750.026*
H21C0.3848020.3015370.2155970.026*
C220.2702 (3)0.0890 (4)0.29712 (14)0.0173 (6)
H22A0.2404370.0579440.2560120.026*
H22B0.1883400.0689590.3217500.026*
H22C0.3545790.0200190.3117290.026*
C310.2794 (4)0.3151 (5)0.48959 (14)0.0241 (7)
H31A0.2768550.4386160.4931590.036*
H31B0.3780650.2740030.5024500.036*
H31C0.2079620.2650130.5145380.036*
C320.0805 (3)0.3034 (4)0.40569 (14)0.0184 (6)
H32A0.0168330.2264820.4259810.028*
H32B0.0633930.2878230.3627570.028*
H32C0.0582380.4205450.4159300.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01252 (5)0.01097 (5)0.00987 (5)0.00095 (4)0.00031 (3)0.00136 (4)
Br10.01612 (14)0.02620 (16)0.02102 (15)0.00786 (12)0.00227 (11)0.00523 (13)
Br30.02175 (14)0.01905 (15)0.01134 (13)0.00400 (11)0.00357 (10)0.00144 (11)
Br20.02871 (16)0.02110 (16)0.01053 (13)0.00543 (12)0.00127 (11)0.00117 (11)
P10.0092 (3)0.0123 (3)0.0112 (3)0.0014 (3)0.0009 (2)0.0005 (3)
S10.0114 (3)0.0131 (3)0.0160 (3)0.0012 (2)0.0003 (2)0.0010 (3)
C10.0136 (13)0.0215 (15)0.0158 (14)0.0045 (12)0.0021 (10)0.0017 (12)
C20.0128 (12)0.0145 (13)0.0119 (12)0.0007 (11)0.0008 (10)0.0012 (11)
C30.0168 (13)0.0150 (14)0.0148 (13)0.0004 (11)0.0051 (11)0.0042 (11)
C110.0230 (16)0.0259 (18)0.0300 (18)0.0146 (14)0.0100 (14)0.0072 (15)
C120.0097 (14)0.042 (2)0.0248 (17)0.0024 (13)0.0009 (12)0.0009 (15)
C210.0197 (14)0.0202 (15)0.0124 (13)0.0022 (12)0.0036 (11)0.0003 (11)
C220.0161 (14)0.0159 (14)0.0197 (15)0.0013 (11)0.0007 (11)0.0024 (12)
C310.0288 (17)0.0304 (19)0.0135 (14)0.0009 (14)0.0045 (12)0.0039 (13)
C320.0150 (13)0.0180 (16)0.0230 (15)0.0009 (11)0.0071 (11)0.0016 (12)
Geometric parameters (Å, º) top
Au1—S12.3413 (7)C11—H11B0.9800
Au1—Br32.4233 (3)C11—H11C0.9800
Au1—Br22.4333 (3)C12—H12A0.9800
Au1—Br12.4341 (3)C12—H12B0.9800
P1—C21.828 (3)C12—H12C0.9800
P1—C31.830 (3)C21—H21A0.9800
P1—C11.832 (3)C21—H21B0.9800
P1—S12.0523 (10)C21—H21C0.9800
C1—C121.536 (4)C22—H22A0.9800
C1—C111.540 (5)C22—H22B0.9800
C1—H11.0000C22—H22C0.9800
C2—C221.531 (4)C31—H31A0.9800
C2—C211.538 (4)C31—H31B0.9800
C2—H21.0000C31—H31C0.9800
C3—C311.529 (4)C32—H32A0.9800
C3—C321.529 (4)C32—H32B0.9800
C3—H31.0000C32—H32C0.9800
C11—H11A0.9800
S1—Au1—Br392.317 (19)C1—C11—H11C109.5
S1—Au1—Br288.43 (2)H11A—C11—H11C109.5
Br3—Au1—Br2175.188 (12)H11B—C11—H11C109.5
S1—Au1—Br1177.35 (2)C1—C12—H12A109.5
Br3—Au1—Br189.771 (11)C1—C12—H12B109.5
Br2—Au1—Br189.350 (11)H12A—C12—H12B109.5
C2—P1—C3107.76 (14)C1—C12—H12C109.5
C2—P1—C1114.26 (14)H12A—C12—H12C109.5
C3—P1—C1106.86 (14)H12B—C12—H12C109.5
C2—P1—S1111.90 (10)C2—C21—H21A109.5
C3—P1—S1113.79 (11)C2—C21—H21B109.5
C1—P1—S1102.26 (11)H21A—C21—H21B109.5
P1—S1—Au1107.77 (4)C2—C21—H21C109.5
C12—C1—C11111.3 (3)H21A—C21—H21C109.5
C12—C1—P1114.8 (2)H21B—C21—H21C109.5
C11—C1—P1111.6 (2)C2—C22—H22A109.5
C12—C1—H1106.2C2—C22—H22B109.5
C11—C1—H1106.2H22A—C22—H22B109.5
P1—C1—H1106.2C2—C22—H22C109.5
C22—C2—C21112.2 (2)H22A—C22—H22C109.5
C22—C2—P1114.3 (2)H22B—C22—H22C109.5
C21—C2—P1111.5 (2)C3—C31—H31A109.5
C22—C2—H2106.1C3—C31—H31B109.5
C21—C2—H2106.1H31A—C31—H31B109.5
P1—C2—H2106.1C3—C31—H31C109.5
C31—C3—C32111.3 (3)H31A—C31—H31C109.5
C31—C3—P1112.8 (2)H31B—C31—H31C109.5
C32—C3—P1112.9 (2)C3—C32—H32A109.5
C31—C3—H3106.4C3—C32—H32B109.5
C32—C3—H3106.4H32A—C32—H32B109.5
P1—C3—H3106.4C3—C32—H32C109.5
C1—C11—H11A109.5H32A—C32—H32C109.5
C1—C11—H11B109.5H32B—C32—H32C109.5
H11A—C11—H11B109.5
C2—P1—S1—Au172.07 (10)C1—P1—C2—C2275.9 (2)
C3—P1—S1—Au150.38 (12)S1—P1—C2—C22168.53 (17)
C1—P1—S1—Au1165.21 (10)C3—P1—C2—C21171.3 (2)
Br3—Au1—S1—P174.36 (4)C1—P1—C2—C2152.7 (3)
Br2—Au1—S1—P1110.40 (4)S1—P1—C2—C2162.9 (2)
C2—P1—C1—C1274.0 (3)C2—P1—C3—C31178.2 (2)
C3—P1—C1—C12166.9 (2)C1—P1—C3—C3154.9 (3)
S1—P1—C1—C1247.1 (2)S1—P1—C3—C3157.2 (2)
C2—P1—C1—C1153.8 (3)C2—P1—C3—C3254.6 (3)
C3—P1—C1—C1165.3 (3)C1—P1—C3—C32177.8 (2)
S1—P1—C1—C11174.9 (2)S1—P1—C3—C3270.1 (2)
C3—P1—C2—C2242.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C32—H32C···Au10.982.763.473 (3)131
C12—H12B···S10.982.683.261 (3)118
C2—H2···Br31.002.713.560 (3)143
C22—H22B···Au1i0.982.983.551 (3)119
C21—H21C···Br1ii0.983.023.829 (3)141
C3—H3···Br2i1.002.913.796 (3)148
C32—H32A···Br2iii0.983.063.900 (3)145
C11—H11C···Br2iv0.982.913.661 (3)134
Symmetry codes: (i) x, y1, z; (ii) x, y1/2, z+1/2; (iii) x, y+1, z+1; (iv) x+1, y+1, z+1.
Tribromido[di-tert-butyl(propan-2-yl)phosphane sulfide-κS]gold(III) (11b) top
Crystal data top
[AuBr3(C11H25PS)]Z = 2
Mr = 657.04F(000) = 612
Triclinic, P1Dx = 2.451 Mg m3
a = 8.6067 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.1161 (12) ÅCell parameters from 29495 reflections
c = 11.5123 (12) Åθ = 2.6–30.8°
α = 77.873 (10)°µ = 15.18 mm1
β = 70.257 (10)°T = 100 K
γ = 71.867 (10)°Block, red-brown
V = 890.37 (18) Å30.2 × 0.2 × 0.2 mm
Data collection top
Oxford Diffaction Xcalibur, Eos
diffractometer
5297 independent reflections
Radiation source: Enhance (Mo) X-ray Source5057 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.038
ω scanθmax = 30.9°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
h = 1212
Tmin = 0.447, Tmax = 1.000k = 1414
65025 measured reflectionsl = 1615
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.017H-atom parameters constrained
wR(F2) = 0.036 w = 1/[σ2(Fo2) + (0.0122P)2 + 1.1802P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max = 0.002
5297 reflectionsΔρmax = 1.08 e Å3
163 parametersΔρmin = 1.43 e Å3
0 restraintsExtinction correction: SHELXL-2019/3 (Sheldrick, 2015), Fc* = kFc[1 + 0.001 Fc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00557 (11)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.46412 (2)0.35795 (2)0.23440 (2)0.00889 (3)
Br10.53350 (3)0.12322 (2)0.34392 (2)0.01652 (5)
Br20.74993 (3)0.37590 (2)0.20749 (2)0.01400 (5)
Br30.19529 (3)0.32221 (2)0.23936 (2)0.01676 (5)
P10.21504 (7)0.72300 (6)0.24517 (5)0.00701 (10)
S10.40792 (7)0.58600 (6)0.13111 (5)0.00991 (10)
C10.2527 (3)0.7059 (2)0.3996 (2)0.0098 (4)
C20.2271 (3)0.8961 (2)0.1503 (2)0.0104 (4)
C30.0095 (3)0.6834 (2)0.2715 (2)0.0105 (4)
H30.0271690.5825770.3069050.013*
C110.1481 (3)0.8353 (2)0.4690 (2)0.0141 (5)
H11A0.1882660.9172960.4226520.021*
H11B0.1627090.8184160.5521750.021*
H11C0.0268520.8523510.4763440.021*
C120.4426 (3)0.6869 (3)0.3846 (2)0.0146 (5)
H12A0.5120840.6060510.3395300.022*
H12B0.4599230.6713950.4667400.022*
H12C0.4766830.7713050.3378150.022*
C130.2010 (3)0.5748 (2)0.4781 (2)0.0132 (4)
H13A0.2278090.5593300.5569000.020*
H13B0.2642470.4932820.4325850.020*
H13C0.0779740.5883120.4947390.020*
C210.2602 (3)0.8846 (2)0.0122 (2)0.0147 (5)
H21A0.3731200.8211830.0194190.022*
H21B0.2560840.9775100.0354580.022*
H21C0.1722800.8479830.0035390.022*
C220.0581 (3)1.0081 (2)0.1944 (2)0.0144 (5)
H22A0.0706961.1001030.1508030.022*
H22B0.0297411.0097380.2841210.022*
H22C0.0337030.9856000.1764680.022*
C230.3757 (3)0.9422 (2)0.1601 (2)0.0150 (5)
H23A0.3869151.0284080.1040860.023*
H23B0.4819980.8683040.1367200.023*
H23C0.3530000.9591730.2457460.023*
C310.0315 (3)0.6906 (3)0.1500 (2)0.0172 (5)
H31A0.0712730.7888200.1179280.026*
H31B0.1210400.6428290.1660140.026*
H31C0.0717370.6447950.0886710.026*
C320.1474 (3)0.7621 (3)0.3675 (2)0.0158 (5)
H32A0.2462780.7276370.3775660.024*
H32B0.1722990.8625860.3386010.024*
H32C0.1234370.7461750.4474270.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01042 (5)0.00647 (4)0.00921 (4)0.00031 (3)0.00286 (3)0.00260 (3)
Br10.02234 (13)0.00864 (10)0.01814 (11)0.00152 (9)0.00895 (9)0.00053 (8)
Br20.01064 (11)0.01396 (10)0.01718 (11)0.00019 (8)0.00497 (8)0.00448 (8)
Br30.01402 (11)0.01009 (10)0.02811 (13)0.00327 (8)0.00674 (10)0.00517 (9)
P10.0074 (2)0.0062 (2)0.0072 (2)0.00126 (19)0.00218 (19)0.00103 (18)
S10.0113 (3)0.0084 (2)0.0075 (2)0.00064 (19)0.00086 (19)0.00185 (18)
C10.0117 (10)0.0100 (9)0.0074 (9)0.0006 (8)0.0040 (8)0.0019 (7)
C20.0134 (11)0.0073 (9)0.0095 (10)0.0029 (8)0.0026 (8)0.0001 (7)
C30.0100 (10)0.0084 (9)0.0142 (10)0.0033 (8)0.0053 (8)0.0009 (8)
C110.0151 (11)0.0132 (10)0.0134 (11)0.0012 (9)0.0032 (9)0.0058 (8)
C120.0110 (11)0.0185 (11)0.0146 (11)0.0003 (9)0.0062 (9)0.0043 (9)
C130.0181 (12)0.0103 (10)0.0091 (10)0.0017 (9)0.0040 (8)0.0001 (8)
C210.0217 (12)0.0119 (10)0.0107 (10)0.0053 (9)0.0054 (9)0.0009 (8)
C220.0159 (11)0.0077 (10)0.0180 (11)0.0010 (8)0.0053 (9)0.0008 (8)
C230.0167 (12)0.0127 (10)0.0170 (11)0.0077 (9)0.0040 (9)0.0003 (9)
C310.0186 (12)0.0180 (11)0.0210 (12)0.0081 (10)0.0125 (10)0.0011 (9)
C320.0084 (11)0.0144 (11)0.0217 (12)0.0023 (9)0.0024 (9)0.0006 (9)
Geometric parameters (Å, º) top
Au1—S12.3477 (6)C12—H12B0.9800
Au1—Br32.4310 (3)C12—H12C0.9800
Au1—Br22.4330 (3)C13—H13A0.9800
Au1—Br12.4399 (4)C13—H13B0.9800
P1—C31.847 (2)C13—H13C0.9800
P1—C21.872 (2)C21—H21A0.9800
P1—C11.877 (2)C21—H21B0.9800
P1—S12.0640 (8)C21—H21C0.9800
C1—C121.537 (3)C22—H22A0.9800
C1—C131.538 (3)C22—H22B0.9800
C1—C111.543 (3)C22—H22C0.9800
C2—C231.535 (3)C23—H23A0.9800
C2—C211.541 (3)C23—H23B0.9800
C2—C221.541 (3)C23—H23C0.9800
C3—C311.536 (3)C31—H31A0.9800
C3—C321.540 (3)C31—H31B0.9800
C3—H31.0000C31—H31C0.9800
C11—H11A0.9800C32—H32A0.9800
C11—H11B0.9800C32—H32B0.9800
C11—H11C0.9800C32—H32C0.9800
C12—H12A0.9800
S1—Au1—Br393.532 (19)C1—C12—H12C109.5
S1—Au1—Br287.959 (19)H12A—C12—H12C109.5
Br3—Au1—Br2172.720 (9)H12B—C12—H12C109.5
S1—Au1—Br1177.293 (16)C1—C13—H13A109.5
Br3—Au1—Br189.099 (14)C1—C13—H13B109.5
Br2—Au1—Br189.510 (14)H13A—C13—H13B109.5
C3—P1—C2112.57 (10)C1—C13—H13C109.5
C3—P1—C1108.53 (11)H13A—C13—H13C109.5
C2—P1—C1113.56 (10)H13B—C13—H13C109.5
C3—P1—S1109.09 (8)C2—C21—H21A109.5
C2—P1—S1101.70 (7)C2—C21—H21B109.5
C1—P1—S1111.23 (7)H21A—C21—H21B109.5
P1—S1—Au1111.56 (3)C2—C21—H21C109.5
C12—C1—C13108.27 (19)H21A—C21—H21C109.5
C12—C1—C11107.87 (19)H21B—C21—H21C109.5
C13—C1—C11109.49 (19)C2—C22—H22A109.5
C12—C1—P1111.22 (15)C2—C22—H22B109.5
C13—C1—P1107.83 (15)H22A—C22—H22B109.5
C11—C1—P1112.09 (15)C2—C22—H22C109.5
C23—C2—C21107.46 (19)H22A—C22—H22C109.5
C23—C2—C22109.62 (19)H22B—C22—H22C109.5
C21—C2—C22108.69 (19)C2—C23—H23A109.5
C23—C2—P1110.46 (16)C2—C23—H23B109.5
C21—C2—P1110.21 (15)H23A—C23—H23B109.5
C22—C2—P1110.34 (16)C2—C23—H23C109.5
C31—C3—C32110.81 (19)H23A—C23—H23C109.5
C31—C3—P1112.74 (17)H23B—C23—H23C109.5
C32—C3—P1117.05 (16)C3—C31—H31A109.5
C31—C3—H3105.0C3—C31—H31B109.5
C32—C3—H3105.0H31A—C31—H31B109.5
P1—C3—H3105.0C3—C31—H31C109.5
C1—C11—H11A109.5H31A—C31—H31C109.5
C1—C11—H11B109.5H31B—C31—H31C109.5
H11A—C11—H11B109.5C3—C32—H32A109.5
C1—C11—H11C109.5C3—C32—H32B109.5
H11A—C11—H11C109.5H32A—C32—H32B109.5
H11B—C11—H11C109.5C3—C32—H32C109.5
C1—C12—H12A109.5H32A—C32—H32C109.5
C1—C12—H12B109.5H32B—C32—H32C109.5
H12A—C12—H12B109.5
C3—P1—S1—Au170.82 (8)C1—P1—C2—C2341.03 (19)
C2—P1—S1—Au1170.07 (8)S1—P1—C2—C2378.55 (15)
C1—P1—S1—Au148.86 (9)C3—P1—C2—C2176.56 (18)
Br3—Au1—S1—P170.22 (3)C1—P1—C2—C21159.61 (16)
Br2—Au1—S1—P1116.91 (3)S1—P1—C2—C2140.03 (17)
C3—P1—C1—C12160.43 (16)C3—P1—C2—C2243.48 (19)
C2—P1—C1—C1273.58 (18)C1—P1—C2—C2280.34 (18)
S1—P1—C1—C1240.42 (17)S1—P1—C2—C22160.08 (15)
C3—P1—C1—C1341.86 (17)C2—P1—C3—C3154.96 (19)
C2—P1—C1—C13167.86 (15)C1—P1—C3—C31178.47 (16)
S1—P1—C1—C1378.15 (15)S1—P1—C3—C3157.14 (17)
C3—P1—C1—C1178.73 (18)C2—P1—C3—C3275.32 (19)
C2—P1—C1—C1147.3 (2)C1—P1—C3—C3251.24 (19)
S1—P1—C1—C11161.26 (14)S1—P1—C3—C32172.58 (15)
C3—P1—C2—C23164.85 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13B···Au10.982.693.607 (2)156
C21—H21A···S10.982.633.109 (2)110
C12—H12A···S10.982.893.417 (2)114
C3—H3···Br31.002.713.546 (2)141
C12—H12A···Br20.982.893.863 (2)174
C13—H13A···Br2i0.983.003.931 (2)159
Symmetry code: (i) x+1, y+1, z+1.
Tribromido(tripropan-2-ylphosphane selenide-κS)gold(III) (13b) top
Crystal data top
[AuBr3(C9H21PSe)]Z = 2
Mr = 675.88F(000) = 616
Triclinic, P1Dx = 2.760 Mg m3
a = 8.3928 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.1417 (4) ÅCell parameters from 15280 reflections
c = 10.7567 (4) Åθ = 2.2–30.9°
α = 94.419 (3)°µ = 18.72 mm1
β = 105.612 (3)°T = 100 K
γ = 110.113 (3)°Plate, dichroic pale brown / black
V = 813.33 (5) Å30.2 × 0.1 × 0.01 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
4825 independent reflections
Radiation source: Enhance (Mo) X-ray Source4278 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.059
ω scanθmax = 31.0°, θmin = 2.2°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
h = 1112
Tmin = 0.200, Tmax = 1.000k = 1414
44535 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0378P)2 + 1.6418P]
where P = (Fo2 + 2Fc2)/3
4825 reflections(Δ/σ)max = 0.001
142 parametersΔρmax = 1.43 e Å3
0 restraintsΔρmin = 1.49 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.69422 (2)0.57788 (2)0.18566 (2)0.01164 (6)
Br10.83155 (6)0.83965 (5)0.25275 (5)0.02209 (10)
Br30.40852 (5)0.58195 (4)0.19223 (4)0.01647 (9)
Br20.97546 (5)0.57176 (5)0.17238 (5)0.02254 (10)
P10.48156 (13)0.21791 (11)0.26640 (10)0.01046 (19)
Se10.56222 (5)0.31839 (4)0.10650 (4)0.01349 (9)
C10.4341 (5)0.0298 (4)0.2060 (4)0.0144 (8)
H10.5447430.0266810.1896990.017*
C20.2956 (5)0.2543 (4)0.2980 (4)0.0131 (7)
H20.3381550.3607160.3216810.016*
C30.6650 (5)0.2762 (4)0.4225 (4)0.0122 (7)
H30.6193620.2193200.4862440.015*
C110.3991 (7)0.0633 (5)0.3087 (5)0.0241 (10)
H11A0.2890380.0659390.3256050.036*
H11B0.4996720.0229430.3904460.036*
H11C0.3860770.1604930.2759100.036*
C120.2817 (7)0.0355 (5)0.0745 (5)0.0288 (11)
H12A0.2789000.1286980.0396860.043*
H12B0.3018650.0283620.0114910.043*
H12C0.1672770.0475300.0886020.043*
C210.1296 (5)0.2087 (5)0.1770 (4)0.0176 (8)
H21A0.0642330.1051550.1627630.026*
H21B0.1659740.2333900.0998630.026*
H21C0.0522530.2581770.1908170.026*
C220.2491 (5)0.1964 (5)0.4180 (4)0.0170 (8)
H22A0.1595610.2293610.4366070.025*
H22B0.3572760.2313540.4946360.025*
H22C0.2009890.0916140.3987340.025*
C310.8257 (6)0.2440 (5)0.4101 (5)0.0224 (9)
H31A0.8713990.2948630.3453880.034*
H31B0.7890320.1409190.3814370.034*
H31C0.9198030.2755680.4955060.034*
C320.7203 (6)0.4337 (5)0.4804 (4)0.0178 (8)
H32A0.8033240.4559710.5698870.027*
H32B0.6139700.4524400.4825900.027*
H32C0.7789820.4935400.4258640.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01092 (8)0.01220 (8)0.01097 (8)0.00286 (6)0.00402 (6)0.00270 (6)
Br10.0235 (2)0.0131 (2)0.0234 (2)0.00006 (16)0.00726 (17)0.00196 (16)
Br30.01689 (19)0.0151 (2)0.0233 (2)0.00837 (15)0.01141 (16)0.00740 (16)
Br20.01151 (18)0.0285 (2)0.0274 (2)0.00615 (17)0.00769 (17)0.00587 (19)
P10.0096 (4)0.0100 (4)0.0109 (4)0.0028 (3)0.0035 (3)0.0006 (4)
Se10.01722 (19)0.01294 (19)0.01227 (19)0.00549 (15)0.00815 (15)0.00196 (14)
C10.0175 (18)0.0105 (18)0.0163 (19)0.0066 (15)0.0058 (15)0.0012 (15)
C20.0118 (17)0.0117 (18)0.0154 (19)0.0044 (14)0.0046 (14)0.0003 (14)
C30.0094 (16)0.0180 (19)0.0080 (17)0.0043 (14)0.0023 (13)0.0025 (14)
C110.035 (3)0.012 (2)0.025 (2)0.0063 (18)0.011 (2)0.0037 (17)
C120.034 (3)0.022 (2)0.019 (2)0.006 (2)0.0006 (19)0.0088 (18)
C210.0115 (18)0.022 (2)0.017 (2)0.0045 (16)0.0031 (15)0.0033 (16)
C220.0128 (18)0.022 (2)0.018 (2)0.0056 (16)0.0086 (15)0.0055 (16)
C310.0123 (19)0.025 (2)0.026 (2)0.0068 (17)0.0032 (17)0.0025 (19)
C320.0167 (19)0.016 (2)0.0151 (19)0.0032 (16)0.0022 (15)0.0011 (16)
Geometric parameters (Å, º) top
Au1—Br22.4241 (4)C11—H11B0.9800
Au1—Br32.4321 (4)C11—H11C0.9800
Au1—Se12.4535 (4)C12—H12A0.9800
Au1—Br12.4597 (5)C12—H12B0.9800
P1—C21.831 (4)C12—H12C0.9800
P1—C11.835 (4)C21—H21A0.9800
P1—C31.835 (4)C21—H21B0.9800
P1—Se12.2085 (11)C21—H21C0.9800
C1—C111.531 (6)C22—H22A0.9800
C1—C121.541 (6)C22—H22B0.9800
C1—H11.0000C22—H22C0.9800
C2—C211.529 (5)C31—H31A0.9800
C2—C221.547 (6)C31—H31B0.9800
C2—H21.0000C31—H31C0.9800
C3—C321.528 (6)C32—H32A0.9800
C3—C311.529 (6)C32—H32B0.9800
C3—H31.0000C32—H32C0.9800
C11—H11A0.9800
Br2—Au1—Br3178.373 (15)C1—C11—H11C109.5
Br2—Au1—Se187.616 (16)H11A—C11—H11C109.5
Br3—Au1—Se191.709 (14)H11B—C11—H11C109.5
Br2—Au1—Br190.566 (17)C1—C12—H12A109.5
Br3—Au1—Br190.031 (16)C1—C12—H12B109.5
Se1—Au1—Br1176.522 (15)H12A—C12—H12B109.5
C2—P1—C1115.50 (19)C1—C12—H12C109.5
C2—P1—C3107.15 (18)H12A—C12—H12C109.5
C1—P1—C3107.53 (19)H12B—C12—H12C109.5
C2—P1—Se1112.81 (14)C2—C21—H21A109.5
C1—P1—Se1101.08 (14)C2—C21—H21B109.5
C3—P1—Se1112.75 (13)H21A—C21—H21B109.5
P1—Se1—Au1107.24 (3)C2—C21—H21C109.5
C11—C1—C12110.4 (4)H21A—C21—H21C109.5
C11—C1—P1112.1 (3)H21B—C21—H21C109.5
C12—C1—P1113.9 (3)C2—C22—H22A109.5
C11—C1—H1106.6C2—C22—H22B109.5
C12—C1—H1106.6H22A—C22—H22B109.5
P1—C1—H1106.6C2—C22—H22C109.5
C21—C2—C22111.7 (3)H22A—C22—H22C109.5
C21—C2—P1113.5 (3)H22B—C22—H22C109.5
C22—C2—P1113.3 (3)C3—C31—H31A109.5
C21—C2—H2105.8C3—C31—H31B109.5
C22—C2—H2105.8H31A—C31—H31B109.5
P1—C2—H2105.8C3—C31—H31C109.5
C32—C3—C31111.2 (3)H31A—C31—H31C109.5
C32—C3—P1112.2 (3)H31B—C31—H31C109.5
C31—C3—P1112.0 (3)C3—C32—H32A109.5
C32—C3—H3107.0C3—C32—H32B109.5
C31—C3—H3107.0H32A—C32—H32B109.5
P1—C3—H3107.0C3—C32—H32C109.5
C1—C11—H11A109.5H32A—C32—H32C109.5
C1—C11—H11B109.5H32B—C32—H32C109.5
H11A—C11—H11B109.5
C2—P1—Se1—Au167.97 (14)C3—P1—C2—C21178.9 (3)
C1—P1—Se1—Au1168.10 (13)Se1—P1—C2—C2156.5 (3)
C3—P1—Se1—Au153.58 (15)C1—P1—C2—C2269.7 (3)
Br2—Au1—Se1—P1114.96 (3)C3—P1—C2—C2250.1 (3)
Br3—Au1—Se1—P166.53 (3)Se1—P1—C2—C22174.7 (2)
C2—P1—C1—C1165.9 (4)C2—P1—C3—C3257.0 (3)
C3—P1—C1—C1153.7 (4)C1—P1—C3—C32178.3 (3)
Se1—P1—C1—C11172.0 (3)Se1—P1—C3—C3267.7 (3)
C2—P1—C1—C1260.4 (4)C2—P1—C3—C31177.1 (3)
C3—P1—C1—C12179.9 (3)C1—P1—C3—C3152.3 (4)
Se1—P1—C1—C1261.7 (3)Se1—P1—C3—C3158.2 (3)
C1—P1—C2—C2159.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C32—H32C···Au10.982.773.578 (5)140
C12—H12B···Se10.982.903.479 (5)119
C2—H2···Br31.002.713.497 (4)136
C11—H11C···Br3i0.982.783.752 (5)171
C32—H32A···Br2ii0.982.993.933 (4)163
Symmetry codes: (i) x, y1, z; (ii) x+2, y+1, z+1.
Tribromido[di-tert-butyl(propan-2-yl)phosphane selenide-κS]gold(III) (15b) top
Crystal data top
[AuBr3(C11H25PSe)]Z = 2
Mr = 703.93F(000) = 648
Triclinic, P1Dx = 2.586 Mg m3
a = 8.6000 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.2045 (7) ÅCell parameters from 9711 reflections
c = 11.5987 (7) Åθ = 2.6–30.7°
α = 77.475 (6)°µ = 16.85 mm1
β = 69.764 (6)°T = 100 K
γ = 72.601 (6)°Lath, dichroic black / orange
V = 904.02 (11) Å30.2 × 0.06 × 0.04 mm
Data collection top
Oxford Diffraction Xcalibur, Eos
diffractometer
5282 independent reflections
Radiation source: Enhance (Mo) X-ray Source4719 reflections with I > 2σ(I)
Detector resolution: 16.1419 pixels mm-1Rint = 0.033
ω scansθmax = 30.8°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
h = 1212
Tmin = 0.376, Tmax = 1.000k = 1414
25566 measured reflectionsl = 1616
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.020 w = 1/[σ2(Fo2) + (0.011P)2 + 0.1908P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.036(Δ/σ)max = 0.001
S = 1.05Δρmax = 1.04 e Å3
5282 reflectionsΔρmin = 0.80 e Å3
163 parametersExtinction correction: SHELXL-2019/3 (Sheldrick, 2015), Fc* = kFc[1 + 0.001 Fc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00115 (6)
Primary atom site location: structure-invariant direct methods
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.47180 (2)0.35576 (2)0.23406 (2)0.01020 (3)
Br10.53346 (3)0.12201 (3)0.34571 (2)0.01753 (6)
Br20.75742 (3)0.37440 (3)0.20826 (2)0.01554 (6)
Br30.19859 (3)0.32636 (3)0.24007 (3)0.01777 (6)
P10.21219 (8)0.73040 (7)0.24676 (6)0.00837 (12)
Se10.42295 (3)0.59094 (3)0.12166 (2)0.01100 (5)
C10.2529 (3)0.7103 (3)0.3998 (2)0.0105 (5)
C20.2206 (3)0.9043 (3)0.1533 (2)0.0121 (5)
C30.0086 (3)0.6854 (3)0.2742 (2)0.0120 (5)
H30.0283160.5851580.3086240.014*
C110.1482 (3)0.8360 (3)0.4709 (2)0.0144 (5)
H11A0.1859310.9190440.4241270.022*
H11B0.1655550.8188240.5525430.022*
H11C0.0265870.8499450.4810540.022*
C120.4427 (3)0.6939 (3)0.3826 (2)0.0145 (5)
H12A0.5113280.6122980.3408540.022*
H12B0.4599410.6825620.4638050.022*
H12C0.4780890.7765270.3322900.022*
C130.2029 (3)0.5779 (3)0.4767 (2)0.0138 (5)
H13A0.2349620.5589980.5530470.021*
H13B0.2627080.4998900.4284970.021*
H13C0.0792210.5905370.4975310.021*
C210.2509 (3)0.8956 (3)0.0155 (2)0.0152 (5)
H21A0.3650470.8369630.0186160.023*
H21B0.2424290.9886850.0308550.023*
H21C0.1645950.8557040.0085150.023*
C220.0512 (3)1.0113 (3)0.2003 (2)0.0159 (5)
H22A0.0605991.1029540.1549700.024*
H22B0.0268121.0136580.2889360.024*
H22C0.0415130.9853540.1868720.024*
C230.3687 (3)0.9527 (3)0.1604 (2)0.0152 (5)
H23A0.3767701.0401340.1060960.023*
H23B0.4757350.8825060.1337730.023*
H23C0.3485980.9665180.2458970.023*
C310.0347 (3)0.6930 (3)0.1546 (2)0.0181 (6)
H31A0.0730190.7902100.1224370.027*
H31B0.1258500.6458200.1723810.027*
H31C0.0671800.6479900.0928450.027*
C320.1478 (3)0.7586 (3)0.3717 (2)0.0179 (6)
H32A0.2460130.7223410.3824320.027*
H32B0.1741120.8583280.3441020.027*
H32C0.1229230.7418520.4506860.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01150 (5)0.00826 (5)0.01035 (5)0.00006 (4)0.00365 (3)0.00294 (3)
Br10.02268 (13)0.01024 (13)0.01990 (14)0.00161 (11)0.01002 (11)0.00022 (10)
Br20.01258 (12)0.01528 (13)0.01902 (13)0.00035 (10)0.00666 (10)0.00385 (11)
Br30.01498 (12)0.01201 (13)0.02826 (15)0.00277 (10)0.00777 (11)0.00519 (11)
P10.0086 (3)0.0075 (3)0.0088 (3)0.0009 (2)0.0030 (2)0.0015 (2)
Se10.01263 (12)0.00941 (12)0.00860 (11)0.00004 (10)0.00190 (9)0.00236 (9)
C10.0109 (11)0.0105 (12)0.0103 (12)0.0004 (10)0.0038 (9)0.0039 (10)
C20.0133 (12)0.0104 (12)0.0129 (12)0.0028 (10)0.0046 (10)0.0015 (10)
C30.0133 (12)0.0088 (12)0.0159 (13)0.0028 (10)0.0070 (10)0.0009 (10)
C110.0179 (13)0.0122 (13)0.0122 (12)0.0002 (10)0.0044 (10)0.0047 (10)
C120.0117 (12)0.0202 (14)0.0136 (13)0.0006 (11)0.0080 (10)0.0056 (11)
C130.0176 (13)0.0111 (13)0.0109 (12)0.0008 (10)0.0062 (10)0.0009 (10)
C210.0196 (13)0.0131 (13)0.0112 (12)0.0032 (11)0.0043 (10)0.0004 (10)
C220.0158 (12)0.0114 (13)0.0184 (13)0.0003 (10)0.0049 (10)0.0023 (11)
C230.0180 (13)0.0126 (13)0.0157 (13)0.0064 (11)0.0041 (10)0.0010 (10)
C310.0173 (13)0.0194 (15)0.0218 (14)0.0052 (11)0.0116 (11)0.0005 (12)
C320.0098 (12)0.0177 (14)0.0227 (14)0.0027 (11)0.0029 (10)0.0002 (12)
Geometric parameters (Å, º) top
Au1—Br22.4302 (3)C12—H12B0.9800
Au1—Br32.4320 (3)C12—H12C0.9800
Au1—Br12.4549 (3)C13—H13A0.9800
Au1—Se12.4606 (3)C13—H13B0.9800
P1—C31.847 (2)C13—H13C0.9800
P1—C21.875 (3)C21—H21A0.9800
P1—C11.883 (3)C21—H21B0.9800
P1—Se12.2247 (7)C21—H21C0.9800
C1—C121.536 (3)C22—H22A0.9800
C1—C131.538 (3)C22—H22B0.9800
C1—C111.546 (3)C22—H22C0.9800
C2—C231.530 (3)C23—H23A0.9800
C2—C221.539 (3)C23—H23B0.9800
C2—C211.546 (3)C23—H23C0.9800
C3—C321.536 (3)C31—H31A0.9800
C3—C311.536 (3)C31—H31B0.9800
C3—H31.0000C31—H31C0.9800
C11—H11A0.9800C32—H32A0.9800
C11—H11B0.9800C32—H32B0.9800
C11—H11C0.9800C32—H32C0.9800
C12—H12A0.9800
Br2—Au1—Br3174.078 (10)C1—C12—H12C109.5
Br2—Au1—Br190.066 (11)H12A—C12—H12C109.5
Br3—Au1—Br189.729 (12)H12B—C12—H12C109.5
Br2—Au1—Se187.317 (11)C1—C13—H13A109.5
Br3—Au1—Se192.892 (11)C1—C13—H13B109.5
Br1—Au1—Se1177.377 (9)H13A—C13—H13B109.5
C3—P1—C2112.60 (11)C1—C13—H13C109.5
C3—P1—C1108.84 (11)H13A—C13—H13C109.5
C2—P1—C1114.02 (11)H13B—C13—H13C109.5
C3—P1—Se1109.35 (9)C2—C21—H21A109.5
C2—P1—Se1101.46 (8)C2—C21—H21B109.5
C1—P1—Se1110.34 (8)H21A—C21—H21B109.5
P1—Se1—Au1108.81 (2)C2—C21—H21C109.5
C12—C1—C13108.1 (2)H21A—C21—H21C109.5
C12—C1—C11108.1 (2)H21B—C21—H21C109.5
C13—C1—C11109.8 (2)C2—C22—H22A109.5
C12—C1—P1111.46 (16)C2—C22—H22B109.5
C13—C1—P1107.66 (17)H22A—C22—H22B109.5
C11—C1—P1111.76 (17)C2—C22—H22C109.5
C23—C2—C22109.7 (2)H22A—C22—H22C109.5
C23—C2—C21107.4 (2)H22B—C22—H22C109.5
C22—C2—C21108.6 (2)C2—C23—H23A109.5
C23—C2—P1110.52 (17)C2—C23—H23B109.5
C22—C2—P1110.37 (17)H23A—C23—H23B109.5
C21—C2—P1110.18 (18)C2—C23—H23C109.5
C32—C3—C31110.6 (2)H23A—C23—H23C109.5
C32—C3—P1116.61 (18)H23B—C23—H23C109.5
C31—C3—P1113.40 (17)C3—C31—H31A109.5
C32—C3—H3105.0C3—C31—H31B109.5
C31—C3—H3105.0H31A—C31—H31B109.5
P1—C3—H3105.0C3—C31—H31C109.5
C1—C11—H11A109.5H31A—C31—H31C109.5
C1—C11—H11B109.5H31B—C31—H31C109.5
H11A—C11—H11B109.5C3—C32—H32A109.5
C1—C11—H11C109.5C3—C32—H32B109.5
H11A—C11—H11C109.5H32A—C32—H32B109.5
H11B—C11—H11C109.5C3—C32—H32C109.5
C1—C12—H12A109.5H32A—C32—H32C109.5
C1—C12—H12B109.5H32B—C32—H32C109.5
H12A—C12—H12B109.5
C3—P1—Se1—Au169.41 (9)C1—P1—C2—C2341.2 (2)
C2—P1—Se1—Au1171.47 (8)Se1—P1—C2—C2377.43 (17)
C1—P1—Se1—Au150.27 (9)C3—P1—C2—C2244.3 (2)
Br2—Au1—Se1—P1117.58 (2)C1—P1—C2—C2280.3 (2)
Br3—Au1—Se1—P168.34 (2)Se1—P1—C2—C22161.06 (16)
C3—P1—C1—C12159.36 (17)C3—P1—C2—C2175.64 (19)
C2—P1—C1—C1274.0 (2)C1—P1—C2—C21159.73 (16)
Se1—P1—C1—C1239.38 (19)Se1—P1—C2—C2141.14 (17)
C3—P1—C1—C1341.02 (19)C2—P1—C3—C3275.6 (2)
C2—P1—C1—C13167.64 (15)C1—P1—C3—C3251.9 (2)
Se1—P1—C1—C1378.96 (16)Se1—P1—C3—C32172.46 (16)
C3—P1—C1—C1179.61 (19)C2—P1—C3—C3154.6 (2)
C2—P1—C1—C1147.0 (2)C1—P1—C3—C31177.92 (18)
Se1—P1—C1—C11160.40 (15)Se1—P1—C3—C3157.3 (2)
C3—P1—C2—C23165.79 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13B···Au10.982.743.679 (3)160
C21—H21A···Se10.982.693.197 (3)113
C12—H12A···Se10.982.963.484 (3)115
C3—H3···Br31.002.753.585 (3)142
C12—H12A···Br20.983.013.980 (3)173
C13—H13A···Br2i0.983.023.929 (3)156
Symmetry code: (i) x+1, y+1, z+1.
Compositions of the R1R2R3PEAuX3 structures presented in this paper (see Scheme) top
CompoundR1R2R3EXComments
9aiPriPriPrSCl
10aiPriPrtBuSCl
10aaiPriPrtBuSClSecond polymorph of 10a
11aiPrtButBuSCl
11aaiPrtButBuSClCDCl3 solvate of 11a
12atButButBuSClCH2Cl2 solvate
14aiPriPrtBuSeCl
15aiPrtButBuSeCl
15aaiPrtButBuSeClCDCl3 solvate of 15a
9biPriPriPrSBr
11biPrtButBuSBr
13biPriPriPrSeBr
15biPrtButBuSeBr
 

Acknowledgements

We thank the Open Access Publication Funds of the Technical University of Braunschweig for financial support.

References

First citationBreshears, A. T., Behrle, A. C., Barnes, C. L., Laber, C. H., Baker, G. A. & Walensky, J. R. (2015). Polyhedron, 100, 333–343.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDöring, C. & Jones, P. G. (2016). Z. Anorg. Allg. Chem. 642, 930–936.  Google Scholar
First citationDöring, C. & Jones, P. G. (2023). Acta Cryst. E79, 1017–1027.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHofmann, D. W. M. (2002). Acta Cryst. B58, 489–493.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKitaigorodskii, A. I. (1961). Organic Chemical Crystallography. New York: Consultants Bureau.  Google Scholar
First citationKuckmann, T. J., Dornhaus, F., Bolte, M., Lerner, H.-W., Holthausen, M. C. & Wagner, M. (2007). Eur. J. Inorg. Chem. pp. 1989–2003.  Google Scholar
First citationRigaku OD (2020). CrysAlis PRO, Version 1.171.41.93a (and several earlier versions for which we do not give separate references). Rigaku Oxford Diffraction (formerly Oxford Diffraction and Agilent Technologies), Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTaouss, C., Jones, P. G., Upmann, D. & Bockfeld, D. (2015). Z. Naturforsch. B, 70, 911–927.  Web of Science CSD CrossRef CAS Google Scholar
First citationUpmann, D. (2015). Phosphanchalkogenide und ihre Edelmetall-komplexe. Dissertation, Technical University of Braunschweig, Germany (ISBN: 978-3-8439-1972-2).  Google Scholar
First citationUpmann, D. & Jones, P. G. (2013). Dalton Trans. 42, 7526–7528.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationUpmann, D., Jones, P. G., Bockfeld, D. & Târcoveanu, E. (2024). Acta Cryst. E80, 34–49.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationUpmann, D., Koneczny, M., Rass, J. & Jones, P. G. (2019). Z. Naturforsch. B, 74, 389–404.  Web of Science CSD CrossRef CAS Google Scholar
First citationUpmann, D., Näther, C., Jess, I. & Jones, P. G. (2017). Z. Anorg. Allg. Chem. 643, 311–316.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds