research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2,4-di­amino-5-(4-hy­dr­oxy-3-meth­­oxy­phen­yl)-8,8-di­methyl-6-oxo-6,7,8,9-tetra­hydro-5H-chromeno[2,3-b]pyridine-3-carbo­nitrile–di­methyl­formamide–water (1/1/1)

crossmark logo

aChemistry Department, Faculty of Science, Cairo University, Giza, Egypt, bChemistry Department, Faculty of Science, Helwan University, Cairo, Egypt, and cInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-braunschweig.de

Edited by C. Schulzke, Universität Greifswald, Germany (Received 8 March 2024; accepted 19 March 2024; online 26 March 2024)

In the structure of the title compound, C22H22N4O4·C3H7NO·H2O, the entire tricyclic system is approximately planar except for the carbon atom bearing the two methyl groups; the meth­oxy­phenyl ring is approximately perpendicular to the tricycle. All seven potential hydrogen-bond donors take part in classical hydrogen bonds. The main mol­ecule and the DMF combine to form broad ribbons parallel to the a axis and roughly parallel to the ab plane; the water mol­ecules connect the residues in the third dimension.

1. Chemical context

Activated nitriles and α,β-unsaturated nitrile moieties are involved in a wide variety of natural plant products, drugs, colourants and agrochemicals (Fleming & Wang, 2003[Fleming, F. F. & Wang, Q. Z. (2003). Chem. Rev. 103, 2035-2078.]; Ahmed et al., 2022[Ahmed, E. A., Elgemeie, G. H. & Ahmed, K. A. (2022). Pigm. Resin Technol. 51, 1-5.]); they also represent versatile starting materials for the synthesis of a wide variety of therapeutically important heterocycles (Zhang et al., 2019[Zhang, W., Yang, C., Zhang, Z., Li, X. & Cheng, J. (2019). Org. Lett. 21, 4137-4142.]; Metwally et al., 2023[Metwally, N. H., Elgemeie, G. H. & Fahmy, F. G. (2023). ACS Omega, 8, 36636-36654.]). The generally accepted importance of these functions (Wang et al., 2016[Wang, C., Li, Y., Gong, M., Wu, Q., Zhang, J., Kim, J. K., Huang, M. & Wu, Y. (2016). Org. Lett. 18, 4151-4153.]; Hebishy et al., 2023[Hebishy, A. M. S., Elgemeie, G. H., Gouda, L. M. & Jones, P. G. (2023). Acta Cryst. E79, 335-340.]) is reflected in the investment of much effort to synthesize them (Zhang et al., 2023[Zhang, G., Zhang, C., Tian, Y. & Chen, F. (2023). Org. Lett. 25, 917-922.]; Elgemeie et al., 1998a[Elgemeie, G. E. H., Farag, D. S. & Jones, P. G. (1998a). Acta Cryst. C54, 1466-1468.],b[Elgemeie, G. E. H., Fathy, N. M. & Jones, P. G. (1998b). Acta Cryst. C54, 1314-1316.]). Recently, we have reported several new methods for the synthesis of pharmaceutically relevant heterocycles utilizing activated nitriles and α,β-unsaturated nitriles as starting materials (e.g. Mohamed-Ezzat et al., 2021[Mohamed-Ezzat, R. A., Elgemeie, G. H. & Jones, P. G. (2021). Acta Cryst. E77, 547-550.]). In this context, we and others have synthesized several condensed carbocyclic pyrans and carbocyclic pyridines using dimedone as the starting material (Hebishy et al., 2022[Hebishy, A. M. S., Elgemeie, G. H., Ali, R. A. E. & Jones, P. G. (2022). Acta Cryst. E78, 638-641.]; Tu et al., 2014[Tu, X., Fan, W., Hao, W., Jiang, B. & Tu, S. (2014). ACS Comb. Sci. 16, 647-651.]).

[Scheme 1]

The present investigation reports a new one-pot synthesis of condensed carbocyclic pyridines by the reaction of dimedone with enamino nitriles. It was found that 2-amino­prop-1-ene-1,1,3-tricarbo­nitrile (1) reacted with 4-hy­droxy-3-meth­oxy­benzaldehyde (2) and dimedone (4) in refluxing n-butanol containing catalytic amounts of tri­methyl­amine to give the corresponding condensed chromeno[2,3-b]pyridine-3-carbo­nitrile (7) (Fig. 1[link]). The structure of 7 was confirmed on the basis of elemental analysis and spectroscopic studies (1H NMR, IR and MS). We suggest that the formation mechanism of 7 from 1, 2 and 4 involves a condensation reaction that consists of an initial Michael addition of the methyl­ene group of the dimedone 4 to the double bond of inter­mediate 3 to give the next inter­mediate 5, which then cyclizes to the condensed chromeno[2,3-b]pyridine-3-carbo­nitrile 7. In order to establish the structure of the compound unambiguously, the crystal structure was determined and is presented here.

[Figure 1]
Figure 1
The reaction scheme for the synthesis of compound 7.

2. Structural commentary

The structure of the product 7, which crystallized from DMF as a 1/1/1 adduct with DMF and water, is shown in Fig. 2[link]. Mol­ecular dimensions, a selection of which are given in Table 1[link], may be regarded as normal (e.g. the double-bond length C5A=C9A). The pyridinic ring is planar, and its direct substituents also lie in the same plane (r.m.s. deviation of eleven atoms = 0.008 Å); the angle between this plane and that of the meth­oxy­phenyl ring is 77.86 (2)°. The atoms C5A and C9A lie 0.317 (1) and 0.249 (1) Å, respectively, out of the plane in the same direction. The central ring has the form of a flattened boat, with C5 and O10 lying 0.166 (1) and 0.101 (1) Å, respectively, out of the plane of the other four atoms (r.m.s. deviation = 0.015 Å). The third ring of the tricyclic system, formally related to cyclo­hexen-2-one, has the expected envelope form, in which the atom C8 lies 0.673 (1) Å out of the plane of the other five atoms (r.m.s. deviation 0.029 Å). Viewed from the side (Fig. 3[link]), it can be seen that the entire tricyclic system is approximately planar (r.m.s. deviation 0.14 Å) except for C8.

Table 1
Selected geometric parameters (Å, °)

N1—C10A 1.3324 (7) C9A—O10 1.3617 (7)
N1—C2 1.3399 (7) O10—C10A 1.3783 (7)
C5A—C9A 1.3484 (8)    
       
C10A—N1—C2 117.21 (5) C4A—C10A—O10 122.17 (5)
       
C10A—C4A—C5—C5A 11.45 (7) C5—C5A—C9A—O10 5.67 (9)
C4A—C5—C5A—C9A −14.61 (7) C6—C5A—C9A—C9 5.77 (9)
C9A—C5A—C6—C7 −8.71 (8) C8—C9—C9A—C5A 26.39 (9)
C5A—C6—C7—C8 −21.02 (8) C5A—C9A—O10—C10A 8.25 (9)
C6—C7—C8—C9 50.42 (7) C5—C4A—C10A—O10 0.48 (9)
C7—C8—C9—C9A −51.84 (7) C9A—O10—C10A—C4A −11.26 (9)
[Figure 2]
Figure 2
The structure of compound 7 (as its 1/1/1 adduct with DMF and water) in the crystal. Ellipsoids correspond to 50% probability levels. The dashed lines indicate hydrogen bonds.
[Figure 3]
Figure 3
Side view of compound 7 (hydrogen atoms excluded).

3. Supra­molecular features

All seven of the potential hydrogen-bond donors do indeed take part in classical hydrogen bonds (Table 2[link]), although the contact N4—H03⋯O98 is appreciably longer than the others, and O99—H07 is part of a three-centre system with N1 and the more distant O10 as acceptors. There is also one short linear contact involving a phenyl hydrogen, C22—H22⋯O98, which may be considered as a weak hydrogen bond; this is, however, not represented in the Figures for clarity reasons.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H01⋯O1i 0.886 (13) 2.268 (13) 3.1492 (7) 173.6 (11)
N2—H02⋯O98 0.885 (13) 2.170 (13) 2.9167 (8) 141.8 (11)
N4—H03⋯O98ii 0.836 (13) 2.590 (12) 3.2891 (8) 142.0 (11)
N4—H04⋯N3iii 0.863 (13) 2.237 (13) 3.0413 (8) 154.9 (12)
O3—H05⋯O99 0.879 (14) 1.816 (14) 2.6399 (7) 155.2 (12)
O99—H06⋯O1iv 0.856 (14) 1.944 (14) 2.7944 (7) 172.0 (13)
O99—H07⋯N1v 0.877 (14) 2.012 (14) 2.8699 (7) 165.5 (13)
O99—H07⋯O10v 0.877 (14) 2.519 (14) 3.2180 (7) 137.2 (11)
C22—H22⋯O98ii 0.95 2.39 3.3210 (8) 167
Symmetry codes: (i) [x-1, y, z]; (ii) [x+1, y, z]; (iii) [-x+1, -y+2, -z+1]; (iv) [-x+{\script{5\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

The mol­ecules of 7 and the DMF combine to form broad ribbons parallel to the a axis (Fig. 4[link]), in which inversion-symmetric R22(12) rings, based on the hydrogen bond N4—H04⋯N3, are prominent. The DMF mol­ecules project above and below the planes of the ribbons. The water mol­ecules connect the residues in the third dimension (Fig. 5[link]). They accept one hydrogen bond and act as donor for three hydrogen bonds (counting both branches of the three-centre system).

[Figure 4]
Figure 4
Packing diagram of compound 7 (including the DMF mol­ecules, which are seen edge-on), showing two broad ribbons running vertically. The meth­oxy­phenyl rings are reduced to the ipso atoms C21 for clarity. Hydrogen atoms not involved in hydrogen bonding are also omitted. View direction: perpendicular to the ab plane. Hydrogen bonds are shown as dashed lines (thin for the longer bonds N4—H03⋯O98, otherwise thick).
[Figure 5]
Figure 5
Packing diagram of compound 7, with view direction approximately perpendicular to (101), showing the role of the water mol­ecules. Hydrogen bonds involving these mol­ecules are shown as thick dashed bonds, other hydrogen bonds as thin dashed bonds.

4. Database survey

The search employed the routine ConQuest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]), part of Version 2022.3.0 of the Cambridge Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]).

A search for the same tricyclic ring system gave only one hit, namely 8-(furan-2-yl)-12-(4-meth­oxy­phen­yl)-3,3,11-trimethyl-3,4,7,8,9,12-hexa­hydro-1H-chromeno[2,3-b]quinoline-1,10(2H)-dione (refcode EVANEW; Han et al., 2015[Han, G.-F., Zhao, L.-J., Chen, L.-Z., Du, J.-W. & Wang, Z.-X. (2015). J. Heterocycl. Chem. 52, 1219-1225.]). This, however, has a further cyclo­hexa­none-type ring fused to the pyridinic ring. In common with compound 7, it bears two methyl groups at the atom corresponding to our C8, a keto function at C6 and an aromatic substituent (p-meth­oxy­phen­yl) at C5. The inter­planar angle involving this ring is given as 83.7 (7)°.

A search for solvates with precisely one DMF and one water mol­ecule (under the stringent conditions only organic, no disorder, no ionic compounds, no metals, all solvent H present) gave only 32 hits. We did not check for the plausibility of the water H atoms. The structures represented a broad distribution of organic compounds, e.g. during systematic studies of solvates of crown ethers [17,23-di­bromo-18,22-di­nitro-2,5,8,11,14-penta­oxa-26-aza­tetra­cyclo-(13.9.3.019,27.021,25)hepta­cosa-1(24),15,17,19 (27),21 (25),22-hexa­ene-20(26H)-one, refcode AMARAH; Huszthy et al., 2003[Huszthy, P., Vermes, B., Báthori, N. & Czugler, M. (2003). Tetrahedron, 59, 9371-9377.]] or steroids [bis­(17β-hy­droxy-17α-methyl­androstano[3,2-c]pyrazole, AVEQUO; Karpinska et al., 2011[Karpinska, J., Erxleben, A. & McArdle, P. (2011). Cryst. Growth Des. 11, 2829-2838.]]. Heterocyclic systems with groups likely to hydrogen bond were also well represented, e.g. 2′-amino-6′-ethyl-2,5′-dioxo-1,2,5′,6′-tetra­hydro­spiro­[indole-3,4′-pyrano[3,2-c]quinoline]-3′-carbo­nitrile (MESVAL; Upadhyay et al., 2023[Upadhyay, D. B., Vala, R. M., Patel, S. G., Patel, P. J., Chi, C. & Patel, C. (2023). J. Mol. Struct. 1273, 134305.]). Our own studies have shown that DMF is often a useful solvent for crystallization of heterocyclic compounds; as a hydrogen-bond acceptor, it has formed solvates with N-[2-amino-5-cyano-4-(methyl­sulfan­yl)-6-oxopyrimidin-1(6H)-yl]-4-bromo­benzene­sulfonamide (WUSMUU; Elgemeie et al., 2015[Elgemeie, G. H., Mohamed, R. A., Hussein, H. A. & Jones, P. G. (2015). Acta Cryst. E71, 1322-1324.]) and N-[6-amino-5-(1,3-benzo­thia­zol-2-yl)-3-cyano-4-(methyl­sulfan­yl)-2-oxopyridin-1(2H)-yl]-4-methyl­benzene-1-sulfonamide (ZELBUQ; Azzam et al., 2017[Azzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017). Acta Cryst. E73, 1820-1822.]).

5. Synthesis and crystallization

Method A

A mixture of 2-amino­prop-1-ene-1,1,3-tricarbo­nitrile 1 (1.32 g, 0.01 mmol), 4-hy­droxy-3-meth­oxy­benzaldehyde 2 (1.52 g, 0.01 mmol) and a few drops of tri­ethyl­amine in n-butanol (50 mL) was refluxed for 3 h. Then 5,5-di­methyl­cyclo­hexane-1,3-dione 4 (1.4 g, 0.01 mmol) was added and the mixture was refluxed for another 2 h. After cooling, the precipitate was collected by filtration and recrystallized from DMF. Yield 2.84 g (70%).

Method B

A mixture of 2-amino­prop-1-ene-1,1,3-tricarbo­nitrile 1 (1.32 g, 0.01 mmol), 4-hy­droxy-3-meth­oxy­benzaldehyde 2 (1.52 g, 0.01 m mol), 5,5-di­methyl­cyclo­hexane-1,3-dione 4 (1.4 g, 0.01 mmol) and few drops of tri­ethyl­amine in n-butanol (5 ml) was refluxed for 6 h. After cooling, the precipitate was collected by filtration and recrystallized from DMF. Yield 3.04 g (75%).

Orange crystals, yield 75%, m.p. 516–518 K. IR (KBr): νmax = 3448 (OH), 3351(NH2), 2204 (CN), 1662 (C=O) cm−1; 1H NMR (400 MHz, DMSO-d6): δ = 1.00 (s, 3H,CH3), 1.05 (s, 3H, CH3), 2.43–2.52 (m, 4H, 2 CH2), 3.66 (s, 3H,OCH3), 4.75 (s, 1H, pyran-H), 6.38–6.42 (m, 5H, Ar-1H and 2 NH2), 6.96 (s, 1H, Ar), 7.92 (s, 1H, Ar), 8.71 (s, 1H, OH) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 196.19 (C=O), 164.06 (O—C—N), 162.84 (C—O), 159.72 (C—NH2), 157.22 (N=C—NH2), 147.36 (C—OCH3), 145.52 (C—OH), 135.72 (Ar—C), 120.37, 116.67 (Ar—CH), 115.07 (CN), 92.51 (C—CO), 72.13 (pyridine-C), 56.21(C—CN), 50.68 (OCH3), 33.29 (CH2), 32.56 (CH2), 29.32 (CH3), 26.83 (CH3) ppm. MS (70 eV, Fab mass, %): m/z = 406 (11%), 372 (9), 282 (100), 226 (33), 170 (11), 66 (9). Analysis calculated for C22H22N4O4 (406.16): C 65.01, H 5.46, N 13.78. Found: C 65.0, H 5.5, N 13.7%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms bonded to nitro­gen or oxygen were refined freely. The methyl groups were included as an idealized rigid group allowed to rotate but not tip (command AFIX 137), with C—H = 0.99 Å and H—C—H = 109.5°. Other hydrogen atoms were included using a riding model starting from calculated positions (C—Hmethyl­ene = 0.99, C—Hmethine = 1.00, C—Harom = 0.95 Å). The U(H) values were fixed at 1.5 × Ueq of the parent carbon atoms for the methyl groups and 1.2 × Ueq for other hydrogens. Three reflections, with intensities clearly in error, were omitted. The largest peaks of residual electron density (max. 0.67 e Å−3) lie in the middle of bonds and thus do not give cause for concern.

Table 3
Experimental details

Crystal data
Chemical formula C22H22N4O4·C3H7NO·H2O
Mr 497.55
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 9.9055 (2), 15.9600 (3), 16.4794 (4)
β (°) 106.344 (2)
V3) 2499.98 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.2 × 0.2 × 0.1
 
Data collection
Diffractometer XtaLAB Synergy
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.735, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 210685, 13416, 11108
Rint 0.056
θ values (°) θmax = 37.8, θmin = 2.2
(sin θ/λ)max−1) 0.862
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.114, 1.04
No. of reflections 13416
No. of parameters 358
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.67, −0.22
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.]), SHELXL2019/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.]) and XP (Bruker, 1998[Bruker (1998). XP. Bruker Analytical X-Ray Instruments, Madison, Wisconsin, USA.]).

Supporting information


Computing details top

2,4-Diamino-5-(4-hydroxy-3-methoxyphenyl)-8,8-dimethyl-6-oxo-6,7,8,9-tetrahydro-5H-chromeno[2,3-b]pyridine-3-carbonitrile–dimethylformamide–water (1/1/1) top
Crystal data top
C22H22N4O4·C3H7NO·H2OF(000) = 1056
Mr = 497.55Dx = 1.322 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.9055 (2) ÅCell parameters from 76991 reflections
b = 15.9600 (3) Åθ = 2.2–39.6°
c = 16.4794 (4) ŵ = 0.10 mm1
β = 106.344 (2)°T = 100 K
V = 2499.98 (10) Å3Tablet, colourless
Z = 40.2 × 0.2 × 0.1 mm
Data collection top
XtaLAB Synergy
diffractometer
13416 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source11108 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.056
Detector resolution: 10.0000 pixels mm-1θmax = 37.8°, θmin = 2.2°
ω scansh = 1717
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
k = 2727
Tmin = 0.735, Tmax = 1.000l = 2828
210685 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0626P)2 + 0.4082P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
13416 reflectionsΔρmax = 0.67 e Å3
358 parametersΔρmin = 0.22 e Å3
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.41040 (5)0.66845 (3)0.58286 (3)0.01573 (8)
C20.35681 (6)0.74408 (3)0.55675 (4)0.01397 (8)
N20.21622 (5)0.75300 (4)0.54244 (4)0.01919 (9)
H010.1683 (13)0.7091 (8)0.5522 (8)0.029 (3)*
H020.1692 (13)0.7983 (8)0.5197 (8)0.032 (3)*
C30.44457 (6)0.81052 (3)0.54550 (3)0.01332 (8)
C40.59114 (6)0.79689 (3)0.55989 (3)0.01270 (8)
N40.67486 (5)0.85813 (3)0.54512 (4)0.01630 (9)
H030.7612 (13)0.8503 (8)0.5540 (8)0.030 (3)*
H040.6425 (14)0.9076 (8)0.5296 (8)0.032 (3)*
C4A0.64624 (5)0.71688 (3)0.58823 (3)0.01254 (8)
C50.80070 (5)0.69551 (3)0.60532 (3)0.01224 (8)
H50.8328990.7141570.5558890.015*
C5A0.81825 (6)0.60167 (3)0.61409 (3)0.01306 (8)
C60.94969 (6)0.56393 (3)0.60992 (4)0.01383 (8)
O11.03852 (5)0.60592 (3)0.58804 (3)0.01802 (8)
C70.97538 (6)0.47181 (4)0.63057 (4)0.01648 (9)
H7A1.0759310.4639920.6613030.020*
H7B0.9565980.4400730.5769280.020*
C80.88588 (6)0.43440 (4)0.68387 (4)0.01705 (9)
C90.73204 (6)0.45817 (4)0.64135 (4)0.01770 (10)
H9A0.6980470.4276260.5871290.021*
H9B0.6732500.4411840.6781880.021*
C9A0.71700 (6)0.55019 (3)0.62522 (4)0.01452 (9)
O100.58553 (5)0.57747 (3)0.62246 (3)0.01756 (8)
C10A0.54867 (6)0.65861 (3)0.59701 (4)0.01403 (9)
C110.38620 (6)0.89004 (4)0.51709 (4)0.01655 (9)
N30.34038 (7)0.95535 (4)0.49419 (5)0.02514 (12)
C120.93212 (8)0.46813 (5)0.77471 (4)0.02391 (12)
H12A1.0269480.4477410.8031830.036*
H12B0.8664810.4486820.8054180.036*
H12C0.9324580.5295240.7735380.036*
C130.90238 (8)0.33896 (4)0.68645 (6)0.02501 (13)
H13A0.8674710.3163600.6290440.038*
H13B0.8482650.3149560.7222630.038*
H13C1.0019520.3244710.7096890.038*
C210.89109 (5)0.73909 (3)0.68486 (3)0.01264 (8)
C220.98270 (6)0.80413 (3)0.67880 (3)0.01367 (8)
H220.9914950.8198340.6249140.016*
C231.06120 (6)0.84614 (4)0.75094 (4)0.01489 (9)
O21.15118 (5)0.91117 (3)0.75031 (3)0.01993 (9)
C241.05186 (6)0.82200 (4)0.83128 (4)0.01673 (9)
O31.12872 (6)0.85824 (4)0.90394 (3)0.02564 (11)
H051.1648 (14)0.9072 (8)0.8971 (8)0.034 (3)*
C250.96244 (7)0.75654 (4)0.83672 (4)0.01757 (10)
H250.9558840.7393100.8906630.021*
C260.88214 (6)0.71565 (4)0.76446 (4)0.01552 (9)
H260.8208510.6714490.7696350.019*
C271.16872 (8)0.93355 (4)0.67030 (4)0.02151 (11)
H27A1.0770080.9475980.6312690.032*
H27B1.2098360.8863140.6475690.032*
H27C1.2313750.9821400.6769690.032*
C970.12972 (7)0.83937 (4)0.40895 (4)0.02086 (11)
H970.2201250.8196390.4091120.025*
C980.02521 (8)0.88437 (5)0.32596 (5)0.02539 (13)
H98A0.0824620.9047570.3809900.038*
H98B0.0086640.9302210.2847790.038*
H98C0.0748410.8386970.3067760.038*
O980.04221 (6)0.84926 (4)0.47838 (3)0.02704 (11)
N990.10846 (6)0.85392 (4)0.33387 (3)0.01883 (9)
C990.21966 (8)0.83914 (6)0.25620 (5)0.02841 (14)
H99A0.1932760.7922580.2254080.043*
H99B0.2334450.8896040.2209320.043*
H99C0.3072320.8256020.2699090.043*
O991.23412 (5)1.01108 (3)0.92936 (3)0.02037 (9)
H061.3078 (14)1.0356 (8)0.9237 (8)0.033 (3)*
H071.1765 (15)1.0538 (9)0.9237 (9)0.039 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.01093 (17)0.01421 (18)0.0225 (2)0.00127 (14)0.00540 (16)0.00266 (15)
C20.01156 (19)0.0146 (2)0.0158 (2)0.00106 (15)0.00391 (16)0.00067 (16)
N20.01142 (19)0.0177 (2)0.0285 (3)0.00216 (16)0.00582 (17)0.00442 (18)
C30.01208 (19)0.01273 (19)0.0148 (2)0.00120 (15)0.00318 (15)0.00130 (15)
C40.01184 (19)0.01280 (19)0.01307 (19)0.00009 (15)0.00285 (15)0.00058 (15)
N40.01292 (18)0.01354 (18)0.0221 (2)0.00014 (15)0.00446 (16)0.00403 (16)
C4A0.01060 (18)0.01223 (18)0.01442 (19)0.00021 (14)0.00292 (15)0.00092 (15)
C50.01039 (18)0.01210 (18)0.01403 (19)0.00016 (14)0.00309 (15)0.00053 (15)
C5A0.01084 (18)0.01237 (18)0.0157 (2)0.00037 (15)0.00333 (15)0.00069 (15)
C60.01133 (19)0.0143 (2)0.0155 (2)0.00046 (15)0.00311 (16)0.00048 (16)
O10.01310 (17)0.01693 (18)0.0254 (2)0.00010 (14)0.00763 (15)0.00243 (15)
C70.0139 (2)0.0144 (2)0.0213 (2)0.00266 (16)0.00530 (18)0.00277 (17)
C80.0144 (2)0.0142 (2)0.0224 (2)0.00181 (17)0.00503 (18)0.00436 (18)
C90.0133 (2)0.0129 (2)0.0266 (3)0.00028 (16)0.00501 (19)0.00304 (18)
C9A0.01132 (19)0.01308 (19)0.0190 (2)0.00082 (15)0.00398 (16)0.00187 (16)
O100.01171 (16)0.01288 (16)0.0291 (2)0.00140 (13)0.00737 (15)0.00510 (15)
C10A0.01180 (19)0.01265 (19)0.0178 (2)0.00074 (15)0.00446 (16)0.00174 (16)
C110.0130 (2)0.0159 (2)0.0198 (2)0.00068 (16)0.00297 (17)0.00216 (17)
N30.0186 (2)0.0177 (2)0.0366 (3)0.00268 (18)0.0038 (2)0.0075 (2)
C120.0241 (3)0.0267 (3)0.0200 (3)0.0026 (2)0.0046 (2)0.0068 (2)
C130.0210 (3)0.0150 (2)0.0396 (4)0.0037 (2)0.0094 (3)0.0076 (2)
C210.01090 (18)0.01291 (19)0.01364 (19)0.00027 (15)0.00269 (15)0.00041 (15)
C220.01250 (19)0.0141 (2)0.01379 (19)0.00121 (15)0.00278 (15)0.00045 (15)
C230.0142 (2)0.0144 (2)0.0151 (2)0.00214 (16)0.00256 (16)0.00023 (16)
O20.0216 (2)0.01943 (19)0.01761 (18)0.00873 (16)0.00363 (15)0.00127 (15)
C240.0180 (2)0.0169 (2)0.0136 (2)0.00189 (18)0.00167 (17)0.00018 (17)
O30.0343 (3)0.0243 (2)0.01417 (18)0.0115 (2)0.00005 (18)0.00124 (16)
C250.0201 (2)0.0185 (2)0.0137 (2)0.00243 (19)0.00417 (18)0.00106 (17)
C260.0154 (2)0.0158 (2)0.0153 (2)0.00179 (17)0.00414 (17)0.00110 (16)
C270.0242 (3)0.0197 (2)0.0215 (3)0.0072 (2)0.0078 (2)0.0002 (2)
C970.0195 (2)0.0257 (3)0.0172 (2)0.0028 (2)0.0049 (2)0.0038 (2)
C980.0200 (3)0.0277 (3)0.0303 (3)0.0008 (2)0.0100 (2)0.0045 (2)
O980.0258 (2)0.0361 (3)0.0163 (2)0.0069 (2)0.00111 (17)0.00401 (18)
N990.0165 (2)0.0236 (2)0.0159 (2)0.00074 (17)0.00382 (16)0.00215 (17)
C990.0252 (3)0.0405 (4)0.0169 (3)0.0059 (3)0.0015 (2)0.0013 (2)
O990.01655 (19)0.01737 (19)0.0278 (2)0.00084 (15)0.00723 (17)0.00182 (16)
Geometric parameters (Å, º) top
N1—C10A1.3324 (7)C12—H12B0.9800
N1—C21.3399 (7)C12—H12C0.9800
C2—N21.3529 (8)C13—H13A0.9800
C2—C31.4160 (8)C13—H13B0.9800
N2—H010.886 (13)C13—H13C0.9800
N2—H020.885 (13)C21—C261.3907 (8)
C3—C111.4183 (8)C21—C221.4007 (8)
C3—C41.4204 (8)C22—C231.3954 (8)
C4—N41.3476 (7)C22—H220.9500
C4—C4A1.4154 (7)C23—O21.3700 (7)
N4—H030.836 (13)C23—C241.4068 (8)
N4—H040.863 (13)O2—C271.4230 (8)
C4A—C10A1.3779 (8)C24—O31.3545 (8)
C4A—C51.5146 (7)C24—C251.3888 (9)
C5—C5A1.5101 (7)O3—H050.879 (14)
C5—C211.5308 (8)C25—C261.3941 (8)
C5—H51.0000C25—H250.9500
C5A—C9A1.3484 (8)C26—H260.9500
C5A—C61.4535 (8)C27—H27A0.9800
C6—O11.2377 (7)C27—H27B0.9800
C6—C71.5145 (8)C27—H27C0.9800
C7—C81.5337 (9)C97—O981.2359 (8)
C7—H7A0.9900C97—N991.3326 (9)
C7—H7B0.9900C97—H970.9500
C8—C131.5313 (9)C98—N991.4503 (9)
C8—C121.5345 (10)C98—H98A0.9800
C8—C91.5349 (8)C98—H98B0.9800
C9—C9A1.4925 (8)C98—H98C0.9800
C9—H9A0.9900N99—C991.4538 (9)
C9—H9B0.9900C99—H99A0.9800
C9A—O101.3617 (7)C99—H99B0.9800
O10—C10A1.3783 (7)C99—H99C0.9800
C11—N31.1570 (8)O99—H060.856 (14)
C12—H12A0.9800O99—H070.877 (14)
C10A—N1—C2117.21 (5)C8—C12—H12A109.5
N1—C2—N2116.49 (5)C8—C12—H12B109.5
N1—C2—C3120.95 (5)H12A—C12—H12B109.5
N2—C2—C3122.56 (5)C8—C12—H12C109.5
C2—N2—H01117.6 (8)H12A—C12—H12C109.5
C2—N2—H02123.6 (8)H12B—C12—H12C109.5
H01—N2—H02118.6 (11)C8—C13—H13A109.5
C2—C3—C11120.33 (5)C8—C13—H13B109.5
C2—C3—C4119.98 (5)H13A—C13—H13B109.5
C11—C3—C4119.65 (5)C8—C13—H13C109.5
N4—C4—C4A120.95 (5)H13A—C13—H13C109.5
N4—C4—C3120.71 (5)H13B—C13—H13C109.5
C4A—C4—C3118.32 (5)C26—C21—C22118.77 (5)
C4—N4—H03120.8 (9)C26—C21—C5120.55 (5)
C4—N4—H04121.4 (9)C22—C21—C5120.68 (5)
H03—N4—H04117.7 (12)C23—C22—C21120.81 (5)
C10A—C4A—C4115.27 (5)C23—C22—H22119.6
C10A—C4A—C5122.02 (5)C21—C22—H22119.6
C4—C4A—C5122.69 (5)O2—C23—C22124.42 (5)
C5A—C5—C4A108.92 (4)O2—C23—C24115.46 (5)
C5A—C5—C21110.17 (4)C22—C23—C24120.12 (5)
C4A—C5—C21111.95 (4)C23—O2—C27116.52 (5)
C5A—C5—H5108.6O3—C24—C25118.31 (5)
C4A—C5—H5108.6O3—C24—C23123.06 (6)
C21—C5—H5108.6C25—C24—C23118.61 (5)
C9A—C5A—C6117.67 (5)C24—O3—H05114.5 (9)
C9A—C5A—C5123.19 (5)C24—C25—C26121.20 (5)
C6—C5A—C5119.14 (5)C24—C25—H25119.4
O1—C6—C5A120.61 (5)C26—C25—H25119.4
O1—C6—C7120.18 (5)C21—C26—C25120.48 (5)
C5A—C6—C7119.19 (5)C21—C26—H26119.8
C6—C7—C8114.77 (5)C25—C26—H26119.8
C6—C7—H7A108.6O2—C27—H27A109.5
C8—C7—H7A108.6O2—C27—H27B109.5
C6—C7—H7B108.6H27A—C27—H27B109.5
C8—C7—H7B108.6O2—C27—H27C109.5
H7A—C7—H7B107.6H27A—C27—H27C109.5
C13—C8—C7109.19 (5)H27B—C27—H27C109.5
C13—C8—C12108.77 (6)O98—C97—N99125.77 (7)
C7—C8—C12111.11 (5)O98—C97—H97117.1
C13—C8—C9110.06 (5)N99—C97—H97117.1
C7—C8—C9107.58 (5)N99—C98—H98A109.5
C12—C8—C9110.12 (5)N99—C98—H98B109.5
C9A—C9—C8111.17 (5)H98A—C98—H98B109.5
C9A—C9—H9A109.4N99—C98—H98C109.5
C8—C9—H9A109.4H98A—C98—H98C109.5
C9A—C9—H9B109.4H98B—C98—H98C109.5
C8—C9—H9B109.4C97—N99—C98121.91 (6)
H9A—C9—H9B108.0C97—N99—C99120.70 (6)
C5A—C9A—O10122.79 (5)C98—N99—C99117.39 (6)
C5A—C9A—C9125.66 (5)N99—C99—H99A109.5
O10—C9A—C9111.55 (5)N99—C99—H99B109.5
C9A—O10—C10A118.66 (5)H99A—C99—H99B109.5
N1—C10A—C4A128.24 (5)N99—C99—H99C109.5
N1—C10A—O10109.59 (5)H99A—C99—H99C109.5
C4A—C10A—O10122.17 (5)H99B—C99—H99C109.5
N3—C11—C3179.08 (6)H06—O99—H07100.5 (12)
C10A—N1—C2—N2179.82 (6)C6—C5A—C9A—C95.77 (9)
C10A—N1—C2—C30.47 (9)C5—C5A—C9A—C9174.65 (6)
N1—C2—C3—C11179.43 (6)C8—C9—C9A—C5A26.39 (9)
N2—C2—C3—C110.88 (9)C8—C9—C9A—O10153.90 (5)
N1—C2—C3—C41.58 (8)C5A—C9A—O10—C10A8.25 (9)
N2—C2—C3—C4178.73 (6)C9—C9A—O10—C10A171.47 (5)
C2—C3—C4—N4176.42 (5)C2—N1—C10A—C4A0.02 (9)
C11—C3—C4—N41.44 (8)C2—N1—C10A—O10179.40 (5)
C2—C3—C4—C4A2.14 (8)C4—C4A—C10A—N10.56 (9)
C11—C3—C4—C4A180.00 (5)C5—C4A—C10A—N1178.82 (6)
N4—C4—C4A—C10A176.96 (5)C4—C4A—C10A—O10178.74 (5)
C3—C4—C4A—C10A1.60 (8)C5—C4A—C10A—O100.48 (9)
N4—C4—C4A—C51.29 (8)C9A—O10—C10A—N1168.16 (5)
C3—C4—C4A—C5179.84 (5)C9A—O10—C10A—C4A11.26 (9)
C10A—C4A—C5—C5A11.45 (7)C5A—C5—C21—C2652.13 (7)
C4—C4A—C5—C5A166.67 (5)C4A—C5—C21—C2669.23 (6)
C10A—C4A—C5—C21110.63 (6)C5A—C5—C21—C22128.86 (5)
C4—C4A—C5—C2171.24 (6)C4A—C5—C21—C22109.79 (6)
C4A—C5—C5A—C9A14.61 (7)C26—C21—C22—C231.52 (8)
C21—C5—C5A—C9A108.55 (6)C5—C21—C22—C23177.51 (5)
C4A—C5—C5A—C6164.97 (5)C21—C22—C23—O2178.88 (5)
C21—C5—C5A—C671.88 (6)C21—C22—C23—C241.67 (9)
C9A—C5A—C6—O1169.75 (6)C22—C23—O2—C273.02 (9)
C5—C5A—C6—O19.86 (8)C24—C23—O2—C27176.45 (6)
C9A—C5A—C6—C78.71 (8)O2—C23—C24—O31.81 (9)
C5—C5A—C6—C7171.68 (5)C22—C23—C24—O3177.69 (6)
O1—C6—C7—C8160.51 (6)O2—C23—C24—C25179.90 (6)
C5A—C6—C7—C821.02 (8)C22—C23—C24—C250.60 (9)
C6—C7—C8—C13169.85 (5)O3—C24—C25—C26178.96 (6)
C6—C7—C8—C1270.19 (7)C23—C24—C25—C260.59 (9)
C6—C7—C8—C950.42 (7)C22—C21—C26—C250.33 (9)
C13—C8—C9—C9A170.71 (6)C5—C21—C26—C25178.70 (5)
C7—C8—C9—C9A51.84 (7)C24—C25—C26—C210.73 (9)
C12—C8—C9—C9A69.39 (7)O98—C97—N99—C980.18 (11)
C6—C5A—C9A—O10173.91 (5)O98—C97—N99—C99179.44 (7)
C5—C5A—C9A—O105.67 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H01···O1i0.886 (13)2.268 (13)3.1492 (7)173.6 (11)
N2—H02···O980.885 (13)2.170 (13)2.9167 (8)141.8 (11)
N4—H03···O98ii0.836 (13)2.590 (12)3.2891 (8)142.0 (11)
N4—H04···N3iii0.863 (13)2.237 (13)3.0413 (8)154.9 (12)
O3—H05···O990.879 (14)1.816 (14)2.6399 (7)155.2 (12)
O99—H06···O1iv0.856 (14)1.944 (14)2.7944 (7)172.0 (13)
O99—H07···N1v0.877 (14)2.012 (14)2.8699 (7)165.5 (13)
O99—H07···O10v0.877 (14)2.519 (14)3.2180 (7)137.2 (11)
C22—H22···O98ii0.952.393.3210 (8)167
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+1, y+2, z+1; (iv) x+5/2, y+1/2, z+3/2; (v) x+3/2, y+1/2, z+3/2.
 

Acknowledgements

The authors acknowledge support by the Open Access Publication Funds of the Technical University of Braunschweig.

References

First citationAhmed, E. A., Elgemeie, G. H. & Ahmed, K. A. (2022). Pigm. Resin Technol. 51, 1–5.  Web of Science CrossRef CAS Google Scholar
First citationAzzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017). Acta Cryst. E73, 1820–1822.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1998). XP. Bruker Analytical X–Ray Instruments, Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationElgemeie, G. E. H., Farag, D. S. & Jones, P. G. (1998a). Acta Cryst. C54, 1466–1468.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationElgemeie, G. E. H., Fathy, N. M. & Jones, P. G. (1998b). Acta Cryst. C54, 1314–1316.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationElgemeie, G. H., Mohamed, R. A., Hussein, H. A. & Jones, P. G. (2015). Acta Cryst. E71, 1322–1324.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFleming, F. F. & Wang, Q. Z. (2003). Chem. Rev. 103, 2035–2078.  CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHan, G.-F., Zhao, L.-J., Chen, L.-Z., Du, J.-W. & Wang, Z.-X. (2015). J. Heterocycl. Chem. 52, 1219–1225.  CSD CrossRef CAS Google Scholar
First citationHebishy, A. M. S., Elgemeie, G. H., Ali, R. A. E. & Jones, P. G. (2022). Acta Cryst. E78, 638–641.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHebishy, A. M. S., Elgemeie, G. H., Gouda, L. M. & Jones, P. G. (2023). Acta Cryst. E79, 335–340.  CSD CrossRef IUCr Journals Google Scholar
First citationHuszthy, P., Vermes, B., Báthori, N. & Czugler, M. (2003). Tetrahedron, 59, 9371–9377.  CSD CrossRef CAS Google Scholar
First citationKarpinska, J., Erxleben, A. & McArdle, P. (2011). Cryst. Growth Des. 11, 2829–2838.  Web of Science CSD CrossRef CAS Google Scholar
First citationMetwally, N. H., Elgemeie, G. H. & Fahmy, F. G. (2023). ACS Omega, 8, 36636–36654.  CrossRef CAS PubMed Google Scholar
First citationMohamed-Ezzat, R. A., Elgemeie, G. H. & Jones, P. G. (2021). Acta Cryst. E77, 547–550.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTu, X., Fan, W., Hao, W., Jiang, B. & Tu, S. (2014). ACS Comb. Sci. 16, 647–651.  CrossRef CAS PubMed Google Scholar
First citationUpadhyay, D. B., Vala, R. M., Patel, S. G., Patel, P. J., Chi, C. & Patel, C. (2023). J. Mol. Struct. 1273, 134305.  CSD CrossRef Google Scholar
First citationWang, C., Li, Y., Gong, M., Wu, Q., Zhang, J., Kim, J. K., Huang, M. & Wu, Y. (2016). Org. Lett. 18, 4151–4153.  CrossRef CAS PubMed Google Scholar
First citationZhang, W., Yang, C., Zhang, Z., Li, X. & Cheng, J. (2019). Org. Lett. 21, 4137–4142.  CSD CrossRef CAS PubMed Google Scholar
First citationZhang, G., Zhang, C., Tian, Y. & Chen, F. (2023). Org. Lett. 25, 917–922.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds